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cluded for reference (1). The numerical approaches described

are rather general, and specific details are summarized as im-

plemented in two computer codes. One is Numerical Electro-

magnetics Code (NEC) (2) and the other is Thin-Wire Time

Domain (TWTD) (3). The former is a widely used frequency-

domain model, and the latter is its time-domain counterpart.

Both were developed at Lawrence Livermore National Labo-

ratory, and versions of both are in the public domain.

PRELIMINARIES

Integral Equations and Wire Modeling

The derivation of an integral equation for a perfect electric

conductor (PEC) is approached in various ways, but perhaps

the most physically appealing is to begin with Maxwell’s

equations written in their source-integral form whose kernel

is a Green’s function for an electric source in an infinite me-

dium. The source integral gives the secondary field (also

called induced, scattered, or radiated field) caused by a cur-

rent on the body flowing in response to a primary field (also

called incident, applied, or exciting field). By expressing the

secondary field over loci of points where the behavior of the

total field (applied plus radiated) is known via boundary or

continuity conditions, an integral equation for the induced

source is obtained.

Two broad general classes of integral equations are en-

countered, depending on whether the unknown source occurs

only under the integral (a first-kind Fredholm integral equa-

tion) or also outside of it (a second-kind integral equation) (4).

In electromagnetics, a first-kind integral equation arises

when the forcing function (primary field) is an electric field,

and a second-kind integral equation arises when the forcing

function is a magnetic field. Although it is usual for deriva-

tives of the unknown also to occur, the resulting equation is

commonly called an integral equation (IE), rather than an in-

tegro-differential equation as would be strictly correct.

Generally speaking, a magnetic-field IE (MFIE) is best

suited for smooth, closed objects, and it is analytically inappli-

cable to objects thin in one dimension, such as plates, shell-MODELING WIRE ANTENNAS
like structures, and wires. The electric-field IE (EFIE) is not

limited by these constraints, and so becomes the only practi-Wire antennas represent the oldest category of antenna types,

dating back to the successful transatlantic transmissions by cal type for modeling the wires of interest here. Because of

anomalous internal resonances, both the MFIE and the EFIEMarconi and even before that to the theoretical and experi-

mental efforts of Hertz, Maxwell, and others. In 1898, fail numerically near certain discrete frequencies, and a com-

bined-field IE (CFIE) comprised of their sum is needed forPocklington developed an integral equation for a dipole an-

tenna whose numerical solution remained relatively intracta- modeling smooth, closed objects.

At its simplest, a wire is a PEC of constant, circular crossble until the digital computer made its numerical solution

possible. This integral equation, and its various generaliza- section whose circumference in wavelengths C is no greater

than 1 so that its radius in wavelengths, a ! C/2!, althoughtions, provide the starting point for essentially all wire-an-

tenna numerical modeling now routinely done and on which it is usual to employ a maximum radius only a tenth or so as

large. By definition, to be an ‘‘electromagnetic’’ wire, it mustthe discussion below focuses. The emphasis here is on describ-

ing and demonstrating the capabilities of wire-antenna mod- satisfy at least two conditions: (1) the effect of any circumfer-

ential or azimuthal current (one that flows on the wire sur-els rather than on cataloging a large number of antenna types

and characteristics, because the extremely large variety of the face in a direction normal to its axis) is negligible; and (2) the

longitudinal current (the surface current flowing along itslatter is incompatible with the space available and the scope

of the discussion. axis) is independent of the azimuth angle, that is, it is uni-

form around the circumference.Because our primary goal here is to summarize the model-

ing and use of wire antennas rather than to concentrate on A further requirement also usually imposed for analytical

and numerical convenience is that the thin-wire (or reduced-their numerical modeling alone, we consider only the Pocklin-

gton form of the types of integral equations available for wire- kernel) approximation is employed, so that the two-dimen-

sional surface integration required to evaluate the fields ofantenna analysis and design, although several others are in-
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sources on a general surface is approximated by a line inte-

gral along the wire’s axis. This is discussed later.

Most wire modeling, even when approximating a closed

surface by a wire mesh or grid, is done with piecewise linear

(straight) segments. Because meshes used as approximations

to curvilinear surfaces cannot be made of planar square or

rectangular elements, this means that junctions of wires

meeting at variable angles are encountered. Although re-

quirement (2) above is then almost certainly violated, the

thin-wire approximation remains accurate enough to produce

useful results. The added difficulty of including such higher-

order effects as a circumferentially nonuniform longitudinal

current is evidently not commensurate with the improvement

that might be realized. Use of straight segments is also com-

mon in modeling such simple objects as circular loops, helices,

conical spirals, etc.

Guidelines have been developed over the years to help us-

ers of wire codes choose modeling parameters more likely to

lead to acceptable results. For example, when modeling circu-

lar loops, the centerline circumference of the polygonal ap-

proximation should equal the circumference of the actual loop

and a minimum of six wire segments must be used to model

the loop in the vicinity of its first resonance, that is, where

C " 1. This relates to the fact that experience has shown that

nominally six wire segments per wavelength are needed to
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achieve acceptable accuracy, when the sampling density of Figure 2. This two-dimensional backscreen model, consisting of
the unknown current is ‘‘wavelength-driven.’’ When more seg- equally spaced, infinite wires with an excited element in front, was
ments are needed to properly represent the geometry of the studied parametrically to determine the wire radius with the largest

front-to-back ratio (FBR) to gain insight about modeling a continuousobject being modeled, the required segment lengths are re-
surface with wires (5). For a 50-wire backscreen, a ! 2!D providesquired to be much smaller, and the sampling density is geom-
the maximum FBR, where the wire and a continuous backscreen haveetry-driven.’’ When approximating a solid surface with a wire
equal areas over a 3 : 1 frequency range.mesh as shown in Fig. 1, the maximum mesh openings are no

greater than 0.1 wavelength on a side. The radius of the mesh

wires also needs to be such that their total area is twice that

of the surface they represent, so that the wire area in each

direction of a local, orthogonal coordinate system approxi-

mates that of the surface being modeled (6), the ‘‘equal-area’’
equal-area rule is satisfied is shown in Fig. 2 (5). Modeling

rule. A computed result showing that the front-to-back ratio
guidelines for wire antennas are discussed in more detail

of a backscreen of parallel wires is maximized when the
elsewhere (6).

Finally, it should be recognized that a wire model is not

limited to circular PECs. A thin-wire model can be used for

literally any object that satisfies condition (1) previously

stated. Its cross section can vary from a flat strip to an arbi-

trarily irregular shape. For a flat strip of width w, an equiva-

lent radius is found to be a ! w/2. Other simple cross sec-

tions, such as triangular, are also amenable to thin-wire

modeling, where the radius of the equivalent circular wire is

established from simple formulas by quasi-static analysis (8).

IMPORTANT PROPERTIES OF WIRE ANTENNAS

The purpose of the analytical treatment and its implementa-

tion to develop a numerical model, described later, is to assess
Figure 1. This wire-grid model of a ship (7) is intended for the HF

the performance characteristics of antennas of interest, of
band and lower, where the length of the grid wires is less than 0.1

which some of the more important are described here (1).wavelength and has more than 829 segments. Because the ship is in

salt water, which becomes a perfectly conducting half-space to which

all of the wires forming its lower sides are connected, the model is
Input Impedance and Admittance. The input impedancenot closed on the bottom. Wire-grid models with thousands of seg-

ments have been used. Zin, of an antenna is needed to match an antenna to its source
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and is also an important quantity in determining its effi- the far field in the direction (", #) to its average value over

S, so thatciency, defined as

η = Prad/(Prad + Ploss) = Prad/Pin (1)

where Prad and Ploss are the radiated powers and Ploss arises

from the losses to which the antenna is subject. From a nu-

merical and analytical perspective, the antenna’s admittance

GD(θ,ϕ) =
Re[(E × H∗) · r̂]

lim
r→∞

[(

1

4πr2

)

Re

∫ ∫

S

(E × H∗ ) · r̂ds

]

= 2πr2 Re[(E × H∗) · r̂]

Prad

(4a)

Yin is normally the more accurately obtainable quantity, be-

cause the real conductance Gin is determined wholly by Pin, where Prad/(4!r2) is equivalent to the power density of an iso-
whereas the reactive susceptance Bin is very sensitive to feed- tropic antenna radiating the power Prad. The directivity D of
region geometry (discussed later). The real and reactive com- an antenna is defined as the maximum value of the directive
ponents of the impedance, on the other hand, which is simply gain, or
the inverse of the admittance, is affected by whatever errors

arise in the susceptance. Furthermore, when there are no D = max{GD(θ,ϕ)} (4b)
losses, it is straightforward to obtain the conductance by sim-

ply integrating the far-field power flow, a quantity that is also
and finally the gain is defined as in Eq. (4a) but including the

relatively insensitive to errors in the computed current distri- losses so that
bution. By contrast, the susceptance requires an accurate so-

lution of the antenna’s near fields, because it is related to the

stored power that they represent. G(θ,ϕ) = 2πr2 Re[(E × H∗ ) · r̂]

Pin

= ηGD(θ,ϕ) (4c)

The admittance is defined as

A Summary of Analytical Results for Some Common AntennasYin = I(sin)/V (sin) = Iin/Vin = 1/Zin (2)

Although the complexity of real antennas located in their ac-
where sin is the place at which the driving voltage Vin is ap- tual environments precludes analytical solutions, and neces-
plied and Iin is the current there. Determining a realistic sitates numerical models like those previously discussed, a
value of Vin from a numerical model presents a problem be- wide variety of simple antennas have been studied over the
cause it is sensitive to the way the feed region is described years. Some important properties of a large number of these
and it is difficult to replicate the physical arrangement with antennas are summarized for ready reference in Table 1 (1,9).
good fidelity. Feedpoint-modeling errors affect both Gin and

Bin though uncertainty in Vin is sometimes resolved, as far as

NUMERICAL MODELING OF ANTENNASits effect on Gin is concerned, by far-field integration. In a com-

puter code like NEC that uses point matching where it is as-
Although attention here addresses specifically only the nu-sumed that Vin ! $Ein%, with % the length of the feed segment
merical treatment of the Pocklington-type IE, for complete-(see section later on numerical implementation), this uncer-
ness, several different types of thin-wire IEs are included intainty is usually resolved by integrating Etan in the vicinity of
Table 2 (1). These are all frequency-domain IEs, because mostthe feedpoint.
wire modeling uses that approach, but a brief review of wire

time-domain modeling concludes this section.
The Far-Field and Radiated Power. The power radiated by

As a starting point, we include the EFIE and MFIE for
an antenna is usually determined by integrating the far-field

smooth surfaces from which such equations can be derived
power flow over a closed surface containing the antenna as

(1):
given by

n̂ × Ei(r) = −n̂ ×

[

1

4π jωǫ∞

∫

S

JS(r) ·
⇒

G∞(r,r′)d2r′

]

(5)
Prad =

1

2
Re

[∫ ∫

S

E × H∗ · ds

]

≡
1

2
I2

inRrad (3a)

and
where S is the enclosing surface, usually a sphere centered

on a convenient part of the antenna, Re denotes the real part,

ds has a unit normal in the outward direction, E and H are JS(r) = 2n̂ × Hi(r) +
1

2π

∫

S

JS(r′) ·
⇒

Ŵ∞(r,r′)d2r′ (6)

the peak values of the fields and Rrad is the radiation resis-

tance. The input power equals Prad unless there are losses, in
where

which case it is found from

Pin =
1

2
Re(VinI∗

in) (3b)

⇒

G∞(r,r′) = (∇∇ + k2
∞

)g∞(R)

⇒

Ŵ∞(r,r′) =
⇒

I × ∇
′g∞(R)

(7)

Directivity and Gain. The directive gain of an antenna Equation (1) is the EFIE and Eq. (2) is the MFIE, where the

unknown surface-current density is Js(r), n̂ is an outward-GD(", #) is defined as the ratio of real-power flux density in
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Table 1. Properties of Some Simple Antennas
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pointing, surface-normal, unit vector and the other quantities Extension of the previous infinite-medium IEs is straight-

forward for a perfectly conducting half-space, a common start-are defined in Table 2. The quantities G
⇒

#(r, r&) and '
⇒

#(r, r&)

are known as Green’s dyads for the electric and magnetic ing point for treating imperfectly conducting or electromag-

netically penetrable grounds, an especially importantfields of electric current sources.

It should be understood that C(r) in the equations of Table application of wire-antenna modeling. By convention, the

half-space occupies the region z ( 0. It can be deduced that2 represents the geometrical configuration of the wire or col-

lection of wires to be modeled and, therefore, does not need to (1), because an object located above a PEC half-space is elec-

tromagnetically ‘‘imaged’’ or mirrored in it, the vertical com-be spatially continuous. The subscript ‘‘#’’ is used on various

quantities in the table to emphasize their association with an ponents of the image electric currents flow in the same direc-

tion as the actual currents and the horizontal components areinfinite medium, as we next consider the half-space problem.
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Table 1. (Continued)
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reversed. Thus, the electric-field Green’s dyad for the PEC with a similar expression for the magnetic-field form

becomes ⇒

ŴPG(r, r′) =
⇒

Ŵ∞(r,r′) +
⇒

Ŵ I(r,r′) (8c)
⇒

GPG(r, r′) =
⇒

G∞(r,r′) +
⇒

GI(r, r′) (8a) ⇒

Ŵ I(r,r′) = −

⇒

I R ·
⇒

Ŵ∞(r,
⇒

I R · r′) (8d)

where the image term, denoted by subscript ‘‘I’’ is given by Then the Pocklington IE is written without any additional

approximation as

ŝ · Ei(s) =
1

4π jωǫ

∫

C(r)

I(s′)[G∞(s, s′) + GI(s, s′∗)]ds′

⇒

GI(r,r′) = −

⇒

I R ·
⇒

G∞(r,
⇒

I R · r′)

⇒

I R = x̂x̂ + ŷŷ − ẑẑ
(8b)
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Table 1. (Continued)
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with with the effect of the PEC ground included in the GI (image)

term of the modified IE and where s&* is the axial coordinate

of the image current. Note that image theory is useful in nu-

merous other ways in electromagnetics, but space precludes

discussing details here.

Imperfectly Conducting Ground

Modified Image Theory or Reflection-Coefficient Approxima-
tion. When the half-space of interest is finitely conducting or

GI(s, s′∗ ) = [k2
∞

ŝ · ŝ′∗ + (ŝ · ∇)(ŝ′∗ · ∇)]gI(R
∗)

gI(R
∗) =

e− jk∞ R∗

R∗

R∗ = |r − r′∗|

r′∗(x, y, z) = r′(x, y, −z)

ŝ′∗ =
∇C(r′∗)

|∇C(r′∗)|

(9)
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Table 1. (Continued)
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a simple dielectric, then the image-theory approach for the type IE which follows from the following RCA Green’s dyads

PEC half-space is no longer exact. Nevertheless, as a means of

approximating the effect of the half-space, and thereby

avoiding the considerable complexity that otherwise results

from the rigorous Sommerfeld approach, a modified image the-

ory is useful. This leads to the reflection-coefficient approxima-

tion (RCA) (1,10) and yields a new form for the Pocklington-

⇒

GIG(r,r′) =
⇒

G∞(r,r′)+ RM

⇒

GI(r,r′)+ (RE −RM)[
⇒

GI(r,r′) · p̂]p̂
⇒

Ŵ IG(r,r′) =
⇒

Ŵ∞(r,r′)+ RE

⇒

ŴI(r,r′)+ (RM − RE)[
⇒

ŴI(r,r′) · p̂]p̂

p̂ =
(r − r′) × ẑ

|(r − r′) × z|
(10)
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Table 2. Different Forms of Thin-Wire-Approximation Integral Equationsa

ŝ · Ei(s) !
1

4!j$)#
! *

*s
+ · , k2

#ŝ ·" #
C(r)

ŝ&I(s&)g#(R)ds&

ŝ · Ei(s) !
1

4!
#

C(r)
$ŝ · ŝ&j$%#I(s&)g(R) $

1

j$)#

*I(s&)

*s&
ŝ · +g#(R)%ds&

ŝ · Ei(s) !
1

4!
#

C(r)
ŝ · ŝ&j$%#I(s&)g#(R)ds& $

1

4!j$)#

*

*S
#

C(r)

*I(s&)

*s&
g#(R)ds&

Pocklington’s Integral Equation

ŝ · Ei(s) !
1

4!j$)#

#
C(r)

I(s&)G#(s, s&)ds&, with G#(s, s&) ! [k2
#ŝ · ŝ& , (ŝ · +)(ŝ& · +)]g#(R)

Magnetic Vector Potential Integral Equation for Arbitrarily Curved Wires

#
C(r)

I(s&) $g#(R)ŝ · ŝ& ,
1

2
#

C(r)
d-"(- $ s)e$jk

#
&s$-& ' *

*s&
g#(R)(-̂ · ŝ&) ,

*

*-
[(-̂ · ŝ&)g#(R)]"(ds&

! Ae$jk
#

s , Bejk
#

s ,
1

2)(%#/)#)
#

C(r)
ŝ · Ei(s&)e$jk

#
&s$s&& ds&

"(u) ! 1, u . 0; "(u) ! 0, u / 0

Magnetic Vector Potential Integral Equation for Straight Wires

(Hallen’s Integral Equation)

#
C(r)

I(s&)g#(R)ds& ! A$jk
#

s , Bjk
#

s ,
1

2)(%#/)#)
#

C(r)
ŝ · Ei(s&)e$jk

#
&s$s&& ds&

In the previous equations:

s and s& denote the axial coordinates at the observation and source points, respec-

tively;

r and r& are the vector coordinates at the observation and source points;

ŝ !
+C(r)

&C(r)&
and ŝ& !

+C(r&)

&C(r&)&
are unit tangent vectors at r and r&;

C(r) is the range of integration over the wire;

a(r) is the wire radius at r;

s ! C(r) , a(r) so that R . a(r) as required by the thin-wire approximation;

g#(R) !
e$jk

#
R

R
;

R ! [a(r&)2 , &r $ r&&2]1/2;

k# ! $/(%#)#)1/2 is the wave number of the infinite medium in which the wire is lo-

cated; the superscript ‘‘i’’ denotes an incident-field quantity;

and the ‘‘ ˆ ’’ denotes a unit-length vector.

aAfter (1).

as and

ϕ(r) = tan−1

[

(y − y′ )

(x − x′ )

]

(11c)

Here RE and RM are the Fresnel plane-wave reflection coeffi-

ŝ ·Ei(s)=
1

4π jωǫ

∫

C(r)

I(s′)[G∞(s, s′) + RMGI(s, s′∗)

+(RE−RM) sinβ sinβ ′ sin(ϕ−α) sin(φ − α′)gI(R
∗)]ds′

(11a)
cients for transverse-electric (TE) and transverse-magnetic

where (TM) polarizations, respectively and the subscript ‘‘IG’’ signi-

fies an imperfect ground. Also, "(r, r&) is the angle with re-

spect to a normal to the interface and a straight line in the

vertical plane that joins s and s& (known as the specular re-

flection point from optics), and &(r) and '(r) are the direc-

tional angles of the wire at r with respect to the x and z axes,

but these explicit dependencies are omitted for clarity. Note

RE =
(ǫE − sin

2
θ )1/2 − cos θ

(ǫE − sin
2
θ )1/2 + cos θ

RM =
ǫE cos θ − (ǫE − sin

2
θ )1/2

ǫE cos θ + (ǫE − sin
2
θ )1/2

(11b)
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terms in the RCA. Thus, one form of the Pocklington-type

EFIE for the imperfect ground is written as follows

(1,9,11,12):

ŝ · Ei(s) =
1

4π jω∞ǫ∞

∫

C(r)

I(s′)

(

G∞(s, s′) + GI(s, s′∗)

+

[

k2
∞

cos β +
∂2

∂s∂z

]

[sinβ ′gHz − cos β ′gVz
]

+ sinβ ′

[

k2
∞

sinβ cos(α − α′) +
∂2

∂s∂t ′

]

gHt

)

ds′

(13)

where the partial derivative with respect to t& is in the direc-

tion of the horizontal projection of the wire at s&. Also

90 45

θ

(a)

0

1

0

R

90 45

θ

(b)

0

1

0

R

Figure 3. The real component of the radial electric field of a hori-

zontal, delta-functional current source in free space is shown as a

function of distance R and elevation angle " near a half-space for

0IG/0# ! 4, 1IG ! 0.001 S/m, and (b) 0IG/0# ! 16, 1IG ! 0 (17). The latter

exhibits the beating effect of waves in the upper and lower half-spaces

with two different wavelengths which the loss in the former elimi-

nates.

that 0E is the permittivity of the lower half-space relative to

the upper, that is,

gHt = 2

∫ ∞

0

λ

γ∞ + γE

J0(λρ)e−γ∞ (z+z′ )dλ

gHz =
− cos(ϕ − α′)

k2
∞

∫ ∞

0

γ∞ − γE

ǫEγ∞ + γE

J1(λρ)e−γ∞ (z+z′ )λ2dλ

gVz = 2

∫ ∞

0

γE

ǫEγ∞ + γE

J0(λρ)e−γ∞ (z+z′ ) λ

γ∞

dλ

ρ =
√

(x − x′)2 + (y − y′ )2 + a2

γ∞ =
√

λ2
− k2

∞

γE =
√

λ2
− ǫEk2

∞

(14)

ǫE =
ǫIG

ǫ∞

− j
σIG

ωǫ∞

= ǫEr − jǫEi (12)

where the integrals are the field expansions mentioned pre-

viously, first derived by Sommerfeld (11,13). The quantitywhere 0IG and 1IG are the permittivity and conductivity of the

lower half-space, the subscripts ‘‘r’’ and ‘‘i’’ denote real and Jn(x) is a Bessel function of order n and argument x, z and z&

are the source and observation heights above the interface,imaginary components, and it should be understood that 0#

itself can be complex, should the above-ground medium be and the ‘‘a’’ in the expression for radial separation 2 imposes

the minimum separation required by the thin-wire approxi-conducting.

The RCA provides reasonably good results for input imped- mation. Note that these integrals are functions of only two

variables 2 and z , z&.ance and radiation patterns, with errors of 10% or less in the

former, for wires no closer than 0.1 wavelength of the inter- The treatment thus far is limited to the ‘‘one-sided’’ prob-

lem, where the object being modeled is entirely contained onface. For situations requiring greater accuracy or involving

wires closer to the interface, the Sommerfeld approach, or its one side of the interface, so that the source and observation

points are always in the same medium. Similar, but still moreequivalent, is needed.

complicated expressions result when the object(s) being mod-

eled occupy both half-spaces, that is, the ‘‘two-sided’’ problem.The Sommerfeld Approach. The Sommerfeld approach ex-

pands the fields of point sources in a continuous-wave expan- It is worth noting that the RCA has been extended to the two-

sided problem (14), but the latter primarily has been ap-sion along the interface, which leads to infinite-range inte-

grals for the reflected fields that appear in place of the image proached with the Sommerfeld theory or its equivalent. Ana-

Figure 4. These three results for the in-

put admittance of a monopole antenna of

length h with air insulation b/a ! 2.5 in

water having 0IG/0# ! 80 $ j0.197 as a

function of the composite wave number

demonstrate the general validity of the

sheath model described above. The x’s are

from NEC, the solid lines are independent

computations (21), and the solid circles
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are measurements (22).
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replaces the Sommerfeld fields with a series of images in com-

plex space that provide the interface-reflected fields. Another

alternative is to generalize the problem to include the tangen-

tial electric and magnetic fields on the interface as additional

unknowns in the model (16). Because the interface extends to

infinity, this is impractical because the number of unknowns

is commensurate with the area being modeled. However, in

terms of accounting for the interaction of an object with the

interface, only a limited area of the interface under the ob-

ject’s projection onto it measurably affects the object’s cur-

rents. Thus, the number of interface unknowns is limited.

Furthermore, for a particular choice of ground parameters

and frequency, the interface part of the problem needs to be

solved only once and then continues to be reused for whatever

object is to be modeled for those specific conditions.

Approaches that fall in category (3) are of a generally dif-

ferent character and are described as employing a signal-pro-

cessing philosophy. The basic motivation here is to compute

a minimum number of Sommerfeld-integral values, or their

equivalent, beyond which the field values needed in the IE

1.40∼ ∼ 1.<180°

  /4λ

  /4λ

Figure 5. The two-element monopole array shown produces the

ground-plane currents presented as a vector plot (24). By revealing

the current-flow pattern in a perfect ground, such plots indicate the

most effective ground-screen geometry. The arrows represent the

semimajor and semiminor axes of the ground-current polarization el-

lipse, respectively.

lytical treatment of the two-sided problem is beyond the scope

of this discussion. The details are found elsewhere (e.g.,

(12,13), but it is relevant to mention that the fields for the

two-sided case are functions of the three variables !, z and z".

Simplifying the Sommerfeld Treatment. The appearance of

the Sommerfeld integrals as part of its kernel function adds

significant further computational complexity to solving the IE

in Eq. (6). There are at least three ways of reducing the com-

puter cost of solving interfacial problems while retaining the

rigor of the Sommerfeld-type approach:

1. develop more efficient ways of evaluating the Sommer-

feld integrals;

2. develop an alternative, more efficient formulation in

their place;

3. minimize the need for evaluating these integrals in the

numerical model.

Category (1) has long been pursued, and a variety of analyti-

cal approximations have been derived for various regions of

the parameter space for which Sommerfeld-integral values

are needed, as have been numerous numerical approaches.

Unfortunately, although some very useful results have been

obtained, individual approaches generally do not cover the pa-

rameter space encountered in many practical problems, so

this possibility has had only limited success. The Sommerfeld
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integrals are one of the wave-type, or Fourier-type expan-
Figure 6. Input impedance of a quarter-wave monopole antenna

sions, developed for the interface problem, of which a sum-
driven against a buried ground screen with N wires subtracted from

mary is found in (13). its impedance for a perfect ground with #E $ 10 % j100 (25). The NEC
As an alternative to wave expansions that lead to Sommer- results, which represent a numerically rigorous solution of the prob-

feld-type integrals, one example of category (2) is the develop- lem are compared with approximate results from the compensation

theorem (26) discussed in the next section.ment of complex-image theory (15). This particular approach
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Figure 7. These plots of the input resis-

tance of (a) a half-wave vertical dipole and

(b) a half-wave horizontal dipole as a

function of ground conductivity for vari-

ous antenna heights compare the RCA

(solid line), the Sommerfeld theory (o’s),

and the compensation theorem (x’s) for

the vertical antenna (10). The frequency

is 3.0 MHz, #E $ 10, and the antenna ra-

dius is 5 & 10%4 wavelengths. The RCA

becomes exact for PEC and so is expected

to be most reliable for reasonably conduc-
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tive grounds.

model are obtained from a reduced-order analytical approxi- However, the fields for the two-sided problem are functions

of three variables and are less amenable to interpolation. Butmation based on these values. A motivation for doing this is

demonstrated in Fig. 3 (17), where the real component in the they have been similarly treated using a procedure called

model-based parameter estimation (MBPE) (12). This in-radial direction of the interfacially reflected field for a hori-

zontal delta-function electric-current source is shown graphi- volves using approximate, asymptotic formulas for the fields,

derived from the Sommerfeld integrals as the interpolating,cally as a function of the two applicable variables R $

![!2 ' (z ' z")2] and ( $ tan%1[(z ' z")/!]. The spatial varia- or fitting, functions. Matching the sum of the fitting models

to rigorously computed field values provides multiplying coef-tion of the fields is quite smooth, certainly less complex than

the analytical descriptions of Eq. (14) imply. Furthermore the ficients (the parameters) for the fitting models (the parame-

ter-estimation step). As in the simple interpolative approach,possibility is suggested that, if the fields are sampled over

a mesh, simple interpolation might provide accurate enough the fitting models are subsequently used in place of the Som-

merfeld integrals in the numerical solution, where, for thevalues between these samples, so that no further rigorous

field computations are required in numerically modeling ob- interface problem, the computetime saving is a factor of 100–

1000.jects near an interface, as was shown feasible (18).

A principle that needs to be kept in mind whenever com-

paring alternate approaches to a given problem is that of ‘‘the

conservation of difficulty.’’ Alternative formulations that lead

to integrals different from, but comparable to, the Sommer-

feld integrals, may offer no computational advantage. An-

other principle is that of the ‘‘information content’’ of the phe-

nomenon of interest. From an engineering viewpoint, only

some minimum of detail is needed to acceptably represent

that phenomenon, so that when there is the possibility of

choosing between mathematical rigor and computational

practicability, in this case between the Sommerfeld integrals

and a model-based procedure, the latter offers an attractive

option.

Modeling Finitely Conducting, Loaded, and Sheathed Wires

When modeling wire antennas, it is often desirable or neces-
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sary to include such effects as the distributed impedance due
Figure 8. These results for the input resistance of the SLT as a func-

to a wire’s finite conductivity, lumped loads when used as ter-tion of depth to a salt-water half-space show that between 240 and
minations or for matching, and dielectric sheaths used for in-360 radials are needed to limit the input-resistance change to less
sulation or for other purposes. The original integral equationthan 10% (28). They are based on combining the RCA with Eqs. (19),

(21), and (24). Also, #E,1r $ 15, )1 $ 0.01, and #E,2r $ 81, )1 $ 4. is simply modified by including a voltage-drop term, where
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Figure 9. A hybrid of an integral equa-

tion and GTD model is used here to obtain

the input impedance of a monopole an-

tenna at the center of an octagonal plate

(29). Agreement between the experimen-

tal results (open circles) and the computa-

tions (solid line) is within 10%.
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ES(s) represents the field scattered from the wire by the inci- tions, with the requirement that their effect is truly local and

that the load is itself nonradiating except for the currentdent field, as follows (1,2):

flowing through it at its connection point si (2).

Loading Due to a Sheath. The effect of a sheathed wire is

handled by including an equivalent electric current Js radiat-

ŝ · [Ei(s) + Es(s)] = ŝ · Ei(s) −
1

4π jω∞

∫

C(r)

I(s′ )G∞(s, s′)ds′

= ZL(s, s′)I(s′) (15)
ing in an infinite medium as given by (2,20)

where ZL(s, s") is the load value affecting the field at s because

of a current at s", to allow for mutual and self-loading and Js(ρ, s, ϕ) = jωǫ∞(ǫs − 1)[Es(ρ, s,ϕ) + Ei(ρ, s, ϕ)] (18a)

whose specific value is determined as described later. For self-
where #s is the permittivity of the sheath relative to the infi-loading, where ZL(s, s") $ ZL(s)!(s % s"), the effect of loading
nite medium where the wire is located. So as not to destroyis simply to modify the system matrix (see below) along its
the one-dimensional nature of the wire integral equation, thediagonal, whereas mutual loading more generally affects any
sheath is assumed to be electrically thin, and the total sheathof the system-matrix coefficients. Mathematically, the effect
field is assumed to be dominated by its radial component,of a load is the same as that of the incident-field term, except
which is due to the wire charge, so thatit is of opposite sign (unless it is an active load); the former

represents a voltage ‘‘rise’’ along the wire and the latter a

voltage drop. Es(s) ≈
jI

′
(s)

2πωǫ∞ǫsρ
ρ̂ (18b)

Distributed Loading Due to Finite Conductivity. For a wire of

where I"(s) is the spatial derivative of the current at s. Be-radius ai, conductivity )i, permeability "i, and length *i, the

cause the incident electric field in the radial direction can beimpedance per segment i is approximately given by (2,19)

neglected relative to that due to I"(s), the equivalent sheath

current becomes

Js(ρ, s, ϕ) ≈
−(ǫs − 1)

2πǫsρ
I′(s)ρ̂ (18c)

ZL(si) =
j&i

ai

√

ωµi

2πσi

(

Ber(qi) + jBei(qi)

Ber
′
(qi) + jBei

′
(qi)

)

where

qi =
√

ωµiσiai

(16)

for a(s) + ! + b(s), where b is the sheath radius and a is the

wire radius. As shown elsewhere (2), with some additionaland Ber and Bei are Kelvin functions.
approximations, the sheath is predominantly a ‘‘self-term’’ ef-

fect, whose axial field is given byLumped-Impedance Loading. A lumped impedance is gener-

ally described as a complex quantity given by

ŝi · Es
s(si) ≈

− jk2
s (ǫs − 1)

2πωǫ∞ǫs

CiLn

[

b(si)

a(si)

]

(18d)

ZL(si) = Ri + j

(

ωLi −
1

ωCi

)

(17)

where ks is the sheath wave number, to be included in the

thin-wire integral equation. An example of modeling thefor a series R, L, C load located at observation point si. Other

combinations are readily introduced for more general situa- sheath effect is shown in Fig. 4.
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the angle of incidence at the specular reflection point and also

by the effective value of the surface impedance there. To be-

gin with, note that the surface impedance of the imperfect

ground itself is given by

Zsurf =
√

µIG/ǫIG = η∞/
√

ǫE (19a)

where ,# is the wave impedance of the upper medium. Then

the SIA is expressed as

Ex,IG = −ZsurfHy,IG

and

Ey,IG = ZsurfHx,IG

(19b)

which is valid when "sin2(/#E" - 1 is satisfied.
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For a wire ground screen located at the interface and in

good electrical contact with the lower half-space so that it is

considered electrically in parallel with the ground, the modi-

fied surface impedance for the imperfect ground is given by

(23)

Z′
surf =

Zsurf Zscreen

Zsurf + Zscreen

(20)

where Zscreen is the screen impedance. The screen impedance

for a radial screen at a distance ! from its center and com-

prised of N wires of radius a is given by

Zscreen,rad =
jµ∞ωρ

N
Ln

( ρ

Na

)

(21a)
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and a corresponding formula for a parallel grid of wires whose

center spacing is d isFigure 10. The input impedance (b) and admittance (a) are shown

for an L $ 2., center-fed dipole antenna as a function of the number

of unknowns, where only the center segment is excited. The results

imply that the impedance is not well-converged whereas the admit-
Zscreen,par =

jµ∞ωd

2π
Ln

(

d

2πa

)

(21b)

tance behavior suggests otherwise. When multiple segments are ex-

cited to keep the physical width of the source region a constant value thus providing a means of obtaining a value for the relative
of L/11, the additional results of (b) are obtained. It’s clear that physi- permittivity of the ground using Eq. (20) and thereby the
cal and numerical effects influence the apparent convergence rate of Fresnel reflection coefficient for the RCA. It is worth observ-
the numerical solution. ing that the latter becomes zero when d $ 2$a, that is, when

the area of the screen wires equals that of the surface they

cover, as previously discussed in connection with using wire

Modeling Ground Screens meshes as approximations to continuous surfaces.

Unless made of a square mesh, the impedance of a ground
When used via MBPE as outlined previously, the Sommerfeld

screen varies with direction in the x–y plane, that is, is aniso-
treatment can be regarded as a numerically rigorous ap-

tropic. Thus, implementing the RCA requires a further de-
proach for modeling antenna-ground-screen combinations for

composition of the interactive field between source and obser-
not too great an increase in computational cost compared with

vation segments that takes this anisotropy into account. The
modeling the same configuration in an infinite medium. How-

electric field is first decomposed into components along the
ever, the size in wavelengths of complex screen geometries

principal directions of the screen wires relative to the specu-
can be so large itself to make a more efficient model desirable

lar point. For example, in the case of the parallel screen of
so long as it offers acceptable accuracy. Two approaches to

Eq. (21b), the component parallel to the screen wires reflects
ground-screen modeling are outlined here, one using a sur-

from a medium whose effective permittivity, then is, given by
face-impedance approximation together with the RCA and the

other a technique known as the compensation theorem.

Surface-Impedance Approximation for Ground Screens. The

surface-impedance approximation (SIA) represents the wires

in an actual ground screen by approximating the change they

cause in the reflecting properties of the imperfect ground.

Thus the reflection coefficients in the RCA are determined by

√
ǫ ′

E = η∞/Z′
surf = η∞

(

Zsurf + Zscreen

Zsurf Zscreen

)

= η∞









η∞+
√

ǫ
E

jµ∞ωd

2π
Ln

(

d

2πa

)

η∞
jµ∞ωd

2π
Ln

(

d

2πa

)









(22)
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Figure 11. Current and charge ‘‘snap-

shots’’ at several time steps for a Guas-

sian-pulse-excited dipole exhibit a variety

of important physics (31). Two outward-

propagating same-sign current pulses,

and opposite-sign charge pulses originate

from the source. A slight diminution of

the pulse amplitudes occurs because of ra-

diation damping, and a further diminu-

tion occurs upon end reflection, a strong

source of radiation. Plots like these are re-

markably insightful in revealing why an-

tennas behave the way they do.

(b)(a) (c)

(e)

Current
Charge

(d) (f)

(h)(g) (i)

whereas the orthogonal component reflects from a medium of

permittivity #E. Then each of these two fields is further decom-

posed into TE and TM components relative to the specular

plane and for which the appropriate Fresnel plane-wave re-

flection coefficients are computed and applied to determine

the total reflected field at the observation segment.

Application to Ground-Screen Design. A ground screen is

used to improve antenna performance by simulating a per-

fect-image plane to the degree necessary for the particular

problem requirements. Any overdesign of the ground screen

which provides an improvement greater than that sought is

regarded as an inefficient allocation of resources. A reliable

and credible method for optimizing the ground-screen design

has a significant impact on the installation and operating

costs of large antenna systems.

Observe that simulating a perfect-image plane with the

ground screen implies that the ground screen should simulate

current-conduction paths similar to those that occur when the

same antenna is located over a perfect ground. If the current

flow in the perfect ground is confined along particular paths,

for example, then a ground screen with relatively few wires

is still highly efficient if the wires, which it has, follow the

same paths. Hence, a radial-wire ground screen is very effec-

tive for monopole antennas located at its center, because the

monopole produces entirely radial ground currents.

A method for determining an optimum ground-screen ge-

ometry for a given antenna system can be developed based on

the RCA as described below. The antenna is first modeled us-

ing a PEC ground from which the current-flow pattern in the

ground plane under the antenna is obtained. Next, the initial

ground-screen design is achieved with a wire geometry that

replicates the current-flow pattern in the PEC ground with

a wire spacing inversely proportional to the surface-current

density and chosen to produce a specified power loss per unit
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area. To reduce the screen complexity, some relaxation in the
Figure 12. Comparison of current on a two-wire transmission line

actual screen geometry from the ideal pattern should be an-
obtained from the analytical solution (solid line) and from a thin-wire

ticipated, possibly limiting the final form to a combination ofintegral equation (x’s) for an (a) open circuit, (b) short circuit, and (c)
rectangular cells and radial lines. To illustrate this approach,matched load (16). Although these results do not check the radiative-
the perfect ground currents for a simple antenna are pre-predictive properties of the numerical model, they do provide some

assurance that the model can handle a non-radiating problem. sented in Fig. 5.
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Figure 14. A comparison of the input impedance of a Vee-dipole an-
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tenna obtained from several different wire IE models shows that they

Figure 13. Comparison of results from the analytical formula of (35) agree to an order of /30% except for the resistance at lower frequen-

(lines) with a thin-wire IE for a short antenna in free space and in a cies when decreases as f 2 (16).

lossy plasma (x’s) provides mutual validation for both approaches

(16). This is an important extension of the IE model because handling

lossy media is necessary for modeling antennas buried in the ground. then the IG input impedance is obtained entirely in terms

of the PG result. Some results comparing the compensation

theorem, the RCA, and the Sommerfeld integrals for modeling

half-wave vertical and horizontal dipoles are included in
Using Sommerfeld Theory to Model Ground Screens. Al-

Fig. 7.
though intended primarily for modeling antennas near an in-

terface, the Sommerfeld approach, as included in the NEC, is Modeling Layered Grounds
also efficient enough to include the ground-screen wires for

The SIA can also be used as an approximation for modelingsome of the simpler designs. An example demonstrating this
layered grounds in place of the even more complicated Som-application is presented in Fig. 6 (25).
merfeld approach. A particular example of interest is that of

Using the Compensation Theorem. An alternative approach

to including the effects of ground screens and the interface

itself on antenna impedance is a technique widely used before

computer solutions became practical, but still effective for

some applications. This is the compensation theorem (26),

whereby the input impedance in an antenna located near an

interface is estimated from a reference solution for a PEC

half-space, as

Zin,IG = Zin,PG +
1

Iin,PGI∗
in,PG

∫

A

HPG(x, y) · ẑ × EIG(x, y)dxdy

(23a)

where the subscripts PG and IG, as before, refer to quantities

associated with a perfect ground and imperfect ground, re-
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spectively. Upon using the surface-impedance approximation
Figure 15. The computed and measured resonance frequency of aof Eq. (19b) and further assuming that
29.6-in zigzag dipole comprised of 1-in pieces of wire agree to within

2–3%, demonstrating the capability of the wire IE model to handle a

slow-wave structure (16).
Hx,IG = Hx,PG and Hy,IG = Hy,PG (23b)
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Figure 16. Although the thin-wire ap-

proximation limits how close a wire can

approach an interface, by using a small

radius of 10%8 wavelengths in free space,

the 0.1 wavelength wire can be brought

much closer than its length to an interface

of relative permittivity $ 16 (17). The

above-ground results approach an asymp-

totic value, whereas those below ground

continue to change. The smoothness of the

behavior shown here does not prove the

validity of the model, but does show that

the model, based on the MBPE form of the

Sommerfeld approach, exhibits appro-

priate behavior.
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antennas located near a body of water, fresh or saline, where Hybrid Models
tidal effects vary the ground-water depth beneath the an-

Unfortunately, a numerical model based on a single formula-
tenna with time of day. When an antenna’s input impedance

tion is not equally applicable to all problems. Even though a
must be limited between narrowly defined values to maintain

wire code models surfaces approximated as grids, there are
matched conditions with the generator, it is necessary to de-

more efficient and accurate ways to handle PEC objects. It is
termine the ground-screen parameters that make this possi-

equally true that not all parts of a given problem are suitable
ble. It is straightforward to obtain an approximate value for

for modeling with a single formulation. Wires attached to
the effective surface impedance (27) for a layer of thickness h

solid PEC objects or located near inhomogeneous dielectric
over a lower half-space from the expression

bodies are simple examples. For this reason, it is desirable to

combine two (or more) approaches to develop what is called a

‘‘hybrid’’ model to handle such problems.

Considering that there are four kinds of numerical models
Z′

surf = Zsurf

√
ǫE,1 + j

√
ǫE,2 tan[k∞h

√
ǫE,1 ]

√
ǫE,2 + j

√
ǫE,1 tan[k∞h

√
ǫE,1 ]

(24)

presently used in electromagnetics (EM), based on integral

equations, differential equations, modal expansions and thewhere the subscript ‘‘1’’ applies to the upper layer and ‘‘2’’ to
geometrical theory of diffraction (GTD), formulated in eitherthe lower half-space and, as before, #x is the permittivity rela-
the frequency domain or time domain, hybrid models havetive to that of the uppermedium ##. Including this SIA with a
been developed using various combinations of these (seeground-screen approximation and the RCA provides a means
(29,30) for two examples). An especially useful hybrid modelfor modeling the combined effect of a layered ground and
involving wires is one that combines a wire IE with the GTD,ground screen. Use of the SIA for the U.S. Coast Guard Sec-
an example of which is shown in Fig. 9. The benefit of thistionalized Loran Transmitting (SLT) antenna (28) (see Fig.
kind of hybrid model is that only the unknowns for the cur-22 for a computer plot of the SLT geometry) antenna is illus-

trated in Fig. 8.
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Figure 17. The real (x) and imaginary (o) components of the current

on a conical spiral antenna obtained from a Pocklington IE compared Figure 18. The normalized, near, radial electric field of a circular

loop antenna obtained from the electric-field IE (o’s) (16) agreeswith a Hallen IE (solid and dashed lines) (36) show agreement to

within about 10% (16). The difficulty of generalizing the Hallen IE to within a few percent, on a normalized basis, with analytical results

(solid line) (37).arbitrary geometries restricts its application.
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Figure 19. This comparison between the electric-field IE (o) and

measured data (solid line) of the frequency response of a circular loop

continuously loaded with capacitors demonstrates the possibility of

modeling a distributed capacitive load (16).
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Figure 20. Lumped loading is employed here to foreshorten the fourrents on the wire need to solved for, because the currents on
longest elements in a 19-element log-periodic antenna, withthe plate, against which the monopole is driven, are ac-
agreement to /1 dB relative to the pattern maximum obtained be-counted for via GTD diffraction coefficients.
tween experimental measurements (lines) and numerical results

(solid circles) (16).
Modeling in the Time Domain

Equations analogous to those in the frequency domain can be

derived for many situations directly in the time domain. For

a wire in free space, an IE comparable to the Pocklington IE

can be developed as follows (31):

ŝ · Ei(s, t) =
µ∞

4π

∫

C(r)

{

ŝ · ŝ′

R

∂I(s′, t ′ )

∂t ′

+

[

c∞s · R

R2

][

∂I(s′, t ′)

∂s′ −
c∞

R
Q(s′, t ′)

]}

ds′

Q(s′, t ′) = −
∫ t ′

−∞

∂I(s′, t ′)

∂s′ dt ′

(25)

where Q(s, t) is the charge density at space location s and time

t and the ‘‘retarded time’’ t" $ R/c#, where c#is the speed of

light in the medium. A time-domain IE like that in Eq. (25)

is readily solved by ‘‘time stepping’’ whereby the solution is

developed as a function of space and time, as described later.

NUMERICAL IMPLEMENTATION VIA THE MOMENT METHOD

The Frequency Domain

A generic form of the frequency-domain IEs thus far consid-

ered can be written as (1,32)

L(s, s′) f (s′ ) = g(s) (26a)
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where L(s, s") is the integral operator, f (s") is the unknown
Figure 21. These plots compare the input admittance of a dipole

current, and g(s) is the known source or forcing function,
antenna driven by a tangential electric field (dashed line) compared

which, for our application, is sampled values of a specified with one attached to a two-wire transmission line and excited at the
tangential electric field. The method of moments (MOM) is far end (solid line) (16). The upward frequency shift caused by the
an intuitively logical way of solving this operator equation, transmission line is evidently caused by the capacitive-loading effect

of the antenna–transmission–line junction.whereby the unknown is expressed (or sampled) in terms of a
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Figure 22. The computer model of the SLT antenna, containing a

total of 237 wire segments demarcated by the arrows (28). At the time

this work was done, a 237-segment model was state-of-the-art, but

now this problem is considered small for desk-top computers.

set of basis or expansion functions f i(s") and unknown coeffi-
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cients ai: Figure 24. The modeled (o’s) SLT resistance results compare within

a few percent of the scale-model measurements (solid lines) while the

reactance values are shifted by about 2% in frequency (16) for 120

radials in the ground screen and #E $ 15 and )IG $ 2 & 10%2 S. Such

reactance shifts are fairly common in numerical modeling, and can
f (s′) =

Ns
∑

i=1

ai fi(s
′) (27a)

have a number of causes (34). Of course, besides limitations in the

numerical model, incomplete knowledge of the experimental condi-
so that the operator equation is then written tions can also be a source of such differences.

where Ns is the number of spatial unknowns. Then upon sam-

pling the operator Eq. (26b) with a set of testing or weight
L(s, s′)

Ns
∑

i=1

ai fi(s
′) =

Ns
∑

i=1

aiL(s, s′ ) fi(s
′) = g(s) (26b)

functions

{w j(s)}, m = 1, . . ., M (27b)

Ns
∑

i=1

ai〈w j (s), L(s, s′ fi(s
′)〉 = 〈w j (s),g(s)〉, m = 1, . . ., M (27c)
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Figure 25. A numerical model like NEC makes it possible to evalu-
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ate the influence of parameters such as the length of a ground stake

against which a monopole antenna is driven, as illustrated here (24),Figure 23. The influence of the number of wires in a radial-wire

ground screen on the input impedance of the SLT antenna as modeled computed using the rigorous Sommerfeld approach for a wire radius

of 2.5 & 10%6 (solid line), 2.5 & 10%5 (dotted line), and 2.5 & 10%4using the RCA and ground-screen approximation shows that the re-

actance is much less affected by a changing ground conductivity than (dashed line), respectively, for a ground of #E $ 16 % j16. Results like

this make it feasible to determine what kind of ground stake isis the resistance (16). For the dashed curves, #E $ 15 and )IG $ 10%2

S and for the solid curves #E $ 15 and )IG $ 10%3 S. needed to stabilize the input impedance.
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The admittance matrix is a numerical representation of the

complete EM properties of the object being modeled, within

the approximations made in its computation, and as such it

has some interesting properties. First, it provides a solution

for arbitrary excitation. Second, it can be stored for subse-

quent reuse. Perhaps most interesting, in a very real sense,

it possesses the properties of a hologram, as seen by writing

the field radiated by the object as

Er =

Ns
∑

i=1

Eo
i

Ns
∑

j=1

YijE
i
j (30a)

where the first sum yields a solution for the current distribu-

tion and the second sums the field at a specified observation

point caused by that current. Also

Eo
i = ŝi · Eo(si) and Ei

j = ŝ j · Ei(s j ) (30b)

where the exciting field Ei and the ‘‘observation’’ field Eo are

tangential projections onto the object of an arbitrary incident

field and the field from a point source located at the observa-

tion point.

Much work has been done to identify the ‘‘best’’ expansion

and testing functions. A variety of combinations are described

by Poggio and Miller (1). Those in NEC use what is called

‘‘sub-sectional collocation,’’ wherein the wire is divided into

1 Wire

2 Wire
3 Wire

(c)

(b)

(b) Azimuth pattern

(a) Elevation pattern

Monopole

Feedpoint

Dipole

1 Wire

Continuous
wire

(a)

2 Wire
3 Wirea

Dipole

L

Ns ‘‘segments’’ with
Figure 26. Sparse ground screens like that shown here (a) cannot be

modeled using the simple ground-screen formulas, but can be handled

using the interpolated Sommerfeld approach (38), to obtain the eleva-

tion (b) and azimuth (c) patterns, with the number of ground wires

fi(s
′) = Ai + Bi sin[k(s′ − si)] + Ci{cos[k(s′ − si )] − 1},

si − &i/2 ≤ s′ ≤ si + &i/2, i = 1, . . ., Ns

(31a)

as a parameter. The frequency is 10 MHz and the ground has #E $ 4

and )IG $ 10%3 S. and

w j (s) = δ(s − s j ), j = 1, . . ., Ns (31b)

where the # $ signifies what is called an ‘‘inner product’’ (the

inner product of two functions p(r) and q(r) over a surface S where *i is the length of segment i and !(s % sj) is a delta-
defined as %

s
p(r)q(r)d2s). function, thus producing point sampling of the tangential

Now the original operator equation is written in a discret- electric field. Of the 3Ns unknowns in Eq. (31), 2Ns are elimi-
ized, sampled approximation as nated by enforcing current and current-slope (charge) conti-

Ns
∑

i=1

Zjiai = b j, j = 1, . . ., M (28a)

where

Zji = 〈w j (s), L(s, s′ ) fi(s
′)〉

and

b j = 〈w j (s), g(s)〉

(28b)

Finally, the coefficients that quantify the numerical solution

for the current distribution are obtained as

IZ
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Figure 27. Comparison of the TCA (dashed line) with the Sommer-
ai =

M
∑

j=1

Yijb j, i = 1, . . ., Ns (29)

feld theory (solid line) demonstrates the former’s potential applicabil-

ity to subsurface probing (14) for a ground of #E $ 9 and )IG $ 10%3 Swhere Zij is known as the impedance matrix and Yij is the
and with both wires 0.5 wavelengths long and for a frequency of 10

admittance matrix, its inverse. Equations (28a) and (29) are
MHz. The goal here is to detect a buried object from its effect on the

written more compactly in symbolic form as
impedance of an above-ground probing antenna whose effect is plot-

ted as a normalized difference between its value with and without

the object.
⇒
Z · A = B ⇒ A =

⇒
Y · B
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Upon sampling the field with the testing functions

{Wkm(s, t)} = {wk(s)vm(t)}, k = 1, . . ., Ns, m = 1, . . ., Nt (33b)

the operator equation is written in a discretized, sampled ap-

proximation as

Ns
∑

i=1

Nt
∑

j=1

Aij〈vm(t), 〈wk(s), O(s, t ′; s′, t ′ )Pij(s
′, t ′ )〉〉

= 〈vm(t), 〈wk(s),G(s, t)〉〉 (32c)

where the inner product now involves a space integration and

also a time integration.

Employing subsectional collocation in both space and time,

the unknown current is written as
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Figure 28. Here the TCA is used to determine the variation in the

input impedance of an above-ground, horizontal antenna (L $ 0.457

wavelengths) as it rotates about a vertical axis above a horizontal,

buried wire (L $ 0.152 wavelengths) (14) whose center is on the same

vertical axis with a ground of #E $ 9 and )IG $ 0 for a frequency of 1

MHz. When the wires are orthogonal, there is no interaction while

the maximum effect is produced when they are parallel.

Pij(s
′, t ′) = A1,i j + A2,i j(s

′ − si ) + A3,i j(s
′ − si )

2 + A4,i j(t
′ − t j )

+ A5,i j(t
′ − t j )

2 + A6,i j(s
′ − si )(t

′ − t j )

+ A7,i j(s
′ − si)

2(t ′ − t j ) + A8,i j(s
′ − si)

2(t ′ − t j )
2

+ A9,i j(s
′ − si)

2(t ′ − t j )
2,

si − &i/2 ≤ s′ < si + &i/2, i = 1, . . ., Ns;

t j − δ/2 ≤ t ′ ≤ t j + δ/2, j = 1, . . ., Nt (34a)

and the constant time step is !, whereas while the testingnuity at the junctions between segments, so that the final
function is given bynumber is Ns.

The behavior of a numerical model, as Ns is increased, is
Wkm(s, t) = δ(s − s j )δ(t − t j ) (34b)

often examined in what is called a ‘‘convergence test.’’ Al-

though a convergence test is reassuring if the numerical re-
so that the tangential field is point-sampled in both space andsults approach an asymptote, it is not guaranteed that con-
time, and the time solution is developed from time stepping.vergence takes place, or if it does, that the convergence is to
There are nine unknown coefficients associated with eachthe correct answer. In addition, depending on how results of
space-time step, eight of which are eliminated in a fashion

the convergence test are examined, quite different conclusions
similar to that described for NEC, by matching the current to

might be reached, as demonstrated in Fig. 10.

The Time Domain

A similar approach is used to solve the time-domain version

of the EFIE, Eq. (25), which is first written in operator form

as (31,33)

O(s, t; s′, t ′)F(s′, t ′ ) = G(s, t) (32a)

where t" is used here to denote the retarded time, that is t" $

t % R/c#. Then we might represent the space and time depen-

dence of F(s", t") as

F(s′, t ′ ) =

Ns
∑

i=1

Nt
∑

j=1

AijPij(s
′, t ′ ) (33a)

where the Aij are space-time samples of the unknown (i is the

space index and j the time index) of which there are Ns and

Nt space and time samples, respectively, so that Eq. (27) be-
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Figure 29. The TCA is used here to determine the above-ground ra-

diation pattern of a dipole antenna as it rotates in a vertical plane

(14). When the antenna is vertical or horizontal, the above-ground

patterns are symmetric about a surface normal, but the patterns are

otherwise slightly skewed.

Ns
∑

i=1

Nt
∑

j=1

AijO(s, t; s′, t ′)Pij(s
′, t ′) = G(s, t) (32b)
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Figure 30. The source current (a) and

the broadside electric field (b) for a dipole

excited at its center by a Gaussian voltage

as obtained using TWTD are quite simi-

lar, with the latter demonstrating the ra-

diation for these conditions is first pro-

duced as the voltage is applied and then

subsequently as the current–charge wave
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reflects from the wire ends (31).

its neighbors in the adjacent eight space-time samples (31,33) wire excited by a Gaussian voltage pulse, V $ V0exp(%t2a2), is

given in Fig. 11, where the spatial distribution of current andat i / 1, j; i, j / 1; i / j, j / i. An alternative approach is to

write the basis function as Pij(s", t") $ Ri(s")Sj(t"), which then charge are plotted at several instants of time (31).

involves five unknowns (by setting the constant term in Sj(t")

to unity) and four are eliminated by matching at i / 1, j; i, j Some Observations Concerning Numerical Modeling
/ 1. Finally, the space-time current samples are written in

Numerical models based on integral equations, like those pre-the form
sented in previously and solved by the moment method, as

described previously, yield the source distribution, typically

current for a wire antenna, for an arbitrary right-hand-side or

incident field. All other observables of interest to the antenna

designer or user are subsequently determined from this so-

Iij = I(si, t j ) = YikEt
k j = Yik(E

i
kj + Es

kj)

= Yik

[

Et
kj +

Ns
∑

i′=1

Zii′ Ii′ ,m− f (i,i′ )

]

(35)

lution.

The code, or model, user usually devotes most attention towhere Et
ij $ total Eij, Es

ij $ scattered Eij.

input impedance, radiation efficiency, and the directive gainFor a straight wire, f (i,i") $ "i % i"", but it is generally a

or other antenna properties judged most important for themore complicated function of object geometry. Also, Yik repre-

intended application. The model developer, on the other hand,sents the inverse of the time-independent matrix that ac-

is usually at least as interested in the current distribution,counts for field-current interactions in the time step j, and

the convergent behavior of the numerical result revealed byZii, accounts for the fields produced over the object from cur-

its dependence on Ns, the near fields, and so on. For both therents that occurred at earlier times. Developed in this way,

code user and code developer, validation of the code and thethe time-stepping model is called ‘‘implicit,’’ whereas if no in-

results obtained from it are crucially important. Validationteractions are allowed within time-step j, the model is ‘‘ex-

plicit.’’ An example of a time-domain solution for a straight ultimately consumes more time in computational electromag-

Figure 31. This comparison of the mea-

sured and computed, using TWTD, input

impedance of a Gaussian-pulse excited

antenna shows the two results are graphi-

cally indistinguishable for about the first

8 resonances (31), providing mutual vali-

dation, as well as demonstrating the

broadband capability of a time-domain
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netics than any other single activity, but a discussion of it the angle between the adjacent one-inch segments, for which

the measured and computed resonances agree within 5%.goes beyond the scope of this article. Some examples selected

to exhibit the relative validity of numerical results are pre- A different kind of validation test is demonstrated in Fig.

16 where the input impedance of a dipole is presented as asented later, and further information about validation is

found elsewhere (34). function of distance from the interface between free space and

a dielectric half-space (17).The results presented later are selected from two perspec-

tives. Aside from those chosen for explicit validation, one is to

demonstrate some of the kinds of capabilities that wire mod- Infinite-Medium Applications
els provide, primarily through results generated from NEC

Wire codes are typically used to determine input impedance,
and TWTD. The other is to show the kinds of agreement ex-

current distribution and radiation patterns of candidate an-
pected between computation and measurement or other inde-

tennas, but are also used for a variety of other applications.
pendent results.

Some examples of these applications are shown here. In Fig.

17, the current distributions on a log-conical spiral antenna

obtained from two different codes are compared. They agreeSOME REPRESENTATIVE RESULTS
OF WIRE-ANTENNA MODELING within 10% relative to the peak values except right at the

source (16). The radial component of the near field of a loop

Validating the Numerical Model antenna is compared with independent data in Fig. 18. In Fig.

19, the input impedance of a loaded loop antenna is compared
There are few analytical solutions for wire objects that vali-

with measurement (16). A comparison of the measured and
date a computer model, one exception being the well-known

computed radiation patterns of a log-periodic dipole array an-
two-wire transmission line. A comparison of the results pro-

tenna with foreshortened elements to reduce its physical size
vided by an earlier version of NEC with those from analytical

is presented in Fig. 20 (16). Finally, the frequency-depen-
formulas is shown in Fig. 12 (16). For small antennas, there

dence of the input impedance of a dipole antenna is illus-
are also simple, analytical formulas for the input admittance

trated in Fig. 21 for what are termed implicit and explicit
(35), one of which used for an antenna in a plasma to check

source models (16). All of these results demonstrate the appli-
the results from NEC for a wire antenna in a lossy medium

cability of wire codes to various kinds of antennas for ob-
is shown in Fig. 13. In both cases, the IE model agrees with

taining various observables.
the analytical results to within a few percent.

Several different numerical models were used to determine
Interface Applications

the frequency response of a Vee-dipole, an antenna with V-

shaped end loads connected by a short, straight center section Because the ‘‘segmentation’’ or description of a continuous

wire object using a piecewise linear approximation is not eas-where the antenna is excited (16). These model results, com-

pared with each other over the frequency of the first reso- ily visualizable, a computer model of the Sectionalized-Loran

Transmitting (SLT where LORAN stands for long range navi-nance in Fig. 14, generally agree within 10%.

To be useful, wire codes must also model objects with fine gation) antenna is presented in Fig. 22 (28). The segments

that comprise the numerical model are shown by arrows,detail, such as the zigzag shown in Fig. 15 (16). The first reso-

nance of a constant-length zigzag is shown as a function of where the reference direction for the current is in the direc-

tion to which the arrow points. This model contains 237 seg-

ments, or unknowns, a rather small number by today’s stan-

dards where problems with thousands of unknowns are

routinely modeled. This particular antenna was modeled over

an imperfect ground with a radial-wire ground screen cen-

tered at the antenna feedpoint, using the combined RCA-

ground-screen approach outlined previously.

Because a ground screen for an antenna this large requires

a large amount of copper wire, it is desirable to use no more

than necessary to achieve the desired performance character-

istics. Therefore, parametric experiments were performed to

determine the SLT’s impedance sensitivity to its ground

screen and the ground parameters, an example of which is

shown in Fig. 23 (28).

One difficulty with modeling antennas located on or near

the ground is validating the results of computer experiments,

such as illustrated in Fig. 23. Fortunately, the U.S. Coast

Guard, which operates the LORAN system obtained experi-

mental measurements using a 1/25th scale-model antenna

with 120 radials and with #IG $ 15, )IG $ 2 & 10%2 S, for which

some results are compared with computer predictions in Fig.
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24 (28).Figure 32. This comparison of the measured center current on a
Two rather different kinds of interface modeling are pre-Vee-dipole due to a broadside-incident Gaussian plane wave with a

sented next in Figs. 25 and 26. The effect on the input imped-TWTD prediction provides a mutual validation for both (31). The time

displacement is evidently due to a slight time-scale difference. ance of a vertical monopole antenna excited just above the
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Figure 33. Nonlinear problems can be

modeled in the time domain, as this result

demonstrates. A dipole antenna continu-

ously loaded with diodes that permit it to

conduct in only one direction has the feed-

point current in (a), and broadside radi-

ated field in (b) when excited by a

Gaussian pulse (31). The spectrum of the
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radiated field is as shown in (c).

Figure 34. Time varying problems are

also well-suited to time-domain modeling

as demonstrated here (31). A 16 MHz,

broadside-incident, plane wave illumi-

nates a half-wave diople having a center

load whose resistance varies sinusoidally

at 4 MHz, producing the broadside scat-

tered field in (a) whose spectrum is shown

in (b). Dynamically varying the reflecti-

vity of a scatterer can be used to change

the scattered-field spectrum from what it
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