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Preface

This text provides a broad and applications-oriented introduction to electromagnetic

waves and antennas. Current interest in these areas is driven by the growth in wireless

and fiber-optic communications, information technology, and materials science.

Communications, antenna, radar, and microwave engineers must deal with the gen-

eration, transmission, and reception of electromagnetic waves. Device engineers work-

ing on ever-smaller integrated circuits and at ever higher frequencies must take into

account wave propagation effects at the chip and circuit-board levels. Communication

and computer network engineers routinely use waveguiding systems, such as transmis-

sion lines and optical fibers. Novel recent developments in materials, such as photonic

bandgap structures, omnidirectional dielectric mirrors, birefringent multilayer films,

surface plasmons, negative-index metamaterials, slow and fast light, promise a revo-

lution in the control and manipulation of light and other applications. These are just

some examples of topics discussed in this book. The text is organized around three

main topic areas:

• The propagation, reflection, and transmission of plane waves, and the analysis

and design of multilayer films.

• Waveguides, transmission lines, impedance matching, and S-parameters.

• Linear and aperture antennas, scalar and vector diffraction theory, antenna array

design, numerical methods in antennas, and coupled antennas.

The text emphasizes connections to other subjects. For example, the mathematical

techniques for analyzing wave propagation in multilayer structures and the design of

multilayer optical filters are the same as those used in digital signal processing, such

as the lattice structures of linear prediction, the analysis and synthesis of speech, and

geophysical signal processing. Similarly, antenna array design is related to the prob-

lem of spectral analysis of sinusoids and to digital filter design, and Butler beams are

equivalent to the FFT.

Use

The book is appropriate for first-year graduate or senior undergraduate students. There

is enough material in the book for a two-semester course sequence. The book can also

be used by practicing engineers and scientists who want a quick review that covers most

of the basic concepts and includes many application examples.

xiv PREFACE

The book is based on lecture notes for a first-year graduate course on “Electromag-

netic Waves and Radiation” that I have been teaching at Rutgers for more than twenty

years. The course draws students from a variety of fields, such as solid-state devices,

wireless communications, fiber optics, biomedical engineering, and digital signal and

array processing. Undergraduate seniors have also attended the graduate course suc-

cessfully.

The book requires a prerequisite course on electromagnetics, typically offered at the

junior year. Such introductory course is usually followed by a senior-level elective course

on electromagnetic waves, which covers propagation, reflection, and transmission of

waves, waveguides, transmission lines, and perhaps some antennas. This book may be

used in such elective courses with the appropriate selection of chapters.

At the graduate level, there is usually an introductory course that covers waves,

guides, lines, and antennas, and this is followed by more specialized courses on an-

tenna design, microwave systems and devices, optical fibers, and numerical techniques

in electromagnetics. No single book can possibly cover all of the advanced courses.

This book may be used as a text in the initial course, and as a supplementary text in the

specialized courses.

Contents and Highlights

The first eight chapters develop waves concepts and applications. The material pro-

gresses from Maxwell equations, to uniform plane waves in various media, such as

lossless and lossy dielectrics and conductors, birefringent and chiral media, including

negative-index media, to reflection and transmission problems at normal and oblique

incidence, including reflection from moving boundaries and the Doppler effect, to mul-

tilayer structures.

Chapter three deals with pulse propagation in dispersive media, with discussions of

group and front velocity and causality, group velocity dispersion, spreading and chirp-

ing, dispersion compensation, slow, fast, and negative group velocity, and an introduc-

tion to chirp radar and pulse compression.

Some of the oblique incidence applications include inhomogeneous waves, total in-

ternal reflection, surface plasmons, ray tracing and atmospheric refraction, and Snel’s

law in negative-index media.

The material on multilayer structures includes the design of antireflection coatings,

omnidirectional dielectric mirrors, broadband reflectionless multilayers, frustrated to-

tal internal reflection and surface plasmon resonance, perfect lenses in negative-index

media, polarizing beam splitters, and birefringent multilayer structures.

Chapters 9–14 deal with waveguides and transmission lines. We cover rectangular

waveguides, resonant cavities, and simple dielectric waveguides, as well as an extensive

discussion of plasmonic waveguides, and Sommerfeld and Goubau lines in which there

is renewed interest for THz applications. The transmission line material includes a

discussion of microstrip and coaxial lines, terminated lines, standing wave ratio and the

Smith chart, and examples of time-domain transient response of lines. We have included

some material on coupled lines and crosstalk, as well as some on coupled mode theory

and fiber Bragg gratings.
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We devote one chapter to impedance matching methods, including multisection

Chebyshev quarter-wavelength transformers, quarter-wavelength transformers with se-

ries or shunt stubs, single stub tuners, as well as L-section andΠ-section reactive match-

ing networks.

Chapter 14 presents an introduction to S-parameters with a discussion of input and

output reflection coefficients, two-port stability conditions, transducer, operating, and

available power gains, power waves, simultaneous conjugate matching, noise figure cir-

cles, illustrating the concepts with a number of low-noise high-gain microwave amplifier

designs including the design of their input and output matching circuits.

Chapters 15–23 deal with radiation and antenna concepts. We begin by deriving ex-

pressions for the radiation fields from current sources, including magnetic currents, and

then apply them to linear and aperture antennas. Chapter 15 covers general fundamen-

tal antenna concepts, such as radiation intensity, power density, directivity and gain,

beamwidth, effective area, effective length, Friis formula, antenna noise temperature,

power budgets in satellite links, and the radar equation.

We have included a number of linear antenna examples, such as Hertzian and half-

wave dipoles, traveling, vee, and rhombic antennas, as well as loop antennas.

Two chapters are devoted to radiation from apertures. The first discusses Schelku-

noff’s field equivalence principle, magnetic currents and duality, radiation fields from

apertures, vector diffraction theory, including the Kottler, Stratton-Chu, and Franz for-

mulations, extinction theorem, Fresnel diffraction, Fresnel, zones, Sommerfeld’s solu-

tion to the knife-edge diffraction problem, geometrical theory of diffraction, Rayleigh-

Sommerfeld diffraction theory and its connection to the plane-wave spectrum represen-

tation with applications to Fourier optics.

The second presents a number of aperture antenna examples, such as open-ended

waveguides, horn antennas, including optimum horn design, microstrip antennas, para-

bolic and dual reflectors, and lens antennas.

Two other chapters discuss antenna arrays. The first introduces basic concepts such

as the multiplicative array pattern, visible region, grating lobes, directivity including its

optimization, array steering, and beamwidth.

The other discusses several array design methods, such as by zero placement, Fourier

series method with windowing, sector beam design, Woodward-Lawson method, and

several narrow-beam low-sidelobe designs, such as binomial, Dolph-Chebyshev, Taylor’s

one-parameter, Taylor’s n̄ distribution, prolate, and Villeneuve array design. We have

expanded on the analogies with time-domain DSP concepts and filter design methods.

We finally give some examples of multibeam designs, such as Butler beams.

The last two chapters deal with numerical methods for linear antennas. Chapter 22

develops the Hallén and Pocklington integral equations for determining the current on

a linear antenna, discusses King’s three-term approximations, and then concentrates on

numerical solutions for delta-gap input and arbitrary incident fields. We discuss the

method of moments, implemented with the exact or the approximate thin-wire kernel

and using various bases, such as pulse, triangular, and NEC bases. These methods

require the accurate evaluation of the exact thin-wire kernel, which we approach using

an elliptic function representation.

In Chapter 23 we discuss coupled antennas, in particular, parallel dipoles. Initially,

we assume sinusoidal currents and reduce the problem to the calculation of the mutual

xvi PREFACE

impedance matrix. Then, we consider a more general formulation that requires the so-

lution of a system of coupled Hallén equations. We present various examples, including

the design of Yagi-Uda antennas.

Our MATLAB-based numerical solutions are not meant to replace sophisticated com-

mercial field solvers. The inclusion of numerical methods in this book was motivated by

the desire to provide the reader with some simple tools for self-study and experimenta-

tion. The study of numerical methods in electromagnetics is a subject in itself and our

treatment does not do justice to it. However, we felt that it would be fun to be able to

quickly compute fairly accurate radiation patterns in various antenna examples, such

as Yagi-Uda and other coupled antennas, as well horns and reflector antennas.

The appendix includes summaries of physical constants, electromagnetic frequency

bands, vector identities, integral theorems, Green’s functions, coordinate systems, Fres-

nel integrals, sine and cosine integrals, the stationary phase approximation, Gauss-

Legendre quadrature, Lorentz transformations, and a detailed list of the MATLAB func-

tions.

Finally, there is a large (but inevitably incomplete) list of references, arranged by

topic area, as well as several web links, that we hope could serve as a starting point for

further study.

MATLAB Toolbox

The text makes extensive use of MATLAB. We have developed an “Electromagnetic Waves

& Antennas” toolbox containing 180 MATLAB functions for carrying out all of the com-

putations and simulation examples in the text. Code segments illustrating the usage

of these functions are found throughout the book, and serve as a user manual. The

functions may be grouped into the following categories:

1. Design and analysis of multilayer film structures, including antireflection coat-

ings, polarizers, omnidirectional mirrors, narrow-band transmission filters, sur-

face plasmon resonance, birefringent multilayer films and giant birefringent op-

tics.

2. Design of quarter-wavelength impedance transformers and other impedance match-

ing methods, such as Chebyshev transformers, dual-band transformers, stub match-

ing and L-, Π- and T-section reactive matching networks.

3. Design and analysis of transmission lines and waveguides, such as microstrip

lines, dielectric slab guides, plasmonic waveguides, Sommerfeld wire, and Goubau

lines.

4. S-parameter functions for gain computations, Smith chart generation, stability,

gain, and noise-figure circles, simultaneous conjugate matching, and microwave

amplifier design.

5. Functions for the computation of directivities and gain patterns of linear antennas,

such as dipole, vee, rhombic, and traveling-wave antennas, including functions for

the input impedance of dipoles.

6. Aperture antenna functions for open-ended waveguides, horn antenna design,

diffraction integrals, and knife-edge diffraction coefficients.
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7. Antenna array design functions for uniform, binomial, Dolph-Chebyshev, Tay-

lor one-parameter, Taylor n̄ distribution, prolate, Villeneuve arrays, sector-beam,

multi-beam, Woodward-Lawson, and Butler beams. Functions for beamwidth and

directivity calculations, and for steering and scanning arrays.

8. Numerical methods for solving the Hallén and Pocklington integral equations for

single and coupled antennas, computing the exact thin-wire kernel, and computing

self and mutual impedances.

9. Several functions for making azimuthal and polar plots of antenna and array gain

patterns in decibels and absolute units.

10. There are also several MATLAB movies showing pulse propagation in dispersive

media illustrating slow, fast, and negative group velocity; the propagation of step

signals and pulses on terminated transmission lines; the propagation on cascaded

lines; step signals getting reflected from reactive terminations; fault location by

TDR; crosstalk signals propagating on coupled lines; and the time-evolution of the

field lines radiated by a Hertzian dipole.

The MATLAB functions as well as other information about the book may be down-

loaded from the web page:

http://www.ece.rutgers.edu/~orfanidi/ewa
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1

Maxwell’s Equations

1.1 Maxwell’s Equations

Maxwell’s equations describe all (classical) electromagnetic phenomena:

∇∇∇× E = −∂B

∂t

∇∇∇×H = J+ ∂D

∂t

∇∇∇ ·D = ρ
∇∇∇ · B = 0

(Maxwell’s equations) (1.1.1)

The first is Faraday’s law of induction, the second is Ampère’s law as amended by

Maxwell to include the displacement current ∂D/∂t, the third and fourth are Gauss’ laws

for the electric and magnetic fields.

The displacement current term ∂D/∂t in Ampère’s law is essential in predicting the

existence of propagating electromagnetic waves. Its role in establishing charge conser-

vation is discussed in Sec. 1.7.

Eqs. (1.1.1) are in SI units. The quantities E and H are the electric and magnetic

field intensities and are measured in units of [volt/m] and [ampere/m], respectively.

The quantities D and B are the electric and magnetic flux densities and are in units of

[coulomb/m2] and [weber/m2], or [tesla]. D is also called the electric displacement, and

B, the magnetic induction.

The quantities ρ and J are the volume charge density and electric current density

(charge flux) of any external charges (that is, not including any induced polarization

charges and currents.) They are measured in units of [coulomb/m3] and [ampere/m2].

The right-hand side of the fourth equation is zero because there are no magnetic mono-

pole charges. Eqs. (1.3.17)–(1.3.19) display the induced polarization terms explicitly.

The charge and current densities ρ, J may be thought of as the sources of the electro-

magnetic fields. For wave propagation problems, these densities are localized in space;

for example, they are restricted to flow on an antenna. The generated electric and mag-

netic fields are radiated away from these sources and can propagate to large distances to
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the receiving antennas. Away from the sources, that is, in source-free regions of space,

Maxwell’s equations take the simpler form:

∇∇∇× E = −∂B

∂t

∇∇∇×H = ∂D

∂t

∇∇∇ ·D = 0

∇∇∇ · B = 0

(source-free Maxwell’s equations) (1.1.2)

The qualitative mechanism by which Maxwell’s equations give rise to propagating

electromagnetic fields is shown in the figure below.

For example, a time-varying current J on a linear antenna generates a circulating

and time-varying magnetic field H, which through Faraday’s law generates a circulating

electric field E, which through Ampère’s law generates a magnetic field, and so on. The

cross-linked electric and magnetic fields propagate away from the current source. A

more precise discussion of the fields radiated by a localized current distribution is given

in Chap. 15.

1.2 Lorentz Force

The force on a charge q moving with velocity v in the presence of an electric and mag-

netic field E,B is called the Lorentz force and is given by:

F = q(E+ v× B) (Lorentz force) (1.2.1)

Newton’s equation of motion is (for non-relativistic speeds):

m
dv

dt
= F = q(E+ v× B) (1.2.2)

where m is the mass of the charge. The force F will increase the kinetic energy of the

charge at a rate that is equal to the rate of work done by the Lorentz force on the charge,

that is, v · F. Indeed, the time-derivative of the kinetic energy is:

Wkin = 1

2
m v · v ⇒ dWkin

dt
=m v · dv

dt
= v · F = q v · E (1.2.3)

We note that only the electric force contributes to the increase of the kinetic energy—

the magnetic force remains perpendicular to v, that is, v · (v× B)= 0.
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Volume charge and current distributions ρ, J are also subjected to forces in the

presence of fields. The Lorentz force per unit volume acting on ρ, J is given by:

f = ρE+ J× B (Lorentz force per unit volume) (1.2.4)

where f is measured in units of [newton/m3]. If J arises from the motion of charges

within the distribution ρ, then J = ρv (as explained in Sec. 1.6.) In this case,

f = ρ(E+ v× B) (1.2.5)

By analogy with Eq. (1.2.3), the quantity v · f = ρ v · E = J · E represents the power

per unit volume of the forces acting on the moving charges, that is, the power expended

by (or lost from) the fields and converted into kinetic energy of the charges, or heat. It

has units of [watts/m3]. We will denote it by:

dPloss

dV
= J · E (ohmic power losses per unit volume) (1.2.6)

In Sec. 1.8, we discuss its role in the conservation of energy. We will find that elec-

tromagnetic energy flowing into a region will partially increase the stored energy in that

region and partially dissipate into heat according to Eq. (1.2.6).

1.3 Constitutive Relations

The electric and magnetic flux densities D,B are related to the field intensities E,H via

the so-called constitutive relations, whose precise form depends on the material in which

the fields exist. In vacuum, they take their simplest form:

D = ǫ0E

B = μ0H
(1.3.1)

where ǫ0, μ0 are the permittivity and permeability of vacuum, with numerical values:

ǫ0 = 8.854× 10−12 farad/m

μ0 = 4π× 10−7 henry/m
(1.3.2)

The units for ǫ0 and μ0 are the units of the ratios D/E and B/H, that is,

coulomb/m2

volt/m
= coulomb

volt ·m
= farad

m
,

weber/m2

ampere/m
= weber

ampere ·m
= henry

m

From the two quantities ǫ0, μ0, we can define two other physical constants, namely,

the speed of light and the characteristic impedance of vacuum:

c0 = 1√
μ0ǫ0

= 3× 108 m/sec , η0 =
√

μ0

ǫ0

= 377 ohm (1.3.3)
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The next simplest form of the constitutive relations is for simple homogeneous

isotropic dielectric and for magnetic materials:

D = ǫE
B = μH

(1.3.4)

These are typically valid at low frequencies. The permittivity ǫ and permeability μ

are related to the electric and magnetic susceptibilities of the material as follows:

ǫ = ǫ0(1+ χ)
μ = μ0(1+ χm)

(1.3.5)

The susceptibilities χ,χm are measures of the electric and magnetic polarization

properties of the material. For example, we have for the electric flux density:

D = ǫE = ǫ0(1+ χ)E = ǫ0E+ ǫ0χE = ǫ0E+ P (1.3.6)

where the quantity P = ǫ0χE represents the dielectric polarization of the material, that

is, the average electric dipole moment per unit volume. In a magnetic material, we have

B = μ0(H+M)= μ0(H+ χmH)= μ0(1+ χm)H = μH (1.3.7)

where M = χmH is the magnetization, that is, the average magnetic moment per unit

volume. The speed of light in the material and the characteristic impedance are:

c = 1√
μǫ
, η =

√
μ

ǫ
(1.3.8)

The relative permittivity, permeability and refractive index of a material are defined by:

ǫrel = ǫ

ǫ0

= 1+ χ , μrel = μ

μ0

= 1+ χm , n = √ǫrelμrel (1.3.9)

so that n2 = ǫrelμrel. Using the definition of Eq. (1.3.8), we may relate the speed of light

and impedance of the material to the corresponding vacuum values:

c = 1√
μǫ

= 1√
μ0ǫ0ǫrelμrel

= c0√
ǫrelμrel

= c0

n

η =
√
μ

ǫ
=
√

μ0

ǫ0

√

μrel

ǫrel

= η0

√

μrel

ǫrel

= η0
μrel

n
= η0

n

ǫrel

(1.3.10)

For a non-magnetic material, we have μ = μ0, or, μrel = 1, and the impedance

becomes simply η = η0/n, a relationship that we will use extensively in this book.

More generally, constitutive relations may be inhomogeneous, anisotropic, nonlin-

ear, frequency dependent (dispersive), or all of the above. In inhomogeneous materials,

the permittivity ǫ depends on the location within the material:

D(r, t)= ǫ(r)E(r, t)
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In anisotropic materials, ǫ depends on the x, y, z direction and the constitutive rela-

tions may be written component-wise in matrix (or tensor) form:

⎡

⎢
⎣

Dx
Dy
Dz

⎤

⎥
⎦ =

⎡

⎢
⎣

ǫxx ǫxy ǫxz
ǫyx ǫyy ǫyz
ǫzx ǫzy ǫzz

⎤

⎥
⎦

⎡

⎢
⎣

Ex
Ey
Ez

⎤

⎥
⎦ (1.3.11)

Anisotropy is an inherent property of the atomic/molecular structure of the dielec-

tric. It may also be caused by the application of external fields. For example, conductors

and plasmas in the presence of a constant magnetic field—such as the ionosphere in the

presence of the Earth’s magnetic field—become anisotropic (see for example, Problem

1.10 on the Hall effect.)

In nonlinear materials, ǫmay depend on the magnitude E of the applied electric field

in the form:

D = ǫ(E)E , where ǫ(E)= ǫ+ ǫ2E + ǫ3E
2 + · · · (1.3.12)

Nonlinear effects are desirable in some applications, such as various types of electro-

optic effects used in light phase modulators and phase retarders for altering polariza-

tion. In other applications, however, they are undesirable. For example, in optical fibers

nonlinear effects become important if the transmitted power is increased beyond a few

milliwatts. A typical consequence of nonlinearity is to cause the generation of higher

harmonics, for example, if E = E0e
jωt, then Eq. (1.3.12) gives:

D = ǫ(E)E = ǫE + ǫ2E
2 + ǫ3E

3 + · · · = ǫE0e
jωt + ǫ2E

2
0e

2jωt + ǫ3E
3
0e

3jωt + · · ·

Thus the input frequency ω is replaced by ω,2ω,3ω, and so on. In a multi-

wavelength transmission system, such as a wavelength division multiplexed (WDM) op-

tical fiber system carrying signals at closely-spaced carrier frequencies, such nonlinear-

ities will cause the appearance of new frequencies which may be viewed as crosstalk

among the original channels. For example, if the system carries frequencies ωi, i =
1,2, . . . , then the presence of a cubic nonlinearity E3 will cause the appearance of the

frequencies ωi ±ωj ±ωk. In particular, the frequencies ωi +ωj −ωk are most likely

to be confused as crosstalk because of the close spacing of the carrier frequencies.

Materials with a frequency-dependent dielectric constant ǫ(ω) are referred to as

dispersive. The frequency dependence comes about because when a time-varying elec-

tric field is applied, the polarization response of the material cannot be instantaneous.

Such dynamic response can be described by the convolutional (and causal) constitutive

relationship:

D(r, t)=
∫ t

−∞
ǫ(t − t′)E(r, t′)dt′ (1.3.13)

which becomes multiplicative in the frequency domain:

D(r,ω)= ǫ(ω)E(r,ω) (1.3.14)

All materials are, in fact, dispersive. However, ǫ(ω) typically exhibits strong depen-

dence on ω only for certain frequencies. For example, water at optical frequencies has

refractive index n = √ǫrel = 1.33, but at RF down to dc, it has n = 9.
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In Sections 1.10–1.15, we discuss simple models of ǫ(ω) for dielectrics, conductors,

and plasmas, and clarify the nature of Ohm’s law:

J = σE (Ohm’s law) (1.3.15)

In Sec. 1.17, we discuss the Kramers-Kronig dispersion relations, which are a direct

consequence of the causality of the time-domain dielectric response function ǫ(t).

One major consequence of material dispersion is pulse spreading, that is, the pro-

gressive widening of a pulse as it propagates through such a material. This effect limits

the data rate at which pulses can be transmitted. There are other types of dispersion,

such as intermodal dispersion in which several modes may propagate simultaneously,

or waveguide dispersion introduced by the confining walls of a waveguide.

There exist materials that are both nonlinear and dispersive that support certain

types of non-linear waves called solitons, in which the spreading effect of dispersion is

exactly canceled by the nonlinearity. Therefore, soliton pulses maintain their shape as

they propagate in such media [1328,915,913].

More complicated forms of constitutive relationships arise in chiral and gyrotropic

media and are discussed in Chap. 4. The more general bi-isotropic and bi-anisotropic

media are discussed in [30,96]; see also [57].

In Eqs. (1.1.1), the densities ρ, J represent the external or free charges and currents

in a material medium. The induced polarization P and magnetization M may be made

explicit in Maxwell’s equations by using the constitutive relations:

D = ǫ0E+ P , B = μ0(H+M) (1.3.16)

Inserting these in Eq. (1.1.1), for example, by writing ∇∇∇ × B = μ0∇∇∇ × (H + M)=
μ0(J+ Ḋ+∇∇∇×M)= μ0(ǫ0Ė+ J+ Ṗ+∇∇∇×M), we may express Maxwell’s equations in

terms of the fields E and B :

∇∇∇× E = −∂B

∂t

∇∇∇× B = μ0ǫ0
∂E

∂t
+ μ0

[

J+ ∂P

∂t
+∇∇∇×M

]

∇∇∇ · E = 1

ǫ0

(

ρ−∇∇∇ · P)

∇∇∇ · B = 0

(1.3.17)

We identify the current and charge densities due to the polarization of the material as:

Jpol =
∂P

∂t
, ρpol = −∇∇∇ · P (polarization densities) (1.3.18)

Similarly, the quantity Jmag =∇∇∇×M may be identified as the magnetization current

density (note that ρmag = 0.) The total current and charge densities are:

Jtot = J+ Jpol + Jmag = J+ ∂P

∂t
+∇∇∇×M

ρtot = ρ+ ρpol = ρ−∇∇∇ · P

(1.3.19)
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and may be thought of as the sources of the fields in Eq. (1.3.17). In Sec. 15.6, we examine

this interpretation further and show how it leads to the Ewald-Oseen extinction theorem

and to a microscopic explanation of the origin of the refractive index.

1.4 Negative Index Media

Maxwell’s equations do not preclude the possibility that one or both of the quantities

ǫ, μ be negative. For example, plasmas below their plasma frequency, and metals up to

optical frequencies, have ǫ < 0 and μ > 0, with interesting applications such as surface

plasmons (see Sec. 8.5).

Isotropic media with μ < 0 and ǫ > 0 are more difficult to come by [164], although

examples of such media have been fabricated [392].

Negative-index media, also known as left-handed media, have ǫ, μ that are simulta-

neously negative, ǫ < 0 and μ < 0. Veselago [387] was the first to study their unusual

electromagnetic properties, such as having a negative index of refraction and the rever-

sal of Snel’s law.

The novel properties of such media and their potential applications have generated

a lot of research interest [387–469]. Examples of such media, termed “metamaterials”,

have been constructed using periodic arrays of wires and split-ring resonators, [393]

and by transmission line elements [426–428,448,461], and have been shown to exhibit

the properties predicted by Veselago.

When ǫrel < 0 and μrel < 0, the refractive index, n2 = ǫrelμrel, must be defined by

the negative square root n = −√ǫrelμrel. Because then n < 0 and μrel < 0 will imply

that the characteristic impedance of the medium η = η0μrel/n will be positive, which

as we will see later implies that the energy flux of a wave is in the same direction as the

direction of propagation. We discuss such media in Sections 2.13, 7.16, and 8.6.

1.5 Boundary Conditions

The boundary conditions for the electromagnetic fields across material boundaries are

given below:

E1t − E2t = 0

H1t −H2t = Js × n̂

D1n −D2n = ρs
B1n − B2n = 0

(1.5.1)

where n̂ is a unit vector normal to the boundary pointing from medium-2 into medium-1.

The quantities ρs, Js are any external surface charge and surface current densities on

the boundary surface and are measured in units of [coulomb/m2] and [ampere/m].

In words, the tangential components of the E-field are continuous across the inter-

face; the difference of the tangential components of the H-field are equal to the surface
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current density; the difference of the normal components of the flux density D are equal

to the surface charge density; and the normal components of the magnetic flux density

B are continuous.

The Dn boundary condition may also be written a form that brings out the depen-

dence on the polarization surface charges:

(ǫ0E1n + P1n)−(ǫ0E2n + P2n)= ρs ⇒ ǫ0(E1n − E2n)= ρs − P1n + P2n = ρs,tot

The total surface charge density will be ρs,tot = ρs+ρ1s,pol+ρ2s,pol, where the surface

charge density of polarization charges accumulating at the surface of a dielectric is seen

to be (n̂ is the outward normal from the dielectric):

ρs,pol = Pn = n̂ · P (1.5.2)

The relative directions of the field vectors are shown in Fig. 1.5.1. Each vector may

be decomposed as the sum of a part tangential to the surface and a part perpendicular

to it, that is, E = Et + En. Using the vector identity,

E = n̂× (E× n̂)+n̂(n̂ · E)= Et + En (1.5.3)

we identify these two parts as:

Et = n̂× (E× n̂) , En = n̂(n̂ · E)= n̂En

Fig. 1.5.1 Field directions at boundary.

Using these results, we can write the first two boundary conditions in the following

vectorial forms, where the second form is obtained by taking the cross product of the

first with n̂ and noting that Js is purely tangential:

n̂× (E1 × n̂)− n̂× (E2 × n̂) = 0

n̂× (H1 × n̂)− n̂× (H2 × n̂) = Js × n̂
or,

n̂× (E1 − E2) = 0

n̂× (H1 −H2) = Js
(1.5.4)

The boundary conditions (1.5.1) can be derived from the integrated form of Maxwell’s

equations if we make some additional regularity assumptions about the fields at the

interfaces.
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In many interface problems, there are no externally applied surface charges or cur-

rents on the boundary. In such cases, the boundary conditions may be stated as:

E1t = E2t

H1t = H2t

D1n = D2n

B1n = B2n

(source-free boundary conditions) (1.5.5)

1.6 Currents, Fluxes, and Conservation Laws

The electric current density J is an example of a flux vector representing the flow of the

electric charge. The concept of flux is more general and applies to any quantity that

flows.† It could, for example, apply to energy flux, momentum flux (which translates

into pressure force), mass flux, and so on.

In general, the flux of a quantity Q is defined as the amount of the quantity that

flows (perpendicularly) through a unit surface in unit time. Thus, if the amount ΔQ

flows through the surface ΔS in time Δt, then:

J = ΔQ

ΔSΔt
(definition of flux) (1.6.1)

When the flowing quantity Q is the electric charge, the amount of current through

the surface ΔS will be ΔI = ΔQ/Δt, and therefore, we can write J = ΔI/ΔS, with units

of [ampere/m2].

The flux is a vectorial quantity whose direction points in the direction of flow. There

is a fundamental relationship that relates the flux vector J to the transport velocity v

and the volume density ρ of the flowing quantity:

J = ρv (1.6.2)

This can be derived with the help of Fig. 1.6.1. Consider a surface ΔS oriented per-

pendicularly to the flow velocity. In timeΔt, the entire amount of the quantity contained

in the cylindrical volume of height vΔt will manage to flow through ΔS. This amount is

equal to the density of the material times the cylindrical volume ΔV = ΔS(vΔt), that

is, ΔQ = ρΔV = ρΔSvΔt. Thus, by definition:

J = ΔQ

ΔSΔt
= ρΔSvΔt

ΔSΔt
= ρv

When J represents electric current density, we will see in Sec. 1.12 that Eq. (1.6.2)

implies Ohm’s law J = σE. When the vector J represents the energy flux of a propagating

electromagnetic wave and ρ the corresponding energy per unit volume, then because the

speed of propagation is the velocity of light, we expect that Eq. (1.6.2) will take the form:

Jen = cρen (1.6.3)

†In this sense, the terms electric and magnetic “flux densities” for the quantities D,B are somewhat of a

misnomer because they do not represent anything that flows.
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Fig. 1.6.1 Flux of a quantity.

Similarly, when J represents momentum flux, we expect to have Jmom = cρmom.

Momentum flux is defined as Jmom = Δp/(ΔSΔt)= ΔF/ΔS, where p denotes momen-

tum and ΔF = Δp/Δt is the rate of change of momentum, or the force, exerted on the

surface ΔS. Thus, Jmom represents force per unit area, or pressure.

Electromagnetic waves incident on material surfaces exert pressure (known as ra-

diation pressure), which can be calculated from the momentum flux vector. It can be

shown that the momentum flux is numerically equal to the energy density of a wave, that

is, Jmom = ρen, which implies that ρen = ρmomc. This is consistent with the theory of

relativity, which states that the energy-momentum relationship for a photon is E = pc.

1.7 Charge Conservation

Maxwell added the displacement current term to Ampère’s law in order to guarantee

charge conservation. Indeed, taking the divergence of both sides of Ampère’s law and

using Gauss’s law∇∇∇ ·D = ρ, we get:

∇∇∇ ·∇∇∇×H =∇∇∇ · J+∇∇∇ · ∂D

∂t
=∇∇∇ · J+ ∂

∂t
∇∇∇ ·D =∇∇∇ · J+ ∂ρ

∂t

Using the vector identity∇∇∇·∇∇∇×H = 0, we obtain the differential form of the charge

conservation law:

∂ρ

∂t
+∇∇∇ · J = 0 (charge conservation) (1.7.1)

Integrating both sides over a closed volume V surrounded by the surface S, as

shown in Fig. 1.7.1, and using the divergence theorem, we obtain the integrated form of

Eq. (1.7.1):
∮

S
J · dS = − d

dt

∫

V
ρdV (1.7.2)

The left-hand side represents the total amount of charge flowing outwards through

the surface S per unit time. The right-hand side represents the amount by which the

charge is decreasing inside the volume V per unit time. In other words, charge does not

disappear into (or created out of) nothingness—it decreases in a region of space only

because it flows into other regions.

Another consequence of Eq. (1.7.1) is that in good conductors, there cannot be any

accumulated volume charge. Any such charge will quickly move to the conductor’s

surface and distribute itself such that to make the surface into an equipotential surface.



1.8. Energy Flux and Energy Conservation 11

Fig. 1.7.1 Flux outwards through surface.

Assuming that inside the conductor we have D = ǫE and J = σE, we obtain

∇∇∇ · J = σ∇∇∇ · E = σ

ǫ
∇∇∇ ·D = σ

ǫ
ρ

∂ρ

∂t
+ σ
ǫ
ρ = 0 (1.7.3)

with solution:

ρ(r, t)= ρ0(r)e
−σt/ǫ

where ρ0(r) is the initial volume charge distribution. The solution shows that the vol-

ume charge disappears from inside and therefore it must accumulate on the surface of

the conductor. The “relaxation” time constant τrel = ǫ/σ is extremely short for good

conductors. For example, in copper,

τrel = ǫ

σ
= 8.85× 10−12

5.7× 107
= 1.6× 10−19 sec

By contrast, τrel is of the order of days in a good dielectric. For good conductors, the

above argument is not quite correct because it is based on the steady-state version of

Ohm’s law, J = σE, which must be modified to take into account the transient dynamics

of the conduction charges.

It turns out that the relaxation time τrel is of the order of the collision time, which

is typically 10−14 sec. We discuss this further in Sec. 1.13. See also Refs. [147–150].

1.8 Energy Flux and Energy Conservation

Because energy can be converted into different forms, the corresponding conservation

equation (1.7.1) should have a non-zero term in the right-hand side corresponding to

the rate by which energy is being lost from the fields into other forms, such as heat.

Thus, we expect Eq. (1.7.1) to have the form:

∂ρen

∂t
+∇∇∇ · Jen = rate of energy loss (1.8.1)

Assuming the ordinary constitutive relations D = ǫE and B = μH, the quantities

ρen, Jen describing the energy density and energy flux of the fields are defined as follows,
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where we introduce a change in notation:

ρen = w = 1

2
ǫ|E|2 + 1

2
μ|H|2 = energy per unit volume

Jen =PPP = E×H = energy flux or Poynting vector

(1.8.2)

where |E|2 = E · E . The quantities w and PPP are measured in units of [joule/m3] and

[watt/m2]. Using the identity∇∇∇ · (E×H)= H ·∇∇∇× E− E ·∇∇∇×H, we find:

∂w

∂t
+∇∇∇ ·PPP = ǫ∂E

∂t
· E+ μ∂H

∂t
·H+∇∇∇ · (E×H)

= ∂D

∂t
· E+ ∂B

∂t
·H+H ·∇∇∇× E− E ·∇∇∇×H

=
(
∂D

∂t
−∇∇∇×H

)

· E+
(
∂B

∂t
+∇∇∇× E

)

·H

Using Ampère’s and Faraday’s laws, the right-hand side becomes:

∂w

∂t
+∇∇∇ ·PPP = −J · E (energy conservation) (1.8.3)

As we discussed in Eq. (1.2.6), the quantity J·E represents the ohmic losses, that

is, the power per unit volume lost into heat from the fields. The integrated form of

Eq. (1.8.3) is as follows, relative to the volume and surface of Fig. 1.7.1:

−
∮

S
PPP · dS = d

dt

∫

V
wdV +

∫

V
J · EdV (1.8.4)

It states that the total power entering a volumeV through the surface S goes partially

into increasing the field energy stored inside V and partially is lost into heat.

Example 1.8.1: Energy concepts can be used to derive the usual circuit formulas for capaci-

tance, inductance, and resistance. Consider, for example, an ordinary plate capacitor with

plates of areaA separated by a distance l, and filled with a dielectric ǫ. The voltage between

the plates is related to the electric field between the plates via V = El.
The energy density of the electric field between the plates is w = ǫE2/2. Multiplying this

by the volume between the plates, A·l, will give the total energy stored in the capacitor.

Equating this to the circuit expression CV2/2, will yield the capacitance C:

W = 1

2
ǫE2 ·Al = 1

2
CV2 = 1

2
CE2l2 ⇒ C = ǫ A

l

Next, consider a solenoid with n turns wound around a cylindrical iron core of length

l, cross-sectional area A, and permeability μ. The current through the solenoid wire is

related to the magnetic field in the core through Ampère’s lawHl = nI. It follows that the

stored magnetic energy in the solenoid will be:

W = 1

2
μH2 ·Al = 1

2
LI2 = 1

2
L
H2l2

n2
⇒ L = n2μ

A

l

Finally, consider a resistor of length l, cross-sectional area A, and conductivity σ. The

voltage drop across the resistor is related to the electric field along it via V = El. The
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current is assumed to be uniformly distributed over the cross-section A and will have

density J = σE.

The power dissipated into heat per unit volume is JE = σE2. Multiplying this by the

resistor volume Al and equating it to the circuit expression V2/R = RI2 will give:

(J · E)(Al)= σE2(Al)= V2

R
= E2l2

R
⇒ R = 1

σ

l

A

The same circuit expressions can, of course, be derived more directly using Q = CV, the

magnetic flux Φ = LI, and V = RI. ⊓⊔

Conservation laws may also be derived for the momentum carried by electromagnetic

fields [41,1291]. It can be shown (see Problem 1.6) that the momentum per unit volume

carried by the fields is given by:

G = D× B = 1

c2
E×H = 1

c2
PPP (momentum density) (1.8.5)

where we set D = ǫE, B = μH, and c = 1/
√
ǫμ. The quantity Jmom = cG = PPP/c will

represent momentum flux, or pressure, if the fields are incident on a surface.

1.9 Harmonic Time Dependence

Maxwell’s equations simplify considerably in the case of harmonic time dependence.

Through the inverse Fourier transform, general solutions of Maxwell’s equation can be

built as linear combinations of single-frequency solutions:†

E(r, t)=
∫∞

−∞
E(r,ω)ejωt

dω

2π
(1.9.1)

Thus, we assume that all fields have a time dependence ejωt:

E(r, t)= E(r)ejωt, H(r, t)= H(r)ejωt

where the phasor amplitudes E(r),H(r) are complex-valued. Replacing time derivatives

by ∂t → jω, we may rewrite Eq. (1.1.1) in the form:

∇∇∇× E = −jωB

∇∇∇×H = J+ jωD

∇∇∇ ·D = ρ
∇∇∇ · B = 0

(Maxwell’s equations) (1.9.2)

In this book, we will consider the solutions of Eqs. (1.9.2) in three different contexts:

(a) uniform plane waves propagating in dielectrics, conductors, and birefringent me-

dia, (b) guided waves propagating in hollow waveguides, transmission lines, and optical

fibers, and (c) propagating waves generated by antennas and apertures.

†The ejωt convention is used in the engineering literature, and e−iωt in the physics literature. One can

pass from one convention to the other by making the formal substitution j → −i in all the equations.
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Next, we review some conventions regarding phasors and time averages. A real-

valued sinusoid has the complex phasor representation:

A(t)= |A| cos(ωt + θ) ⇔ A(t)= Aejωt (1.9.3)

where A = |A|ejθ. Thus, we haveA(t)= Re
[

A(t)
] = Re

[

Aejωt
]

. The time averages of

the quantities A(t) and A(t) over one period T = 2π/ω are zero.

The time average of the product of two harmonic quantities A(t)= Re
[

Aejωt
]

and

B(t)= Re
[

Bejωt
]

with phasors A,B is given by (see Problem 1.4):

A(t)B(t) = 1

T

∫ T

0
A(t)B(t)dt = 1

2
Re
[

AB∗] (1.9.4)

In particular, the mean-square value is given by:

A2(t) = 1

T

∫ T

0
A2(t)dt = 1

2
Re
[

AA∗]= 1

2
|A|2 (1.9.5)

Some interesting time averages in electromagnetic wave problems are the time av-

erages of the energy density, the Poynting vector (energy flux), and the ohmic power

losses per unit volume. Using the definition (1.8.2) and the result (1.9.4), we have for

these time averages:

w = 1

2
Re

[
1

2
ǫE · E∗ + 1

2
μH ·H∗

]

(energy density)

PPP = 1

2
Re
[

E×H∗] (Poynting vector)

dPloss

dV
= 1

2
Re
[

Jtot · E∗
]

(ohmic losses)

(1.9.6)

where Jtot = J + jωD is the total current in the right-hand side of Ampère’s law and

accounts for both conducting and dielectric losses. The time-averaged version of Poynt-

ing’s theorem is discussed in Problem 1.5.

The expression (1.9.6) for the energy density w was derived under the assumption

that both ǫ andμwere constants independent of frequency. In a dispersive medium, ǫ, μ

become functions of frequency. In frequency bands where ǫ(ω),μ(ω) are essentially

real-valued, that is, where the medium is lossless, it can be shown [164] that the time-

averaged energy density generalizes to:

w = 1

2
Re

[
1

2

d(ωǫ)

dω
E · E∗ + 1

2

d(ωμ)

dω
H ·H∗

]

(lossless case) (1.9.7)

The derivation of (1.9.7) is as follows. Starting with Maxwell’s equations (1.1.1) and

without assuming any particular constitutive relations, we obtain:

∇∇∇ · E×H = −E · Ḋ−H · Ḃ− J · E (1.9.8)

As in Eq. (1.8.3), we would like to interpret the first two terms in the right-hand side

as the time derivative of the energy density, that is,

dw

dt
= E · Ḋ+H · Ḃ



1.9. Harmonic Time Dependence 15

Anticipating a phasor-like representation, we may assume complex-valued fields and

derive also the following relationship from Maxwell’s equations:

∇∇∇ · 1

2
Re
[

E×H∗] = −1

2
Re
[

E∗· Ḋ
]− 1

2
Re
[

H∗· Ḃ
]− 1

2
Re
[

J∗· E
]

(1.9.9)

from which we may identify a “time-averaged” version of dw/dt,

dw̄

dt
= 1

2
Re
[

E∗· Ḋ
]+ 1

2
Re
[

H∗· Ḃ
]

(1.9.10)

In a dispersive dielectric, the constitutive relation between D and E can be written

as follows in the time and frequency domains:†

D(t)=
∫∞

−∞
ǫ(t − t′)E(t′)dt′ ⇔ D(ω)= ǫ(ω)E(ω) (1.9.11)

where the Fourier transforms are defined by

ǫ(t)= 1

2π

∫∞

−∞
ǫ(ω)ejωt dω ⇔ ǫ(ω)=

∫∞

−∞
ǫ(t)e−jωtdt (1.9.12)

The time-derivative of D(t) is then

Ḋ(t)=
∫∞

−∞
ǫ̇(t − t′)E(t′)dt′ (1.9.13)

where it follows from Eq. (1.9.12) that

ǫ̇(t)= 1

2π

∫∞

−∞
jωǫ(ω)ejωtdω (1.9.14)

Following [164], we assume a quasi-harmonic representation for the electric field,

E(t)= E0(t)e
jω0t, where E0(t) is a slowly-varying function of time. Equivalently, in the

frequency domain we have E(ω)= E0(ω−ω0), assumed to be concentrated in a small

neighborhood of ω0, say, |ω −ω0| ≤ Δω. Because ǫ(ω) multiplies the narrowband

function E(ω), we may expandωǫ(ω) in a Taylor series aroundω0 and keep only the

linear terms, that is, inside the integral (1.9.14), we may replace:

ωǫ(ω)= a0 + b0(ω−ω0) , a0 =ω0ǫ(ω0) , b0 = d
[

ωǫ(ω)
]

dω

∣
∣
∣
∣
∣
ω0

(1.9.15)

Inserting this into Eq. (1.9.14), we obtain the approximation

ǫ̇(t)≃ 1

2π

∫∞

−∞

[

ja0 + b0(jω− jω0)
]

ejωtdω = ja0δ(t)+b0(∂t − jω0)δ(t) (1.9.16)

where δ(t) the Dirac delta function. This approximation is justified only insofar as it is

used inside Eq. (1.9.13). Inserting (1.9.16) into Eq. (1.9.13), we find

Ḋ(t) =
∫∞

−∞

[

ja0δ(t − t′)+b0(∂t − jω0)δ(t − t′)
]

E(t′)dt′ =

= ja0E(t)+b0(∂t − jω0)E(t)

= ja0E0(t)e
jω0t + b0(∂t − jω0)

(

E0(t)e
jω0t

)

= [

ja0E0(t)+b0Ė0(t)
]

ejω0t

(1.9.17)

†To unclutter the notation, we are suppressing the dependence on the space coordinates r.
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Because we assume that ǫ(ω) is real (i.e., lossless) in the vicinity of ω0, it follows that:

1

2
Re
[

E∗· Ḋ
] = 1

2
Re
[

E0(t)
∗·(ja0E0(t)+b0Ė0(t)

)] = 1

2
b0 Re

[

E0(t)
∗·Ė0(t)

]

, or,

1

2
Re
[

E∗· Ḋ
] = d

dt

[
1

4
b0|E0(t)|2

]

= d

dt

[

1

4

d
[

ωǫ(ω)
]

0

dω
|E0(t)|2

]

(1.9.18)

Dropping the subscript 0, we see that the quantity under the time derivative in the

right-hand side may be interpreted as a time-averaged energy density for the electric

field. A similar argument can be given for the magnetic energy term of Eq. (1.9.7).

We will see in the next section that the energy density (1.9.7) consists of two parts:

one part is the same as that in the vacuum case; the other part arises from the kinetic

and potential energy stored in the polarizable molecules of the dielectric medium.

When Eq. (1.9.7) is applied to a plane wave propagating in a dielectric medium, one

can show that (in the lossless case) the energy velocity coincides with the group velocity.

The generalization of these results to the case of a lossy medium has been studied

extensively [164–178]. Eq. (1.9.7) has also been applied to the case of a “left-handed”

medium in which both ǫ(ω) and μ(ω) are negative over certain frequency ranges. As

argued by Veselago [387], such media must necessarily be dispersive in order to make

Eq. (1.9.7) a positive quantity even though individually ǫ and μ are negative.

Analogous expressions to (1.9.7) may also be derived for the momentum density of

a wave in a dispersive medium. In vacuum, the time-averaged momentum density is

given by Eq. (1.8.5), that is,

Ḡ = 1

2
Re
[

ǫ0μ0 E×H∗]

For the dispersive (and lossless) case this generalizes to [387,463]

Ḡ = 1

2
Re

[

ǫμE×H∗ + k

2

(
dǫ

dω
|E|2 + dμ

dω
|H|2

)]

(1.9.19)

1.10 Simple Models of Dielectrics, Conductors, and Plasmas

A simple model for the dielectric properties of a material is obtained by considering the

motion of a bound electron in the presence of an applied electric field. As the electric

field tries to separate the electron from the positively charged nucleus, it creates an

electric dipole moment. Averaging this dipole moment over the volume of the material

gives rise to a macroscopic dipole moment per unit volume.

A simple model for the dynamics of the displacement x of the bound electron is as

follows (with ẋ = dx/dt):
mẍ = eE − kx−mγẋ (1.10.1)

where we assumed that the electric field is acting in the x-direction and that there is

a spring-like restoring force due to the binding of the electron to the nucleus, and a

friction-type force proportional to the velocity of the electron.

The spring constant k is related to the resonance frequency of the spring via the

relationship ω0 =
√
k/m, or, k =mω2

0. Therefore, we may rewrite Eq. (1.10.1) as

ẍ+ γẋ+ω2
0x =

e

m
E (1.10.2)
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The limit ω0 = 0 corresponds to unbound electrons and describes the case of good

conductors. The frictional term γẋ arises from collisions that tend to slow down the

electron. The parameter γ is a measure of the rate of collisions per unit time, and

therefore, τ = 1/γ will represent the mean-time between collisions.

In a typical conductor, τ is of the order of 10−14 seconds, for example, for copper,

τ = 2.4 × 10−14 sec and γ = 4.1 × 1013 sec−1. The case of a tenuous, collisionless,

plasma can be obtained in the limit γ = 0. Thus, the above simple model can describe

the following cases:

a. Dielectrics, ω0 �= 0, γ �= 0.

b. Conductors, ω0 = 0, γ �= 0.

c. Collisionless Plasmas, ω0 = 0, γ = 0.

The basic idea of this model is that the applied electric field tends to separate positive

from negative charges, thus, creating an electric dipole moment. In this sense, the

model contains the basic features of other types of polarization in materials, such as

ionic/molecular polarization arising from the separation of positive and negative ions

by the applied field, or polar materials that have a permanent dipole moment.

1.11 Dielectrics

The applied electric fieldE(t) in Eq. (1.10.2) can have any time dependence. In particular,

if we assume it is sinusoidal with frequencyω, E(t)= Eejωt, then, Eq. (1.10.2) will have

the solution x(t)= xejωt, where the phasor x must satisfy:

−ω2x+ jωγx+ω2
0x =

e

m
E

which is obtained by replacing time derivatives by ∂t → jω. Its solution is:

x =
e

m
E

ω2
0 −ω2 + jωγ (1.11.1)

The corresponding velocity of the electron will also be sinusoidal v(t)= vejωt, where

v = ẋ = jωx. Thus, we have:

v = jωx =
jω

e

m
E

ω2
0 −ω2 + jωγ (1.11.2)

From Eqs. (1.11.1) and (1.11.2), we can find the polarization per unit volume P.

We assume that there are N such elementary dipoles per unit volume. The individual

electric dipole moment is p = ex. Therefore, the polarization per unit volume will be:

P = Np = Nex =
Ne2

m
E

ω2
0 −ω2 + jωγ ≡ ǫ0χ(ω)E (1.11.3)
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The electric flux density will be then:

D = ǫ0E + P = ǫ0

(

1+ χ(ω))E ≡ ǫ(ω)E

where the effective permittivity ǫ(ω) is:

ǫ(ω)= ǫ0 +
Ne2

m
ω2

0 −ω2 + jωγ (1.11.4)

This can be written in a more convenient form, as follows:

ǫ(ω)= ǫ0 +
ǫ0ω

2
p

ω2
0 −ω2 + jωγ (1.11.5)

where ω2
p is the so-called plasma frequency of the material defined by:

ω2
p =

Ne2

ǫ0m
(plasma frequency) (1.11.6)

The model defined by (1.11.5) is known as a “Lorentz dielectric.” The corresponding

susceptibility, defined through ǫ(ω)= ǫ0

(

1+ χ(ω)), is:

χ(ω)= ω2
p

ω2
0 −ω2 + jωγ (1.11.7)

For a dielectric, we may assume ω0 �= 0. Then, the low-frequency limit (ω = 0) of

Eq. (1.11.5), gives the nominal dielectric constant:

ǫ(0)= ǫ0 + ǫ0

ω2
p

ω2
0

= ǫ0 + Ne2

mω2
0

(1.11.8)

The real and imaginary parts of ǫ(ω) characterize the refractive and absorptive

properties of the material. By convention, we define the imaginary part with the negative

sign (because we use ejωt time dependence):

ǫ(ω)= ǫ′(ω)−jǫ′′(ω) (1.11.9)

It follows from Eq. (1.11.5) that:

ǫ′(ω)= ǫ0 +
ǫ0ω

2
p(ω

2
0 −ω2)

(ω2 −ω2
0)

2+γ2ω2
, ǫ′′(ω)= ǫ0ω

2
pωγ

(ω2 −ω2
0)

2+γ2ω2
(1.11.10)

Fig. 1.11.1 shows a plot of ǫ′(ω) and ǫ′′(ω). Around the resonant frequency ω0,

the real part ǫ′(ω) behaves in an anomalous manner, that is, it drops rapidly with

frequency to values less than ǫ0 and the material exhibits strong absorption. The term

“normal dispersion” refers to an ǫ′(ω) that is an increasing function of ω, as is the

case to the far left and right of the resonant frequency.



1.11. Dielectrics 19

Fig. 1.11.1 Real and imaginary parts of the effective permittivity ǫ(ω).

Real dielectric materials exhibit, of course, several such resonant frequencies cor-

responding to various vibrational modes and polarization mechanisms (e.g., electronic,

ionic, etc.) The permittivity becomes the sum of such terms:

ǫ(ω)= ǫ0 + ǫ0

∑

i

Nie
2
i /miǫ0

ω2
i −ω2 + jωγi

(1.11.11)

A more correct quantum-mechanical treatment leads essentially to the same formula:

ǫ(ω)= ǫ0 + ǫ0

∑

j>i

fji(Ni −Nj)e2/mǫ0

ω2
ji −ω2 + jωγji

(1.11.12)

where ωji are transition frequencies between energy levels, that is, ωji = (Ej − Ei)/ℏ,

and Ni,Nj are the populations of the lower, Ei, and upper, Ej, energy levels. The quan-

tities fji are called “oscillator strengths.” For example, for a two-level atom we have:

ǫ(ω)= ǫ0 + ǫ0

fω2
p

ω2
0 −ω2 + jωγ (1.11.13)

where we defined:

ω0 =ω21 , f = f21
N1 −N2

N1 +N2

, ω2
p =

(N1 +N2)e
2

mǫ0

Normally, lower energy states are more populated,Ni > Nj, and the material behaves

as a classical absorbing dielectric. However, if there is population inversion, Ni < Nj,

then the corresponding permittivity term changes sign. This leads to a negative imag-

inary part, ǫ′′(ω), representing a gain. Fig. 1.11.2 shows the real and imaginary parts

of Eq. (1.11.13) for the case of a negative effective oscillator strength f = −1.

The normal and anomalous dispersion bands still correspond to the bands where

the real part ǫ′(ω) is an increasing or decreasing, respectively, function of frequency.

But now the normal behavior is only in the neighborhood of the resonant frequency,

whereas far from it, the behavior is anomalous.

Setting n(ω)=
√

ǫ(ω)/ǫ0 for the refractive index, Eq. (1.11.11) can be written in the

following form, known as the Sellmeier equation (where the Bi are constants):

n2(ω)= 1+
∑

i

Biω
2
i

ω2
i −ω2 + jωγi

(1.11.14)
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Fig. 1.11.2 Effective permittivity in a two-level gain medium with f = −1.

In practice, Eq. (1.11.14) is applied in frequency ranges that are far from any reso-

nance so that one can effectively set γi = 0:

n2(ω)= 1+
∑

i

Biω
2
i

ω2
i −ω2

= 1+
∑

i

Bi λ
2

λ2 − λ2
i

(Sellmeier equation) (1.11.15)

where λ,λi denote the corresponding free-space wavelengths (e.g., λ = 2πc/ω). In

practice, refractive index data are fitted to Eq. (1.11.15) using 2–4 terms over a desired

frequency range. For example, fused silica (SiO2) is very accurately represented over the

range 0.2 ≤ λ ≤ 3.7 μm by the following formula [156], where λ and λi are in units of

μm:

n2 = 1+ 0.6961663λ2

λ2 − (0.0684043)2
+ 0.4079426λ2

λ2 − (0.1162414)2
+ 0.8974794λ2

λ2 − (9.896161)2
(1.11.16)

1.12 Conductors

The conductivity properties of a material are described by Ohm’s law, Eq. (1.3.15). To

derive this law from our simple model, we use the relationship J = ρv, where the volume

density of the conduction charges is ρ = Ne. It follows from Eq. (1.11.2) that

J = ρv = Nev =
jω
Ne2

m
E

ω2
0 −ω2 + jωγ ≡ σ(ω)E

and therefore, we identify the conductivity σ(ω):

σ(ω)=
jω
Ne2

m
ω2

0 −ω2 + jωγ =
jωǫ0ω

2
p

ω2
0 −ω2 + jωγ (1.12.1)

We note that σ(ω)/jω is essentially the electric susceptibility considered above.

Indeed, we have J = Nev = Nejωx = jωP, and thus, P = J/jω = (σ(ω)/jω)E. It

follows that ǫ(ω)−ǫ0 = σ(ω)/jω, and

ǫ(ω)= ǫ0 +
ǫ0ω

2
p

ω2
0 −ω2 + jωγ = ǫ0 + σ(ω)

jω
(1.12.2)
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Since in a metal the conduction charges are unbound, we may take ω0 = 0 in

Eq. (1.12.1). After canceling a common factor of jω , we obtain:

σ(ω)= ǫ0ω
2
p

γ+ jω (1.12.3)

The model defined by (1.12.3) is know as the “Drude model.” The nominal conduc-

tivity is obtained at the low-frequency limit, ω = 0:

σ = ǫ0ω
2
p

γ
= Ne2

mγ
(nominal conductivity) (1.12.4)

Example 1.12.1: Copper has a mass density of 8.9 × 106 gr/m3 and atomic weight of 63.54

(grams per mole.) Using Avogadro’s number of 6 × 1023 atoms per mole, and assuming

one conduction electron per atom, we find for the volume density N:

N =
6× 1023 atoms

mole

63.54
gr

mole

(

8.9× 106 gr

m3

)(

1
electron

atom

) = 8.4× 1028 electrons/m3

It follows that:

σ = Ne2

mγ
= (8.4× 1028)(1.6× 10−19)2

(9.1× 10−31)(4.1× 1013)
= 5.8× 107 Siemens/m

where we used e = 1.6 × 10−19, m = 9.1 × 10−31, γ = 4.1 × 1013. The plasma frequency

of copper can be calculated by

fp =
ωp

2π
= 1

2π

√

Ne2

mǫ0

= 2.6× 1015 Hz

which lies in the ultraviolet range. For frequencies such that ω ≪ γ, the conductivity

(1.12.3) may be considered to be independent of frequency and equal to the dc value of

Eq. (1.12.4). This frequency range covers most present-day RF applications. For example,

assuming ω ≤ 0.1γ, we find f ≤ 0.1γ/2π = 653 GHz. ⊓⊔

So far, we assumed sinusoidal time dependence and worked with the steady-state

responses. Next, we discuss the transient dynamical response of a conductor subject to

an arbitrary time-varying electric field E(t).

Ohm’s law can be expressed either in the frequency-domain or in the time-domain

with the help of the Fourier transform pair of equations:

J(ω)= σ(ω)E(ω) ⇔ J(t)=
∫ t

−∞
σ(t − t′)E(t′)dt′ (1.12.5)

where σ(t) is the causal inverse Fourier transform of σ(ω). For the simple model of

Eq. (1.12.3), we have:

σ(t)= ǫ0ω
2
pe
−γtu(t) (1.12.6)
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where u(t) is the unit-step function. As an example, suppose the electric field E(t) is a

constant electric field that is suddenly turned on at t = 0, that is, E(t)= Eu(t). Then,

the time response of the current will be:

J(t)=
∫ t

0
ǫ0ω

2
pe
−γ(t−t′)Edt′ = ǫ0ω

2
p

γ
E
(

1− e−γt) = σE(1− e−γt)

where σ = ǫ0ω
2
p/γ is the nominal conductivity of the material.

Thus, the current starts out at zero and builds up to the steady-state value of J = σE,

which is the conventional form of Ohm’s law. The rise time constant is τ = 1/γ. We

saw above that τ is extremely small—of the order of 10−14 sec—for good conductors.

The building up of the current can also be understood in terms of the equation of

motion of the conducting charges. Writing Eq. (1.10.2) in terms of the velocity of the

charge, we have:

v̇(t)+γv(t)= e

m
E(t)

Assuming E(t)= Eu(t), we obtain the convolutional solution:

v(t)=
∫ t

0
e−γ(t−t

′) e

m
E(t′)dt′ = e

mγ
E
(

1− e−γt)

For large t, the velocity reaches the steady-state value v∞ = (e/mγ)E, which reflects

the balance between the accelerating electric field force and the retarding frictional force,

that is,mγv∞ = eE. The quantity e/mγ is called the mobility of the conduction charges.

The steady-state current density results in the conventional Ohm’s law:

J = Nev∞ = Ne2

mγ
E = σE

A more accurate description of the permittivity properties of metals, especially at

optical and infrared frequencies which are relevant in plasmonic waveguides, requires

the addition of “interband” terms, generalizing the Drude model to the so-called Drude-

Lorentz model of the form,

ǫ(ω)

ǫ0

= 1+ ω2
p

jω(γ+ jω) +
k∑

i=1

fiω
2
p

ω2
i −ω2 + jωγi

(Drude-Lorentz model) (1.12.7)

Rakic, et al. [163] have fitted 11 metals, such as silver, gold, aluminum, copper,

to such an expression with 5–6 terms, covering a wide range of frequencies and wave-

lengths, 25 THz < f < 1500 THz, or, equivalently, 200 nm < λ < 12 μm. The MATLAB

function, drude, implements the results of [163],

ep = drude(lambda,metal) % Drude-Lorentz model for Silver, Gold, Copper, Aluminum

lambda = vector of wavelengths in nanometers

metal = ’s’, ’g’, ’c’, ’a’, for silver, gold, copper, aluminum

ep = complex relative permittivity (same size as lambda)
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1.13 Charge Relaxation in Conductors

Next, we discuss the issue of charge relaxation in good conductors [147–150]. Writing

(1.12.5) three-dimensionally and using (1.12.6), Ohm’s law reads in the time domain:

J(r, t)=ω2
p

∫ t

−∞
e−γ(t−t

′)ǫ0 E(r, t′)dt′ (1.13.1)

Taking the divergence of both sides and using charge conservation, ∇∇∇ · J + ρ̇ = 0,

and Gauss’s law, ǫ0∇∇∇ · E = ρ, we obtain the following integro-differential equation for

the charge density ρ(r, t):

−ρ̇(r, t)=∇∇∇ · J(r, t)=ω2
p

∫ t

−∞
e−γ(t−t

′)ǫ0∇∇∇ · E(r, t′)dt′ =ω2
p

∫ t

−∞
e−γ(t−t

′)ρ(r, t′)dt′

Differentiating both sides with respect to t, we find that ρ satisfies the second-order

differential equation:

ρ̈(r, t)+γρ̇(r, t)+ω2
pρ(r, t)= 0 (1.13.2)

whose solution is easily verified to be a linear combination of:

e−γt/2 cos(ωrelaxt) , e−γt/2 sin(ωrelaxt) , where ωrelax =
√

ω2
p − γ

2

4

Thus, the charge density is an exponentially decaying sinusoid with a relaxation time

constant that is twice the collision time τ = 1/γ:

τrelax = 2

γ
= 2τ (relaxation time constant) (1.13.3)

Typically, ωp ≫ γ, so that ωrelax is practically equal to ωp. For example, using

the numerical data of Example 1.12.1, we find for copper τrelax = 2τ = 5×10−14 sec.

We calculate also: frelax = ωrelax/2π = 2.6×1015 Hz. In the limit γ → ∞, or τ → 0,

Eq. (1.13.2) reduces to the naive relaxation equation (1.7.3) (see Problem 1.9).

In addition to charge relaxation, the total relaxation time depends on the time it takes

for the electric and magnetic fields to be extinguished from the inside of the conductor,

as well as the time it takes for the accumulated surface charge densities to settle, the

motion of the surface charges being damped because of ohmic losses. Both of these

times depend on the geometry and size of the conductor [149].

1.14 Power Losses

To describe a material with both dielectric and conductivity properties, we may take the

susceptibility to be the sum of two terms, one describing bound polarized charges and

the other unbound conduction charges. Assuming different parameters {ω0,ωp, γ} for

each term, we obtain the total permittivity:

ǫ(ω)= ǫ0 +
ǫ0ω

2
dp

ω2
d0 −ω2 + jωγd

+ ǫ0ω
2
cp

jω(γc + jω)
(1.14.1)
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Denoting the first two terms by ǫd(ω) and the third by σc(ω)/jω, we obtain the

total effective permittivity of such a material:

ǫ(ω)= ǫd(ω)+σc(ω)
jω

(effective permittivity) (1.14.2)

In the low-frequency limit, ω = 0, the quantities ǫd(0) and σc(0) represent the

nominal dielectric constant and conductivity of the material. We note also that we can

write Eq. (1.14.2) in the form:

jωǫ(ω)= σc(ω)+jωǫd(ω) (1.14.3)

These two terms characterize the relative importance of the conduction current and

the displacement (polarization) current. The right-hand side in Ampère’s law gives the

total effective current:

Jtot = J + ∂D
∂t

= J + jωD = σc(ω)E + jωǫd(ω)E = jωǫ(ω)E

where the term Jdisp = ∂D/∂t = jωǫd(ω)E represents the displacement current. The

relative strength between conduction and displacement currents is the ratio:

∣
∣
∣
∣
∣

Jcond

Jdisp

∣
∣
∣
∣
∣
= |σc(ω)E|
|jωǫd(ω)E|

= |σc(ω)|
|ωǫd(ω)|

(1.14.4)

This ratio is frequency-dependent and establishes a dividing line between a good

conductor and a good dielectric. If the ratio is much larger than unity (typically, greater

than 10), the material behaves as a good conductor at that frequency; if the ratio is much

smaller than one (typically, less than 0.1), then the material behaves as a good dielectric.

Example 1.14.1: This ratio can take a very wide range of values. For example, assuming a

frequency of 1 GHz and using (for illustration purposes) the dc-values of the dielectric

constants and conductivities, we find:

∣
∣
∣
∣
∣

Jcond

Jdisp

∣
∣
∣
∣
∣
= σ

ωǫ
=

⎧

⎪⎨

⎪⎩

109 for copper with σ = 5.8×107 S/m and ǫ = ǫ0

1 for seawater with σ = 4 S/m and ǫ = 72ǫ0

10−9 for a glass with σ = 10−10 S/m and ǫ = 2ǫ0

Thus, the ratio varies over 18 orders of magnitude! If the frequency is reduced by a factor

of ten to 100 MHz, then all the ratios get multiplied by 10. In this case, seawater acts like

a good conductor. ⊓⊔

The time-averaged ohmic power losses per unit volume within a lossy material are

given by Eq. (1.9.6). Writing ǫ(ω)= ǫ′(ω)−jǫ′′(ω), we have:

Jtot = jωǫ(ω)E = jωǫ′(ω)E+ωǫ′′(ω)E

Denoting
∣
∣E

∣
∣2 = E · E∗, it follows that:

dPloss

dV
= 1

2
Re
[

Jtot · E∗
] = 1

2
ωǫ′′(ω)

∣
∣E

∣
∣2

(ohmic losses) (1.14.5)
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Writing ǫd(ω)= ǫ′d(ω)−jǫ′′d (ω) and assuming that the conductivity σc(ω) is real-

valued for the frequency range of interest (as was discussed in Example 1.12.1), we find

by equating real and imaginary parts of Eq. (1.14.2):

ǫ′(ω)= ǫ′d(ω) , ǫ′′(ω)= ǫ′′d (ω)+
σc(ω)

ω
(1.14.6)

Then, the power losses can be written in a form that separates the losses due to

conduction and those due to the polarization properties of the dielectric:

dPloss

dV
= 1

2

(

σc(ω)+ωǫ′′d (ω)
)∣
∣E

∣
∣2

(ohmic losses) (1.14.7)

A convenient way to quantify the losses is by means of the loss tangent defined in

terms of the real and imaginary parts of the effective permittivity:

tanθ = ǫ′′(ω)
ǫ′(ω)

(loss tangent) (1.14.8)

where θ is the loss angle. Eq. (1.14.8) may be written as the sum of two loss tangents,

one due to conduction and one due to polarization. Using Eq. (1.14.6), we have:

tanθ = σc(ω)+ωǫ′′d (ω)
ωǫ′d(ω)

= σc(ω)

ωǫ′d(ω)
+ ǫ

′′
d (ω)

ǫ′d(ω)
= tanθc + tanθd (1.14.9)

The ohmic loss per unit volume can be expressed in terms of the loss tangent as:

dPloss

dV
= 1

2
ωǫ′d(ω)tanθ

∣
∣E

∣
∣2

(ohmic losses) (1.14.10)

1.15 Plasmas

To describe a collisionless plasma, such as the ionosphere, the simple model consid-

ered in the previous sections can be specialized by choosing ω0 = γ = 0. Thus, the

conductivity given by Eq. (1.12.3) becomes pure imaginary:

σ(ω)= ǫ0ω
2
p

jω

The corresponding effective permittivity of Eq. (1.12.2) becomes purely real:

ǫ(ω)= ǫ0 + σ(ω)
jω

= ǫ0

(

1− ω
2
p

ω2

)

(1.15.1)

The plasma frequency can be calculated from ω2
p = Ne2/mǫ0. In the ionosphere

the electron density is typically N = 1012, which gives fp = 9 MHz.

We will see in Sec. 2.6 that the propagation wavenumber of an electromagnetic wave

propagating in a dielectric/conducting medium is given in terms of the effective permit-

tivity by:
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k =ω
√

μǫ(ω)

It follows that for a plasma:

k =ω
√

μ0ǫ0

(

1−ω2
p/ω2

) = 1

c

√

ω2 −ω2
p (1.15.2)

where we used c = 1/
√
μ0ǫ0.

If ω > ωp, the electromagnetic wave propagates without attenuation within the

plasma. But if ω < ωp, the wavenumber k becomes imaginary and the wave gets

attenuated. At such frequencies, a wave incident (normally) on the ionosphere from the

ground cannot penetrate and gets reflected back.

1.16 Energy Density in Lossless Dispersive Dielectrics

The lossless case is obtained from Eq. (1.11.5) by setting γ = 0, which is equivalent to

assuming that ω is far from the resonance ω0. In this case the permittivity is:

ǫ(ω)= ǫ0

[

1+ ω2
p

ω2
0 −ω2

]

from which it follows that:

d(ωǫ)

dω
= ǫ0

[

1+ ω
2
p(ω

2 +ω2
0)

(ω2
0 −ω2)2

]

(1.16.1)

Thus, the electric part of the energy density (1.9.7) will be:

w̄e = 1

4

d(ωǫ)

dω
|E|2 = 1

4
ǫ0|E|2

[

1+ ω
2
p(ω

2 +ω2
0)

(ω2
0 −ω2)2

]

(1.16.2)

This expression can be given a nice interpretation: The first term on the right is the

energy density in vacuum and the second corresponds to the mechanical (kinetic and

potential) energy of the polarization charges [165,188]. Indeed, the displacement x and

velocity v = ẋ of the polarization charges are in this case:

x = eE/m

ω2
0 −ω2

, v = jωx

The time-averaged mechanical energy (per unit volume) is obtained by adding the

kinetic and potential energies:

w̄mech = 1

2
Re

[

N

(
1

2
m|v|2 + 1

2
mω2

0|x|2
)]

= 1

4
Nm(ω2 +ω2

0)|x|2

= 1

4

Nm(ω2 +ω2
0)e

2|E|2/m2

(ω2
0 −ω2)2

= 1

4
ǫ0|E|2

[

ω2
p(ω

2 +ω2
0)

(ω2
0 −ω2)2

]

where we used the definition (1.11.6) of the plasma frequency. It follows that Eq. (1.16.2)

can be written as the sum:

w̄e = 1

4

d(ωǫ)

dω
|E|2 = 1

4
ǫ0|E|2 + w̄mech = w̄vac + w̄mech (1.16.3)



1.17. Kramers-Kronig Dispersion Relations 27

1.17 Kramers-Kronig Dispersion Relations

The convolutional form of Eq. (1.3.13) implies causality, that is, the value of D(r, t) at

the present time t depends only on the past values of E(r, t′), t′≤ t.
This condition is equivalent to requiring that the dielectric response ǫ(t) be a right-

sided (causal) function of time, that is, ǫ(t)= 0 for t < 0. Then, Eq. (1.3.13) may be

written as ordinary convolution by extending the integration range over all times:

D(r, t)=
∫ t

−∞
ǫ(t − t′)E(r, t′)dt′ =

∫∞

−∞
ǫ(t − t′)E(r, t′)dt′

Because D(r, t)= ǫ0E(r, t)+P(r, t), we may define the time-domain susceptibility

function χ(t) through:

ǫ(t)= ǫ0δ(t)+ǫ0χ(t) (1.17.1)

where δ(t) is the Dirac delta function. Therefore, if ǫ(t) is causal, so is χ(t). The

polarization is then given by:

P(r, t)= ǫ0

∫ t

−∞
χ(t − t′)E(r, t′)dt′ = ǫ0

∫∞

−∞
χ(t − t′)E(r, t′)dt′ (1.17.2)

In the frequency domain, this becomes multiplicative: P(r,ω)= ǫ0χ(ω)E(r,ω).

The Kramers-Kronig relations are the frequency-domain expression of causality and re-

late the real and imaginary parts of the susceptibility functionχ(ω). Here, the functions

χ(t) and χ(ω) are Fourier transform pairs:

χ(ω)=
∫∞

−∞
χ(t)e−jωtdt ⇔ χ(t)= 1

2π

∫∞

−∞
χ(ω)ejωtdω (1.17.3)

The causality condition, χ(t)= 0 for t < 0, can be expressed in terms of the unit-step

function u(t) in the equivalent manner:

χ(t)= χ(t)u(t) , for all t (1.17.4)

Using the property that the Fourier transform of a product of two time functions is

the convolution of their Fourier transforms, it follows that Eq. (1.17.4) can be written in

the equivalent frequency-domain form:

χ(ω)= 1

2π

∫∞

−∞
χ(ω′)U(ω−ω′)dω′ (1.17.5)

where U(ω) is the Fourier transform of the unit-step. Eq. (1.17.5) is essentially the

Kramers-Kronig relation. The function U(ω) is given by the well-known expression:

U(ω)= lim
ǫ→0+

1

jω+ ǫ = P
1

jω
+πδ(ω) (1.17.6)

where P denotes the “principal value.” Inserting (1.17.6) into (1.17.5), we have:

χ(ω) = 1

2π

∫∞

−∞
χ(ω′)

[

P
1

j(ω−ω′)
+πδ(ω−ω′)

]

dω′

= 1

2πj
P

∫∞

−∞
χ(ω′)
ω−ω′dω

′ + 1

2
χ(ω)
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Rearranging terms and canceling a factor of 1/2, we obtain the Kramers-Kronig re-

lation in its complex-valued form:†

χ(ω)= 1

πj
P

∫∞

−∞
χ(ω′)
ω−ω′dω

′ (Kramers-Kronig) (1.17.7)

The reason for applying this relation to χ(ω) instead of ǫ(ω) is that χ(ω) falls off

sufficiently fast for large ω to make the integral in (1.17.5) convergent, whereas ǫ(ω)

tends to the constant ǫ0.

Setting χ(ω)= χr(ω)−jχi(ω) and separating (1.17.7) into its real and imaginary

parts, we obtain the conventional form of the Kramers-Kronig dispersion relations:

χr(ω) = 1

π
P

∫∞

−∞
χi(ω

′)
ω′ −ωdω

′

χi(ω) = − 1

π
P

∫∞

−∞
χr(ω

′)
ω′ −ωdω

′
(Kramers-Kronig relations) (1.17.8)

Because the time-response χ(t) is real-valued, its Fourier transform χ(ω) will sat-

isfy the Hermitian symmetry property χ(−ω)= χ∗(ω), which is equivalent to the even

symmetry of its real part, χr(−ω)= χr(ω), and the odd symmetry of its imaginary part,

χi(−ω)= −χi(ω). Taking advantage of these symmetries, the range of integration in

(1.17.8) can be folded in half resulting in:

χr(ω) = 2

π
P

∫∞

0

ω′χi(ω′)
ω′2 −ω2

dω′

χi(ω) = − 2

π
P

∫∞

0

ωχr(ω
′)

ω′2 −ω2
dω′

(1.17.9)

There are several other ways to prove the Kramers-Kronig relations. For example,

a more direct way is to state the causality condition in terms of the signum function

sign(t). Indeed, because u(t)= (

1 + sign(t)
)

/2, Eq. (1.17.4) may be written in the

equivalent form χ(t)= χ(t)sign(t). Then, Eq. (1.17.7) follows by applying the same

frequency-domain convolution argument using the Fourier transform pair:

sign(t) ⇔ P
2

jω
(1.17.10)

Alternatively, the causality condition can be expressed as u(−t)χ(t)= 0. This ap-

proach is explored in Problem 1.12. Another proof is based on the analyticity properties

of χ(ω). Because of the causality condition, the Fourier integral in (1.17.3) can be re-

stricted to the time range 0 < t <∞:

χ(ω)=
∫∞

−∞
e−jωtχ(t)dt =

∫∞

0
e−jωtχ(t)dt (1.17.11)

This implies that χ(ω) can be analytically continued into the lower half ω-plane,

so that replacing ω by w =ω− jα with α ≥ 0 still gives a convergent Fourier integral

†The right-hand side (without the j) in (1.17.7) is known as a Hilbert transform. Exchanging the roles

of t and ω, such transforms, known also as 90o phase shifters, are used widely in signal processing for

generating single-sideband communications signals.
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in Eq. (1.17.11). Any singularities in χ(ω) lie in the upper-half plane. For example, the

simple model of Eq. (1.11.7) has poles at ω = ±ω̄0 + jγ/2, where ω̄0 =
√

ω2
0 − γ2/4.

Next, we consider a clockwise closed contour C = C′+C∞ consisting of the real axis

C′ and an infinite semicircle C∞ in the lower half-plane. Because χ(ω) is analytic in the

region enclosed by C, Cauchy’s integral theorem implies that for any point w enclosed

by C, that is, lying in the lower half-plane, we must have:

χ(w)= − 1

2πj

∮

C

χ(w′)
w′ −w dw

′ (1.17.12)

where the overall minus sign arises becauseC was taken to be clockwise. Assuming that

χ(ω) falls off sufficiently fast for large ω, the contribution of the infinite semicircle

can be ignored, thus leaving only the integral over the real axis. Setting w =ω− jǫ and

taking the limit ǫ→ 0+, we obtain the identical relationship to Eq. (1.17.5):

χ(ω)= − lim
ǫ→0+

1

2πj

∫∞

−∞
χ(ω′)

ω′ −ω+ jǫ dω
′ = 1

2π

∫∞

−∞
χ(ω′) lim

ǫ→0+
1

j(ω−ω′)+ǫ dω
′

An interesting consequence of the Kramers-Kronig relations is that there cannot

exist a dielectric medium that is purely lossless, that is, such that χi(ω)= 0 for all ω,

because this would also require that χr(ω)= 0 for all ω.

However, in all materials, χi(ω) is significantly non-zero only in the neighborhoods

of the medium’s resonant frequencies, as for example in Fig. 1.11.1. In the frequency

bands that are sufficiently far from the resonant bands, χi(ω) may be assumed to be

essentially zero. Such frequency bands are called transparency bands [164].

1.18 Group Velocity, Energy Velocity

Assuming a nonmagnetic material (μ = μ0), a complex-valued refractive index may be

defined by:

n(ω)= nr(ω)−jni(ω)=
√

1+ χ(ω) =
√

ǫ(ω)

ǫ0

(1.18.1)

where nr, ni are its real and imaginary parts. Setting χ = χr− jχi we have the condition

nr − jni =
√

1+ χr − jχi. Upon squaring, this splits into the two real-valued equations

n2
r − n2

i = 1+ χr and 2nrni = χi, with solutions:

nr =
⎡

⎣

√

(1+ χr)2+χ2
i + (1+ χr)

2

⎤

⎦

1/2

ni = sign(χi)

⎡

⎣

√

(1+ χr)2+χ2
i − (1+ χr)

2

⎤

⎦

1/2

= χi
2nr

(1.18.2)
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This form preserves the sign of χi, that is, ni and χi are both positive for absorbing

media, or both negative for gain media. The following approximate solution is often

used, which can be justified whenever |χ| ≪ 1 (for example, in gases):

nr(ω)−jnr(ω)=
√

1+ χ(ω) ≃ 1+ χ
2

⇒ nr = 1+ 1

2
χr , ni = 1

2
χi (1.18.3)

We will see in Chap. 2 that a single-frequency uniform plane wave propagating, say,

in the positive z-direction, has a wavenumber k = ωn/c = ω(nr − jni)/c ≡ β − jα,

where c is the speed of light in vacuum. Therefore, the wave will have a space-time

dependence:

ej(ωt−kz) = ej(ωt−(β−jα)z) = e−αzej(ωt−βz) = e−ωniz/cejω(t−nrz/c) (1.18.4)

The real part nr defines the phase velocity of the wave, vp = ω/β = c/nr , whereas

the imaginary part ni, or α =ωni/c, corresponds to attenuation or gain depending on

the sign of ni or χi.

When several such plane waves are superimposed to form a propagating pulse, we

will see in Sec. 3.5 that the peak of the pulse (i.e., the point on the pulse where all the

individual frequency components add up in phase), propagates with the so-called group

velocity defined by:

vg = dω

dβ
= 1

dβ

dω

= c

d(ωnr)

dω

= c

nr +ωdnr
dω

= group velocity (1.18.5)

A group refractive index may be defined through vg = c/ng, or, ng = c/vg:

ng = d(ωnr)

dω
= nr +ωdnr

dω
= nr − λdnr

dλ
= group refractive index (1.18.6)

where λ is the free-space wavelength related to ω by λ = 2πc/ω, and we used the

differentiation property that ωd/dω = −λd/dλ.

Within an anomalous dispersion region, nr is decreasing rapidly with ω, that is,

dnr/dω < 0, as in Fig. 1.11.1. This results in a group velocity vg, given by Eq. (1.18.5),

that may be larger than c or even negative. Such velocities are called “superluminal.”

Light pulses propagating at superluminal group velocities are referred to as “fast light”

and we discuss them further in Sec. 3.9.

Within a normal dispersion region (e.g., to the far left and far right of the resonant

frequency ω0 in Fig. 1.11.1), nr is an increasing function of ω, dnr/dω > 0, which

results in vg < c. In specially engineered materials such as those exhibiting “electro-

magnetically induced transparency,” the slope dnr/dω may be made so steep that the

resulting group velocity vg becomes extremely small, vg ≪ c. This is referred to as

“slow light.”

We close this section by showing that for lossless dispersive media, the energy ve-

locity of a plane wave is equal to the group velocity defined by (1.18.5). This result is

quite general, regardless of the frequency dependence of ǫ(ω) and μ(ω) (as long as

these quantities are real.)
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We will see in the next chapter that a plane wave propagating along the z-direction

has electric and magnetic fields that are transverse to the z-direction and are related by:

|H| = 1

η
|E| , η =

√
μ

ǫ

Moreover the time-averaged energy flux (in the z-direction) and energy density are:

P̄z = |E|2
2η

, w̄ = 1

4

d(ωǫ)

dω
|E|2 + 1

4

d(ωμ)

dω
|H|2 = 1

4

[

d(ωǫ)

dω
+ 1

η2

d(ωμ)

dω

]

|E|2

The energy velocity is defined by ven = P̄z/w̄. Thus, we have:

v−1
en =

w̄

P̄z
= 1

2

[

η
d(ωǫ)

dω
+ 1

η

d(ωμ)

dω

]

= 1

2

[√
μ

ǫ

d(ωǫ)

dω
+
√

ǫ

μ

d(ωμ)

dω

]

It is easily verified that the right-hand side can be expressed in terms of the wave-

number k =ω√
ǫμ in the form:

v−1
en =

1

2

[√
μ

ǫ

d(ωǫ)

dω
+
√

ǫ

μ

d(ωμ)

dω

]

= d
(

ω
√
ǫμ

)

dω
= dk

dω
= v−1

g (1.18.7)

which shows the equality of the energy and group velocities. See Refs. [164–178] for

further discussion on this topic.

Eq. (1.18.7) is also valid for the case of lossless negative-index media and implies that

the group velocity, and hence the group refractive index ng = c0/vg, will be positive,

even though the refractive index n is negative. Writing ǫ = −|ǫ| and μ = −|μ| in this

case and noting that η = √|μ|/|ǫ| and n = −√|ǫμ|/√ǫ0μ0, and k =ωn/c0, we have:

v−1
en =

1

2

[√

|μ|
|ǫ|

d(ωǫ)

dω
+
√

|ǫ|
|μ|

d(ωμ)

dω

]

= −1

2

[√

|μ|
|ǫ|

d(ω|ǫ|)
dω

+
√

|ǫ|
|μ|

d(ω|μ|)
dω

]

= −d
(

ω
√|ǫμ|)

dω
= 1

c0

d(ωn)

dω
= dk

dω
= v−1

g

from which we also obtain the usual relationship ng = d(ωn)/dω. The positivity of

vg and ng follows from the positivity of the derivatives d(ωǫ)/dω and d(ωμ)/dω, as

required to keep ven positive in negative-index media [387].

1.19 Problems

1.1 Prove the vector algebra identities:

A× (B× C)= B(A · C)−C(A · B) (BAC-CAB identity)

A · (B× C)= B · (C× A)= C · (A× B)

|A× B|2 + |A · B|2 = |A|2|B|2
A = n̂× A× n̂+ (n̂ · A)n̂ (n̂ is any unit vector)

In the last identity, does it a make a difference whether n̂×A× n̂ is taken to mean n̂×(A× n̂)

or (n̂× A)×n̂?
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1.2 Prove the vector analysis identities:

∇∇∇× (∇∇∇φ)= 0

∇∇∇ · (φ∇∇∇ψ)= φ∇2ψ+∇∇∇φ ·∇∇∇ψ (Green’s first identity)

∇∇∇ · (φ∇∇∇ψ−ψ∇∇∇φ)= φ∇2ψ−ψ∇2φ (Green’s second identity)

∇∇∇ · (φA)= (∇∇∇φ)·A+φ∇∇∇ · A

∇∇∇× (φA)= (∇∇∇φ)×A+φ∇∇∇× A

∇∇∇ · (∇∇∇× A)= 0

∇∇∇ · A× B = B · (∇∇∇× A)−A · (∇∇∇× B)

∇∇∇× (∇∇∇× A)=∇∇∇(∇∇∇ · A)−∇2A

1.3 Consider the infinitesimal volume element ΔxΔyΔz shown below, such that its upper half

lies in medium ǫ1 and its lower half in medium ǫ2. The axes are oriented such that n̂ = ẑ.

Applying the integrated form of Ampère’s law to the infinitesimal face abcd, show that

H2y −H1y = JxΔz+ ∂Dx
∂t

Δz

In the limit Δz → 0, the second term in the right-hand side may be assumed to go to zero,

whereas the first term will be non-zero and may be set equal to a surface current density,

that is, Jsx ≡ limΔz→0(JxΔz). Show that this leads to the boundary condition H1y −H2y =
−Jsx. Similarly, show that H1x −H2x = Jsy, and that these two boundary conditions can be

combined vectorially into Eq. (1.5.4).

Next, apply the integrated form of Gauss’s law to the same volume element and show the

boundary condition: D1z −D2z = ρs = limΔz→0(ρΔz).

1.4 Show that the time average of the product of two harmonic quantities A(t)= Re
[

Aejωt
]

and B(t)= Re
[

Bejωt
]

with phasors A,B is given by:

A(t)B(t) = 1

T

∫ T

0
A(t)B(t)dt = 1

2
Re
[

AB∗]

where T = 2π/ω is one period. Then, show that the time-averaged values of the cross

and dot products of two time-harmonic vector quantities AAA(t)= Re
[

Aejωt
]

and BBB(t)=
Re
[

Bejωt
]

can be expressed in terms of the corresponding phasors as follows:

AAA(t)×BBB(t) = 1

2
Re
[

A× B∗
]

, AAA(t)·BBB(t) = 1

2
Re
[

A · B∗
]

1.5 Assuming that B = μH, show that Maxwell’s equations (1.9.2) imply the following complex-

valued version of Poynting’s theorem:

∇∇∇ · (E×H∗)= −jωμH ·H∗ − E · J∗tot, where Jtot = J+ jωD
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Extracting the real-parts of both sides and integrating over a volume V bounded by a closed

surface S, show the time-averaged form of energy conservation:

−
∮

S

1

2
Re[E×H∗]·dS =

∫

V

1

2
Re[E · J∗tot]dV

which states that the net time-averaged power flowing into a volume is dissipated into heat.

For a lossless dielectric, show that the above integrals are zero and provide an interpretation.

1.6 Assuming that D = ǫE and B = μH, show that Maxwell’s equations (1.1.1) imply the following

relationships:

ρEx +
(

D× ∂B

∂t

)

x =∇∇∇ ·
(

ǫExE− x̂
1

2
ǫE2

)

(J× B)x+
(∂D

∂t
× B

)

x =∇∇∇ ·
(

μHxH− x̂
1

2
μH2

)

where the subscript xmeans the x-component. From these, derive the following relationship

that represents momentum conservation:

fx + ∂Gx
∂t

=∇∇∇ · Tx (1.19.1)

where fx, Gx are the x-components of the vectors f = ρE + J × B and G = D × B, and Tx is

defined to be the vector (equal to Maxwell’s stress tensor acting on the unit vector x̂):

Tx = ǫExE+ μHxH− x̂
1

2
(ǫE2 + μH2)

Write similar equations of the y, z components. The quantity Gx is interpreted as the field

momentum (in the x-direction) per unit volume, that is, the momentum density.

1.7 Show that the causal and stable time-domain dielectric response corresponding to Eq. (1.11.5)

is given as follows:

ǫ(t)= ǫ0δ(t)+ǫ0χ(t) , χ(t)= ω2
p

ω̄0

e−γt/2 sin(ω̄0t)u(t) (1.19.2)

where u(t) is the unit-step function and ω̄0 =
√

ω2
0 − γ2/4, and we must assume that

γ < 2ω0, as is typically the case in practice. Discuss the solution for the case γ/2 > ω0.

1.8 Show that the plasma frequency for electrons can be expressed in the simple numerical form:

fp = 9
√
N, where fp is in Hz and N is the electron density in electrons/m3. What is fp for

the ionosphere if N = 1012? [Ans. 9 MHz.]

1.9 Show that the relaxation equation (1.13.2) can be written in the following form in terms of

the dc-conductivity σ defined by Eq. (1.12.4):

1

γ
ρ̈(r, t)+ρ̇(r, t)+ σ

ǫ0

ρ(r, t)= 0

Then, show that it reduces to the naive relaxation equation (1.7.3) in the limit τ = 1/γ→ 0.

Show also that in this limit, Ohm’s law (1.13.1) takes the instantaneous form J = σE, from

which the naive relaxation constant τrelax = ǫ0/σ was derived.
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1.10 Conductors and plasmas exhibit anisotropic and birefringent behavior when they are in the

presence of an external magnetic field. The equation of motion of conduction electrons in

a constant external magnetic field is mv̇ = e(E + v × B)−mγv, with the collisional term

included. Assume the magnetic field is in the z-direction, B = ẑB, and that E = x̂Ex + ŷEy
and v = x̂vx + ŷvy.

a. Show that in component form, the above equations of motion read:

v̇x = e

m
Ex +ωBvy − γvx

v̇y = e

m
Ey −ωBvx − γvy

where ωB = eB

m
= (cyclotron frequency)

What is the cyclotron frequency in Hz for electrons in the Earth’s magnetic field B =
0.4 gauss = 0.4×10−4 Tesla? [Ans. 1.12 MHz.]

b. To solve this system, work with the combinations vx ± jvy. Assuming harmonic time-

dependence, show that the solution is:

vx ± jvy =
e

m
(Ex ± jEy)

γ+ j(ω±ωB)

c. Define the induced currents as J = Nev. Show that:

Jx ± jJy = σ±(ω)(Ex ± jEy), where σ±(ω)= γσ0

γ+ j(ω±ωB)

where σ0 = Ne2

mγ
is the dc value of the conductivity.

d. Show that the t-domain version of part (c) is:

Jx(t)±jJy(t)=
∫ t

0
σ±(t − t′)

(

Ex(t
′)±jEy(t′)

)

dt′

where σ±(t)= γσ0e
−γte∓jωBtu(t) is the inverse Fourier transform of σ±(ω) and

u(t) is the unit-step function.

e. Rewrite part (d) in component form:

Jx(t) =
∫ t

0

[

σxx(t − t′)Ex(t′)+σxy(t − t′)Ey(t′)
]

dt′

Jy(t) =
∫ t

0

[

σyx(t − t′)Ex(t′)+σyy(t − t′)Ey(t′)
]

dt′

and identify the quantities σxx(t),σxy(t),σyx(t),σyy(t).

f. Evaluate part (e) in the special case Ex(t)= Exu(t) and Ey(t)= Eyu(t), where Ex, Ey
are constants, and show that after a long time the steady-state version of part (e) will

be:

Jx = σ0

Ex + bEy
1+ b2

Jy = σ0

Ey − bEx
1+ b2
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where b =ωB/γ. If the conductor has finite extent in the y-direction, as shown above,

then no steady current can flow in this direction, Jy = 0. This implies that if an electric

field is applied in the x-direction, an electric field will develop across the y-ends of the

conductor, Ey = bEx. The conduction charges will tend to accumulate either on the

right or the left side of the conductor, depending on the sign of b, which depends on

the sign of the electric charge e. This is the Hall effect and is used to determine the

sign of the conduction charges in semiconductors, e.g., positive holes for p-type, or

negative electrons for n-type.

What is the numerical value ofb for electrons in copper ifB is 1 gauss? [Ans. 4.3×10−7.]

g. For a collisionless plasma (γ = 0), show that its dielectric behavior is determined from

Dx ± jDy = ǫ±(ω)(Ex ± jEy), where

ǫ±(ω)= ǫ0

(

1− ω2
p

ω(ω±ωB)

)

where ωp is the plasma frequency. Thus, the plasma exhibits birefringence.

1.11 This problem deals with various properties of the Kramers-Kronig dispersion relations for

the electric susceptibility, given by Eq. (1.17.8).

a. Using the symmetry properties χr(ω)= χr(−ω) and χi(ω)= −χi(−ω), show that

(1.17.8) can be written in the folded form of Eq. (1.17.9).

b. Using the definition of principal-value integrals, show the following integral:

P

∫∞

0

dω′

ω′2 −ω2
= 0 (1.19.3)

Hint : You may use the following indefinite integral:

∫
dx

a2 − x2
= 1

2a
ln

∣
∣
∣
∣

a+ x
a− x

∣
∣
∣
∣.

c. Using Eq. (1.19.3), show that the relations (1.17.9) may be rewritten as ordinary inte-

grals (without the P instruction) as follows:

χr(ω) = 2

π

∫ ∞

0

ω′χi(ω′)−ωχi(ω)
ω′2 −ω2

dω′

χi(ω) = − 2

π

∫∞

0

ωχr(ω
′)−ωχr(ω)

ω′2 −ω2
dω′

(1.19.4)

Hint : You will need to argue that the integrands have no singularity at ω′ =ω.

d. For a simple oscillator model of dielectric polarization, the susceptibility is given by:

χ(ω) = χr(ω)−jχi(ω)=
ω2
p

ω2
0 −ω2 + jγω

= ω2
p(ω

2
0 −ω2)

(ω2
0 −ω2)2+γ2ω2

− j γωω2
p

(ω2
0 −ω2)2+γ2ω2

(1.19.5)

Show that for this model the quantitiesχr(ω) andχi(ω) satisfy the modified Kramers-

Kronig relationships (1.19.4). Hint : You may use the following definite integrals, for

which you may assume that 0 < γ < 2ω0 :

2

π

∫ ∞

0

dx

(ω2
0 − x2)2+γ2x2

= 1

γω2
0

,
2

π

∫ ∞

0

x2dx

(ω2
0 − x2)2+γ2x2

= 1

γ
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Indeed, show that these integrals may be reduced to the following ones, which can be

found in standard tables of integrals:

2

π

∫ ∞

0

dy

1− 2y2 cosθ+ y4
= 2

π

∫ ∞

0

y2dy

1− 2y2 cosθ+ y4
= 1

√

2(1− cosθ)

where sin(θ/2)= γ/(2ω0).

e. Consider the limit of Eq. (1.19.5) as γ → 0. Show that in this case the functions χr , χi
are given as follows, and that they still satisfy the Kramers-Kronig relations:

χr(ω)= P
ω2
p

ω0 −ω
+P

ω2
p

ω0 +ω
, χi(ω)=

πω2
p

2ω0

[

δ(ω−ω0)−δ(ω+ω0)
]

1.12 Derive the Kramers-Kronig relationship of Eq. (1.17.7) by starting with the causality condi-

tion χ(t)u(−t)= 0 and translating it to the frequency domain, that is, expressing it as the

convolution of the Fourier transforms of χ(t) and u(−t).
1.13 An isotropic homogeneous lossless dielectric medium is moving with uniform velocity v with

respect to a fixed coordinate frame S. In the frame S′ moving with dielectric, the constitutive

relations are assumed to be the usual ones, that is, D ′ = ǫE ′ and B ′ = μH ′. Using the Lorentz

transformations given in Eq. (H.30) of Appendix H, show that the constitutive relations take

the following form in the fixed frame S:

D = ǫE+ av×(H− ǫv× E) , B = μH− av×(E+ μv×H) , a = ǫμ− ǫ0μ0

1− ǫμv2
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Uniform Plane Waves

2.1 Uniform Plane Waves in Lossless Media

The simplest electromagnetic waves are uniform plane waves propagating along some

fixed direction, say the z-direction, in a lossless medium {ǫ, μ}.
The assumption of uniformity means that the fields have no dependence on the

transverse coordinates x, y and are functions only of z, t. Thus, we look for solutions

of Maxwell’s equations of the form: E(x, y, z, t)= E(z, t) and H(x, y, z, t)= H(z, t).

Because there is no dependence on x, y, we set the partial derivatives† ∂x = 0 and

∂y = 0. Then, the gradient, divergence, and curl operations take the simplified forms:

∇∇∇ = ẑ
∂

∂z
, ∇∇∇ · E = ∂Ez

∂z
, ∇∇∇× E = ẑ× ∂E

∂z
= −x̂

∂Ey

∂z
+ ŷ

∂Ex
∂z

Assuming that D = ǫE and B = μH , the source-free Maxwell’s equations become:

∇∇∇× E = −μ ∂H

∂t

∇∇∇×H = ǫ ∂E

∂t

∇∇∇ · E = 0

∇∇∇ ·H = 0

⇒

ẑ× ∂E

∂z
= −μ ∂H

∂t

ẑ× ∂H

∂z
= ǫ ∂E

∂t

∂Ez
∂z

= 0

∂Hz
∂z

= 0

(2.1.1)

An immediate consequence of uniformity is that E and H do not have components

along the z-direction, that is, Ez = Hz = 0. Taking the dot-product of Ampère’s law

with the unit vector ẑ, and using the identity ẑ · (ẑ× A)= 0, we have:

ẑ ·
(

ẑ× ∂H

∂z

)

= ǫ ẑ · ∂E

∂t
= 0 ⇒ ∂Ez

∂t
= 0

†The shorthand notation ∂x stands for
∂

∂x
.
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Because also ∂zEz = 0, it follows that Ez must be a constant, independent of z, t.

Excluding static solutions, we may take this constant to be zero. Similarly, we have

Hz = 0. Thus, the fields have components only along the x, y directions:

E(z, t) = x̂Ex(z, t)+ŷEy(z, t)

H(z, t) = x̂Hx(z, t)+ŷHy(z, t)
(transverse fields) (2.1.2)

These fields must satisfy Faraday’s and Ampère’s laws in Eqs. (2.1.1). We rewrite

these equations in a more convenient form by replacing ǫ and μ by:

ǫ = 1

ηc
, μ = η

c
, where c = 1√

μǫ
, η =

√
μ

ǫ
(2.1.3)

Thus, c, η are the speed of light and characteristic impedance of the propagation

medium. Then, the first two of Eqs. (2.1.1) may be written in the equivalent forms:

ẑ× ∂E

∂z
= −1

c
η
∂H

∂t

η ẑ× ∂H

∂z
= 1

c

∂E

∂t

(2.1.4)

The first may be solved for ∂zE by crossing it with ẑ. Using the BAC-CAB rule, and

noting that E has no z-component, we have:
(

ẑ× ∂E

∂z

)

× ẑ = ∂E

∂z
(ẑ · ẑ)−ẑ

(

ẑ · ∂E

∂z

)

= ∂E

∂z

where we used ẑ · ∂zE = ∂zEz = 0 and ẑ · ẑ = 1. It follows that Eqs. (2.1.4) may be

replaced by the equivalent system:

∂E

∂z
= −1

c

∂

∂t
(ηH× ẑ)

∂

∂z
(ηH× ẑ)= −1

c

∂E

∂t

(2.1.5)

Now all the terms have the same dimension. Eqs. (2.1.5) imply that both E and H

satisfy the one-dimensional wave equation. Indeed, differentiating the first equation

with respect to z and using the second, we have:

∂2E

∂z2
= −1

c

∂

∂t

∂

∂z
(ηH× ẑ)= 1

c2

∂2E

∂t2
or,

(

∂2

∂z2
− 1

c2

∂2

∂t2

)

E(z, t)= 0 (wave equation) (2.1.6)

and similarly for H. Rather than solving the wave equation, we prefer to work directly

with the coupled system (2.1.5). The system can be decoupled by introducing the so-

called forward and backward electric fields defined as the linear combinations:

E+ = 1

2
(E+ ηH× ẑ)

E− = 1

2
(E− ηH× ẑ)

(forward and backward fields) (2.1.7)
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Component-wise, these are:

Ex± = 1

2
(Ex ± ηHy) , Ey± = 1

2
(Ey ∓ ηHx) (2.1.8)

We show next that E+(z, t) corresponds to a forward-moving wave, that is, moving

towards the positive z-direction, and E−(z, t), to a backward-moving wave. Eqs. (2.1.7)

can be inverted to express E,H in terms of E+,E−. Adding and subtracting them, and

using the BAC-CAB rule and the orthogonality conditions ẑ · E± = 0, we obtain:

E(z, t) = E+(z, t)+E−(z, t)

H(z, t) = 1

η
ẑ× [

E+(z, t)−E−(z, t)
] (2.1.9)

In terms of the forward and backward fields E±, the system of Eqs. (2.1.5) decouples

into two separate equations:

∂E+
∂z

= −1

c

∂E+
∂t

∂E−
∂z

= +1

c

∂E−
∂t

(2.1.10)

Indeed, using Eqs. (2.1.5), we verify:

∂

∂z
(E± ηH× ẑ)= −1

c

∂

∂t
(ηH× ẑ)∓1

c

∂E

∂t
= ∓1

c

∂

∂t
(E± ηH× ẑ)

Eqs. (2.1.10) can be solved by noting that the forward field E+(z, t) must depend

on z, t only through the combination z − ct (for a proof, see Problem 2.1.) If we set

E+(z, t)= F(z − ct), where F(ζ) is an arbitrary function of its argument ζ = z − ct,
then we will have:

∂E+
∂z

= ∂

∂z
F(z− ct)= ∂ζ

∂z

∂F(ζ)

∂ζ
= ∂F(ζ)

∂ζ

∂E+
∂t

= ∂

∂t
F(z− ct)= ∂ζ

∂t

∂F(ζ)

∂ζ
= −c ∂F(ζ)

∂ζ

⇒ ∂E+
∂z

= −1

c

∂E+
∂t

Vectorially, F must have only x, y components, F = x̂Fx + ŷFy, that is, it must be

transverse to the propagation direction, ẑ · F = 0.

Similarly, we find from the second of Eqs. (2.1.10) that E−(z, t) must depend on z, t

through the combination z+ct, so that E−(z, t)= G(z+ct), where G(ξ) is an arbitrary

(transverse) function of ξ = z + ct. In conclusion, the most general solutions for the

forward and backward fields of Eqs. (2.1.10) are:

E+(z, t) = F(z− ct)
E−(z, t) = G(z+ ct)

(2.1.11)

with arbitrary functions F and G, such that ẑ · F = ẑ · G = 0.
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Inserting these into the inverse formula (2.1.9), we obtain the most general solution

of (2.1.5), expressed as a linear combination of forward and backward waves:

E(z, t) = F(z− ct)+G(z+ ct)

H(z, t) = 1

η
ẑ× [

F(z− ct)−G(z+ ct)]
(2.1.12)

The term E+(z, t)= F(z − ct) represents a wave propagating with speed c in the

positive z-direction, while E−(z, t)= G(z+ct) represents a wave traveling in the negative

z-direction.

To see this, consider the forward field at a later time t+Δt. During the time interval

Δt, the wave moves in the positive z-direction by a distance Δz = cΔt. Indeed, we have:

E+(z, t +Δt) = F
(

z− c(t +Δt)) = F(z− cΔt − ct)
E+(z−Δz, t) = F

(

(z−Δz)−ct) = F(z− cΔt − ct)
⇒ E+(z, t+Δt)= E+(z−Δz, t)

This states that the forward field at time t + Δt is the same as the field at time t,

but translated to the right along the z-axis by a distance Δz = cΔt. Equivalently, the

field at location z+Δz at time t is the same as the field at location z at the earlier time

t −Δt = t −Δz/c, that is,

E+(z+Δz, t)= E+(z, t −Δt)

Similarly, we find that E−(z, t+Δt)= E−(z+Δz, t), which states that the backward

field at time t+Δt is the same as the field at time t, translated to the left by a distance

Δz. Fig. 2.1.1 depicts these two cases.

Fig. 2.1.1 Forward and backward waves.

The two special cases corresponding to forward waves only (G = 0), or to backward

ones (F = 0), are of particular interest. For the forward case, we have:

E(z, t) = F(z− ct)

H(z, t) = 1

η
ẑ× F(z− ct)= 1

η
ẑ× E(z, t)

(2.1.13)
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This solution has the following properties: (a) The field vectors E and H are perpen-

dicular to each other, E · H = 0, while they are transverse to the z-direction, (b) The

three vectors {E,H, ẑ} form a right-handed vector system as shown in the figure, in the

sense that E×H points in the direction of ẑ, (c) The ratio of E to H× ẑ is independent

of z, t and equals the characteristic impedance η of the propagation medium; indeed:

H(z, t)= 1

η
ẑ× E(z, t) ⇒ E(z, t)= ηH(z, t)×ẑ (2.1.14)

The electromagnetic energy of such forward wave flows in the positive z-direction.

With the help of the BAC-CAB rule, we find for the Poynting vector:

PPP = E×H = ẑ
1

η
|F |2 = c ẑ ǫ|F |2 (2.1.15)

where we denoted |F |2 = F·F and replaced 1/η = cǫ. The electric and magnetic energy

densities (per unit volume) turn out to be equal to each other. Because ẑ and F are

mutually orthogonal, we have for the cross product |ẑ× F | = |ẑ||F | = |F |. Then,

we = 1

2
ǫ |E |2 = 1

2
ǫ|F |2

wm = 1

2
μ |H |2 = 1

2
μ

1

η2
|ẑ× F |2 = 1

2
ǫ |F |2 = we

where we replaced μ/η2 = ǫ. Thus, the total energy density of the forward wave will be:

w = we +wm = 2we = ǫ|F |2 (2.1.16)

In accordance with the flux/density relationship of Eq. (1.6.2), the transport velocity

of the electromagnetic energy is found to be:

v = PPP
w
= c ẑ ǫ|F |2

ǫ|F |2 = c ẑ

As expected, the energy of the forward-moving wave is being transported at a speed

c along the positive z-direction. Similar results can be derived for the backward-moving

solution that has F = 0 and G �= 0. The fields are now:

E(z, t) = G(z+ ct)

H(z, t) = − 1

η
ẑ×G(z+ ct)= − 1

η
ẑ× E(z, t)

(2.1.17)

The Poynting vector becomes PPP = E × H = −c ẑ ǫ|G |2 and points in the negative

z-direction, that is, the propagation direction. The energy transport velocity is v = −c ẑ.

Now, the vectors {E,H,−ẑ} form a right-handed system, as shown. The ratio of E to H

is still equal to η, provided we replace ẑ with −ẑ:

H(z, t)= 1

η
(−ẑ)×E(z, t) ⇒ E(z, t)= ηH(z, t)×(−ẑ)
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In the general case of Eq. (2.1.12), the E/H ratio does not remain constant. The

Poynting vector and energy density consist of a part due to the forward wave and a part

due to the backward one:

PPP = E×H = c ẑ
(

ǫ|F |2 − ǫ|G |2)

w = 1

2
ǫ|E |2 + 1

2
μ|H |2 = ǫ|F |2 + ǫ|G |2

(2.1.18)

Example 2.1.1: A source located at z = 0 generates an electric field E(0, t)= x̂E0 u(t), where

u(t) is the unit-step function, and E0, a constant. The field is launched towards the positive

z-direction. Determine expressions for E(z, t) and H(z, t).

Solution: For a forward-moving wave, we have E(z, t)= F(z − ct)= F
(

0 − c(t − z/c)), which

implies that E(z, t) is completely determined by E(z,0), or alternatively, by E(0, t):

E(z, t)= E(z− ct,0)= E(0, t − z/c)

Using this property, we find for the electric and magnetic fields:

E(z, t) = E(0, t − z/c)= x̂E0 u(t − z/c)

H(z, t) = 1

η
ẑ× E(z, t)= ŷ

E0

η
u(t − z/c)

Because of the unit-step, the non-zero values of the fields are restricted to t− z/c ≥ 0, or,

z ≤ ct, that is, at time t the wavefront has propagated only up to position z = ct. The

figure shows the expanding wavefronts at time t and t +Δt. ⊓⊔

Example 2.1.2: Consider the following three examples of electric fields specified at t = 0, and

describing forward or backward fields as indicated:

E(z,0)= x̂E0 cos(kz) (forward-moving)

E(z,0)= ŷE0 cos(kz) (backward-moving)

E(z,0)= x̂E1 cos(k1z)+ŷE2 cos(k2z) (forward-moving)

where k, k1, k2 are given wavenumbers (measured in units of radians/m.) Determine the

corresponding fields E(z, t) and H(z, t).

Solution: For the forward-moving cases, we replace z by z − ct, and for the backward-moving

case, by z+ ct. We find in the three cases:

E(z, t) = x̂E0 cos
(

k(z− ct)) = x̂E0 cos(ωt − kz)
E(z, t) = ŷE0 cos

(

k(z+ ct)) = ŷE0 cos(ωt + kz)
E(z, t) = x̂E1 cos(ω1t − k1z)+ŷE2 cos(ω2t − k2z)

where ω = kc, and ω1 = k1c, ω2 = k2c. The corresponding magnetic fields are:

H(z, t) = 1

η
ẑ× E(z, t)= ŷ

E0

η
cos(ωt − kz) (forward)

H(z, t) = − 1

η
ẑ× E(z, t)= x̂

E0

η
cos(ωt + kz) (backward)

H(z, t) = 1

η
ẑ× E(z, t)= ŷ

E1

η
cos(ω1t − k1z)−x̂

E2

η
cos(ω2t − k2z)
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The first two cases are single-frequency waves, and are discussed in more detail in the

next section. The third case is a linear superposition of two waves with two different

frequencies and polarizations. ⊓⊔

2.2 Monochromatic Waves

Uniform, single-frequency, plane waves propagating in a lossless medium are obtained

as a special case of the previous section by assuming the harmonic time-dependence:

E(x, y, z, t) = E(z)ejωt

H(x, y, z, t) = H(z)ejωt
(2.2.1)

where E(z) and H(z) are transverse with respect to the z-direction.

Maxwell’s equations (2.1.5), or those of the decoupled system (2.1.10), may be solved

very easily by replacing time derivatives by ∂t → jω. Then, Eqs. (2.1.10) become the

first-order differential equations (see also Problem 2.3):

∂E±(z)
∂z

= ∓jkE±(z) , where k = ω

c
=ω√μǫ (2.2.2)

with solutions:
E+(z) = E0+e−jkz (forward)

E−(z) = E0−ejkz (backward)
(2.2.3)

where E0± are arbitrary (complex-valued) constant vectors such that ẑ · E0± = 0. The

corresponding magnetic fields are:

H+(z) = 1

η
ẑ× E+(z)= 1

η
(ẑ× E0+)e−jkz = H0+e−jkz

H−(z) = − 1

η
ẑ× E−(z)= − 1

η
(ẑ× E0−)ejkz = H0−ejkz

(2.2.4)

where we defined the constant amplitudes of the magnetic fields:

H0± = ± 1

η
ẑ× E0± (2.2.5)

Inserting (2.2.3) into (2.1.9), we obtain the general solution for single-frequency

waves, expressed as a superposition of forward and backward components:

E(z) = E0+e−jkz + E0−ejkz

H(z) = 1

η
ẑ × [

E0+e−jkz − E0−ejkz
] (forward+backward waves) (2.2.6)

Setting E0± = x̂A±+ŷB±, and noting that ẑ×E0± = ẑ×(x̂A±+ŷB±)= ŷA±−x̂B±,

we may rewrite (2.2.6) in terms of its cartesian components:

Ex(z)= A+e−jkz +A−ejkz , Ey(z)= B+e−jkz + B−ejkz

Hy(z)= 1

η

[

A+e−jkz −A−ejkz
]

, Hx(z)= − 1

η

[

B+e−jkz − B−ejkz
] (2.2.7)
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Wavefronts are defined, in general, to be the surfaces of constant phase. A forward

moving wave E(z)= E0e
−jkz corresponds to the time-varying field:

E(z, t)= E0e
jωt−jkz = E0e

−jϕ(z,t) , where ϕ(z, t)= kz−ωt

A surface of constant phase is obtained by setting ϕ(z, t)= const. Denoting this

constant by φ0 = kz0 and using the property c =ω/k, we obtain the condition:

ϕ(z, t)=ϕ0 ⇒ kz−ωt = kz0 ⇒ z = ct + z0

Thus, the wavefront is the xy-plane intersecting the z-axis at the point z = ct + z0,

moving forward with velocity c. This justifies the term “plane wave.”

A backward-moving wave will have planar wavefronts parametrized by z = −ct+z0,

that is, moving backwards. A wave that is a linear combination of forward and backward

components, may be thought of as having two planar wavefronts, one moving forward,

and the other backward.

The relationships (2.2.5) imply that the vectors {E0+,H0+, ẑ} and {E0−,H0−,−ẑ} will

form right-handed orthogonal systems. The magnetic field H0± is perpendicular to the

electric field E0± and the cross-product E0±×H0± points towards the direction of prop-

agation, that is, ±ẑ. Fig. 2.2.1 depicts the case of a forward propagating wave.

Fig. 2.2.1 Forward uniform plane wave.

The wavelength λ is the distance by which the phase of the sinusoidal wave changes

by 2π radians. Since the propagation factor e−jkz accumulates a phase of k radians per

meter, we have by definition that kλ = 2π. The wavelength λ can be expressed via the

frequency of the wave in Hertz, f =ω/2π, as follows:

λ = 2π

k
= 2πc

ω
= c

f
(2.2.8)

If the propagation medium is free space, we use the vacuum values of the parame-

ters {ǫ, μ, c, η}, that is, {ǫ0, μ0, c0, η0}. The free-space wavelength and corresponding

wavenumber are:

λ0 = 2π

k0

= c0

f
, k0 = ω

c0

(2.2.9)

In a lossless but non-magnetic (μ = μ0) dielectric with refractive index n = √

ǫ/ǫ0,

the speed of light c, wavelength λ, and characteristic impedance η are all reduced by a
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scale factorn compared to the free-space values, whereas the wavenumber k is increased

by a factor of n. Indeed, using the definitions c = 1/
√
μ0ǫ and η = √

μ0/ǫ, we have:

c = c0

n
, η = η0

n
, λ = λ0

n
, k = nk0 (2.2.10)

Example 2.2.1: A microwave transmitter operating at the carrier frequency of 6 GHz is pro-

tected by a Plexiglas radome whose permittivity is ǫ = 3ǫ0.

The refractive index of the radome is n = √

ǫ/ǫ0 =
√

3 = 1.73. The free-space wavelength

and the wavelength inside the radome material are:

λ0 = c0

f
= 3× 108

6× 109
= 0.05 m = 5 cm, λ = λ0

n
= 5

1.73
= 2.9 cm

We will see later that if the radome is to be transparent to the wave, its thickness must be

chosen to be equal to one-half wavelength, l = λ/2. Thus, l = 2.9/2 = 1.45 cm. ⊓⊔

Example 2.2.2: The nominal speed of light in vacuum is c0 = 3×108 m/s. Because of the rela-

tionship c0 = λf , it may be expressed in the following suggestive units that are appropriate

in different application contexts:

c0 = 5000 km × 60 Hz (power systems)

300 m × 1 MHz (AM radio)

40 m × 7.5 MHz (amateur radio)

3 m × 100 MHz (FM radio, TV)

30 cm × 1 GHz (cell phones)

10 cm × 3 GHz (waveguides, radar)

3 cm × 10 GHz (radar, satellites)

0.3 mm × 1 THz (biotech, security, spectroscopy)

1.5 μm × 200 THz (optical fibers)

500 nm × 600 THz (visible spectrum)

100 nm × 3000 THz (UV)

Similarly, in terms of length/time of propagation:

c0 = 36 000 km/120 msec (geosynchronous satellites)

300 km/msec (power lines)

300 m/μsec (transmission lines)

30 cm/nsec (circuit boards)

300 μm/psec (nanocircuits)

The typical half-wave monopole antenna (half of a half-wave dipole over a ground plane)

has length λ/4 and is used in many applications, such as AM, FM, and cell phones. Thus,

one can predict that the lengths of AM radio, FM radio, and cell phone antennas will be of

the order of 75 m, 0.75 m, and 7.5 cm, respectively.

A more detailed list of electromagnetic frequency bands is given in Appendix B. The precise

value of c0 and the values of other physical constants are given in Appendix A. ⊓⊔

Wave propagation effects become important, and cannot be ignored, whenever the

physical length of propagation is comparable to the wavelength λ. It follows from
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Eqs. (2.2.2) that the incremental change of a forward-moving electric field in propagating

from z to z+Δz is:
|ΔE+|
|E+|

= kΔz = 2π
Δz

λ
(2.2.11)

Thus, the change in the electric field can be ignored only if Δz≪ λ, otherwise, propa-

gation effects must be taken into account.

For example, for an integrated circuit operating at 10 GHz, we have λ = 3 cm, which

is comparable to the physical dimensions of the circuit.

Similarly, a cellular base station antenna is connected to the transmitter circuits by

several meters of coaxial cable. For a 1-GHz system, the wavelength is 0.3 m, which

implies that a 30-meter cable will be equivalent to 100 wavelengths.

2.3 Energy Density and Flux

The time-averaged energy density and flux of a uniform plane wave can be determined

by Eq. (1.9.6). As in the previous section, the energy is shared equally by the electric

and magnetic fields (in the forward or backward cases.) This is a general result for most

wave propagation and waveguide problems.

The energy flux will be in the direction of propagation. For either a forward- or a

backward-moving wave, we have from Eqs. (1.9.6) and (2.2.5):

we = 1

2
Re

[
1

2
ǫE±(z)·E∗± (z)

]

= 1

2
Re

[
1

2
ǫE0±e−jkz · E∗0±e

jkz

]

= 1

4
ǫ|E0±|2

wm = 1

2
Re

[
1

2
μH±(z)·H∗

± (z)
]

= 1

4
μ|H0±|2 = 1

4
μ

1

η2
|ẑ× E0±|2 = 1

4
ǫ|E0±|2 = we

Thus, the electric and magnetic energy densities are equal and the total density is:

w = we +wm = 2we = 1

2
ǫ|E0±|2 (2.3.1)

For the time-averaged Poynting vector, we have similarly:

PPP = 1

2
Re
[

E±(z)×H∗
± (z)

] = 1

2η
Re
[

E0± × (±ẑ× E∗0±)
]

Using the BAC-CAB rule and the orthogonality property ẑ · E0± = 0, we find:

PPP = ±ẑ
1

2η
|E0±|2 = ±c ẑ

1

2
ǫ|E0±|2 (2.3.2)

Thus, the energy flux is in the direction of propagation, that is, ±ẑ. The correspond-

ing energy velocity is, as in the previous section:

v = PPP
w
= ±c ẑ (2.3.3)

In the more general case of forward and backward waves, we find:

w = 1

4
Re
[

ǫE(z)·E∗(z)+μH(z)·H∗(z)
] = 1

2
ǫ|E0+|2 + 1

2
ǫ|E0−|2

PPP = 1

2
Re
[

E(z)×H∗(z)
] = ẑ

(

1

2η
|E0+|2 − 1

2η
|E0−|2

) (2.3.4)
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Thus, the total energy is the sum of the energies of the forward and backward com-

ponents, whereas the net energy flux (to the right) is the difference between the forward

and backward fluxes.

2.4 Wave Impedance

For forward or backward fields, the ratio of E(z) to H(z)×ẑ is constant and equal to

the characteristic impedance of the medium. Indeed, it follows from Eq. (2.2.4) that

E±(z)= ±ηH±(z)×ẑ

However, this property is not true for the more general solution given by Eqs. (2.2.6).

In general, the ratio of E(z) to H(z)×ẑ is called the wave impedance. Because of the

vectorial character of the fields, we must define the ratio in terms of the corresponding

x- and y-components:

Zx(z) =
[

E(z)
]

x
[

H(z)×ẑ
]

x

= Ex(z)

Hy(z)

Zy(z) =
[

E(z)
]

y
[

H(z)×ẑ
]

y

= − Ey(z)
Hx(z)

(wave impedances) (2.4.1)

Using the cartesian expressions of Eq. (2.2.7), we find:

Zx(z) = Ex(z)

Hy(z)
= η A+e

−jkz +A−ejkz
A+e−jkz −A−ejkz

Zy(z) = −
Ey(z)

Hx(z)
= η B+e

−jkz + B−ejkz
B+e−jkz − B−ejkz

(wave impedances) (2.4.2)

Thus, the wave impedances are nontrivial functions of z. For forward waves (that is,

with A− = B− = 0), we have Zx(z)= Zy(z)= η. For backward waves (A+ = B+ = 0), we

have Zx(z)= Zy(z)= −η.

The wave impedance is a very useful concept in the subject of multiple dielectric

interfaces and the matching of transmission lines. We will explore its use later on.

2.5 Polarization

Consider a forward-moving wave and let E0 = x̂A+ + ŷB+ be its complex-valued pha-

sor amplitude, so that E(z)= E0e
−jkz = (x̂A+ + ŷB+)e−jkz. The time-varying field is

obtained by restoring the factor ejωt:

E(z, t)= (x̂A+ + ŷB+)ejωt−jkz

The polarization of a plane wave is defined to be the direction of the electric field.

For example, if B+ = 0, the E-field is along the x-direction and the wave will be linearly

polarized.
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More precisely, polarization is the direction of the time-varying real-valued field

EEE(z, t)= Re
[

E(z, t)]. At any fixed point z, the vector EEE(z, t) may be along a fixed

linear direction or it may be rotating as a function of t, tracing a circle or an ellipse.

The polarization properties of the plane wave are determined by the relative magni-

tudes and phases of the complex-valued constants A+, B+. Writing them in their polar

forms A+ = Aejφa and B+ = Bejφb , where A,B are positive magnitudes, we obtain:

E(z, t)= (

x̂Aejφa + ŷBejφb
)

ejωt−jkz = x̂Aej(ωt−kz+φa) + ŷBej(ωt−kz+φb) (2.5.1)

Extracting real parts and setting EEE(z, t)= Re
[

E(z, t)
] = x̂Ex(z, t)+ŷEy(z, t), we

find the corresponding real-valued x, y components:

Ex(z, t) = A cos(ωt − kz+φa)
Ey(z, t) = B cos(ωt − kz+φb)

(2.5.2)

For a backward moving field, we replace k by −k in the same expression. To deter-

mine the polarization of the wave, we consider the time-dependence of these fields at

some fixed point along the z-axis, say at z = 0:

Ex(t) = A cos(ωt +φa)
Ey(t) = B cos(ωt +φb)

(2.5.3)

The electric field vector EEE(t)= x̂Ex(t)+ŷEy(t) will be rotating on the xy-plane

with angular frequency ω, with its tip tracing, in general, an ellipse. To see this, we

expand Eq. (2.5.3) using a trigonometric identity:

Ex(t) = A
[

cosωt cosφa − sinωt sinφa
]

Ey(t) = B
[

cosωt cosφb − sinωt sinφb
]

Solving for cosωt and sinωt in terms of Ex(t),Ey(t), we find:

cosωt sinφ = Ey(t)
B

sinφa − Ex(t)
A

sinφb

sinωt sinφ = Ey(t)
B

cosφa − Ex(t)
A

cosφb

where we defined the relative phase angle φ = φa −φb.

Forming the sum of the squares of the two equations and using the trigonometric

identity sin2ωt + cos2ωt = 1, we obtain a quadratic equation for the components Ex
and Ey, which describes an ellipse on the Ex,Ey plane:

(Ey(t)
B

sinφa − Ex(t)
A

sinφb

)2

+
(Ey(t)

B
cosφa − Ex(t)

A
cosφb

)2

= sin2φ

This simplifies into:

E2
x

A2
+ E

2
y

B2
− 2 cosφ

ExEy
AB

= sin2φ (polarization ellipse) (2.5.4)
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Depending on the values of the three quantities {A,B,φ} this polarization ellipse

may be an ellipse, a circle, or a straight line. The electric field is accordingly called

elliptically, circularly, or linearly polarized.

To get linear polarization, we set φ = 0 or φ = π, corresponding to φa = φb = 0,

orφa = 0,φb = −π, so that the phasor amplitudes are E0 = x̂A± ŷB. Then, Eq. (2.5.4)

degenerates into:

E2
x

A2
+ E

2
y

B2
∓ 2

ExEy
AB

= 0 ⇒
(Ex
A

∓ Ey
B

)2

= 0

representing the straight lines:

Ey = ±B
A
Ex

The fields (2.5.2) take the forms, in the two cases φ = 0 and φ = π:

Ex(t)= A cosωt

Ey(t)= B cosωt
and

Ex(t)= A cosωt

Ey(t)= B cos(ωt −π)= −B cosωt

To get circular polarization, we set A = B and φ = ±π/2. In this case, the polariza-

tion ellipse becomes the equation of a circle:

E2
x

A2
+ E

2
y

A2
= 1

The sense of rotation, in conjunction with the direction of propagation, defines left-

circular versus right-circular polarization. For the case, φa = 0 and φb = −π/2, we

have φ = φa −φb = π/2 and complex amplitude E0 = A(x̂− jŷ). Then,

Ex(t) = A cosωt

Ey(t) = A cos(ωt −π/2)= A sinωt

Thus, the tip of the electric field vector rotates counterclockwise on the xy-plane.

To decide whether this represents right or left circular polarization, we use the IEEE

convention [115], which is as follows.

Curl the fingers of your left and right hands into a fist and point both thumbs towards

the direction of propagation. If the fingers of your right (left) hand are curling in the

direction of rotation of the electric field, then the polarization is right (left) polarized.†

Thus, in the present example, because we had a forward-moving field and the field is

turning counterclockwise, the polarization will be right-circular. If the field were moving

†Most engineering texts use the IEEE convention and most physics texts, the opposite convention.
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backwards, then it would be left-circular. For the case, φ = −π/2, arising from φa = 0

andφb = π/2, we have complex amplitude E0 = A(x̂+ jŷ). Then, Eq. (2.5.3) becomes:

Ex(t) = A cosωt

Ey(t) = A cos(ωt +π/2)= −A sinωt

The tip of the electric field vector rotates clockwise on the xy-plane. Since the wave

is moving forward, this will represent left-circular polarization. Fig. 2.5.1 depicts the

four cases of left/right polarization with forward/backward waves.

Fig. 2.5.1 Left and right circular polarizations.

To summarize, the electric field of a circularly polarized uniform plane wave will be,

in its phasor form:

E(z)= A(x̂− jŷ)e−jkz (right-polarized, forward-moving)

E(z)= A(x̂+ jŷ)e−jkz (left-polarized, forward-moving)

E(z)= A(x̂− jŷ)ejkz (left-polarized, backward-moving)

E(z)= A(x̂+ jŷ)ejkz (right-polarized, backward-moving)

If A �= B, but the phase difference is still φ = ±π/2, we get an ellipse with major

and minor axes oriented along the x, y directions. Eq. (2.5.4) will be now:

E2
x

A2
+ E

2
y

B2
= 1



2.5. Polarization 51

Finally, if A �= B and φ is arbitrary, then the major/minor axes of the ellipse (2.5.4)

will be rotated relative to the x, y directions. Fig. 2.5.2 illustrates the general case.

Fig. 2.5.2 General polarization ellipse.

It can be shown (see Problem 2.15) that the tilt angle θ is given by:

tan 2θ = 2AB

A2 − B2
cosφ (2.5.5)

The ellipse semi-axes A′, B′, that is, the lengths OC and OD, are given by:

A′ =
√

1

2
(A2 + B2)+ s

2

√

(A2 − B2)2+4A2B2 cos2φ

B′ =
√

1

2
(A2 + B2)− s

2

√

(A2 − B2)2+4A2B2 cos2φ

(2.5.6)

where s = sign(A − B). These results are obtained by defining the rotated coordinate

system of the ellipse axes:

E′x = Ex cosθ+Ey sinθ

E′y = Ey cosθ−Ex sinθ
(2.5.7)

and showing that Eq. (2.5.4) transforms into the standardized form:

E′2x
A′2

+ E
′2
y

B′2
= 1 (2.5.8)

The polarization ellipse is bounded by the rectangle with sides at the end-points

±A,±B, as shown in the figure. To decide whether the elliptic polarization is left- or

right-handed, we may use the same rules depicted in Fig. 2.5.1.

The angle χ subtended by the major to minor ellipse axes shown in Fig. 2.5.2 is given

as follows and is discussed further in Problem 2.15:

sin 2χ = 2AB

A2 + B2
| sinφ| , −π

4
≤ χ ≤ π

4
(2.5.9)

that is, it can be shown that tanχ = B′/A′ or A′/B′, whichever is less than one.

52 2. Uniform Plane Waves

Example 2.5.1: Determine the real-valued electric and magnetic field components and the po-

larization of the following fields specified in their phasor form (given in units of V/m):

a. E(z)= −3j x̂e−jkz

b. E(z)= (

3 x̂+ 4 ŷ
)

e+jkz

c. E(z)= (−4 x̂+ 3 ŷ
)

e−jkz

d. E(z)= (

3ejπ/3 x̂+ 3 ŷ
)

e+jkz

e. E(z)= (

4 x̂+ 3e−jπ/4 ŷ
)

e−jkz

f. E(z)= (

3e−jπ/8 x̂+ 4ejπ/8 ŷ
)

e+jkz

g. E(z)= (

4ejπ/4 x̂+ 3e−jπ/2 ŷ
)

e−jkz

h. E(z)= (

3e−jπ/2 x̂+ 4ejπ/4 ŷ
)

e+jkz

Solution: Restoring the ejωt factor and taking real-parts, we find the x, y electric field compo-

nents, according to Eq. (2.5.2):

a. Ex(z, t)= 3 cos(ωt − kz−π/2), Ey(z, t)= 0

b. Ex(z, t)= 3 cos(ωt + kz), Ey(z, t)= 4 cos(ωt + kz)
c. Ex(z, t)= 4 cos(ωt − kz+π), Ey(z, t)= 3 cos(ωt − kz)
d. Ex(z, t)= 3 cos(ωt + kz+π/3), Ey(z, t)= 3 cos(ωt + kz)
e. Ex(z, t)= 4 cos(ωt − kz), Ey(z, t)= 3 cos(ωt − kz−π/4)
f. Ex(z, t)= 3 cos(ωt + kz−π/8), Ey(z, t)= 4 cos(ωt + kz+π/8)
g. Ex(z, t)= 4 cos(ωt − kz+π/4), Ey(z, t)= 3 cos(ωt − kz−π/2)
h. Ex(z, t)= 3 cos(ωt + kz−π/2), Ey(z, t)= 4 cos(ωt + kz+π/4)

Since these are either forward or backward waves, the corresponding magnetic fields are

obtained by using the formulaHHH(z, t)= ± ẑ×EEE(z, t)/η. This gives the x, y components:

(cases a, c, e, g): Hx(z, t)= − 1

η
Ey(z, t), Hy(z, t)= 1

η
Ex(z, t)

(cases b, d, f, h): Hx(z, t)= 1

η
Ey(z, t), Hy(z, t)= − 1

η
Ex(z, t)

To determine the polarization vectors, we evaluate the electric fields at z = 0:

a. Ex(t)= 3 cos(ωt −π/2), Ey(t)= 0

b. Ex(t)= 3 cos(ωt), Ey(t)= 4 cos(ωt)

c. Ex(t)= 4 cos(ωt +π), Ey(t)= 3 cos(ωt)

d. Ex(t)= 3 cos(ωt +π/3), Ey(t)= 3 cos(ωt)

e. Ex(t)= 4 cos(ωt), Ey(t)= 3 cos(ωt −π/4)
f. Ex(t)= 3 cos(ωt −π/8), Ey(t)= 4 cos(ωt +π/8)
g. Ex(t)= 4 cos(ωt +π/4), Ey(t)= 3 cos(ωt −π/2)
h. Ex(t)= 3 cos(ωt −π/2), Ey(t)= 4 cos(ωt +π/4)

The polarization ellipse parameters A, B, and φ = φa − φb, as well as the computed

semi-major axes A′, B′, tilt angle θ, sense of rotation of the electric field, and polarization
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type are given below:

case A B φ A′ B′ θ rotation polarization

a. 3 0 −90o 3 0 0o → linear/forward

b. 3 4 0o 0 5 −36.87o ր linear/backward

c. 4 3 180o 5 0 −36.87o տ linear/forward

d. 3 3 60o 3.674 2.121 45o ↺ left/backward

e. 4 3 45o 4.656 1.822 33.79o ↺ right/forward

f. 3 4 −45o 1.822 4.656 −33.79o � right/backward

g. 4 3 135o 4.656 1.822 −33.79o ↺ right/forward

h. 3 4 −135o 1.822 4.656 33.79o � right/backward

In the linear case (b), the polarization ellipse collapses along its A′-axis (A′ = 0) and

becomes a straight line along its B′-axis. The tilt angle θ still measures the angle of theA′-
axis from the x-axis. The actual direction of the electric field will be 90o−36.87o = 53.13o,

which is equal to the slope angle, atan(B/A)= atan(4/3)= 53.13o.

In case (c), the ellipse collapses along its B′-axis. Therefore, θ coincides with the angle of

the slope of the electric field vector, that is, atan(−B/A)= atan(−3/4)= −36.87o. ⊓⊔

With the understanding that θ always represents the slope of the A′-axis (whether

collapsed or not, major or minor), Eqs. (2.5.5) and (2.5.6) correctly calculate all the special

cases, except when A = B, which has tilt angle and semi-axes:

θ = 45o , A′ = A
√

1+ cosφ, B′ = A
√

1− cosφ (2.5.10)

The MATLAB function ellipse.m calculates the ellipse semi-axes and tilt angle, A′,
B′, θ, given the parameters A, B, φ. It has usage:

[a,b,th] = ellipse(A,B,phi) % polarization ellipse parameters

For example, the function will return the values of the A′, B′, θ columns of the pre-

vious example, if it is called with the inputs:

A = [3, 3, 4, 3, 4, 3, 4, 3]’;

B = [0, 4, 3, 3, 3, 4, 3, 4]’;

phi = [-90, 0, 180, 60, 45, -45, 135, -135]’;

To determine quickly the sense of rotation around the polarization ellipse, we use

the rule that the rotation will be counterclockwise if the phase difference φ = φa −φb
is such that sinφ > 0, and clockwise, if sinφ < 0. This can be seen by considering the

electric field at time t = 0 and at a neighboring time t. Using Eq. (2.5.3), we have:

EEE(0) = x̂A cosφa + ŷB cosφb

EEE(t) = x̂A cos(ωt +φa)+ŷB cos(ωt +φb)

The sense of rotation may be determined from the cross-product EEE(0)×EEE(t). If

the rotation is counterclockwise, this vector will point towards the positive z-direction,

and otherwise, it will point towards the negative z-direction. It follows easily that:

EEE(0)×EEE(t)= ẑAB sinφ sinωt (2.5.11)
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Thus, for t small and positive (such that sinωt > 0), the direction of the vector

EEE(0)×EEE(t) is determined by the sign of sinφ.

2.6 Uniform Plane Waves in Lossy Media

We saw in Sec. 1.14 that power losses may arise because of conduction and/or material

polarization. A wave propagating in a lossy medium will set up a conduction current

Jcond = σE and a displacement (polarization) current Jdisp = jωD = jωǫdE . Both

currents will cause ohmic losses. The total current is the sum:

Jtot = Jcond + Jdisp = (σ + jωǫd)E = jωǫcE

where ǫc is the effective complex dielectric constant introduced in Eq. (1.14.2):

jωǫc = σ + jωǫd ⇒ ǫc = ǫd − j σ
ω

(2.6.1)

The quantitiesσ, ǫd may be complex-valued and frequency-dependent. However, we

will assume that over the desired frequency band of interest, the conductivity σ is real-

valued; the permittivity of the dielectric may be assumed to be complex, ǫd = ǫ′d − jǫ′′d .

Thus, the effective ǫc has real and imaginary parts:

ǫc = ǫ′ − jǫ′′ = ǫ′d − j
(

ǫ′′d +
σ

ω

)

(2.6.2)

Power losses arise from the non-zero imaginary part ǫ′′. We recall from Eq. (1.14.5)

that the time-averaged ohmic power losses per unit volume are given by:

dPloss

dV
= 1

2
Re
[

Jtot · E∗
] = 1

2
ωǫ′′

∣
∣E

∣
∣2 = 1

2
(σ +ωǫ′′d )

∣
∣E

∣
∣2

(2.6.3)

Uniform plane waves propagating in such lossy medium will satisfy Maxwell’s equa-

tions (1.9.2), with the right-hand side of Ampère’s law given by Jtot = J+ jωD = jωǫcE .

The assumption of uniformity (∂x = ∂y = 0), will imply again that the fields E,H are

transverse to the direction ẑ. Then, Faraday’s and Ampère’s equations become:

∇∇∇× E = −jωμH

∇∇∇×H = jωǫcE
⇒

ẑ× ∂zE = −jωμH

ẑ× ∂zH = jωǫcE
(2.6.4)

These may be written in a more convenient form by introducing the complex wave-

number kc and complex characteristic impedance ηc defined by:

kc =ω
√

μǫc , ηc =
√

μ

ǫc
(2.6.5)

They correspond to the usual definitions k = ω/c = ω
√

μǫ and η = √

μ/ǫ with

the replacement ǫ → ǫc. Noting that ωμ = kcηc and ωǫc = kc/ηc, Eqs. (2.6.4) may
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be written in the following form (using the orthogonality property ẑ · E = 0 and the

BAC-CAB rule on the first equation):

∂

∂z

[

E

ηcH× ẑ

]

=
[

0 −jkc
−jkc 0

][

E

ηcH× ẑ

]

(2.6.6)

To decouple them, we introduce the forward and backward electric fields:

E+ = 1

2

(

E+ ηcH× ẑ)
⇔

E = E+ + E−

E− = 1

2

(

E− ηcH× ẑ) H = 1

ηc
ẑ× [

E+ − E−
]

(2.6.7)

Then, Eqs. (2.6.6) may be replaced by the equivalent system:

∂

∂z

[

E+
E−

]

=
[

−jkc 0

0 jkc

][

E+
E−

]

(2.6.8)

with solutions:

E±(z)= E0±e∓jkcz , where ẑ · E0± = 0 (2.6.9)

Thus, the propagating electric and magnetic fields are linear combinations of forward

and backward components:

E(z) = E0+e−jkcz + E0−ejkcz

H(z) = 1

ηc
ẑ× [

E0+e−jkcz − E0−ejkcz
] (2.6.10)

In particular, for a forward-moving wave we have:

E(z)= E0e
−jkcz , H(z)= H0e

−jkcz , with ẑ · E0 = 0 , H0 = 1

ηc
ẑ× E0 (2.6.11)

Eqs. (2.6.10) are the same as in the lossless case but with the replacements k → kc
and η→ ηc. The lossless case is obtained in the limit of a purely real-valued ǫc.

Because kc is complex-valued, we define the phase and attenuation constants β and

α as the real and imaginary parts of kc, that is,

kc = β− jα =ω
√

μ(ǫ′ − jǫ′′) (2.6.12)

We may also define a complex refractive index nc = kc/k0 that measures kc relative

to its free-space value k0 =ω/c0 =ω√μ0ǫ0. For a non-magnetic medium, we have:

nc = kc
k0

=
√

ǫc
ǫ0

=
√

ǫ′ − jǫ′′
ǫ0

≡ nr − jni (2.6.13)

where nr, ni are the real and imaginary parts of nc. The quantity ni is called the ex-

tinction coefficient and nr , the refractive index. Another commonly used notation is the

propagation constant γ defined by:

γ = jkc = α+ jβ (2.6.14)
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It follows from γ = α + jβ = jkc = jk0nc = jk0(nr − jni) that β = k0nr and

α = k0ni. The nomenclature about phase and attenuation constants has its origins in

the propagation factor e−jkcz. We can write it in the alternative forms:

e−jkcz = e−γz = e−αze−jβz = e−k0nize−jk0nrz (2.6.15)

Thus, the wave amplitudes attenuate exponentially with the factor e−αz, and oscillate

with the phase factor e−jβz. The energy of the wave attenuates by the factor e−2αz, as

can be seen by computing the Poynting vector. Because e−jkcz is no longer a pure phase

factor and ηc is not real, we have for the forward-moving wave of Eq. (2.6.11):

PPP(z) = 1

2
Re
[

E(z)×H∗(z)
] = 1

2
Re

[

1

η∗c
E0 × (ẑ× E∗0 )e

−(α+jβ)ze−(α−jβ)z
]

= ẑ
1

2
Re
(

η−1
c

) |E0|2e−2αz = ẑP(0)e−2αz = ẑP(z)

Thus, the power per unit area flowing past the point z in the forward z-direction will be:

P(z)= P(0)e−2αz (2.6.16)

The quantityP(0) is the power per unit area flowing past the point z = 0. Denoting

the real and imaginary parts of ηc by η′, η′′, so that, ηc = η′ + jη′′, and noting that

|E0| = |ηcH0 × ẑ| = |ηc||H0|, we may express P(0) in the equivalent forms:

P(0)= 1

2
Re
(

η−1
c

) |E0|2 = 1

2
η′ |H0|2 (2.6.17)

The attenuation coefficient α is measured in nepers per meter. However, a more

practical way of expressing the power attenuation is in dB per meter. Taking logs of

Eq. (2.6.16), we have for the dB attenuation at z, relative to z = 0:

AdB(z)= −10 log10

[P(z)
P(0)

]

= 20 log10(e)αz = 8.686αz (2.6.18)

where we used the numerical value 20 log10 e = 8.686. Thus, the quantityαdB = 8.686α

is the attenuation in dB per meter :

αdB = 8.686α (dB/m) (2.6.19)

Another way of expressing the power attenuation is by means of the so-called pen-

etration or skin depth defined as the inverse of α:

δ = 1

α
(skin depth) (2.6.20)

Then, Eq. (2.6.18) can be rewritten in the form:

AdB(z)= 8.686
z

δ
(attenuation in dB) (2.6.21)



2.6. Uniform Plane Waves in Lossy Media 57

This gives rise to the so-called “9-dB per delta” rule, that is, every time z is increased

by a distance δ, the attenuation increases by 8.686 ≃ 9 dB.

A useful way to represent Eq. (2.6.16) in practice is to consider its infinitesimal ver-

sion obtained by differentiating it with respect to z and solving for α :

P ′(z)= −2αP(0)e−2αz = −2αP(z) ⇒ α = −P
′(z)

2P(z)

The quantity P ′
loss = −P ′ represents the power lost from the wave per unit length

(in the propagation direction.) Thus, the attenuation coefficient is the ratio of the power

loss per unit length to twice the power transmitted:

α = P′loss

2Ptransm

(attenuation coefficient) (2.6.22)

If there are several physical mechanisms for the power loss, then α becomes the

sum over all possible cases. For example, in a waveguide or a coaxial cable filled with a

slightly lossy dielectric, power will be lost because of the small conduction/polarization

currents set up within the dielectric and also because of the ohmic losses in the walls

of the guiding conductors, so that the total α will be α = αdiel +αwalls.

Next, we verify that the exponential loss of power from the propagating wave is due

to ohmic heat losses. In Fig. 2.6.1, we consider a volume dV = l dA of area dA and

length l along the z-direction.

Fig. 2.6.1 Power flow in lossy dielectric.

From the definition of P(z) as power flow per unit area, it follows that the power

entering the area dA at z = 0 will be dPin = P(0)dA, and the power leaving that area

at z = l, dPout = P(l)dA. The difference dPloss = dPin−dPout =
[P(0)−P(l)]dA will

be the power lost from the wave within the volume l dA. Because P(l)= P(0)e−2αl, we

have for the power loss per unit area:

dPloss

dA
= P(0)−P(l)= P(0)(1− e−2αl

) = 1

2
Re
(

η−1
c

) |E0|2
(

1− e−2αl
)

(2.6.23)
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On the other hand, according to Eq. (2.6.3), the ohmic power loss per unit volume

will be ωǫ′′|E(z)|2/2. Integrating this quantity from z = 0 to z = l will give the total

ohmic losses within the volume l dA of Fig. 2.6.1. Thus, we have:

dPohmic = 1

2
ωǫ′′

∫ l

0
|E(z)|2 dzdA = 1

2
ωǫ′′

[∫ l

0
|E0|2e−2αz dz

]

dA , or,

dPohmic

dA
= ωǫ′′

4α
|E0|2

(

1− e−2αl
)

(2.6.24)

Are the two expressions in Eqs. (2.6.23) and (2.6.24) equal? The answer is yes, as

follows from the following relationship among the quantities ηc, ǫ
′′,α (see Problem

2.17):

Re
(

η−1
c

) = ωǫ′′

2α
(2.6.25)

Thus, the power lost from the wave is entirely accounted for by the ohmic losses

within the propagation medium. The equality of (2.6.23) and (2.6.24) is an example of

the more general relationship proved in Problem 1.5.

In the limit l→∞, we have P(l)→ 0, so that dPohmic/dA = P(0), which states that

all the power that enters at z = 0 will be dissipated into heat inside the semi-infinite

medium. Using Eq. (2.6.17), we summarize this case:

dPohmic

dA
= 1

2
Re
(

η−1
c

) |E0|2 = 1

2
η′ |H0|2 (ohmic losses) (2.6.26)

This result will be used later on to calculate ohmic losses of waves incident on lossy

dielectric or conductor surfaces, as well as conductor losses in waveguide and transmis-

sion line problems.

Example 2.6.1: The absorption coefficient α of water reaches a minimum over the visible

spectrum—a fact undoubtedly responsible for why the visible spectrum is visible.

Recent measurements [145] of the absorption coefficient show that it starts at about 0.01

nepers/m at 380 nm (violet), decreases to a minimum value of 0.0044 nepers/m at 418

nm (blue), and then increases steadily reaching the value of 0.5 nepers/m at 600 nm (red).

Determine the penetration depth δ in meters, for each of the three wavelengths.

Determine the depth in meters at which the light intensity has decreased to 1/10th its

value at the surface of the water. Repeat, if the intensity is decreased to 1/100th its value.

Solution: The penetration depths δ = 1/α are:

δ = 100, 227.3, 2 m for α = 0.01, 0.0044, 0.5 nepers/m

Using Eq. (2.6.21), we may solve for the depth z = (A/8.686)δ. Since a decrease of the light

intensity (power) by a factor of 10 is equivalent to A = 10 dB, we find z = (10/8.686)δ =
1.128δ, which gives: z = 112.8, 256.3, 2.3 m. A decrease by a factor of 100 = 1020/10

corresponds to A = 20 dB, effectively doubling the above depths. ⊓⊔
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Example 2.6.2: A microwave oven operating at 2.45 GHz is used to defrost a frozen food having

complex permittivity ǫc = (4− j)ǫ0 farad/m. Determine the strength of the electric field

at a depth of 1 cm and express it in dB and as a percentage of its value at the surface.

Repeat if ǫc = (45− 15j)ǫ0 farad/m.

Solution: The free-space wavenumber is k0 =ω√μ0ǫ0 = 2πf/c0 = 2π(2.45×109)/(3×108)=
51.31 rad/m. Using kc =ω√μ0ǫc = k0

√

ǫc/ǫ0, we calculate the wavenumbers:

kc = β− jα = 51.31
√

4− j = 51.31(2.02− 0.25j)= 103.41− 12.73j m−1

kc = β− jα = 51.31
√

45− 15j = 51.31(6.80− 1.10j)= 348.84− 56.61j m−1

The corresponding attenuation constants and penetration depths are:

α = 12.73 nepers/m, δ = 7.86 cm

α = 56.61 nepers/m, δ = 1.77 cm

It follows that the attenuations at 1 cm will be in dB and in absolute units:

A = 8.686z/δ = 1.1 dB, 10−A/20 = 0.88

A = 8.686z/δ = 4.9 dB, 10−A/20 = 0.57

Thus, the fields at a depth of 1 cm are 88% and 57% of their values at the surface. The

complex permittivities of some foods may be found in [146]. ⊓⊔

A convenient way to characterize the degree of ohmic losses is by means of the loss

tangent, originally defined in Eq. (1.14.8). Here, we set:

τ = tanθ = ǫ′′

ǫ′
= σ +ωǫ′′d

ωǫ′d
(2.6.27)

Then, ǫc = ǫ′ − jǫ′′ = ǫ′(1− jτ)= ǫ′d(1− jτ). Therefore, kc, ηc may be written as:

kc =ω
√

μǫ′d (1− jτ)1/2 , ηc =
√

μ

ǫ′d
(1− jτ)−1/2 (2.6.28)

The quantities cd = 1/
√

μǫ′d and ηd =
√

μ/ǫ′d would be the speed of light and

characteristic impedance of an equivalent lossless dielectric with permittivity ǫ′d.

In terms of the loss tangent, we may characterize weakly lossy media versus strongly

lossy ones by the conditionsτ≪ 1 versusτ≫ 1, respectively. These conditions depend

on the operating frequency ω :

σ +ωǫ′′d
ωǫ′d

≪ 1 versus
σ +ωǫ′′d
ωǫ′d

≫ 1

The expressions (2.6.28) may be simplified considerably in these two limits. Using

the small-x Taylor series expansion (1+x)1/2≃ 1+x/2, we find in the weakly lossy case

(1− jτ)1/2≃ 1− jτ/2, and similarly, (1− jτ)−1/2≃ 1+ jτ/2.

On the other hand, ifτ≫ 1, we may approximate (1−jτ)1/2≃ (−jτ)1/2= e−jπ/4τ1/2,

where we wrote (−j)1/2= (e−jπ/2)1/2= e−jπ/4. Similarly, (1 − jτ)−1/2≃ ejπ/4τ−1/2.

Thus, we summarize the two limits:

60 2. Uniform Plane Waves

(1− jτ)1/2 =

⎧

⎪⎨

⎪⎩

1− jτ
2
, if τ≪ 1

e−jπ/4 τ1/2 = (1− j)
√
τ

2
, if τ≫ 1

(2.6.29)

(1− jτ)−1/2=

⎧

⎪⎪⎨

⎪⎪⎩

1+ jτ
2
, if τ≪ 1

ejπ/4 τ−1/2 = (1+ j)
√

1

2τ
, if τ≫ 1

(2.6.30)

2.7 Propagation in Weakly Lossy Dielectrics

In the weakly lossy case, the propagation parameters kc, ηc become:

kc = β− jα =ω
√

μǫ′d

(

1− jτ
2

)

=ω
√

μǫ′d

(

1− jσ +ωǫ
′′
d

2ωǫ′d

)

ηc = η′ + jη′′ =
√

μ

ǫ′d

(

1+ jτ
2

)

=
√

μ

ǫ′d

(

1+ jσ +ωǫ
′′
d

2ωǫ′d

) (2.7.1)

Thus, the phase and attenuation constants are:

β =ω
√

μǫ′d =
ω

cd
, α = 1

2

√

μ

ǫ′d
(σ +ωǫ′′d )=

1

2
ηd(σ +ωǫ′′d ) (2.7.2)

For a slightly conducting dielectric with ǫ′′d = 0 and a small conductivityσ , Eq. (2.7.2)

implies that the attenuation coefficient α is frequency-independent in this limit.

Example 2.7.1: Seawater has σ = 4 Siemens/m and ǫd = 81ǫ0 (so that ǫ′d = 81ǫ0, ǫ′′d = 0.)

Then, nd =
√

ǫd/ǫ0 = 9, and cd = c0/nd = 0.33× 108 m/sec and ηd = η0/nd = 377/9 =
41.89 Ω. The attenuation coefficient (2.7.2) will be:

α = 1

2
ηdσ = 1

2
41.89× 4 = 83.78 nepers/m ⇒ αdB = 8.686α = 728 dB/m

The corresponding skin depth is δ = 1/α = 1.19 cm. This result assumes that σ≪ωǫd,

which can be written in the form ω≫ σ/ǫd, or f ≫ f0, where f0 = σ/(2πǫd). Here, we

have f0 = 888 MHz. For frequencies f ≲ f0, we must use the exact equations (2.6.28). For

example, we find:

f = 1 kHz, αdB = 1.09 dB/m, δ = 7.96 m

f = 1 MHz, αdB = 34.49 dB/m, δ = 25.18 cm

f = 1 GHz, αdB = 672.69 dB/m, δ = 1.29 cm

Such extremely large attenuations explain why communication with submarines is impos-

sible at high RF frequencies. ⊓⊔
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2.8 Propagation in Good Conductors

A conductor is characterized by a large value of its conductivity σ, while its dielectric

constant may be assumed to be real-valued ǫd = ǫ (typically equal to ǫ0.) Thus, its

complex permittivity and loss tangent will be:

ǫc = ǫ− j σ
ω
= ǫ

(

1− j σ
ωǫ

)

, τ = σ

ωǫ
(2.8.1)

A good conductor corresponds to the limit τ≫ 1, or, σ ≫ωǫ. Using the approxi-

mations of Eqs. (2.6.29) and (2.6.30), we find for the propagation parameters kc, ηc:

kc = β− jα =ω
√
μǫ

√
τ

2
(1− j)=

√
ωμσ

2
(1− j)

ηc = η′ + jη′′ =
√
μ

ǫ

√

1

2τ
(1+ j)=

√
ωμ

2σ
(1+ j)

(2.8.2)

Thus, the parameters β,α,δ are:

β = α =
√
ωμσ

2
=
√

πfμσ , δ = 1

α
=
√

2

ωμσ
= 1
√

πfμσ
(2.8.3)

where we replaced ω = 2πf . The complex characteristic impedance ηc can be written

in the form ηc = Rs(1+ j), where Rs is called the surface resistance and is given by the

equivalent forms (where η = √

μ/ǫ ):

Rs = η
√
ωǫ

2σ
=
√
ωμ

2σ
= α

σ
= 1

σδ
(2.8.4)

Example 2.8.1: For copper we have σ = 5.8 × 107 Siemens/m. The skin depth at frequency f

is:

δ = 1
√

πfμσ
= 1

√

π · 4π · 10−7 · 5.8 · 107
f−1/2 = 0.0661 f−1/2 ( f in Hz)

We find at frequencies of 1 kHz, 1 MHz, and 1 GHz:

f = 1 kHz, δ = 2.09 mm

f = 1 MHz, δ = 0.07 mm

f = 1 GHz, δ = 2.09 μm

Thus, the skin depth is extremely small for good conductors at RF. ⊓⊔

Because δ is so small, the fields will attenuate rapidly within the conductor, de-

pending on distance like e−γz = e−αze−jβz = e−z/δe−jβz. The factor e−z/δ effectively

confines the fields to within a distance δ from the surface of the conductor.

This allows us to define equivalent “surface” quantities, such as surface current and

surface impedance. With reference to Fig. 2.6.1, we define the surface current density by
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integrating the density J(z)= σE(z)= σE0e
−γz over the top-side of the volume l dA ,

and taking the limit l→∞ :

Js =
∫∞

0
J(z)dz =

∫∞

0
σE0e

−γzdz = σ

γ
E0 , or,

Js =
1

Zs
E0 (2.8.5)

where we defined the surface impedance Zs = γ/σ. In the good-conductor limit, Zs is

equal to ηc. Indeed, it follows from Eqs. (2.8.3) and (2.8.4) that:

Zs = γ

σ
= α+ jβ

σ
= α

σ
(1+ j)= Rs(1+ j)= ηc

Because H0 × ẑ = E0/ηc , it follows that the surface current will be related to the

magnetic field intensity at the surface of the conductor by:

Js = H0 × ẑ = n̂×H0 (2.8.6)

where n̂ = −ẑ is the outward normal to the conductor. The meaning of Js is that it

represents the current flowing in the direction of E0 per unit length measured along the

perpendicular direction to E0, that is, the H0-direction. It has units of A/m.

The total amount of ohmic losses per unit surface area of the conductor may be

calculated from Eq. (2.6.26), which reads in this case:

dPohmic

dA
= 1

2
Rs|H0|2 = 1

2
Rs|Js|2 (ohmic loss per unit conductor area) (2.8.7)

2.9 Skin Effect in Cylindrical Wires

Fig. 2.9.1 Current distribution in cylindrical wire.

2.10 Propagation in Oblique Directions

So far we considered waves propagating towards the z-direction. For single-frequency

uniform plane waves propagating in some arbitrary direction in a lossless medium, the

propagation factor is obtained by the substitution:
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e−jkz → e−j k·r

where k = kk̂, with k = ω√μǫ = ω/c and k̂ is a unit vector in the direction of propa-

gation. The fields take the form:

E(r, t)= E0e
jωt−j k·r

H(r, t)= H0e
jωt−j k·r

(2.10.1)

where E0, H0 are constant vectors transverse to k̂, that is, k̂ ·E0 = k̂ ·H0 = 0, such that:

H0 = 1

ωμ
k× E0 = 1

η
k̂× E0 (2.10.2)

where η = √

μ/ǫ. Thus, {E,H, k̂} form a right-handed orthogonal system.

The solutions (2.10.1) can be derived from Maxwell’s equations in a straightforward

fashion. When the gradient operator acts on the above fields, it can be simplified into

∇∇∇ → −jk. This follows from:

∇∇∇(e−j k·r) = −jk (e−j k·r)

After canceling the common factor ejωt−j k·r, Maxwell’s equations (2.1.1) take the form:

−jk× E0 = −jωμH0

−jk×H0 = jωǫE0

k · E0 = 0

k ·H0 = 0

⇒

k× E0 =ωμH0

k×H0 = −ωǫE0

k · E0 = 0

k ·H0 = 0

(2.10.3)

The last two imply that E0,H0 are transverse to k. The other two can be decoupled

by taking the cross product of the first equation with k and using the second equation:

k× (k× E0)=ωμk×H0 = −ω2μǫE0 (2.10.4)

The left-hand side can be simplified using the BAC-CAB rule and k · E0 = 0, that is,

k× (k× E0)= k(k · E0)−E0(k · k)= −(k · k)E0. Thus, Eq. (2.10.4) becomes:

−(k · k)E0 = −ω2μǫE0

Thus, we obtain the consistency condition:

k · k =ω2μǫ (2.10.5)

Defining k =
√

k · k = |k |, we have k =ω√

μǫ. Using the relationshipωμ = kη and

defining the unit vector k̂ = k/|k | = k/k, the magnetic field is obtained from:

H0 = k× E0

ωμ
= k× E0

kη
= 1

η
k̂× E0
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The constant-phase (and constant-amplitude) wavefronts are the planes k · r =
constant, or, k̂ · r = constant. They are the planes perpendicular to the propagation

direction k̂.

As an example, consider a rotated coordinate system {x′, y′, z′} in which the z′x′

axes are rotated by angle θ relative to the original zx axes, as shown in Fig. 2.10.1. Thus,

the new coordinates and corresponding unit vectors will be:

Fig. 2.10.1 TM and TE waves.

z′ = z cosθ+ x sinθ, ẑ′ = ẑ cosθ+ x̂ sinθ

x′ = x cosθ− z sinθ, x̂′ = x̂ cosθ− ẑ sinθ

y′ = y, ŷ′ = ŷ

(2.10.6)

We choose the propagation direction to be the new z-axis, that is, k̂ = ẑ′, so that the

wave vector k = k k̂ = k ẑ′ will have components kz = k cosθ and kx = k sinθ :

k = k k̂ = k(ẑ cosθ+ x̂ sinθ)= ẑkz + x̂kx

The propagation phase factor becomes:

e−j k·r = e−j(kzz+kxx) = e−jk(z cosθ+x sinθ) = e−jkz′

Because {E0,H0,k } form a right-handed vector system, the electric field may have

components along the new transverse (with respect to z′) axes, that is, along x′ and y.

Thus, we may resolve E0 into the orthogonal directions:

E0 = x̂′A+ ŷB = (x̂ cosθ− ẑ sinθ)A+ ŷB (2.10.7)

The corresponding magnetic field will be H0 = k̂×E0/η = ẑ′×(x̂′A+ ŷB)/η. Using

the relationships ẑ′ × x̂′ = ŷ and ẑ′ × ŷ = −x̂′, we find:

H0 = 1

η

[

ŷA− x̂′B
] = 1

η

[

ŷA− (x̂ cosθ− ẑ sinθ)B
]

(2.10.8)

The complete expressions for the fields are then:

E(r, t) = [

(x̂ cosθ− ẑ sinθ)A+ ŷB
]

ejωt−jk(z cosθ+x sinθ)

H(r, t) = 1

η

[

ŷA− (x̂ cosθ− ẑ sinθ)B
]

ejωt−jk(z cosθ+x sinθ)
(2.10.9)
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Written with respect to the rotated coordinate system {x′, y′, z′}, the solutions be-

come identical to those of Sec. 2.2:

E(r, t) = [

x̂′A+ ŷ′B
]

ejωt−jkz
′

H(r, t) = 1

η

[

ŷ′A− x̂′B
]

ejωt−jkz
′ (2.10.10)

They are uniform in the sense that they do not depend on the new transverse coor-

dinates x′, y′. The constant-phase planes are z′ = ẑ′ · r = z cosθ+ x sinθ = const.

The polarization properties of the wave depend on the relative phases and ampli-

tudes of the complex constantsA,B, with the polarization ellipse lying on the x′y′ plane.

The A- and B-components of E0 are referred to as transverse magnetic (TM) and

transverse electric (TE), respectively, where “transverse” is meant here with respect to

the z-axis. The TE case has an electric field transverse to z; the TM case has a magnetic

field transverse to z. Fig. 2.10.1 depicts these two cases separately.

This nomenclature arises in the context of plane waves incident obliquely on inter-

faces, where the xz plane is the plane of incidence and the interface is the xy plane. The

TE and TM cases are also referred to as having “perpendicular” and “parallel” polariza-

tion vectors with respect to the plane of incidence, that is, the E-field is perpendicular

or parallel to the xz plane.

We may define the concept of transverse impedance as the ratio of the transverse

(with respect to z) components of the electric and magnetic fields. In particular, by

analogy with the definitions of Sec. 2.4, we have:

ηTM = Ex
Hy

= A cosθ
1

η
A

= η cosθ

ηTE = −
Ey

Hx
= B

1

η
B cosθ

= η

cosθ

(2.10.11)

Such transverse impedances play an important role in describing the transfer matri-

ces of dielectric slabs at oblique incidence. We discuss them further in Chap. 7.

2.11 Complex or Inhomogeneous Waves

The steps leading to the wave solution (2.10.1) do not preclude a complex-valued wavevec-

tor k. For example, if the medium is lossy, we must replace {η, k} by {ηc, kc}, where

kc = β − jα, resulting from a complex effective permittivity ǫc. If the propagation

direction is defined by the unit vector k̂ , chosen to be a rotated version of ẑ, then the

wavevector will be defined by k = kc k̂ = (β−jα)k̂ . Because kc =ω
√

μǫc and k̂·k̂ = 1,

the vector k satisfies the consistency condition (2.10.5):

k · k = k2
c =ω2μǫc (2.11.1)

The propagation factor will be:

e−j k·r = e−jkc k̂·r = e−(α+jβ) k̂·r = e−α k̂·re−jβ k̂·r
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The wave is still a uniform plane wave in the sense that the constant-amplitude

planes, α k̂ · r = const., and the constant-phase planes, β k̂ · r = const., coincide with

each other—being the planes perpendicular to the propagation direction. For example,

the rotated solution (2.10.10) becomes in the lossy case:

E(r, t) = [

x̂′A+ ŷ′B
]

ejωt−jkcz
′ = [

x̂′A+ ŷ′B
]

ejωt−(α+jβ)z
′

H(r, t) = 1

ηc

[

ŷ′A− x̂′B
]

ejωt−jkcz
′ = 1

ηc

[

ŷ′A− x̂′B
]

ejωt−(α+jβ)z
′ (2.11.2)

In this solution, the real and imaginary parts of the wavevector k = βββ − jααα are

collinear, that is, βββ = β k̂ andααα = α k̂.

More generally, there exist solutions having a complex wavevector k = βββ− jααα such

that βββ,ααα are not collinear. The propagation factor becomes now:

e−j k·r = e−(ααα+jβββ)·r = e−ααα·re−jβββ·r (2.11.3)

If ααα,βββ are not collinear, such a wave will not be a uniform plane wave because the

constant-amplitude planes,ααα · r = const., and the constant-phase planes, βββ · r = const.,

will be different. The consistency condition k · k = k2
c = (β − jα)2 splits into the

following two conditions obtained by equating real and imaginary parts:

(βββ− jααα)·(βββ− jααα)= (β− jα)2
⇔

βββ ·βββ−ααα ·ααα = β2 −α2

βββ ·ααα = αβ (2.11.4)

With E0 chosen to satisfy k·E0 = (βββ− jααα)·E0 = 0, the magnetic field is computed from

Eq. (2.10.2), H0 = k× E0/ωμ = (βββ− jααα)×E0/ωμ.

Let us look at an explicit construction. We choose βββ,ααα to lie on the xz plane of

Fig. 2.10.1, and resolve them as βββ = ẑβz + x̂βx and ααα = ẑαz + x̂αx. Thus,

k = βββ− jααα = ẑ (βz − jαz)+ x̂ (βx − jαx)= ẑkz + x̂kx

Then, the propagation factor (2.11.3) and conditions (2.11.4) read explicitly:

e−j k·r = e−(αzz+αxx)e−j(βzz+βxx)
β2
z + β2

x −α2
z −α2

x = β2 −α2

βzαz + βxαx = βα
(2.11.5)

Because k is orthogonal to both ŷ and ŷ× k, we construct the electric field E0 as the

following linear combination of TM and TE terms:

E0 = (ŷ× k̂)A+ ŷB , where k̂ = k

kc
= βββ− jααα
β− jα (2.11.6)

This satisfies k · E0 = 0. Then, the magnetic field becomes:

H0 = k× E0

ωμ
= 1

ηc

[

ŷA− (ŷ× k̂)B
]

(2.11.7)
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The vector k̂ is complex-valued and satisfies k̂ · k̂ = 1. These expressions reduce to

Eq. (2.11.2), if k̂ = ẑ′.
Waves with a complex k are known as complex waves, or inhomogeneous waves. In

applications, they always appear in connection with some interface between two media.

The interface serves either as a reflecting/transmitting surface, or as a guiding surface.

For example, when plane waves are incident obliquely from a lossless dielectric onto

a planar interface with a lossy medium, the waves transmitted into the lossy medium

are of such complex type. Taking the interface to be the xy-plane and the lossy medium

to be the region z ≥ 0, it turns out that the transmitted waves are characterized by

attenuation only in the z-direction. Therefore, Eqs. (2.11.5) apply with αz > 0 and

αx = 0. The parameter βx is fixed by Snel’s law, so that Eqs. (2.11.5) provide a system

of two equations in the two unknowns βz and αz. We discuss this further in Chap. 7.

Wave solutions with complex k = βββ − jααα are possible even when the propagation

medium is lossless so that ǫc = ǫ is real, and β =ω√μǫ and α = 0. Then, Eqs. (2.11.4)

become βββ ·βββ−ααα ·ααα = β2 and βββ ·ααα = 0. Thus, the constant-amplitude and constant-

phase planes are orthogonal to each other.

Examples of such waves are the evanescent waves in total internal reflection, various

guided-wave problems, such as surface waves, leaky waves, and traveling-wave antennas.

The most famous of these is the Zenneck wave, which is a surface wave propagating

along a lossy ground, decaying exponentially with distance above and along the ground.

Another example of current interest is surface plasmons [589–627], which are sur-

face waves propagating along the interface between a metal, such as silver, and a dielec-

tric, such as air, with the fields decaying exponentially perpendicularly to the interface

both in the air and the metal. We discuss them further in Sections 7.11 and 8.5.

For a classification of various types of complex waves and a review of several ap-

plications, including the Zenneck wave, see Refs. [898–905]. We will encounter some of

these in Section 7.7.

The table below illustrates the vectorial directions and relative signs of some possible

types, assuming thatααα,βββ lie on the xz plane with the yz plane being the interface plane.

ααα βββ αz αx βz βx complex wave type

0 ց 0 0 + − oblique incidence

↑ → 0 + + 0 evanescent surface wave

ր ց + + + − Zenneck surface wave

տ ր − + + + leaky wave

2.12 Doppler Effect

The Doppler effect is the frequency shift perceived by an observer whenever the source

of the waves and the observer are in relative motion.

Besides the familiar Doppler effect for sound waves, such as the increase in pitch

of the sound of an approaching car, ambulance, or train, the Doppler effect has several

other applications, such as Doppler radar for aircraft tracking, weather radar, ground

imaging, and police radar; several medical ultrasound applications, such as monitoring
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blood flow or imaging internal organs and fetuses; and astrophysical applications, such

as measuring the red shift of light emitted by receding galaxies.

In the classical treatment of the Doppler effect, one assumes that the waves prop-

agate in some medium (e.g., sound waves in air). If c is the wave propagation speed in

the medium, the classical expression for the Doppler effect is given by:

fb = fa c− vb
c− va

(2.12.1)

where fa and fb are the frequencies measured in the rest frames of the source Sa and

observer Sb, and va and vb are the velocities of Sa and Sb with respect to the propagation

medium, projected along their line of sight.

The algebraic sign of va is positive if Sa is moving toward Sb from the left, and the

sign of vb is positive if Sb is moving away from Sa. Thus, there is a frequency increase

whenever the source and the observer are approaching each other (va > 0 or vb < 0),

and a frequency decrease if they are receding from each other (va < 0 or vb > 0).

Eq. (2.12.1) can be derived by considering the two cases of a moving source and a sta-

tionary observer, or a stationary source and a moving observer, as shown in Fig. 2.12.1.

Fig. 2.12.1 Classical Doppler effect.

In the first case, the spacing of the successive crests of the wave (the wavelength) is

decreased in front of the source because during the time interval between crests, that

is, during one period Ta = 1/fa, the source has moved by a distance vaTa bringing two

successive crests closer together by that amount. Thus, the wavelength perceived by

the observer will be λb = λa − vaTa = (c− va)/fa, which gives:

fb = c

λb
= fa c

c− va
(moving source) (2.12.2)

In the second case, because the source is stationary, the wavelength λa will not

change, but now the effective speed of the wave in the rest frame of the observer is
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(c− vb). Therefore, the frequency perceived by the observer will be:

fb = c− vb
λa

= fa c− vb
c

(moving observer) (2.12.3)

The combination of these two cases leads to Eq. (2.12.1). We have assumed in

Eqs. (2.12.1)–(2.12.3) that va, vb are less than c so that supersonic effects are not consid-

ered. A counter-intuitive aspect of the classical Doppler formula (2.12.1) is that it does

not depend on the relative velocity (vb − va) of the observer and source. Therefore,

it makes a difference whether the source or the observer is moving. Indeed, when the

observer is moving with vb = v away from a stationary source, or when the source is

moving with va = −v away from a stationary observer, then Eq. (2.12.1) gives:

fb = fa(1− v/c) , fb = fa
1+ v/c (2.12.4)

These two expressions are equivalent to first-order in v/c. This follows from the

Taylor series approximation (1+x)−1≃ 1−x, which is valid for |x| ≪ 1. More generally,

to first order in va/c and vb/c, Eq. (2.12.1) does depend only on the relative velocity. In

this case the Doppler shift Δf = fb − fa is given approximately by:

Δf

fa
= va − vb

c
(2.12.5)

For Doppler radar this doubles to Δf/fa = 2(va − vb)/c because the wave suffers

two Doppler shifts, one for the transmitted and one for the reflected wave. This is

further discussed in Sec. 5.8.

For electromagnetic waves,† the correct Doppler formula depends only on the rela-

tive velocity between observer and source and is given by the relativistic generalization

of Eq. (2.12.1):

fb = fa
√

c− vb
c+ vb

· c+ va
c− va

= fa
√

c− v
c+ v (relativistic Doppler effect) (2.12.6)

where v is the velocity of the observer relative to the source, which according to the

Einstein addition theorem for velocities is given through the equivalent expressions:

v = vb − va
1− vbva/c2

⇔ vb = va + v
1+ vav/c2

⇔
c− v
c+ v =

c− vb
c+ vb

· c+ va
c− va

(2.12.7)

Using the first-order Taylor series expansion (1 + x)±1/2= 1 ± x/2, one can show

that Eq. (2.12.6) can be written approximately as Eq. (2.12.5).

Next, we present a more precise discussion of the Doppler effect based on Lorentz

transformations. Our discussion follows that of Einstein’s 1905 paper on special rela-

tivity [470]. Fig. 2.12.2 shows a uniform plane wave propagating in vacuum as viewed

from the vantage point of two coordinate frames: a fixed frame S and a frame S′ moving

towards the z-direction with velocity v. We assume that the wavevector k in S lies in the

xz-plane and forms an angle θ with the z-axis as shown.

†The question of the existence of a medium (the ether) required for the propagation of electromagnetic

waves precipitated the development of the special relativity theory.
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Fig. 2.12.2 Plane wave viewed from stationary and moving frames.

As discussed in Appendix H, the transformation of the frequency-wavenumber four-

vector (ω/c,k) between the frames S and S′ is given by the Lorentz transformation of

Eq. (H.14). Because ky = 0 and the transverse components of k do not change, we will

have k′y = ky = 0, that is, the wavevector k ′ will still lie in the xz-plane of the S′ frame.

The frequency and the other components of k transform as follows:

ω′ = γ(ω− βckz)
k′z = γ

(

kz − β
c
ω
)

k′x = kx
β = v

c
, γ = 1

√

1− β2
(2.12.8)

Setting kz = k cosθ, kx = k sinθ, with k = ω/c, and similarly in the S′ frame,

k′z = k′ cosθ′, k′x = k′ sinθ′, with k′ =ω′/c, Eqs. (2.12.8) may be rewritten in the form:

ω′ =ωγ(1− β cosθ)

ω′ cosθ′ =ωγ(cosθ− β)
ω′ sinθ′ =ω sinθ

(2.12.9)

The first equation is the relativistic Doppler formula, relating the frequency of the

wave as it is measured by an observer in the moving frame S′ to the frequency of a

source in the fixed frame S:

f ′ = fγ(1− β cosθ)= f 1− β cosθ
√

1− β2
(2.12.10)

The last two equations in (2.12.9) relate the apparent propagation angles θ,θ′ in the

two frames. Eliminating ω,ω′, we obtain the following equivalent expressions:

cosθ′ = cosθ− β
1− β cosθ

⇔ sinθ′ = sinθ

γ(1− β cosθ)
⇔

tan(θ′/2)
tan(θ/2)

=
√

1+ β
1− β (2.12.11)

where to obtain the last one we used the identity tan(φ/2)= sinφ/(1 + cosφ). The

difference in the propagation angles θ,θ′ is referred to as the aberration of light due

to motion. Using Eqs. (2.12.11), the Doppler equation (2.12.10) may be written in the

alternative forms:

f ′ = fγ(1− β cosθ)= f

γ(1+ β cosθ′)
= f

√

1− β cosθ

1+ β cosθ′
(2.12.12)
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If the wave is propagating in the z-direction (θ = 0o), Eq. (2.12.10) gives:

f ′ = f
√

1− β
1+ β (2.12.13)

and, if it is propagating in the x-direction (θ = 90o), we obtain the so-called transverse

Doppler effect: f ′ = fγ. The relativistic Doppler effect, including the transverse one,

has been observed experimentally.

To derive Eq. (2.12.6), we consider two reference frames Sa, Sb moving along the

z-direction with velocities va, vb with respect to our fixed frame S, and we assume that

θ = 0o in the frame S. Let fa, fb be the frequencies of the wave as measured in the

frames Sa, Sb. Then, the separate application of Eq. (2.12.13) to Sa and Sb gives:

fa = f
√

1− βa
1+ βa

, fb = f
√

1− βb
1+ βb

⇒ fb = fa
√

1− βb
1+ βb

· 1+ βa
1− βa

(2.12.14)

where βa = va/c and βb = vb/c. This is equivalent to Eq. (2.12.6). The case when the

wave is propagating in an arbitrary direction θ is given in Problem 2.27.

Next, we consider the transformation of the electromagnetic field components be-

tween the two frames. The electric field has the following form in S and S′:

E = E0e
j(ωt−kxx−kzz) , E ′ = E ′0e

j(ω′t′−k′xx′−k′zz′) (2.12.15)

As we discussed in Appendix H, the propagation phase factors remain invariant in

the two frames, that is, ωt − kxx − kzz = ω′t′ − k′xx′ − k′zz′. Assuming a TE wave

and using Eq. (2.10.9), the electric and magnetic field amplitudes will have the following

form in the two frames:

E0 = E0ŷ , cB0 = η0H0 = k̂× E0 = E0(−x̂ cosθ+ ẑ sinθ)

E ′0 = E′0ŷ , cB ′0 = η0H ′
0 = k̂

′ × E ′0 = E′0(−x̂ cosθ′ + ẑ sinθ′)
(2.12.16)

Applying the Lorentz transformation properties of Eq. (H.31) to the above field com-

ponents, we find:

E′y = γ(Ey + βcBx)
cB′x = γ(cBx + βEy)
cB′z = cBz

⇒
E′0 = E0γ(1− β cosθ)

−E′0 cosθ′ = −E0γ(cosθ− β)
E′0 sinθ′ = E0 sinθ

(2.12.17)

The first equation gives the desired relationship between E0 and E′0. The last two

equations imply the same angle relationships as Eq. (2.12.11). The same relationship

between E0, E
′
0 holds also for a TM wave defined by E0 = E0(x̂ cosθ− ẑ sinθ).

2.13 Propagation in Negative-Index Media

In media with simultaneously negative permittivity and permeability, ǫ < 0 and μ < 0,

the refractive index must be negative [387]. To see this, we consider a uniform plane

wave propagating in a lossless medium:

Ex(z, t)= E0 e
jωt−jkz , Hy(z, t)= H0 e

jωt−jkz
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Then, Maxwell’s equations require the following relationships, which are equivalent

to Faraday’s and Ampère’s laws, respectively:

kE0 =ωμH0 , kH0 =ωǫE0 , or,

η = E0

H0

= ωμ

k
= k

ωǫ
⇒ k2 =ω2ǫμ (2.13.1)

Because the medium is lossless, k and η will be real and the time-averaged Poynting

vector, which points in the z-direction, will be:

Pz = 1

2
Re[E0H

∗
0 ]=

1

2η
|E0|2 = 1

2
η|H0|2 (2.13.2)

If we require that the energy flux be towards the positive z-direction, that is,Pz > 0,

then we must have η > 0. Because μ and ǫ are negative, Eq. (2.13.1) implies that kmust

be negative, k < 0, in order for the ratio η = ωμ/k to be positive. Thus, in solving

k2 =ω2μǫ, we must choose the negative square root:

k = −ω√μǫ (2.13.3)

The refractive index n may be defined through k = k0n, where k0 = ω
√
μ0ǫ0 is

the free-space wavenumber. Thus, we have n = k/k0 = −√μǫ/μ0ǫ0 = −√μrelǫrel,

expressed in terms of the relative permittivity and permeability. Writing ǫ = −|ǫ| and

μ = −|μ|, we have for the medium impedance:

η = ωμ

k
= −ω|μ|
−ω√|μǫ| =

√

|μ|
|ǫ| =

√
μ

ǫ
(2.13.4)

which can be written also as follows, where η0 =
√

μ0/ǫ0:

η = η0
μ

μ0n
= η0

ǫ0n

ǫ
(2.13.5)

Thus, in negative-index media, the wave vector k and the phase velocity vph =ω/k =
c0/nwill be negative, pointing in opposite direction than the Poynting vector. As we saw

in Sec. 1.18, for lossless negative-index media the energy transport velocity ven, which

is in the direction of the Poynting vector, coincides with the group velocity vg. Thus,

vg = ven > 0, while vph < 0.

Two consequences of the negative refractive index, n < 0, are the reversal of Snel’s

law discussed in Sec. 7.16 and the possibility of a perfect lens discussed in Sec. 8.6. These

and other consequences of n < 0, such as the reversal of the Doppler and Cherenkov

effects and the reversal of the field momentum, have been discussed by Veselago [387].

If the propagation is along an arbitrary direction defined by a unit-vector ŝ (i.e.,

a rotated version of ẑ), then we may define the wavevector by k = kŝ, with k to be

determined, and look for solutions of Maxwell’s equations of the form:

E(r, t)= E0 e
jωt−j k·r

H(r, t)= H0 e
jωt−j k·r

(2.13.6)
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Gauss’s laws require that the constant vectors E0, H0 be transverse to k, or ŝ, that

is, ŝ · E0 = ŝ ·H0 = 0. Then, Faraday’s and Ampère’s laws require that:

H0 = 1

η
(ŝ× E0) , η = ωμ

k
= k

ωǫ
⇒ k2 =ω2μǫ (2.13.7)

with a Poynting vector:

PPP = 1

2
Re
[

E0 ×H∗0
] = ŝ

1

2η
|E0|2 (2.13.8)

Thus, if PPP is assumed to be in the direction of ŝ, then we must have η > 0, and

therefore, k must be negative as in Eq. (2.13.3). It follows that the wavevector k = kŝ

will be in the opposite direction of ŝ andPPP. Eq. (2.13.7) implies that the triplet {E0,H0, ŝ}
is still a right-handed vector system, but {E0,H0,k} will be a left-handed system. This

is the reason why Veselago [387] named such media left-handed media.†

In a lossy negative-index medium, the permittivity and permeability will be complex-

valued, ǫ = ǫr − jǫi and μ = μr − jμi, with negative real parts ǫr, μr < 0, and positive

imaginary parts ǫi, μi > 0. Eq. (2.13.1) remains the same and will imply that k and η will

be complex-valued. Letting k = β− jα, the fields will be attenuating as they propagate:

Ex(z, t)= E0e
−αzejωt−jβz , Hy(z, t)= H0e

−αzejωt−jβz

and the Poynting vector will be given by:

Pz = 1

2
Re
[

Ex(z)H
∗
y (z)

] = 1

2
Re
( 1

η

)|E0|2e−2αz = 1

2
Re(η)|H0|2e−2αz (2.13.9)

The refractive index is complex-valued, n = nr − jni, and is related to k through

k = k0n, or, β− jα = k0(nr − jni), or, β = k0nr and α = k0ni. Thus, the conditions of

negative phase velocity (β < 0), field attenuation (α > 0), and positive power flow can

be stated equivalently as follows:

nr < 0 , ni > 0 , Re(η)> 0 (2.13.10)

Next, we look at the necessary and sufficient conditions for a medium to satisfy these

conditions. If we express ǫ, μ in their polar forms, ǫ = |ǫ|e−jθǫ and μ = |μ|e−jθμ , then,

regardless of the signs of ǫr, μr , the assumption that the medium is lossy, ǫi, μi > 0,

requires that sinθǫ > 0 and sinθμ > 0, and these are equivalent to the restrictions:

0 ≤ θǫ ≤ π, 0 ≤ θμ ≤ π (2.13.11)

To guarantee α > 0, the wavenumber k must be computed by taking the positive

square root of k2 =ω2μǫ =ω2|μǫ|2e−j(θǫ+θμ), that is,

k = β− jα =ω
√

|μǫ|e−jθ+ , θ+ =
θǫ + θμ

2
(2.13.12)

Indeed, the restrictions (2.13.11) imply the same for θ+, that is, 0 ≤ θ+ ≤ π, or,

equivalently, sinθ+ > 0, and hence α > 0. Similarly, the quantities n,η are given by:

n = |n|e−jθ+ , η = |η|e−jθ− , θ− =
θǫ − θμ

2
(2.13.13)

†The term negative-index media is preferred in order to avoid confusion with chiral media.
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where |n| = √|μǫ|/μ0ǫ0 and |η| = √|μ|/|ǫ|. It follows that ni = |n| sinθ+ > 0. Since

nr = |n| cosθ+ and Re(η)= |η| cosθ−, the conditions nr < 0 and Re(η)> 0 will be

equivalent to

cosθ+ = cos

(
θǫ + θμ

2

)

< 0 , cosθ− = cos

(
θǫ − θμ

2

)

> 0 (2.13.14)

Using some trigonometric identities, these conditions become equivalently:

cos(θǫ/2)cos(θμ/2)− sin(θǫ/2)sin(θμ/2) < 0

cos(θǫ/2)cos(θμ/2)+ sin(θǫ/2)sin(θμ/2) > 0

which combine into

− sin(θǫ/2)sin(θμ/2)< cos(θǫ/2)cos(θμ/2)< sin(θǫ/2)sin(θμ/2)

Because 0 ≤ θǫ/2 ≤ π/2, we have cos(θǫ/2)≥ 0 and sin(θǫ/2)≥ 0, and similarly

for θμ/2. Thus, the above conditions can be replaced by the single equivalent inequality:

tan(θǫ/2)tan(θμ/2)> 1 (2.13.15)

A number of equivalent conditions have been given in the literature [408,436] for a

medium to have negative phase velocity and positive power:

(|ǫ| − ǫr
)(|μ| − μr

)

> ǫiμi

ǫr|μ| + μr|ǫ| < 0

ǫrμi + μrǫi < 0

(2.13.16)

They are all equivalent to condition (2.13.15). This can be seen by writing them

in terms of the angles θǫ, θμ and then using simple trigonometric identities, such as

tan(θ/2)= (1− cosθ)/ sinθ, to show their equivalence to (2.13.15):

(1− cosθǫ)(1− cosθμ)> sinθǫ sinθμ

cosθǫ + cosθμ < 0

cotθǫ + cotθμ < 0

(2.13.17)

If the medium has negative real parts, ǫr < 0 and μr < 0, then the conditions

(2.13.16) are obviously satisfied.

2.14 Problems

2.1 A function E(z, t) may be thought of as a function E(ζ, ξ) of the independent variables

ζ = z − ct and ξ = z + ct. Show that the wave equation (2.1.6) and the forward-backward

equations (2.1.10) become in these variables:

∂2E

∂ζ∂ξ
= 0 ,

∂E+
∂ξ

= 0 ,
∂E−
∂ζ

= 0

Thus, E+ may depend only on ζ and E− only on ξ.
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2.2 A source located at z = 0 generates an electromagnetic pulse of duration of T sec, given by

E(0, t)= x̂E0

[

u(t)−u(t − T)], where u(t) is the unit step function and E0 is a constant.

The pulse is launched towards the positive z-direction. Determine expressions for E(z, t)

and H(z, t) and sketch them versus z at any given t.

2.3 Show that for a single-frequency wave propagating along the z-direction the corresponding

transverse fields E(z),H(z) satisfy the system of equations:

∂

∂z

[

E

H× ẑ

]

=
[

0 −jωμ
−jωǫ 0

][

E

H× ẑ

]

where the matrix equation is meant to apply individually to the x, y components of the

vector entries. Show that the following similarity transformation diagonalizes the transition

matrix, and discuss its role in decoupling and solving the above system in terms of forward

and backward waves:

[

1 η

1 −η

][

0 −jωμ
−jωǫ 0

][

1 η

1 −η

]−1

=
[

−jk 0

0 jk

]

where k =ω/c, c = 1/
√
μǫ , and η = √

μ/ǫ.

2.4 The visible spectrum has the wavelength range 380–780 nm. What is this range in THz? In

particular, determine the frequencies of red, orange, yellow, green, blue, and violet having

the nominal wavelengths of 700, 610, 590, 530, 470, and 420 nm.

2.5 What is the frequency in THz of a typical CO2 laser (used in laser surgery) having the far

infrared wavelength of 20 μm?

2.6 What is the wavelength in meters or cm of a wave with the frequencies of 10 kHz, 10 MHz,

and 10 GHz?

What is the frequency in GHz of the 21-cm hydrogen line observed in the cosmos?

What is the wavelength in cm of the typical microwave oven frequency of 2.45 GHz?

2.7 Suppose you start with E(z, t)= x̂E0e
jωt−jkz, but you do not yet know the relationship

between k andω (you may assume they are both positive.) By inserting E(z, t) into Maxwell’s

equations, determine the k–ω relationship as a consequence of these equations. Determine

also the magnetic field H(z, t) and verify that all of Maxwell’s equations are satisfied.

Repeat the problem if E(z, t)= x̂E0e
jωt+jkz and if E(z, t)= ŷE0e

jωt−jkz.

2.8 Determine the polarization types of the following waves, and indicate the direction, if linear,

and the sense of rotation, if circular or elliptic:

a. E = E0(x̂+ ŷ)e−jkz e. E = E0(x̂− ŷ)e−jkz

b. E = E0(x̂−
√

3 ŷ)e−jkz f. E = E0(
√

3 x̂− ŷ)e−jkz

c. E = E0(j x̂+ ŷ)e−jkz g. E = E0(j x̂− ŷ)ejkz

d. E = E0(x̂− 2j ŷ)e−jkz h. E = E0(x̂+ 2j ŷ)ejkz

2.9 A uniform plane wave, propagating in the z-direction in vacuum, has the following electric

field:

EEE(t, z)= 2 x̂ cos(ωt − kz)+4 ŷ sin(ωt − kz)
a. Determine the vector phasor representingEEE(t, z) in the complex form E = E0e

jωt−jkz.

b. Determine the polarization of this electric field (linear, circular, elliptic, left-handed,

right-handed?)
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c. Determine the magnetic fieldHHH(t, z) in its real-valued form.

2.10 A uniform plane wave propagating in vacuum along the z direction has real-valued electric

field components:

Ex(z, t)= cos(ωt − kz) , Ey(z, t)= 2 sin(ωt − kz)

a. Its phasor form has the form E = (A x̂+B ŷ)e±jkz. Determine the numerical values of

the complex-valued coefficients A,B and the correct sign of the exponent.

b. Determine the polarization of this wave (left, right, linear, etc.). Explain your reasoning.

2.11 Consider the two electric fields, one given in its real-valued form, and the other, in its phasor

form:
a. EEE(t, z)= x̂ sin(ωt + kz)+2ŷ cos(ωt + kz)
b. E(z)= [

(1+ j)x̂− (1− j)ŷ]e−jkz

For both cases, determine the polarization of the wave (linear, circular, left, right, etc.) and

the direction of propagation.

For case (a), determine the field in its phasor form. For case (b), determine the field in its

real-valued form as a function of t, z.

2.12 A uniform plane wave propagating in the z-direction has the following real-valued electric

field:

EEE(t, z)= x̂ cos(ωt − kz−π/4)+ŷ cos(ωt − kz+π/4)

a. Determine the complex-phasor form of this electric field.

b. Determine the corresponding magnetic field HHH(t, z) given in its real-valued form.

c. Determine the polarization type (left, right, linear, etc.) of this wave.

2.13 Determine the polarization type (left, right, linear, etc.) and the direction of propagation of

the following electric fields given in their phasor forms:

a. E(z)= [

(1+ j√3)x̂+ 2 ŷ
]

e+jkz

b. E(z)= [

(1+ j)x̂− (1− j)ŷ]e−jkz

c. E(z)= [

x̂− ẑ+ j√2 ŷ
]

e−jk(x+z)/
√

2

2.14 Consider a forward-moving wave in its real-valued form:

EEE(t, z)= x̂A cos(ωt − kz+φa)+ŷB cos(ωt − kz+φb)

Show that:

EEE(t +Δt, z+Δz)×EEE(t, z)= ẑAB sin(φa −φb)sin(ωΔt − kΔz)

2.15 In this problem we explore the properties of the polarization ellipse. Let us assume initially

that A �= B. Show that in order for the polarization ellipse of Eq. (2.5.4) to be equivalent

to the rotated one of Eq. (2.5.8), we must determine the tilt angle θ to satisfy the following

matrix condition:

[

cosθ sinθ

− sinθ cosθ

]

⎡

⎢
⎢
⎢
⎣

1

A2
− cosφ

AB

− cosφ

AB

1

B2

⎤

⎥
⎥
⎥
⎦

[

cosθ − sinθ

sinθ cosθ

]

= sin2φ

⎡

⎢
⎢
⎣

1

A′2
0

0
1

B′2

⎤

⎥
⎥
⎦ (2.14.1)
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From this condition, show that θ must satisfy Eq. (2.5.5). However, this equation does not

determine θ uniquely. To see this, let τ = tanθ and use a standard trigonometric identity

to write (2.5.5) in the form:

tan 2θ = 2τ

1− τ2
= 2AB

A2 − B2
cosφ (2.14.2)

Show that the two possible solutions for τ are given by:

τs = B2 −A2 + sD
2AB cosφ

, s = ±1

where

D =
√

(A2 − B2)2+4A2B2 cos2φ =
√

(A2 + B2)2−4A2B2 sin2φ

Show also that τsτ−s = −1. Thus one or the other of the τ’s must have magnitude less than

unity. To determine which one, show the relationship:

1− τ2
s =

s(A2 − B2)
[

D− s(A2 − B2)
]

2A2B2 cos2φ

Show that the quantity D− s(A2−B2) is always positive. If we select s = sign(A−B), then

s(A2 − B2)= |A2 − B2|, and therefore, 1− τ2
s > 0, or |τs| < 1. This is the proper choice of

τs and corresponding tilt angle θ. We note parenthetically, that if Eq. (2.14.2) is solved by

taking arc tangents of both sides,

θ = 1

2
atan

[
2AB

A2 − B2
cosφ

]

(2.14.3)

then, because MATLAB constrains the returned angle from the arctan function to lie in the

interval −π/2 ≤ 2θ ≤ π/2, it follows that θ will lie in −π/4 ≤ θ ≤ π/4, which always

results in a tangent with | tanθ| ≤ 1. Thus, (2.14.3) generates the proper θ corresponding

to τs with s = sign(A−B). In fact, our function ellipse uses (2.14.3) internally. The above

results can be related to the eigenvalue properties of the matrix,

Q =

⎡

⎢
⎢
⎢
⎣

1

A2
− cosφ

AB

− cosφ

AB

1

B2

⎤

⎥
⎥
⎥
⎦

defined by the quadratic form of the polarization ellipse (2.5.4). Show that Eq. (2.14.1) is

equivalent to the eigenvalue decomposition of Q, with the diagonal matrix on the right-

hand side representing the two eigenvalues, and [cosθ, sinθ]T and [− sinθ, cosθ]T , the

corresponding eigenvectors. By solving the characteristic equation det(Q − λI)= 0, show

that the two eigenvalues of Q are given by:

λs = A2 + B2 + sD
2A2B2

, s = ±1

Thus, it follows from (2.14.1) that sin2φ/A′2 and sin2φ/B′2 must be identified with one or

the other of the two eigenvalues λs, λ−s. From Eq. (2.14.1) show the relationships:

λsλ−s = sin2φ

A2B2
,

1

A2
− cosφ

AB
τs = λ−s , 1

B2
+ cosφ

AB
τs = λs
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With the choice s = sign(A− B), show that the ellipse semi-axes are given by the following

equivalent expressions:

A′2 = A2 + τsAB cosφ = A2 − B2τ2
s

1− τ2
s

= 1

2

[

A2 + B2 + sD] = A2B2λs

B′2 = B2 − τsAB cosφ = B2 −A2τ2
s

1− τ2
s

= 1

2

[

A2 + B2 − sD] = A2B2λ−s

(2.14.4)

with the right-most expressions being equivalent to Eqs. (2.5.6). Show also the following:

A′2 + B′2 = A2 + B2 , A′B′ = AB| sinφ|

Using these relationships and the definition (2.5.9) for the angle χ, show that tanχ is equal

to the minor-to-major axis ratio B′/A′ or A′/B′, whichever is less than one.

Finally, for the special case A = B, by directly manipulating the polarization ellipse (2.5.4),

show that θ = π/4 and that A′, B′ are given by Eq. (2.5.10). Since τ = 1 in this case, the

left-most equations in (2.14.4) generate the same A′, B′. Show that one can also choose

θ = −π/4 or τ = −1, withA′, B′ reversing roles, but with the polarization ellipse remaining

the same.

2.16 Show the cross-product equation (2.5.11). Then, prove the more general relationship:

EEE(t1)×EEE(t2)= ẑAB sinφ sin
(

ω(t2 − t1)
)

Discuss how linear polarization can be explained with the help of this result.

2.17 Using the properties kcηc = ωμ and k2
c = ω2μǫc for the complex-valued quantities kc, ηc

of Eq. (2.6.5), show the following relationships, where ǫc = ǫ′ − jǫ′′ and kc = β− jα:

Re
(

η−1
c

) = ωǫ′′

2α
= β

ωμ

2.18 Show that for a lossy medium the complex-valued quantities kc and ηc may be expressed as

follows, in terms of the loss angle θ defined in Eq. (2.6.27):

kc = β− jα =ω
√

μǫ′d

(

cos
θ

2
− j sin

θ

2

)

(cosθ)−1/2

ηc = η′ + jη′′ =
√

μ

ǫ′d

(

cos
θ

2
+ j sin

θ

2

)

(cosθ)1/2

2.19 It is desired to reheat frozen mashed potatoes and frozen cooked carrots in a microwave oven

operating at 2.45 GHz. Determine the penetration depth and assess the effectiveness of this

heating method. Moreover, determine the attenuation of the electric field (in dB and absolute

units) at a depth of 1 cm from the surface of the food. The complex dielectric constants of

the mashed potatoes and carrots are (see [146]) ǫc = (65− j25)ǫ0 and ǫc = (75− j25)ǫ0.

2.20 We wish to shield a piece of equipment from RF interference over the frequency range from

10 kHz to 1 GHz by enclosing it in a copper enclosure. The RF interference inside the

enclosure is required to be at least 50 dB down compared to its value outside. What is the

minimum thickness of the copper shield in mm?

2.21 In order to protect a piece of equipment from RF interference, we construct an enclosure

made of aluminum foil (you may assume a reasonable value for its thickness.) The conduc-

tivity of aluminum is 3.5×107 S/m. Over what frequency range can this shield protect our

equipment assuming the same 50-dB attenuation requirement of the previous problem?
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2.22 A uniform plane wave propagating towards the positive z-direction in empty space has an

electric field at z = 0 that is a linear superposition of two components of frequencies ω1

and ω2:

E(0, t)= x̂ (E1e
jω1t + E2e

jω2t)

Determine the fields E(z, t) and H(z, t) at any point z.

2.23 An electromagnetic wave propagating in a lossless dielectric is described by the electric and

magnetic fields, E(z)= x̂E(z) and H(z)= ŷH(z), consisting of the forward and backward

components:

E(z) = E+e−jkz + E−ejkz

H(z) = 1

η
(E+e−jkz − E−ejkz)

a. Verify that these expressions satisfy all of Maxwell’s equations.

b. Show that the time-averaged energy flux in the z-direction is independent of z and is

given by:

Pz = 1

2
Re
[

E(z)H∗(z)
] = 1

2η

(|E+|2 − |E−|2
)

c. Assuming μ = μ0 and ǫ = n2ǫ0, so that n is the refractive index of the dielectric, show

that the fields at two different z-locations, say at z = z1 and z = z2 are related by the

matrix equation:

[

E(z1)

η0H(z1)

]

=
[

coskl jn−1 sinkl

jn sinkl coskl

][

E(z2)

η0H(z2)

]

where l = z2 − z1, and we multiplied the magnetic field by η0 =
√

μ0/ǫ0 in order to

give it the same dimensions as the electric field.

d. Let Z(z)= E(z)

η0H(z)
and Y(z)= 1

Z(z)
be the normalized wave impedance and admit-

tance at location z. Show the relationships at at the locations z1 and z2 :

Z(z1)= Z(z2)+jn−1 tankl

1+ jnZ(z2)tankl
, Y(z1)= Y(z2)+jn tankl

1+ jn−1Y(z2)tankl

What would be these relationships if had we normalized to the medium impedance,

that is, Z(z)= E(z)/ηH(z)?

2.24 Show that the time-averaged energy density and Poynting vector of the obliquely moving

wave of Eq. (2.10.10) are given by

w = 1

2
Re
[1

2
ǫE · E∗ + 1

2
μH ·H∗] = 1

2
ǫ
(|A|2 + |B|2)

PPP = 1

2
Re
[

E×H∗]= ẑ′
1

2η

(|A|2 + |B|2)= (ẑ cosθ+ x̂ sinθ)
1

2η

(|A|2 + |B|2)

where ẑ′ = ẑ cosθ+ x̂ sinθ is the unit vector in the direction of propagation. Show that the

energy transport velocity is v =PPP/w = c ẑ′.
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2.25 A uniform plane wave propagating in empty space has electric field:

E(x, z, t)= ŷE0e
jωte−jk(x+z)/

√
2 , k = ω

c0

a. Inserting E(x, z, t) into Maxwell’s equations, work out an expression for the corre-

sponding magnetic field H(x, z, t).

b. What is the direction of propagation and its unit vector k̂?

c. Working with Maxwell’s equations, determine the electric field E(x, z, t) and propaga-

tion direction k̂, if we started with a magnetic field given by:

H(x, z, t)= ŷH0e
jωte−jk(

√
3z−x)/2

2.26 A linearly polarized light wave with electric field E0 at angle θ with respect to the x-axis

is incident on a polarizing filter, followed by an identical polarizer (the analyzer) whose

primary axes are rotated by an angle φ relative to the axes of the first polarizer, as shown

in Fig. 2.14.1.

Fig. 2.14.1 Polarizer–analyzer filter combination.

Assume that the amplitude attenuations through the first polarizer are a1, a2 with respect

to the x- and y-directions. The polarizer transmits primarily the x-polarization, so that

a2 ≪ a1. The analyzer is rotated by an angle φ so that the same gains a1, a2 now refer to

the x′- and y′-directions.

a. Ignoring the phase retardance introduced by each polarizer, show that the polarization

vectors at the input, and after the first and second polarizers, are:

E0 = x̂ cosθ+ ŷ sinθ

E1 = x̂a1 cosθ+ ŷa2 sinθ

E2 = x̂′(a2
1 cosφ cosθ+ a1a2 sinφ sinθ)+ŷ′(a2

2 cosφ sinθ− a1a2 sinφ cosθ)

where {x̂′, ŷ′} are related to {x̂, ŷ} as in Problem 4.7.

b. Explain the meaning and usefulness of the matrix operations:

[

a1 0

0 a2

][

cosφ sinφ

− sinφ cosφ

][

a1 0

0 a2

][

cosθ

sinθ

]

and

[

cosφ − sinφ

sinφ cosφ

][

a1 0

0 a2

][

cosφ sinφ

− sinφ cosφ

][

a1 0

0 a2

][

cosθ

sinθ

]
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c. Show that the output light intensity is proportional to the quantity:

I =(a4
1 cos2 θ+ a4

2 sin2 θ)cos2φ+ a2
1a

2
2 sin2φ+

+ 2a1a2(a
2
1 − a2

2)cosφ sinφ cosθ sinθ

d. If the input light were unpolarized, that is, incoherent, show that the average of the

intensity of part (c) over all angles 0 ≤ θ ≤ 2π, will be given by the generalized Malus’s

law:

I = 1

2
(a4

1 + a4
2)cos2φ+ a2

1a
2
2 sin2φ

The case a2 = 0, represents the usual Malus’ law.

2.27 First, prove the equivalence of the three relationships given in Eq. (2.12.11). Then, prove the

following identity between the angles θ,θ′:

(1− β cosθ)(1+ β cosθ′)= (1+ β cosθ)(1− β cosθ′)= 1− β2

Using this identity, prove the alternative Doppler formulas (2.12.12).

2.28 In proving the relativistic Doppler formula (2.12.14), it was assumed that the plane wave

was propagating in the z-direction in all three reference frames S, Sa, Sb. If in the frame S

the wave is propagating along the θ-direction shown in Fig. 2.12.2, show that the Doppler

formula may be written in the following equivalent forms:

fb = fa γb(1− βb cosθ)

γa(1− βa cosθ)
= faγ(1− β cosθa)= fa

γ(1+ β cosθb)
= fa

√

1− β cosθa
1+ β cosθb

where

βa = va
c
, βb = vb

c
, β = v

c
, γa = 1

√

1− β2
a

, γb = 1
√

1− β2
b

, γ = 1
√

1− β2

and v is the relative velocity of the observer and source given by Eq. (2.12.7), and θa, θb
are the propagation directions in the frames Sa, Sb. Moreover, show the following relations

among these angles:

cosθa = cosθ− βa
1− βa cosθ

, cosθb = cosθ− βb
1− βb cosθ

, cosθb = cosθa − β
1− β cosθa

2.29 Ground-penetrating radar operating at 900 MHz is used to detect underground objects, as

shown in the figure below for a buried pipe. Assume that the earth has conductivity σ =
10−3 S/m, permittivity ǫ = 9ǫ0, and permeability μ = μ0. You may use the “weakly lossy

dielectric” approximation.

a. Determine the numerical value of the wavenumber k = β − jα in meters−1, and the

penetration depth δ = 1/α in meters.

b. Determine the value of the complex refractive index nc = nr − jni of the ground at

900 MHz.

82 2. Uniform Plane Waves

c. With reference to the above figure, explain why the electric field returning back to the

radar antenna after getting reflected by the buried pipe is given by

∣
∣
∣
∣

Eret

E0

∣
∣
∣
∣

2

= exp

[

−4
√
h2 + d2

δ

]

where E0 is the transmitted signal, d is the depth of the pipe, and h is the horizontal

displacement of the antenna from the pipe. You may ignore the angular response of

the radar antenna and assume it emits isotropically in all directions into the ground.

d. The depth d may be determined by measuring the roundtrip time t(h) of the trans-

mitted signal at successive horizontal distances h. Show that t(h) is given by:

t(h)= 2nr
c0

√

d2 + h2

where nr is the real part of the complex refractive index nc.

e. Suppose t(h) is measured over the range −2 ≤ h ≤ 2 meters over the pipe and its

minimum recorded value is tmin = 0.2 μsec. What is the depth d in meters?
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Pulse Propagation in Dispersive Media

In this chapter, we examine some aspects of pulse propagation in dispersive media and

the role played by various wave velocity definitions, such as phase, group, and front

velocities. We discuss group velocity dispersion, pulse spreading, chirping, and disper-

sion compensation, and look at some slow, fast, and negative group velocity examples.

We also present a short introduction to chirp radar and pulse compression, elaborating

on the similarities to dispersion compensation. The similarities to Fresnel diffraction

and Fourier optics are discussed in Sec. 18.18. The chapter ends with a guide to the

literature on these diverse topics.

3.1 Propagation Filter

As we saw in the previous chapter, a monochromatic plane wave moving forward along

the z-direction has an electric field E(z)= E(0)e−jkz, where E(z) stands for either the x

or the y component. We assume a homogeneous isotropic non-magnetic medium (μ =
μ0) with an effective permittivity ǫ(ω); therefore, k is the frequency-dependent and

possibly complex-valued wavenumber defined by k(ω)= ω
√

ǫ(ω)μ0. To emphasize

the dependence on the frequency ω, we rewrite the propagated field as:†

Ê(z,ω)= e−jkzÊ(0,ω) (3.1.1)

Its complete space-time dependence will be:

ejωtÊ(z,ω)= ej(ωt−kz)Ê(0,ω) (3.1.2)

A wave packet or pulse can be made up by adding different frequency components,

that is, by the inverse Fourier transform:

E(z, t)= 1

2π

∫∞

−∞
ej(ωt−kz)Ê(0,ω)dω (3.1.3)

†where the hat denotes Fourier transformation.
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Setting z = 0, we recognize Ê(0,ω) to be the Fourier transform of the initial wave-

form E(0, t), that is,

E(0, t)= 1

2π

∫∞

−∞
ejωtÊ(0,ω)dω ⇔ Ê(0,ω)=

∫∞

−∞
e−jωtE(0, t)dt (3.1.4)

The multiplicative form of Eq. (3.1.1) allows us to think of the propagated field as

the output of a linear system, the propagation filter, whose frequency response is

H(z,ω)= e−jk(ω)z (3.1.5)

Indeed, for a linear time-invariant system with impulse response h(t) and corre-

sponding frequency response H(ω), the input/output relationship can be expressed

multiplicatively in the frequency domain or convolutionally in the time domain:

Êout(ω)= H(ω)Êin(ω)

Eout(t)=
∫∞

−∞
h(t − t′)Ein(t

′)dt′

For the propagator frequency response H(z,ω)= e−jk(ω)z, we obtain the corre-

sponding impulse response:

h(z, t)= 1

2π

∫∞

−∞
ejωtH(z,ω)dω = 1

2π

∫∞

−∞
ej(ωt−kz)dω (3.1.6)

Alternatively, Eq. (3.1.6) follows from (3.1.3) by setting Ê(0,ω)= 1, corresponding

to an impulsive input E(0, t)= δ(t). Thus, Eq. (3.1.3) may be expressed in the time

domain in the convolutional form:

E(z, t)=
∫∞

−∞
h(z, t − t′)E(0, t′)dt′ (3.1.7)

Example 3.1.1: For propagation in a dispersionless medium with frequency-independent per-

mittivity, such as the vacuum, we have k =ω/c, where c = 1/
√
μǫ. Therefore,

H(z,ω)= e−jk(ω)z = e−jωz/c = pure delay by z/c

h(z, t)= 1

2π

∫ ∞

−∞
ej(ωt−kz)dω = 1

2π

∫∞

−∞
ejω(t−z/c)dω = δ(t − z/c)

and Eq. (3.1.7) gives E(z, t)= E(0, t − z/c), in agreement with the results of Sec. 2.1. ⊓⊔

The reality of h(z, t) implies the hermitian property,H(z,−ω)∗= H(z,ω), for the

frequency response, which is equivalent to the anti-hermitian property for the wave-

number, k(−ω)∗= −k(ω).
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3.2 Front Velocity and Causality

For a general linear system H(ω)= |H(ω)|e−jφ(ω), one has the standard concepts of

phase delay, group delay, and signal-front delay [189] defined in terms of the system’s

phase-delay response, that is, the negative of its phase response, φ(ω)= −ArgH(ω):

tp = φ(ω)

ω
, tg = dφ(ω)

dω
, tf = lim

ω→∞
φ(ω)

ω
(3.2.1)

The significance of the signal-front delay tf for the causality of a linear system is

that the impulse response vanishes, h(t)= 0, for t < tf , which implies that if the input

begins at time t = t0, then the output will begin at t = t0 + tf :

Ein(t)= 0 for t < t0 ⇒ Eout(t)= 0 for t < t0 + tf (3.2.2)

To apply these concepts to the propagator filter, we write k(ω) in terms of its real

and imaginary parts, k(ω)= β(ω)−jα(ω), so that

H(z,ω)= e−jk(ω)z = e−α(ω)ze−jβ(ω)z ⇒ φ(ω)= β(ω)z (3.2.3)

Then, the definitions (3.2.1) lead naturally to the concepts of phase velocity, group

velocity, and signal-front velocity, defined through:

tp = z

vp
, tg = z

vg
, tf = z

vf
(3.2.4)

For example, tg = dφ/dω = (dβ/dω)z = z/vg, and similarly for the other ones,

resulting in the definitions:

vp = ω

β(ω)
, vg = dω

dβ
, vf = lim

ω→∞
ω

β(ω)
(3.2.5)

The expressions for the phase and group velocities agree with those of Sec. 1.18.

Under the reasonable assumption that ǫ(ω)→ ǫ0 as ω → ∞, which is justified on

the basis of the permittivity model of Eq. (1.11.11), we have k(ω)= ω
√

ǫ(ω)μ0 →
ω
√
ǫ0μ0 = ω/c, where c is the speed of light in vacuum. Therefore, the signal front

velocity and front delay are:

vf = lim
ω→∞

ω

β(ω)
= lim
ω→∞

ω

ω/c
= c ⇒ tf = z

c
(3.2.6)

Thus, we expect that the impulse response h(z, t) of the propagation medium would

satisfy the causality condition:

h(z, t)= 0 , for t < tf = z

c
(3.2.7)

We show this below. More generally, if the input pulse at z = 0 vanishes for t < t0,

the propagated pulse to distance z will vanish for t < t0 + z/c. This is the statement

of relativistic causality, that is, if the input signal has a sharp, discontinuous, front at
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Fig. 3.2.1 Causal pulse propagation, but with superluminal group velocity (vg > c).

some time t0, then that front cannot move faster than the speed of light in vacuum and

cannot reach the point z faster than z/c seconds later. Mathematically,

E(0, t)= 0 for t < t0 ⇒ E(z, t)= 0 for t < t0 + z
c

(3.2.8)

Fig. 3.2.1 depicts this property. Sommerfeld and Brillouin [188,1286] originally

showed this property for a causal sinusoidal input, that is, E(0, t)= ejω0tu(t).

Group velocity describes the speed of the peak of the envelope of a signal and is a

concept that applies only to narrow-band pulses. As mentioned in Sec. 1.18, it is possi-

ble that if this narrow frequency band is concentrated in the vicinity of an anomalous

dispersion region, that is, near an absorption peak, the corresponding group velocity

will exceed the speed of light in vacuum, vg > c, or even become negative depending on

the value of the negative slope of the refractive index dnr/dω < 0.

Conventional wisdom has it that the condition vg > c is not at odds with relativity

theory because the strong absorption near the resonance peak causes severe distortion

and attenuation of the signal peak and the group velocity loses its meaning. However, in

recent years it has been shown theoretically and experimentally [262,263,281] that the

group velocity can retain its meaning as representing the speed of the peak even if vg is

superluminal or negative. Yet, relativistic causality is preserved because the signal front

travels with the speed of light. It is the sharp discontinuous front of a signal that may

convey information, not necessarily its peak. Because the pulse undergoes continuous

reshaping as it propagates, the front cannot be overtaken by the faster moving peak.

This is explained pictorially in Fig. 3.2.1 which depicts such a case where vg > c,

and therefore, tg < tf . For comparison, the actual field E(z, t) is shown together with

the input pulse as if the latter had been traveling in vacuum, E(0, t−z/c), reaching the

point z with a delay of tf = z/c. The peak of the pulse, traveling with speed vg, gets

delayed by the group delay tg when it arrives at distance z. Because tg < tf , the peak of

E(z, t) shifts forward in time and occurs earlier than it would if the pulse were traveling

in vacuum. Such peak shifting is a consequence of the “filtering” or “rephasing” taking

place due to the propagator filter’s frequency response e−jk(ω)z.
The causality conditions (3.2.7) and (3.2.8) imply that the value of the propagated

field E(z, t) at some time instant t > t0 + z/c is determined only by those values of

the input pulse E(0, t′) that are z/c seconds earlier, that is, for t0 ≤ t′ ≤ t − z/c. This

follows from the convolutional equation (3.1.7): the factor h(z, t − t′) requires that



3.2. Front Velocity and Causality 87

t − t′ ≥ z/c, the factor E(0, t′) requires t′ ≥ t0, yielding t0 ≤ t′ ≤ t − z/c. Thus,

E(z, t)=
∫ t−z/c

t0

h(z, t − t′)E(0, t′)dt′ , for t > t0 + z/c (3.2.9)

For example, the value of E(z, t) at t = t1 + tf = t1 + z/c is given by:

E(z, t1 + tf)=
∫ t1

t0

h(z, t1 + tf − t′)E(0, t′)dt′

Thus, as shown in Fig. 3.2.2, the shaded portion of the input E(0, t′) over the time

interval t0 ≤ t′ ≤ t1 determines causally the shaded portion of the propagated signal

E(z, t) over the interval t0 + tf ≤ t ≤ t1 + tf . The peaks, on the other hand, are not

causally related. Indeed, the interval [t0, t1] of the input does not include the peak,

whereas the interval [t0 + tf , t1 + tf] of the output does include the (shifted) peak.

Fig. 3.2.2 Shaded areas show causally related portions of input and propagated signals.

Next, we provide a justification of Eq. (3.2.8). The condition E(0, t)= 0 for t < t0,

implies that its Fourier transform is:

Ê(0,ω)=
∫∞

t0

e−jωtE(0, t)dt ⇒ ejωt0 Ê(0,ω)=
∫∞

0
e−jωtE(0, t + t0)dt (3.2.10)

where the latter equation was obtained by the change of integration variable from t to

t+t0. It follows now that ejωt0 Ê(0,ω) is analytically continuable into the lower-halfω-

plane. Indeed, the replacement e−jωt by e−j(ω−jσ)t = e−σte−jωt with σ > 0 and t > 0,

improves the convergence of the time integral in (3.2.10). We may write now Eq. (3.1.3)

in the following form:

E(z, t)= 1

2π

∫∞

−∞
ej(ωt−ωt0−kz) ejωt0 Ê(0,ω)dω (3.2.11)

and assume that t < t0+z/c. A consequence of the permittivity model (1.11.11) is that

the wavenumber k(ω) has singularities only in the upper-half ω-plane and is analytic

in the lower half. For example, for the single-resonance case, we have:

ǫ(ω)= ǫ0

[

1+ ω2
p

ω2
0 −ω2 + jωγ

]

⇒
zeros = jγ

2
±
√

ω2
0 +ω2

p − γ
2

4

poles = jγ

2
±
√

ω2
0 −

γ2

4
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Thus, the integrand of Eq. (3.2.11) is analytic in the lower-half ω-plane and we

may replace the integration path along the real axis by the lower semi-circular counter-

clockwise path CR at a very large radius R, as shown below:

E(z, t) = 1

2π

∫∞

−∞
ej(ωt−ωt0−kz) ejωt0 Ê(0,ω)dω

= lim
R→∞

1

2π

∫

CR

ej(ωt−ωt0−kz) ejωt0 Ê(0,ω)dω

But for large ω, we may replace k(ω)=ω/c. Thus,

E(z, t)= lim
R→∞

1

2π

∫

CR

ejω(t−t0−z/c) ejωt0 Ê(0,ω)dω

Because t − t0 − z/c < 0, and under the mild assumption that ejωt0 Ê(0,ω)→ 0 for

|ω| = R → ∞ in the lower-half plane, it follows from the Jordan lemma that the above

integral will be zero. Therefore, E(z, t)= 0 for t < t0 + z/c.
As an example, consider the signal E(0, t)= e−a(t−t0)ejω0(t−t0)u(t − t0), that is, a

delayed exponentially decaying (a > 0) causal sinusoid. Its Fourier transform is

Ê(0,ω)= e−jωt0

j(ω−ω0 − ja)
⇒ ejωt0 Ê(0,ω)= 1

j(ω−ω0 − ja)
which is analytic in the lower half-plane and converges to zero for |ω| → ∞.

The proof of Eq. (3.2.7) is similar. Because of the analyticity of k(ω), the integration

path in Eq. (3.1.6) can again be replaced by CR, and k(ω) replaced by ω/c:

h(z, t)= lim
R→∞

1

2π

∫

CR

ejω(t−z/c)dω, for t < z/c

This integral can be done exactly,† and leads to a standard representation of the

delta function:

h(z, t)= lim
R→∞

sin
(

R(t − z/c))

π(t − z/c) = δ(t − z/c)
which vanishes since we assumed that t < z/c. For t > z/c, the contour in (3.1.6) can be

closed in the upper half-plane, but its evaluation requires knowledge of the particular

singularities of k(ω).

3.3 Exact Impulse Response Examples

Some exactly solvable examples are given in [195]. They are all based on the following

Fourier transform pair, which can be found in [190]:‡

H(z,ω)= e−jk(ω)z = e−tf
√
jω+a+b

√
jω+a−b

h(z, t)= δ(t − tf)e−atf +
I1
(

b
√

t2 − t2f
)

√

t2 − t2f
btf e

−at u(t − tf)
(3.3.1)

†set ω = Rejθ, dω = jRejθdθ, and integrate over −π ≤ θ ≤ 0
‡see the pair 863.1 on p. 110 of [190].
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where I1(x) is the modified Bessel function of the first kind of order one, and tf = z/c
is the front delay. The unit step u(t− tf) enforces the causality condition (3.2.7). From

the expression of H(z,ω), we identify the corresponding wavenumber:

k(ω)= −j
c

√

jω+ a+ b
√

jω+ a− b (3.3.2)

The following physical examples are described by appropriate choices of the param-

eters a,b, c in Eq. (3.3.2):

1. a = 0 , b = 0 − propagation in vacuum or dielectric

2. a > 0 , b = 0 − weakly conducting dielectric

3. a = b > 0 − medium with finite conductivity

4. a = 0 , b = jωp − lossless plasma

5. a = 0 , b = jωc − hollow metallic waveguide

6. a+ b = R′/L′ , a− b = G′/C′ − lossy transmission line

The anti-hermitian property k(−ω)∗= −k(ω) is satisfied in two cases: when the

parameters a,b are both real, or, when a is real and b imaginary.

In case 1, we have k =ω/c and h(z, t)= δ(t− tf)= δ(t− z/c). Setting a = cα > 0

and b = 0, we find for case 2:

k = ω− ja
c

= ω

c
− jα (3.3.3)

which corresponds to a medium with a constant attenuation coefficient α = a/c and

a propagation constant β = ω/c, as was the case of a weakly conducting dielectric of

Sec. 2.7. In this case c is the speed of light in the dielectric, i.e. c = 1/
√
μǫ and a is

related to the conductivity σ by a = cα = σ/2ǫ. The medium impulse response is:

h(z, t)= δ(t − tf)e−atf = δ(t − z/c)e−αz

Eq. (3.1.7) then implies that an input signal will travel at speed c while attenuating

with distance:

E(z, t)= e−αzE(0, t − z/c)
Case 3 describes a medium with frequency-independent permittivity and conductiv-

ity ǫ,σ with the parameters a = b = σ/2ǫ and c = 1/
√
μ0ǫ. Eq. (3.3.2) becomes:

k = ω

c

√

1− j σ
ωǫ

(3.3.4)

and the impulse response is:

h(z, t)= δ(t − z/c)e−az/c +
I1
(

a
√

t2 − (z/c)2
)

√

t2 − (z/c)2

az

c
e−at u(t − z/c) (3.3.5)

A plot of h(z, t) for t > tf is shown below.
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For large t, h(z, t) is not exponentially decaying, but falls like 1/t3/2. Using the

large-x asymptotic form I1(x)→ ex/
√

2πx, and setting
√

t2 − t2f → t for t≫ tf , we find

h(z, t)→ eat

t
√

2πat
atf e

−at = atf

t
√

2πat
, t≫ tf

Case 4 has parameters a = 0 and b = jωp and describes propagation in a plasma,

where ωp is the plasma frequency. Eq. (3.3.2) reduces to Eq. (1.15.2):

k = 1

c

√

ω2 −ω2
p

To include evanescent waves (havingω <ωp), Eq. (3.3.2) may be written in the more

precise form that satisfies the required anti-hermitian property k(−ω)∗= −k(ω):

k(ω)= 1

c

⎧

⎪⎨

⎪⎩

sign(ω)
√

ω2 −ω2
p , if |ω| ≥ωp

−j
√

ω2
p −ω2 , if |ω| ≤ωp

(3.3.6)

When |ω| ≤ωp, the wave is evanescent in the sense that it attenuates exponentially

with distance:

e−jkz = e−z
√

ω2
p−ω2/c

For numerical evaluation using MATLAB, it proves convenient to leave k(ω) in the

form of Eq. (3.3.2), that is,

k(ω)= −j
c

√

j(ω+ωp)
√

j(ω−ωp)

which evaluates correctly according to Eq. (3.3.6) using MATLAB’s rules for computing

square roots (e.g.,
√±j = e±jπ/4).

Because b is imaginary, we can use the property I1(jx)= jJ1(x), where J1(x) is the

ordinary Bessel function. Thus, setting a = 0 and b = jωp in Eq. (3.3.1), we find:

h(z, t)= δ(t − tf)−
J1

(

ωp

√

t2 − t2f
)

√

t2 − t2f
ωptf u(t − tf) (3.3.7)

A plot of h(z, t) for t > tf is shown below.
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The propagated output E(z, t) due to a causal input, E(0, t)= E(0, t)u(t), is ob-

tained by convolution, where we must impose the conditions t′ ≥ tf and t − t′ ≥ 0:

E(z, t)=
∫∞

−∞
h(z, t′)E(0, t − t′)dt′

which for t ≥ tf leads to:

E(z, t)= E(0, t − tf)−
∫ t

tf

J1

(

ωp

√

t′2 − t2f
)

√

t′2 − t2f
ωptf E(0, t − t′)dt′ (3.3.8)

We shall use Eq. (3.3.8) in the next section to illustrate the transient and steady-

state response of a propagation medium such as a plasma or a waveguide. The large-t

behavior of h(z, t) is obtained from the asymptotic form:

J1(x)→
√

2

πx
cos

(

x− 3π

4

)

, x≫ 1

which leads to

h(z, t)→ −
√

2ωp tf√
πt3/2

cos

(

ωpt − 3π

4

)

, t≫ tf (3.3.9)

Case 5 is the same as case 4, but describes propagation in an air-filled hollow metallic

waveguide with cutoff frequencyωc. We will see in Chap. 9 that the dispersion relation-

ship (3.3.6) is a consequence of the boundary conditions on the waveguide walls, and

therefore, it is referred to as waveguide dispersion, as opposed to material dispersion

arising from a frequency-dependent permittivity ǫ(ω).

Case 6 describes a lossy transmission line (see Sec. 11.6) with distributed (that is, per

unit length) inductance L′, capacitance C′, series resistance R′, and shunt conductance

G′. This case reduces to case 3 if G′ = 0. The corresponding propagation speed is

c = 1/
√
L′C′. Theω–k dispersion relationship can be written in the form of Eq. (11.6.5):

k = −j
√

(R′ + jωL′)(G′ + jωC′) =ω
√

L′C′
√
(

1− j R
′

ωL′

)(

1− j G
′

ωC′

)

3.4 Transient and Steady-State Behavior

The frequency response e−jk(ω)z is the Fourier transform of h(z, t), but because of the

causality condition h(z, t)= 0 for t < z/c, the time-integration in this Fourier transform

can be restricted to the interval z/c < t <∞, that is,

e−jk(ω)z =
∫∞

z/c
e−jωth(z, t)dt (3.4.1)
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We mention, parenthetically, that Eq. (3.4.1), which incorporates the causality con-

dition of h(z, t), can be used to derive the lower half-plane analyticity of k(ω) and of

the corresponding complex refractive index n(ω) defined through k(ω)= ωn(ω)/c.
The analyticity properties of n(ω) can then be used to derive the Kramers-Kronig dis-

persion relations satisfied by n(ω) itself [193], as opposed to those satisfied by the

susceptibility χ(ω) that were discussed in Sec. 1.17.

When a causal sinusoidal input is applied to the linear system h(z, t), we expect the

system to exhibit an initial transient behavior followed by the usual sinusoidal steady-

state response. Indeed, applying the initial pulse E(0, t)= ejω0tu(t), we obtain from

the system’s convolutional equation:

E(z, t)=
∫ t

z/c
h(z, t′)E(0, t − t′)dt′ =

∫ t

z/c
h(z, t′)ejω0(t−t′)dt′

where the restricted limits of integration follow from the conditions t′ ≥ z/c and t−t′ ≥
0 as required by the arguments of the functions h(z, t′) and E(0, t − t′). Thus, for

t ≥ z/c, the propagated field takes the form:

E(z, t)= ejω0t

∫ t

z/c
e−jω0t

′
h(z, t′)dt′ (3.4.2)

In the steady-state limit, t → ∞, the above integral tends to the frequency response

(3.4.1) evaluated at ω =ω0, resulting in the standard sinusoidal response:

ejω0t

∫ t

z/c
e−jω0t

′
h(z, t′)dt′ → ejω0t

∫∞

z/c
e−jω0t

′
h(z, t′)dt′ = H(z,ω0)e

jω0t , or,

Esteady(z, t)= ejω0t−jk(ω0)z , for t≫ z/c (3.4.3)

Thus, the field E(z, t) eventually evolves into an ordinary plane wave at frequency

ω0 and wavenumber k(ω0)= β(ω0)−jα(ω0). The initial transients are given by the

exact equation (3.4.2) and depend on the particular form of k(ω). They are generally

referred to as “precursors” or “forerunners” and were originally studied by Sommerfeld

and Brillouin [188,1286] for the case of a single-resonance Lorentz permittivity model.

It is beyond the scope of this book to study the precursors of the Lorentz model.

However, we may use the exactly solvable model for a plasma or waveguide given in

Eq. (3.3.7) and numerically integrate (3.4.2) to illustrate the transient and steady-state

behavior.

Fig. 3.4.1 shows on the left graph the input sinusoid (dotted line) and the steady-

state sinusoid (3.4.3) with k0 computed from (3.3.6). The input and the steady output

differ by the phase shift −k0z. The graph on the right shows the causal output for

t ≥ tf computed using Eq. (3.3.8) with the input E(0, t)= sin(ω0t)u(t). During the

initial transient period the output signal builds up to its steady-state form. The steady

form of the left graph was not superimposed on the exact output because the two are

virtually indistinguishable for large t. The graph units were arbitrary and we chose the

following numerical values of the parameters:

c = 1 ωp = 1 , ω0 = 3 , tf = z = 10

The following MATLAB code illustrates the computation of the exact and steady-state

output signals:
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0 10 20 30 40

−1

0

1

t

input and steady− state output

tf

0 10 20 30 40

−1

0

1

t

exact output

tf

Fig. 3.4.1 Transient and steady-state sinusoidal response.

wp = 1; w0 = 3; tf = 10;

k0 = -j * sqrt(j*(w0+wp)) * sqrt(j*(w0-wp)); % equivalent to Eq. (3.3.6)

t = linspace(0,40, 401);

N = 15; K = 20; % use N-point Gaussian quadrature, dividing [tf , t] into K subintervals

for i=1:length(t),

if t(i)<tf,

Ez(i) = 0;

Es(i) = 0;

else

[w,x] = quadrs(linspace(tf,t(i),K), N); % quadrature weights and points

h = - wp^2 * tf * J1over(wp*sqrt(x.^2 - tf^2)) .* exp(j*w0*(t(i)-x));

Ez(i) = exp(j*w0*(t(i)-tf)) + w’*h; % exact output

Es(i) = exp(j*w0*t(i)-j*k0*tf); % steady-state

end

end

es = imag(Es); ez = imag(Ez); % input is E(0, t) = sin(ω0t) u(t)

figure; plot(t,es); figure; plot(t,ez);

The code uses the function quadrs (see Sec. 19.10 and Appendix I) to compute the

integral over the interval [tf , t], dividing this interval into K subintervals and using an

N-point Gauss-Legendre quadrature method on each subinterval.

We wrote a function J1over to implement the function J1(x)/x. The function uses

the power series expansion, J1(x)/x = 0.5(1 − x2/8 + x4/192), for small x, and the

built-in MATLAB function besselj for larger x:

function y = J1over(x)

y = zeros(size(x)); % y has the same size as x

xmin = 1e-4;

i = find(abs(x) < xmin);
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y(i) = 0.5 * (1 - x(i).^2 / 8 + x(i).^4 / 192);

i = find(abs(x) >= xmin);

y(i) = besselj(1, x(i)) ./ x(i);

0 10 20 30 40 50 60 70 80 90 100

−1

0

1

t

input and steady− state evanescent output

tf

0 10 20 30 40 50 60 70 80 90 100

−1

0

1

t

exact evanescent output

tf

Fig. 3.4.2 Transient and steady-state response for evanescent sinusoids.

Fig. 3.4.2 illustrates an evanescent wave withω0 < ωp. In this case the wavenumber

becomes pure imaginary, k0 = −jα0 = −j
√

ω2
p −ω2

0/c, leading to an attenuated steady-

state waveform:

Esteady(z, t)= ejω0t−jk0z = ejω0te−α0z , t≫ z

c

The following numerical values were used:

c = 1 ωp = 1 , ω0 = 0.9 , tf = z = 5

resulting in the imaginary wavenumber and attenuation amplitude:

k0 = −jα0 = −0.4359j , H0 = e−jk0z = e−αoz = 0.1131

We chose a smaller value of z in order to get a reasonable value for the attenuated

signal for display purposes. The left graph in Fig. 3.4.2 shows the input and the steady-

state output signals. The right graph shows the exact output computed by the same

MATLAB code given above. Again, we note that for large t (here, t > 80), the exact

output approaches the steady one.

Finally, in Fig. 3.4.3 we illustrate the input-on and input-off transients for an input

rectangular pulse of duration td, and for a causal gaussian pulse, that is,

E(0, t)= sin(ω0t)
[

u(t)−u(t − td)
]

, E(0, t)= ejω0t exp

[

−(t − tc)
2

2τ2
0

]

u(t)

The input-off transients for the rectangular pulse are due to the oscillating and de-

caying tail of the impulse response h(z, t) given in (3.3.9). The following values of the

parameters were used:

c = 1 ωp = 1 , ω0 = 3 , tf = z = 30 , td = 20 , tc = τ0 = 5
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0 10 20 30 40 50 60 70 80
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propagation of rectangular pulse
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propagation of gaussian pulse

tf
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Fig. 3.4.3 Rectangular and gaussian pulse propagation.

The MATLAB code for the rectangular pulse case is essentially the same as above

except that it uses the function upulse to enforce the finite pulse duration:

wp = 1; w0 = 3; tf = 30; td = 20; N = 15; K = 20;

k0 = -j * sqrt(j*(w0+wp)) * sqrt(j*(w0-wp));

t = linspace(0,80,801);

E0 = exp(j*w0*t) .* upulse(t,td);

for i=1:length(t),

if t(i)<tf,

Ez(i) = 0;

else

[w,x] = quadrs(linspace(tf,t(i),K), N);

h = - wp^2 * tf * J1over(wp*sqrt(x.^2-tf^2)) .* ...

exp(j*w0*(t(i)-x)) .* upulse(t(i)-x,td);

Ez(i) = exp(j*w0*(t(i)-tf)).*upulse(t(i)-tf,td) + w’*h;

end

end

e0 = imag(E0); ez = imag(Ez);

plot(t,ez,’-’, t,e0,’-’);

3.5 Pulse Propagation and Group Velocity

In this section, we show that the peak of a pulse travels with the group velocity. The con-

cept of group velocity is associated with narrow-band pulses whose spectrum Ê(0,ω)

is narrowly concentrated in the neighborhood of some frequency, say, ω0, with an ef-

fective frequency band |ω−ω0| ≤ Δω, where Δω≪ω0, as depicted in Fig. 3.5.1.

Such spectrum can be made up by translating a low-frequency spectrum, say F̂(0,ω),

toω0, that is, Ê(0,ω)= F̂(0,ω−ω0). From the modulation property of Fourier trans-
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Fig. 3.5.1 High-frequency sinusoid with slowly-varying envelope.

forms, it follows that the corresponding time-domain signal E(0, t) will be:

Ê(0,ω)= F̂(0,ω−ω0) ⇒ E(0, t)= ejω0tF(0, t) (3.5.1)

that is, a sinusoidal carrier modulated by a slowly varying envelope F(0, t), where

F(0, t)= 1

2π

∫∞

−∞
ejω

′tF̂(0,ω′)dω′ = 1

2π

∫∞

−∞
ej(ω−ω0)tF̂(0,ω−ω0)dω (3.5.2)

Because the integral overω′ =ω−ω0 is effectively restricted over the low-frequency

band |ω′| ≤ Δω, the resulting envelope F(0, t) will be slowly-varying (relative to the

period 2π/ω0 of the carrier.) If this pulse is launched into a dispersive medium with

wavenumber k(ω), the propagated pulse to distance z will be given by:

E(z, t)= 1

2π

∫∞

−∞
ej(ωt−kz)F̂(0,ω−ω0)dω (3.5.3)

Defining k0 = k(ω0), we may rewrite E(z, t) in the form of a modulated plane wave:

E(z, t)= ej(ω0t−k0z)F(z, t) (3.5.4)

where the propagated envelope F(z, t) is given by

F(z, t)= 1

2π

∫∞

−∞
ej(ω−ω0)t−j(k−k0)z F̂(0,ω−ω0)dω (3.5.5)

This can also be written in a convolutional form by defining the envelope impulse

response function g(z, t) in terms of the propagator impulse response h(z, t):

h(z, t)= ej(ω0t−k0z)g(z, t) (3.5.6)

so that

g(z, t)= 1

2π

∫∞

−∞
ej(ω−ω0)t−j(k−k0)z dω (3.5.7)

Then, the propagated envelope can be obtained by the convolutional operation:

F(z, t)=
∫∞

−∞
g(z, t′)F(0, t − t′)dt′ (3.5.8)
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Because F̂(0,ω −ω0) restricts the effective range of integration in Eq. (3.5.5) to a

narrow band aboutω0, one can expand k(ω) to a Taylor series aboutω0 and keep only

the first few terms:

k(ω)= k0 + k′0(ω−ω0)+1

2
k′′0 (ω−ω0)

2+· · · (3.5.9)

where

k0 = k(ω0) , k′0 =
dk

dω

∣
∣
∣
∣
ω0

, k′′0 =
d2k

dω2

∣
∣
∣
∣
∣
ω0

(3.5.10)

If k(ω) is real, we recognize k′0 as the inverse of the group velocity at frequency ω0:

k′0 =
dk

dω

∣
∣
∣
∣
ω0

= 1

vg
(3.5.11)

If k′0 is complex-valued, k′0 = β′0 − jα′0, then its real part determines the group velocity

through β′0 = 1/vg, or, vg = 1/β′0. The second derivative k′′0 is referred to as the

“dispersion coefficient” and is responsible for the spreading and chirping of the wave

packet, as we see below.

Keeping up to the quadratic term in the quantity k(ω)−k0 in (3.5.5), and changing

integration variables to ω′ =ω−ω0, we obtain the approximation:

F(z, t)= 1

2π

∫∞

−∞
ejω

′(t−k′0z)−jk′′0 zω′2/2F̂(0,ω′)dω′ (3.5.12)

In the linear approximation, we may keep k′0 and ignore the k′′0 term, and in the

quadratic approximation, we keep both k′0 and k′′0 . For the linear case, we have by

comparing with Eq. (3.5.2):

F(z, t)= 1

2π

∫∞

−∞
ejω

′(t−k′0z)F̂(0,ω′)dω′ = F(0, t − k′0z) (3.5.13)

Thus, assuming that k′0 is real so that k′0 = 1/vg, Eq. (3.5.13) implies that the initial

envelope F(0, t) is moving as whole with the group velocity vg. The field E(z, t) is

obtained by modulating the high-frequency plane wave ej(ω0t−k0z) with this envelope:

E(z, t)= ej(ω0t−k0z) F(0, t − z/vg) (3.5.14)

Every point on the envelope travels at the same speed vg, that is, its shape remains

unchanged as it propagates, as shown in Fig. 3.5.2. The high-frequency carrier suffers a

phase-shift given by −k0z.

Similar approximations can be introduced in (3.5.7) anticipating that (3.5.8) will be

applied only to narrowband input envelope signals F(0, t):

g(z, t)= 1

2π

∫∞

−∞
ejω

′(t−k′0z)−jk′′0 zω′2/2 dω′ (3.5.15)
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Fig. 3.5.2 Pulse envelope propagates with velocity vg remaining unchanged in shape.

This integral can be done exactly, and leads to the following expressions in the linear

and quadratic approximation cases (assuming that k′0, k
′′
0 are real):

linear: g(z, t)= δ(t − k′0z)

quadratic: g(z, t)= 1
√

2πjk′′0 z
exp

[

−(t − k
′
0z)

2

2jk′′0 z

]

(3.5.16)

The corresponding frequency responses follow from Eq. (3.5.15), replacing ω′ by ω:

linear: G(z,ω)= e−jk′0zω
quadratic: G(z,ω)= e−jk′0zωe−jk′′0 zω2/2

(3.5.17)

The linear case is obtained from the quadratic one in the limit k′′0 → 0. We note that

the integral of Eq. (3.5.15), as well as the gaussian pulse examples that we consider later,

are special cases of the following Fourier integral:

1

2π

∫∞

−∞
ejωt−(a+jb)ω

2/2 dω = 1
√

2π(a+ jb) exp

[

− t2

2(a+ jb)

]

(3.5.18)

where a,b are real, with the restriction that a ≥ 0.† The integral for g(z, t) corresponds

to the case a = 0 and b = k′′0 z. Using (3.5.16) into (3.5.8), we obtain Eq. (3.5.13) in the

linear case and the following convolutional expression in the quadratic one:

linear: F(z, t)= F(0, t − k′0z)

quadratic: F(z, t)=
∫∞

−∞
1

√

2πjk′′0 z
exp

[

−(t
′ − k′0z)2

2jk′′0 z

]

F(0, t − t′)dt′ (3.5.19)

and in the frequency domain:

linear: F̂(z,ω)= G(z,ω)F̂(0,ω)= e−jk′0zωF̂(0,ω)
quadratic: F̂(z,ω)= G(z,ω)F̂(0,ω)= e−jk′0zω−jk′′0 zω2/2F̂(0,ω)

(3.5.20)

†Given the polar form a+ jb = Rejθ, we must choose the square root
√

a+ jb = R1/2ejθ/2 .



3.6. Group Velocity Dispersion and Pulse Spreading 99

3.6 Group Velocity Dispersion and Pulse Spreading

In the linear approximation, the envelope propagates with the group velocity vg, re-

maining unchanged in shape. But in the quadratic approximation, as a consequence of

Eq. (3.5.19), it spreads and reduces in amplitude with distance z, and it chirps. To see

this, consider a gaussian input pulse of effective width τ0:

F(0, t)= exp

[

− t2

2τ2
0

]

⇒ E(0, t)= ejω0tF(0, t)= ejω0t exp

[

− t2

2τ2
0

]

(3.6.1)

with Fourier transforms F̂(0,ω) and Ê(0,ω)= F̂(0,ω−ω0):

F̂(0,ω)=
√

2πτ2
0 e

−τ2
0ω

2/2 ⇒ Ê(0,ω)=
√

2πτ2
0 e

−τ2
0(ω−ω0)

2/2 (3.6.2)

with an effective width Δω = 1/τ0. Thus, the condition Δω ≪ ω0 requires that

τ0ω0 ≫ 1, that is, an envelope with a long duration relative to the carrier’s period.

The propagated envelope F(z, t) can be determined either from Eq. (3.5.19) or from

(3.5.20). Using the latter, we have:

F̂(z,ω)=
√

2πτ2
0 e

−jk′0zω−jk′′0 zω2/2e−τ
2
0ω

2/2 =
√

2πτ2
0 e

−jk′0zωe−(τ
2
0+jk′′0 z)ω2/2 (3.6.3)

The Fourier integral (3.5.18), then, gives the propagated envelope in the time domain:

F(z, t)=
√
√
√
√

τ2
0

τ2
0 + jk′′0 z

exp

[

− (t − k′0z)2

2(τ2
0 + jk′′0 z)

]

(3.6.4)

Thus, effectively we have the replacementτ2
0 → τ2

0+jk′′0 z. Assuming for the moment

that k′0 and k′′0 are real, we find for the magnitude of the propagated pulse:

|F(z, t)| =
[

τ4
0

τ4
0 + (k′′0 z)2

]1/4

exp

[

− (t − k′0z)2 τ2
0

2
(

τ4
0 + (k′′0 z)2

)

]

(3.6.5)

where we used the property |τ2
0 + jk′′0 z| =

√

τ4
0 + (k′′0 z)2. The effective width is deter-

mined from the argument of the exponent to be:

τ2 = τ4
0 + (k′′0 z)2

τ2
0

⇒ τ =
⎡

⎣τ2
0 +

(

k′′0 z
τ0

)2
⎤

⎦

1/2

(3.6.6)

Therefore, the pulse width increases with distance z. Also, the amplitude of the

pulse decreases with distance, as measured for example at the peak maximum:

|F|max =
[

τ4
0

τ4
0 + (k′′0 z)2

]1/4

The peak maximum occurs at the group delay t = k′0z, and hence it is moving at the

group velocity vg = 1/k′0.

The effect of pulse spreading and amplitude reduction due to the term k′′0 is referred

to as group velocity dispersion or chromatic dispersion. Fig. 3.6.1 shows the amplitude
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Fig. 3.6.1 Pulse spreading and chirping.

decrease and spreading of the pulse with distance, as well as the chirping effect (to be

discussed in the next section.)

Because the frequency width is Δω = 1/τ0, we may write the excess time spread

Δτ = k′′0 z/τ0 in the formΔτ = k′′0 zΔω. This can be understood in terms of the change

in the group delay. It follows from tg = z/vg = k′z that the change in tg due to Δω

will be:

Δtg =
dtg

dω
Δω = dk′

dω
zΔω = d2k

dω2
zΔω = k′′zΔω (3.6.7)

which can also be expressed in terms of the free-space wavelength λ = 2πc/ω:

Δtg =
dtg

dλ
Δλ = dk′

dλ
zΔλ = DzΔλ (3.6.8)

where D is the “dispersion coefficient”

D = dk′

dλ
= −2πc

λ2

dk′

dω
= −2πc

λ2
k′′ (3.6.9)

where we replaced dλ = −(λ2/2πc)dω. Since k′ is related to the group refractive

index ng by k′ = 1/vg = ng/c, we may obtain an alternative expression for D directly

in terms of the refractive index n. Using Eq. (1.18.6), that is, ng = n− λdn/dλ, we find

D = dk′

dλ
= 1

c

dng

dλ
= 1

c

d

dλ

[

n− λdn
dλ

]

= −λ
c

d2n

dλ2
(3.6.10)

Combining Eqs. (3.6.9) and (3.6.10), we also have:

k′′ = λ3

2πc2

d2n

dλ2
(3.6.11)

In digital data transmission using optical fibers, the issue of pulse broadening as

measured by (3.6.8) becomes important because it limits the maximum usable bit rate,

or equivalently, the maximum propagation distance. The interpulse time interval of, say,

Tb seconds by which bit pulses are separated corresponds to a data rate of fb = 1/Tb
bits/second and must be longer than the broadening time, Tb > Δtg, otherwise the

broadened pulses will begin to overlap preventing their clear identification as separate.
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This limits the propagation distance z to a maximum value:†

DzΔλ ≤ Tb = 1

fb
⇒ z ≤ 1

fbDΔλ
= 1

fb k′′Δω
(3.6.12)

Because D = Δtg/zΔλ, the parameter D is typically measured in units of picosec-

onds per km per nanometer—the km referring to the distance z and the nm to the

wavelength spread Δλ. Similarly, the parameter k′′ = Δtg/zΔω is measured in units of

ps2/km. As an example, we used the Sellmeier model for fused silica given in Eq. (1.11.16)

to plot in Fig. 3.6.2 the refractive index n(λ) and the dispersion coefficientD(λ) versus

wavelength in the range 1 ≤ λ ≤ 1.6 μm.
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Fig. 3.6.2 Refractive index and dispersion coefficient of fused silica.

We observe that D vanishes, and hence also k′′ = 0, at about λ = 1.27 μm corre-

sponding to dispersionless propagation. This wavelength is referred to as a “zero dis-

persion wavelength.” However, the preferred wavelength of operation is λ = 1.55 μm

at which fiber losses are minimized. At λ = 1.55, we calculate the following refractive

index values from the Sellmeier equation:

n = 1.444 ,
dn

dλ
= −11.98×10−3 μm−1 ,

d2n

dλ2
= −4.24×10−3 μm−2 (3.6.13)

resulting in the group index ng = 1.463 and group velocity vg = c/ng = 0.684c. Using

(3.6.10) and (3.6.11), the calculated values of D and k′′ are:

D = 21.9
ps

km · nm
, k′′ = −27.9

ps2

km
(3.6.14)

The ITU-G.652 standard single-mode fiber [240] has the following nominal values of

the dispersion parameters at λ = 1.55 μm:

D = 17
ps

km · nm
, k′′ = −21.67

ps2

km
(3.6.15)

†where the absolute values of D,k′′ must be used in Eq. (3.6.12).
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with the dispersion coefficient D(λ) given approximately by the fitted linearized form

in the neighborhood of 1.55 μm:

D(λ)= 17+ 0.056(λ− 1550)
ps

km · nm
, with λ in units of nm

Moreover, the standard fiber has a zero-dispersion wavelength of about 1.31 μm and

an attenuation constant of about 0.2 dB/km.

We can use the values in (3.6.15) to get a rough estimate of the maximum propagation

distance in a standard fiber. We assume that the data rate is fb = 40 Gbit/s, so that the

interpulse spacing is Tb = 25 ps. For a 10 picosecond pulse, i.e., τ0 = 10 ps and Δω =
1/τ0 = 0.1 rad/ps, we estimate the wavelength spread to be Δλ = (λ2/2πc)Δω =
0.1275 nm at λ = 1.55 μm. Using Eq. (3.6.12), we find the limit z ≤ 11.53 km—a

distance that falls short of the 40-km and 80-km recommended lengths.

Longer propagation lengths can be achieved by using dispersion compensation tech-

niques, such as using chirped inputs or adding negative-dispersion fiber lengths. We

discuss chirping and dispersion compensation in the next two sections.

The result (3.6.4) remains valid [197], with some caveats, when the wavenumber is

complex valued, k(ω)= β(ω)−jα(ω). The parameters k′0 = β′0 − jα′0 and k′′0 =
β′′0 − jα′′0 can be substituted in Eqs. (3.6.3) and (3.6.4):

F̂(z,ω)=
√

2πτ2
0 e

−j(β′0−jα′0)zω e−
(

τ2
0+(α′′0 +jβ′′0 )z

)

ω2/2

F(z, t)=
√
√
√
√

τ2
0

τ2
0 +α′′0 z+ jβ′′0 z

exp

[

−
(

t − (β′0 − jα′0)z
)2

2(τ2
0 +α′′0 z+ jβ′′0 z)

] (3.6.16)

The Fourier integral (3.5.18) requires that the real part of the effective complex width

τ2
0 + jk′′0 z = (τ2

0 + α′′0 z)+jβ′′0 z be positive, that is, τ2
0 + α′′0 z > 0. If α′′0 is negative,

this condition limits the distances z over which the above approximations are valid. The

exponent can be written in the form:

−
(

t − (β′0 − jα′0)z
)2

2(τ2
0 +α′′0 z+ jβ′′0 z)

= −(t − β
′
0z+ jα′oz)2(τ2

0 +α′′0 z− jβ′′0 z)
2
[

(τ2
0 +α′′0 z)2+(β′′0 z)2

] (3.6.17)

Separating this into its real and imaginary parts, one can show after some algebra

that the magnitude of F(z, t) is given by:†

|F(z, t)| =
[

τ4
0

(τ2
0 +α′′0 z)2+(β′′0 z)2

]1/4

exp

[

α′20 z2

2(τ2
0 +α′′0 z)

]

· exp

[

−(t − tg)
2

2τ2

]

(3.6.18)

where the peak of the pulse does not quite occur at the ordinary group delay tg = β′0z,

but rather at the effective group delay:

tg = β′0z−
α′0β

′′
0 z

2

τ2
0 +α′′0 z

†note that if F = AeB, then |F| = |A|eRe(B).
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The effective width of the peak generalizes Eq. (3.6.6)

τ2 = τ2
0 +α′′0 z+

(β′′0 z)2

τ2
0 +α′′0 z

From the imaginary part of Eq. (3.6.17), we observe two additional effects. First, the

non-zero coefficient of the jt term is equivalent to a z-dependent frequency shift of the

carrier frequency ω0, and second, from the coefficient of jt2/2, there will be a certain

amount of chirping as discussed in the next section. The frequency shift and chirping

coefficient (generalizing Eq. (3.7.6)) turn out to be:

Δω0 = −
α′oz(τ

2
0 +α′′0 z)

(τ2
0 +α′′0 z)2+(β′′0 z)2

, ω̇0 =
β′′0 z

(τ2
0 +α′′0 z)2+(β′′0 z)2

In most applications and in the fast and slow light experiments that have been carried

out thus far, care has been taken to minimize these effects by operating in frequency

bands where α′0,α
′′
0 are small and by limiting the propagation distance z.

3.7 Propagation and Chirping

A chirped sinusoid has an instantaneous frequency that changes linearly with time,

referred to as linear frequency modulation (FM). It is obtained by the substitution:

ejω0t → ej(ω0t+ω̇0t
2/2) (3.7.1)

where the “chirping parameter” ω̇0 is a constant representing the rate of change of the

instantaneous frequency. The phaseθ(t) and instantaneous frequency θ̇(t)= dθ(t)/dt
are for the above sinusoids:

θ(t)=ω0t → θ(t)=ω0t + 1

2
ω̇0t

2

θ̇(t)=ω0 → θ̇(t)=ω0 + ω̇0t
(3.7.2)

The parameter ω̇0 can be positive or negative resulting in an increasing or decreasing

instantaneous frequency. A chirped gaussian pulse is obtained by modulating a chirped

sinusoid by a gaussian envelope:

E(0, t)= ej(ω0t+ω̇0t
2/2) exp

[

− t2

2τ2
0

]

= ejω0t exp

[

− t2

2τ2
0

(1− jω̇0τ
2
0)

]

(3.7.3)

which can be written in the following form, in the time and frequency domains:

E(0, t)= ejω0t exp

[

− t2

2τ2
chirp

]

⇔ Ê(0,ω)=
√

2πτ2
chirp e

−τ2
chirp(ω−ω0)

2/2 (3.7.4)

where τ2
chirp is an equivalent complex-valued width parameter defined by:

τ2
chirp =

τ2
0

1− jω̇0τ
2
0

= τ2
0(1+ jω̇0τ

2
0)

1+ ω̇2
0τ

4
0

(3.7.5)
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Thus, a complex-valued width is associated with linear chirping. An unchirped gaus-

sian pulse that propagates by a distance z into a medium becomes chirped because it

acquires a complex-valued width, that is, τ2
0 + jk′′0 z, as given by Eq. (3.6.4). Therefore,

propagation is associated with chirping. Close inspection of Fig. 3.6.1 reveals that the

front of the pulse appears to have a higher carrier frequency than its back (in this figure,

we took k′′0 < 0, for normal dispersion). The effective chirping parameter ω̇0 can be

identified by writing the propagated envelope in the form:

F(z, t) =
√
√
√
√

τ2
0

τ2
0 + jk′′0 z

exp

[

− (t − k′0z)2

2(τ2
0 + jk′′0 z)

]

=
√
√
√
√

τ2
0

τ2
0 + jk′′0 z

exp

[

− (t − k′0z)2

2
(

τ4
0 + (k′′0 z)2

)(τ2
0 − jk′′0 z)

]

Comparing with (3.7.3), we identify the chirping parameter due to propagation:

ω̇0 =
k′′0 z

τ4
0 + (k′′0 z)2

(3.7.6)

If a chirped gaussian input is launched into a propagation medium, then the chirping

due to propagation will combine with the input chirping. The two effects can some-

times cancel each other leading to pulse compression rather than spreading. Indeed, if

the chirped pulse (3.7.4) is propagated by a distance z, then according to (3.6.4), the

propagated envelope will be:

F(z, t)=
√
√
√
√

τ2
chirp

τ2
chirp + jk′′0 z

exp

[

− (t − k′0z)2

2(τ2
chirp + jk′′0 z)

]

(3.7.7)

The effective complex-valued width parameter will be:

τ2
chirp + jk′′0 z =

τ2
0(1+ jω̇0τ

2
0)

1+ ω̇2
0τ

4
0

+ jk′′0 z =
τ2

0

1+ ω̇2
0τ

4
0

+ j
(

ω̇0τ
4
0

1+ ω̇2
0τ

4
0

+ k′′0 z
)

(3.7.8)

If ω̇0 is selected such that

ω̇0τ
4
0

1+ ω̇2
0τ

4
0

= −k′′0 z0

for some positive distance z0, then the effective width (3.7.8) can be written as:

τ2
chirp + jk′′0 z =

τ2
0

1+ ω̇2
0τ

4
0

+ jk′′0 (z− z0) (3.7.9)

and as z increases over the interval 0 ≤ z ≤ z0, the pulse width will be getting narrower,

becoming the narrowest at z = z0. Beyond, z > z0, the pulse width will start increasing

again. Thus, the initial chirping and the chirping due to propagation cancel each other

at z = z0. Some dispersion compensation methods are based on this effect.
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3.8 Dispersion Compensation

The filtering effect of the propagation medium is represented in the frequency domain by

F̂(z,ω)= G(z,ω)F̂(0,ω), where the transfer functionG(z,ω) is given by Eq. (3.5.20).

To counteract the effect of spreading, a compensation filter Hcomp(ω) may be in-

serted at the end of the propagation medium as shown in Fig. 3.8.1 that effectively

equalizes the propagation response, up to a prescribed delay td, that is,

G(z,ω)Hcomp(ω)= e−jωtd ⇒ Hcomp(ω)= e−jωtd

G(z,ω)
(3.8.1)

Fig. 3.8.1 Dispersion compensation filters.

The overall compensated output will be the input delayed by td, that is, Fcomp(z, t)=
F(0, t − td). For example, if the delay is chosen to be the group delay td = tg = k′0z,

then, in the quadratic approximation for G(z,ω), condition (3.8.1) reads:

G(z,ω)Hcomp(ω)= e−jk
′
0zωe−jk

′′
0 zω

2/2Hcomp(ω)= e−jk
′
0zω

which gives for the compensation filter:

Hcomp(ω)= ejk
′′
0 zω

2/2 (3.8.2)

with impulse response:

hcomp(t)= 1
√

−2πjk′′0 z
exp

[

t2

2jk′′0 z

]

(3.8.3)

The output of the compensation filter will then agree with that of the linear approx-

imation case, that is, it will be the input delayed as a whole by the group delay:

Fcomp(z,ω)= Hcomp(ω)F̂(z,ω)= Hcomp(ω)G(z,ω)F̂(0,ω)= e−jk
′
0zωF̂(0,ω)

or, in the time domain, Fcomp(z, t)= F(0, t − k′0z).
As shown in Fig. 3.8.1, it is possible [232] to insert the compensation filter at the

input end. The pre-compensated input then suffers an equal and opposite dispersion as

it propagates by a distance z, resulting in the same compensated output. As an example,

an input gaussian and its pre-compensated version will be:

F̂(0,ω)=
√

2πτ2
0 e

−τ2
0ω

2/2, F̂comp(0,ω)= Hcomp(ω)F̂(0,ω)=
√

2πτ2
0 e

−(τ2
0−jk′′0 z)ω2/2
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and in the time domain:

F(0, t)= exp

[

− t2

2τ2
0

]

, Fcomp(0, t)=
√
√
√
√

τ2
0

τ2
0 − jk′′0 z

exp

[

− t2

2(τ2
0 − jk′′0 z)

]

This corresponds to a chirped gaussian input with a chirping parameter opposite

that of Eq. (3.7.6). If the pre-compensated signal is propagated by a distance z, then its

new complex-width will be, (τ2
0 − jk′′0 z)+jk′′0 z = τ2

0, and its new amplitude:

√
√
√
√

τ2
0

τ2
0 − jk′′0 z

√
√
√
√

τ2
0 − jk′′0 z

(τ2
0 − jk′′0 z)+jk′′0 z

= 1

thus, including the group delay, the propagated signal will be Fcomp(z, t)= F(0, t−k′0z).
There are many ways of implementing dispersion compensation filters in optical

fiber applications, such as using appropriately chirped inputs, or using fiber delay-line

filters at either end, or appending a length of fiber that has equal end opposite disper-

sion. The latter method is one of the most widely used and is depicted below:

To see how it works, let the appended fiber have length z1 and group delay and

dispersion parameters k′1, k
′′
1 . Then, its transfer function will be:

G1(z1,ω)= e−jk
′
1z1ωe−jk

′′
1 z1ω

2/2

The combined transfer function of propagating through the main fiber of length z

followed by z1 will be:

G(z,ω)G1(z1,ω) = e−jk
′
0zωe−jk

′′
0 zω

2/2e−jk
′
1z1ωe−jk

′′
1 z1ω

2/2

= e−j(k′0z+k′1z1)ωe−j(k
′′
0 z+k′′1 z1)ω

2/2
(3.8.4)

If k′′1 has the opposite sign from k′′0 and z1 is chosen such that k′′0 z+ k′′1 z1 = 0, or,

k′′1 z1 = −k′′0 z, then the dispersion will be canceled. Thus, up to a delay, G1(z1,ω) acts

just like the required compensation filter Hcomp(ω). In practice, the appended fiber is

manufactured to have |k′′1 | ≫ |k′′0 |, so that its length will be short, z1 = −k′′0 z/k′′1 ≪ z.

3.9 Slow, Fast, and Negative Group Velocities

The group velocity approximations of Sec. 3.5 are valid when the signal band is narrowly

centered about a carrier frequencyω0 around which the wavenumber k(ω) is a slowly-

varying function of frequency to justify the Taylor series expansion (3.5.9).

The approximations are of questionable validity in spectral regions where the wave-

number, or equivalently, the refractive index n(ω), are varying rapidly with frequency,

such as in the immediate vicinity of absorption or gain resonances in the propaga-

tion medium. However, even in such cases, the basic group velocity approximation,
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F(z, t)= F(0, t − z/vg), can be justified provided the signal bandwidth Δω is suffi-

ciently narrow and the propagation distance z is sufficiently short to minimize spread-

ing and chirping; for example, in the gaussian case, this would require the condition

|k′′0 z| ≪ τ2
0, or, |k′′0 z(Δω)2| ≪ 1, as well as the condition | Im(k0)z| ≪ 1 to minimize

amplitude distortions due to absorption or gain.

Because near resonances the group velocity vg can be subluminal, superluminal, or

negative, this raises the issue of how to interpret the result F(z, t)= F(0, t−z/vg). For

example, if vg is negative within a medium of thickness z, then the group delay tg = z/vg
will be negative, corresponding to a time advance, and the envelope’s peak will appear

to exit the medium before it even enters it. Indeed, experiments have demonstrated

such apparently bizarre behavior [262,263,281]. As we mentioned in Sec. 3.2, this is

not at odds with relativistic causality because the peaks are not necessarily causally

related—only sharp signal fronts may not travel faster than c.

The gaussian pulses used in the above experiments do not have a sharp front. Their

(infinitely long) forward tail can enter and exit the medium well before the peak does.

Because of the spectral reshaping taking place due to the propagation medium’s re-

sponse e−jk(ω)z, the forward portion of the pulse that is already within the propagation

medium, and the portion that has already exited, can get reshaped into a peak that ap-

pears to have exited before the peak of the input has entered. In fact, before the incident

peak enters the medium, two additional peaks develop caused by the forward tail of the

input: the one that has already exited the medium, and another one within the medium

traveling backwards with the negative group velocity vg. Such backward-moving peaks

have been observed experimentally [309]. We clarify these remarks later on by means

of the numerical example shown in Fig. 3.9.4 and elaborated further in Problem 3.10.

Next, we look at some examples that are good candidates for demonstrating the

above ideas. We recall from Sec. 1.18 the following relationships between wavenumber

k = β − jα, refractive index n = nr − jni, group index ng, and dispersion coefficient

k′′, where all the quantities are functions of the frequency ω:

k = β− jα = ωn

c
= ω(nr − jni)

c

k′ = dk

dω
= 1

c

d(ωn)

dω
= ng

c
⇒ vg = 1

Re(k′)
= c

Re(ng)

k′′ = d2k

dω2
= 1

c

dng

dω
= n′g
c

(3.9.1)

We consider first a single-resonance absorption or gain Lorentz medium with per-

mittivity given by Eq. (1.11.13), that is, having susceptibility χ and refractive index n:

χ = fω2
p

ω2
r −ω2 + jωγ ⇒ n =

√

1+ χ =
√
√
√
√1+ fω2

p

ω2
r −ω2 + jωγ (3.9.2)

where ωr, γ are the resonance frequency and linewidth, and ωp, f are the plasma fre-

quency and oscillator strength. For an absorption medium, we will set f = 1, for a gain

medium, f = −1, and for vacuum, f = 0. To simplify the algebra, we may use the
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approximation (1.18.3), that is,

n =
√

1+ χ ≃ 1+ 1

2
χ = 1+ fω2

p/2

ω2
r −ω2 + jωγ (3.9.3)

This approximation is fairly accurate in the numerical examples that we consider.

The corresponding complex-valued group index follows from (3.9.3):

ng = d(ωn)

dω
= 1+ fω2

p(ω
2 +ω2

r)/2

(ω2
r −ω2 + jωγ)2

(3.9.4)

with real and imaginary parts:

Re(ng) = 1+ fω
2
p(ω

2 +ω2
r)
[

(ω2 −ω2
r)

2−ω2γ2
]

[

(ω2 −ω2
r)2+ω2γ2

]2

Im(ng) =
fω2

pγω(ω
4 −ω4

r)
[

(ω2 −ω2
r)2+ω2γ2

]2

(3.9.5)

Similarly, the dispersion coefficient dng/dω is given by:

n′g =
dng

dω
= fω2

p(ω
3 + 3ω2

rω− jγω2
r)

(ω2
r −ω2 + jωγ)3

(3.9.6)

At resonance, ω =ωr , we find the values:

n = 1− j fω
2
p

2γωr
, ng = 1− fω

2
p

γ2
(3.9.7)

For an absorption medium (f = 1), if ωp < γ, the group index will be 0 < ng < 1,

resulting into a superluminal group velocity vg = c/ng > c, but if γ < ωp, which is the

more typical case, then the group index will become negative, resulting into a negative

vg = c/ng < 0. This is illustrated in the top row of graphs of Fig. 3.9.1. On the other

hand, for a gain medium (f = −1), the group index is always ng > 1 at resonance,

resulting into a subluminal group velocity vg = c/ng < c. This is illustrated in the

middle and bottom rows of graphs of Fig. 3.9.1.

Fig. 3.9.1 plots n(ω)= nr(ω)−jni(ω) and Re
[

ng(ω)
]

versus ω, evaluated us-

ing Eqs. (3.9.3) and (3.9.4), with the frequency axis normalized in units of ω/ωr . The

following values of the parameters were used (with arbitrary frequency units):

(top row) f = +1 , ωp = 1 , ωr = 5 , γ = 0.4

(middle row) f = −1 , ωp = 1 , ωr = 5 , γ = 0.4

(bottom row) f = −1 , ωp = 1 , ωr = 5 , γ = 0.2

The calculated values of n,ng at resonance were:

(top) ω =ωr , n = 1− 0.25j , ng = −5.25

(middle) ω =ωr , n = 1+ 0.25j , ng = 7.25

(bottom) ω =ωr , n = 1+ 0.5j , ng = 26
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Fig. 3.9.1 Slow, fast, and negative group velocities (at off resonance).

Operating at resonance is not a good idea because of the fairly substantial amounts

of attenuation or gain arising from the imaginary part ni of the refractive index, which

would cause amplitude distortions in the signal as it propagates.

A better operating frequency band is at off resonance where the attenuation or gain

are lower [268]. The top row of Fig. 3.9.1 shows such a band centered at a frequencyω0

on the right wing of the resonance, with a narrow enough bandwidth to justify the Taylor

series expansion (3.5.9). The group velocity behavior is essentially the reverse of that at

resonance, that is, vg becomes subluminal for the absorption medium, and superluminal

or negative for the gain medium. The carrier frequencyω0 and the calculated values of

n,ng at ω =ω0 were as follows:

(top, slow) ω0/ωr = 1.12 , n = 0.93− 0.02j , ng = 1.48+ 0.39j

(middle, fast) ω0/ωr = 1.12 , n = 1.07+ 0.02j , ng = 0.52− 0.39j

(bottom, negative) ω0/ωr = 1.07 , n = 1.13+ 0.04j , ng = −0.58− 1.02j

We note the sign and magnitude of Re(ng) and the substantially smaller values of

the imaginary part ni. For the middle graph, the group index remains in the interval
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0 < Re(ng)< 1, and hence vg > c, for all values of the frequency in the right wing of

the resonance.

In order to get negative values for Re(ng) and for vg, the linewidth γ must be re-

duced. As can be seen in the bottom row of graphs, Re(ng) becomes negative over a

small range of frequencies to the right and left of the resonance. The edge frequencies

can be calculated from the zero-crossings of Re(ng) and are shown on the graph. For

the given parameter values, they were found to be (in units of ω/ωr):

[0.9058, 0.9784] , [1.0221, 1.0928]

The chosen value of ω0/ωr = 1.07 falls inside the right interval.

Another way of demonstrating slow, fast, or negative group velocities with low at-

tenuation or gain, which has been used in practice, is to operate at a frequency band

that lies between two nearby absorption or gain lines.
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Fig. 3.9.2 Slow, fast, and negative group velocities (halfway between resonances).

Some examples are shown in Fig. 3.9.2. The top row of graphs depicts the case of

two nearby absorption lines. In the band between the lines, the refractive index exhibits
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normal dispersion. Exactly at midpoint, the attenuation is minimal and the real part

nr has a steep slope that causes a large group index, Re(ng)≫ 1, and hence a small

positive group velocity 0 < vg ≪ c. In experiments, very sharp slopes have been

achieved through the use of the so-called “electromagnetically induced transparency,”

resulting into extremely slow group velocities of the order of tens of m/sec [323].

The middle row of graphs depicts two nearby gain lines [269] with a small gain

at midpoint and a real part nr that has a negative slope resulting into a group index

0 < Re(ng)< 1, and a superluminal group velocity vg > c.

Choosing more closely separated peaks in the third row of graphs, has the effect of

increasing the negative slope of nr , thus causing the group index to become negative

at midpoint, Re(ng)< 0, resulting in negative group velocity, vg < 0. Experiments

demonstrating this behavior have received a lot of attention [281].

The following expressions were used in Fig. 3.9.2 for the refractive and group indices,

with f = 1 for the absorption case, and f = −1 for the gain case:

n = 1+ fω2
p/2

ω2
1 −ω2 + jωγ +

fω2
p/2

ω2
2 −ω2 + jωγ

ng = 1+ fω2
p(ω

2 +ω2
1)/2

(ω2
1 −ω2 + jωγ)2

+ fω2
p(ω

2 +ω2
2)/2

(ω2
2 −ω2 + jωγ)2

(3.9.8)

The two peaks were symmetrically placed about the midpoint frequency ω0, that

is, at ω1 = ω0 − Δ and ω2 = ω0 + Δ, and a common linewidth γ was chosen. The

particular numerical values used in this graph were:

(top, slow) f = +1 , ωp = 1 , ω0 = 5 , Δ = 0.25 , γ = 0.1

(middle, fast) f = −1 , ωp = 1 , ω0 = 5 , Δ = 0.75 , γ = 0.3

(bottom, negative) f = −1 , ωp = 1 , ω0 = 5 , Δ = 0.50 , γ = 0.2

resulting in the following values for n and ng:

(top, slow) n = 0.991− 0.077j , ng = 8.104+ 0.063j

(middle, fast) n = 1.009+ 0.026j , ng = 0.208− 0.021j

(bottom, negative) n = 1.009+ 0.039j , ng = −0.778− 0.032j

Next, we look at an example of a gaussian pulse propagating through a medium with

negative group velocity. We consider a single-resonance gain medium and operating

frequency band similar to that shown in the bottom row of graphs in Fig. 3.9.1. This

example is variation of that discussed in [268]. Fig. 3.9.3 shows the geometry.

The gaussian pulse begins in vacuum on the left, then it enters an absorbing medium

of thickness a in which it propagates with a slow group velocity suffering a modest

amount of attenuation. It then enters a vacuum region of width 2a, followed by a gain

medium of thickness a in which it propagates with negative group velocity suffering a

moderate amount gain, and finally it exits into vacuum.

The attenuation and gain are adjusted to compensate each other, so that the final

output vacuum pulse is identical to the input.

The wavenumbers kv, ka, kg, in vacuum, the absorption and gain media are cal-

culated from Eqs. (3.9.1)–(3.9.6) with f = 0,+1,−1, respectively. The analytical and
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Fig. 3.9.3 Absorption and gain media separated by vacuum.

numerical details for this example are outlined in Problem 3.10. Fig. 3.9.4 shows a se-

ries of snapshots. The short vertical arrow on the horizontal axis represents the position

of the peak of an equivalent pulse propagating in vacuum.
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Fig. 3.9.4 Snapshots of pulse propagating through regions of different group velocities.

At t = −50 (in units such that c = 1), the forward tail of the gaussian pulse has

already entered the absorbing medium. Between 0 ≤ t ≤ 120, the peak of the pulse
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has entered the absorbing medium and is being attenuated as it propagates while it lags

behind the equivalent vacuum pulse because vg < c.

At t = 120, while the peak is still in the absorbing medium, the forward tail has

passed through the middle vacuum region and has already entered into the gain medium

where it begins to get amplified. At t = 180, the peak has moved into the middle vacuum

region, but the forward tail has been sufficiently amplified by the gain medium and is

beginning to form a peak whose tail has already exited into the rightmost vacuum region.

At t = 220, the peak is still within the middle vacuum region, but the output peak

has already exited into the right, while another peak has formed at the right side of the

gain medium and begins to move backwards with the negative group velocity, vg < 0.

Meanwhile, the output peak has caught up with the equivalent vacuum peak.

Between 230 ≤ t ≤ 260, the peak within the gain medium continues to move back-

wards while the output vacuum peak moves to the right. As we mentioned earlier, such

output peaks that have exited before the input peaks have entered the gain medium,

including the backward moving peaks, have been observed experimentally [309].

A MATLAB movie of this example may be seen by running the file grvmovie1.m in the

movies subdirectory of the ewa toolbox. See also the movie grvmovie2.m in which the

carrier frequency has been increased and corresponds to a superluminal group velocity

(vg > c) for the gain medium. In this case, which is also described in Problem 3.10, all

the peaks are moving forward.

3.10 Chirp Radar and Pulse Compression

Pulse Radar Requirements

The chirping and dispersion compensation concepts discussed in the previous sections

are applicable also to chirp radar systems. Here, we give a brief introduction to the main

ideas [354] and the need for pulse compression.

In radar, the propagation medium is assumed to be non-dispersive (e.g., air), hence,

it introduces only a propagation delay. Chirping is used to increase the bandwidth of the

transmitted radar pulses, while keeping their time-duration long. The received pulses

are processed by a dispersion compensation filter that cancels the frequency dispersion

introduced by chirping and results in a time-compressed pulse. The basic system is

shown in Fig. 3.10.1. The technique effectively combines the benefits of a long-duration

pulse (improved detectability and Doppler resolution) with those of a broadband pulse

(improved range resolution.)

A typical pulsed radar sends out sinusoidal pulses of some finite duration of, say, T

seconds. A pulse reflected from a stationary target at a distance R returns back at the

radar attenuated and with an overall round-trip delay of td = 2R/c seconds. The range

R is determined from the delay td. An uncertainty in measuring td from two nearby

targets translates into an uncertainty in the range, ΔR = c(Δtd)/2. Because the pulse

has duration T, the uncertainty in td will be Δtd = T, and the uncertainty in the range,

ΔR = cT/2. Thus, to improve the range resolution, a short pulse duration T must be

used.

On the other hand, the detectability of the received pulse requires a certain minimum

value of the signal-to-noise ratio (SNR), which in turn, requires a large value of T. The
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SNR at the receiver is given by

SNR = Erec

N0

= PrecT

N0

wherePrec andErec = PrecT denote the power and energy of the received pulse, andN0 is

the noise power spectral density given in terms of the effective noise temperature Te of

the receiver byN0 = kTe (as discussed in greater detail in Sec. 16.7). It follows from the

radar equation (16.11.4) of Sec. 16.11, that the received power Prec is proportional to the

transmitter power Ptr and inversely proportional to the fourth power of the distance R.

Thus, to keep the SNR at detectable levels for large distances, a large transmitter power

and corresponding pulse energy Etr = PtrT must be used. This can be achieved by

increasing T, while keeping Ptr at manageable levels.

The Doppler velocity resolution, similarly, improves with increasing T. The Doppler

frequency shift for a target moving at a radial velocity v is fd = 2f0v/c, where f0 is

the carrier frequency. We will see below that the uncertainty in fd is given roughly by

Δfd = 1/T. Thus, the uncertainty in speed will be Δv = c(Δfd)/2f0 = c/(2f0T).
The simultaneous conflicting requirements of a short duration T to improve the

resolution in range, and a large durationT to improve the detectability of distant targets

and Doppler resolution, can be realized by sending out a pulse that has both a long

duration T and a very large bandwidth of, say, B Hertz, such that BT ≫ 1. Upon

reception, the received pulse can be compressed with the help of a compression filter to

the much shorter duration of Tcompr = 1/B seconds, which satisfies Tcompr = 1/B≪ T.

The improvement in range resolution will be then ΔR = cTcompr/2 = c/2B.

In summary, the following formulas capture the tradeoffs among the three require-

ments of detectability, range resolution, and Doppler resolution:

SNR = Erec

N0

= PrecT

N0

, ΔR = c

2B
, Δv = c

2f0T
(3.10.1)

For example, to achieve a 30-meter range resolution and a 50 m/s (180 km/hr) veloc-

ity resolution at a 3-GHz carrier frequency, would require B = 5 MHz and T = 1 msec,

resulting in the large time-bandwidth product of BT = 5000.

Such large time-bandwidth products cannot be achieved with plain sinusoidal pulses.

For example, an ordinary, unchirped, sinusoidal rectangular pulse of duration of T sec-

Fig. 3.10.1 Chirp radar system.
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onds has an effective bandwidth of B = 1/T Hertz, and hence, BT = 1. This follows

from the Fourier transform pair:

E(t)= rect

(
t

T

)

ejω0t ⇔ Ê(ω)= T sin
(

(ω−ω0)T/2
)

(ω−ω0)T/2
(3.10.2)

where rect(x) is the rectangular pulse defined with the help of the unit step u(x):

rect(x)= u(x+ 0.5)−u(x− 0.5)=
⎧

⎨

⎩

1, if |x| < 0.5

0, if |x| > 0.5

It follows from (3.10.2) that the 3-dB width of the spectrum is Δω = 0.886(2π)/T,

or in Hz,Δf = 0.886/T, and similarly, the quantityΔf = 1/T represents the 4-dB width.

Thus, the effective bandwidth of the rectangular pulse is 1/T.

Linear FM Signals

It is possible, nevertheless, to have a waveform whose envelope has an arbitrary dura-

tion T while its spectrum has an arbitrary width B, at least in an approximate sense.

The key idea in accomplishing this is to have the instantaneous frequency of the signal

vary—during the duration T of the envelope—over a set of values that span the de-

sired bandwidth B. Such time variation of the instantaneous frequency translates in the

frequency domain to a spectrum of effective width B.

The simplest realization of this idea is through linear FM, or chirping, that corre-

sponds to a linearly varying instantaneous frequency. More complicated schemes exist

that use nonlinear time variations, or, using phase-coding in which the instantaneous

phase of the signal changes by specified amounts during the duration T in such a way

as to broaden the spectrum. A chirped pulse is given by:

E(t)= F(t)ejω0t+jω̇0t
2/2 (3.10.3)

where F(t) is an arbitrary envelope with an effective duration T, defined for example

over the time interval −T/2 ≤ t ≤ T/2. The envelope F(t) can be specified either in the

time domain or in the frequency domain by means of its spectrum F̂(ω):

F̂(ω)=
∫∞

−∞
F(t)e−jωt dt ⇔ F(t)= 1

2π

∫∞

−∞
F̂(ω)ejωt dω (3.10.4)

Typically, F(t) is real-valued and therefore, the instantaneous frequency of (3.10.3)

isω(t)= θ̇(t)=ω0+ ω̇0t. During the time interval −T/2 ≤ t ≤ T/2, it varies over the

band ω0 − ω̇0T/2 ≤ω(t)≤ω0 + ω̇0T/2, (we are assuming here that ω̇0 > 0.) Hence,

it has an effective total bandwidth:

Ω = ω̇0T , or, in units of Hz , B = Ω

2π
= ω̇0T

2π
(3.10.5)

Thus, given T and B, the chirping parameter can be chosen to be ω̇0 = 2πB/T. We

will look at some examples of F(t) shortly and confirm that the spectrum of the chirped

signal E(t) is effectively confined in the band |f − f0| ≤ B/2. But first, we determine

the compression filter.
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Pulse Compression Filter

The received signal reflected from a target is an attenuated and delayed copy of the

transmitted signal E(t), that is,

Erec(t)= aE(t − td)= aF(t − td)ejω0(t−td)+jω̇0(t−td)2/2 (3.10.6)

where a is an attenuation factor determined from the radar equation to be the ratio of

the received to the transmitted powers: a2 = Prec/Ptr.

If the target is moving with a radial velocity v towards the radar, there will be a

Doppler shift by ωd = 2vω0/c. Although this shift affects all the frequency compo-

nents, that is, ω → ω +ωd, it is common to make the so-called narrowband approxi-

mation in which only the carrier frequency is shifted ω0 → ω0 +ωd. This is justified

for radar signals because, even though the bandwidth Ω is wide, it is still only a small

fraction (typically one percent) of the carrier frequency, that is, Ω ≪ ω0. Thus, the

received signal from a moving target is taken to be:

Erec(t)= aE(t − td)ejωd(t−td) = aF(t − td)ej(ω0+ωd)(t−td)+jω̇0(t−td)2/2 (3.10.7)

To simplify the notation, we will ignore the attenuation factor and the delay, which

can be restored at will later, and take the received signal to be:

Erec(t)= E(t)ejωdt = F(t)ej(ω0+ωd)t+jω̇0t
2/2 (3.10.8)

This signal is then processed by a pulse compression filter that will compress the

waveform to a shorter duration. To determine the specifications of the compression

filter, we consider the unrealizable case of a signal that has infinite duration and infinite

bandwidth defined by F(t)= 1, for −∞ < t < ∞. For now, we will ignore the Doppler

shift so that Erec(t)= E(t). Using Eq. (3.5.18), the chirped signal and its spectrum are:

E(t)= ejω0t+jω̇0t
2/2

⇔ Ê(ω)=
√

2πj

ω̇0

e−j(ω−ω0)
2/2ω̇0 (3.10.9)

Clearly, the magnitude spectrum is constant and has infinite extent spanning the en-

tire frequency axis. The compression filter must equalize the quadratic phase spectrum

of the signal, that is, it must have the opposite phase:

Hcompr(ω)= ej(ω−ω0)
2/2ω̇0 (pulse compression filter) (3.10.10)

The corresponding impulse response is the inverse Fourier transform of Eq. (3.10.10):

hcompr(t)=
√

jω̇0

2π
ejω0t−jω̇0t

2/2 (pulse compression filter) (3.10.11)

The resulting output spectrum for the input (3.10.9) will be:

Êcompr(ω)= Hcompr(ω)Ê(ω)=
√

2πj

ω̇0

e−j(ω−ω0)
2/2ω̇0 · ej(ω−ω0)

2/2ω̇0 =
√

2πj

ω̇0



3.10. Chirp Radar and Pulse Compression 117

that is, a constant for all ω. Hence, the input signal gets compressed into a Dirac delta:

Ecompr(t)=
√

2πj

ω̇0

δ(t) (3.10.12)

When the envelope F(t) is a finite-duration signal, the resulting spectrum of the

chirped signal E(t) still retains the essential quadratic phase of Eq. (3.10.9), and there-

fore, the compression filter will still be given by Eq. (3.10.10) for all choices ofF(t). Using

the stationary-phase approximation, Problem 3.17 shows that the quadratic phase is a

general property. The group delay of this filter is given by Eq. (3.2.1):

tg = − d

dω

[

(ω−ω0)
2

2ω̇0

]

= −ω−ω0

ω̇0

= −2π(f − f0)
2πB/T

= −T f − f0
B

As the frequency (f − f0) increases from −B/2 to B/2, the group delay decreases

from T/2 to −T/2, that is, the lower frequency components, which occur earlier in the

chirped pulse, suffer a longer delay through the filter. Similarly, the high frequency

components, which occur later in the pulse, suffer a shorter delay, the overall effect

being the time compression of the pulse.

It is useful to demodulate the sinusoidal carrier ejω0t and writehcompr(t)= ejωotg(t)

andHcompr(ω)= G(ω−ω0), where the demodulated “baseband” filter, which is known

as a quadrature-phase filter, is defined by:

g(t)=
√

jω̇0

2π
e−jω̇0t

2/2 , G(ω)= ejω2/2ω̇0 (quadratic phase filter) (3.10.13)

For an arbitrary envelope F(t), one can derive the following fundamental result that

relates the output of the compression filter (3.10.11) to the Fourier transform, F̂(ω), of

the envelope, when the input is E(t)= F(t)ejω0t+jω̇0t
2/2 :

Ecompr(t)=
√

jω̇0

2π
ejω0t−jω̇0t

2/2 F̂(−ω̇0t) (3.10.14)

This result belongs to a family of so-called “chirp transforms” or “Fresnel trans-

forms” that find application in optics, the diffraction effects of lenses [1337], and in

other areas of signal processing, such as for example, the “chirp z-transform” [48]. To

show Eq. (3.10.14), we use the convolutional definition for the filter output:

Ecompr(t) =
∫∞

−∞
hcompr(t − t′)E(t′)dt′

=
√

jω̇0

2π

∫∞

−∞
ejω0(t−t′)−jω̇0(t−t′)2/2 F(t′)ejω0t

′+jω̇0t
′2/2 dt′

=
√

jω̇0

2π
ejω0t−jω̇0t

2/2

∫∞

−∞
F(t′)ej(ω̇0t)t

′
dt′
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where the last integral factor is recognized as F̂(−ω̇0t). As an example, Eq. (3.10.12)

can be derived immediately by noting that F(t)= 1 has the Fourier transform F̂(ω)=
2πδ(ω), and therefore, using Eq. (3.10.14), we have:

Ecompr(t)=
√

jω̇0

2π
ejω0t−jω̇0t

2/2 2πδ(−ω̇0t)=
√

2πj

ω̇0

δ(t)

where we used the property δ(−ω̇0t)= δ(ω̇0t)= δ(t)/ω̇0 and set t = 0 in the expo-

nentials.

The property (3.10.14) is shown pictorially in Fig. 3.10.2. This arrangement can also

be thought of as a real-time spectrum analyzer of the input envelope F(t).

Fig. 3.10.2 Pulse compression filter.

In order to remove the chirping factor e−jω̇0t
2/2, one can prefilter F(t) with the

baseband filter G(ω) and then apply the above result to its output. This leads to a

modified compressed output given by:

Ēcompr(t)=
√

jω̇0

2π
eiω0t F̂(−ω̇0t) (3.10.15)

Fig. 3.10.2 also depicts this property. To show it, we note the identity:

ejω0t−jω̇0t
2/2 F̂(−ω̇0t)= ejω0t

[

e−jω
2/2ω̇0 F̂(ω)

]

ω=−ω̇0t

Thus, if in this expression F̂(ω) is replaced by its prefiltered version G(ω)F̂(ω),

then the quadratic phase factor will be canceled leaving only F̂(ω).

For a moving target, the envelopeF(t) is replaced byF(t)ejωdt, and F̂(ω) is replaced

by F̂(ω−ωd), and similarly, F̂(−ω̇0t) is replaced by F̂(−ω̇0t−ωd). Thus, Eq. (3.10.14)

is modified as follows:

Ecompr(t)=
√

jω̇0

2π
ejω0t−jω̇0t

2/2 F̂
(−(ωd + ω̇0t)

)

(3.10.16)

Chirped Rectangular Pulse

Next, we discuss the practical case of a rectangular envelope of duration T:

F(t)= rect

(
t

T

)

⇒ E(t)= rect

(
t

T

)

ejω0t+jω̇0t
2/2 (3.10.17)
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From Eq. (3.10.2), the Fourier transform of F(t) is,

F̂(ω)= T sin(ωT/2)

ωT/2

Therefore, the output of the compression filter will be:

Ecompr(t)=
√

jω̇0

2π
ejω0t−jω̇0t

2/2 F̂(−ω̇0t)=
√

jω̇0

2π
ejω0t−jω̇0t

2/2T
sin(−ω̇0tT/2)

−ω̇0tT/2

Noting that ω̇0T = Ω = 2πB and that
√

jω̇0T2/2π = √

jBT, we obtain:

Ecompr(t)=
√

jBT ejω0t−jω̇0t
2/2 sin(πBt)

πBt
(3.10.18)

The sinc-function envelope sin(πBt)/πBt has an effective compressed width of

Tcompr = 1/B measured at the 4-dB level. Moreover, the height of the peak is boosted

by a factor of
√
BT.

Fig. 3.10.3 shows a numerical example with the parameter values T = 30 and B = 4

(in arbitrary units), andω0 = 0. The left graph plots the real part of E(t) of Eq. (3.10.17).

The right graph is the real part of Eq. (3.10.18), where because of the factor
√

j, the peak

reaches the maximum value of
√
BT/

√
2.
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Fig. 3.10.3 FM pulse and its compressed version, with T = 30, B = 4, f0 = 0.

We may also determine the Fourier transform of E(t) of Eq. (3.10.17) and verify that

it is primarily confined in the band |f − f0| ≤ B/2. We have:

Ê(ω)=
∫∞

−∞
E(t)e−jωt dt =

∫ T/2

−T/2
ejω0t+jω̇0t

2/2e−jωt dt

After changing variables from t to u = √

ω̇0/π
[

t − (ω −ω0)/ω̇0

]

, this integral

can be reduced to the complex Fresnel integral F(x)= C(x)−jS(x)=
∫ x
0 e

−jπu2/2 du

discussed in greater detail in Appendix F. The resulting spectrum then takes the form:

Ê(ω)=
√

π

ω̇0

e−j(ω−ω0)
2/2ω̇0

[F(w+)−F(w−)
]∗
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which can be written in the normalized form:

Ê(ω)=
√

2πj

ω̇0

e−j(ω−ω0)
2/2ω̇0 D∗(ω) , D(ω)= F(w+)−F(w−)

1− j (3.10.19)

where w± are defined by:

w± =
√

ω̇0

π

(

±T
2
− ω−ω0

ω̇0

)

=
√

2BT

(

±1

2
− f − f0

B

)

(3.10.20)

Eq. (3.10.19) has the expected quadratic phase term and differs from (3.10.9) by the

factor D∗(ω). This factor has a magnitude that is effectively confined within the ideal

band |f − f0| ≤ B/2 and a phase that remains almost zero within the same band, with

both of these properties improving with increasing time-bandwidth product BT.† Thus,

the choice for the compression filter that was made on the basis of the quadratic phase

term is justified.

Fig. 3.10.4 displays the spectrum Ê(ω) for the valuesT = 30 andB = 4, andω0 = 0.

The left and right graphs plot the magnitude and phase of the quantity D∗(ω). For

comparison, the spectrum of an ordinary, unchirped, pulse of the same durationT = 30,

given by Eq. (3.10.2), is also shown on the magnitude graph. The Fresnel functions were

evaluated with the help of the MATLAB function fcs.m of Appendix F. The ripples that

appear in the magnitude and phase are due to the Fresnel functions.
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Fig. 3.10.4 Frequency spectrum of FM pulse, with T = 30, B = 4, f0 = 0.

Doppler Ambiguity

For a moving target causing a Doppler shiftωd, the output will be given by Eq. (3.10.16),

which for the rectangular pulse gives:

Ecompr(t)=
√

jω̇0

2π
ejω0t−jω̇0t

2/2T
sin

(

(ωd + ω̇0t)T/2)

(ωd + ω̇0t)T/2

†The denominator (1− j) in D(ω) is due to the asymptotic value of F(∞)= (1− j)/2.
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Noting that (ωd+ω̇0t)T = 2π(fdT+Bt), and replacing t by t− td to restore the actual

delay of arrival of the received pulse, we obtain:

Ecompr(t, fd)=
√

jBT ejω0(t−td)−jω̇0(t−td)2/2 sin
[

π
(

fdT + B(t − td)
)]

π
(

fdT + B(t − td)
) (3.10.21)

It is seen that the peak of the pulse no longer takes place at t = td, but rather at the

shifted time fdT+B(t− td)= 0, or, t = td− fdT/B, resulting in a potential ambiguity in

the range. Eq. (3.10.21) is an example of an ambiguity function commonly used in radar

to quantify the simultaneous uncertainty in range and Doppler. Setting t = td, we find:

Ecompr(td, fd)=
√

jBT
sin(πfdT)

πfdT
(3.10.22)

which shows that the Doppler resolution isΔfd = 1/T, as we discussed at the beginning.

Sidelobe Reduction

Although the filter output (3.10.18) is highly compressed, it has significant sidelobes

that are approximately 13 dB down from the main lobe. Such sidelobes, referred to as

“range sidelobes,” can mask the presence of small nearby targets.

The sidelobes can be suppressed using windowing, which can be applied either in the

time domain or the frequency domain. To reduce sidelobes in one domain (frequency

or time), one must apply windowing to the conjugate domain (time or frequency).

Because the compressed output envelope is the Fourier transform F̂(ω) evaluated

at ω = −ω̇0t, the sidelobes can be suppressed by applying a time window w(t) of

length T to the envelope, that is, replacing F(t) by Fw(t)= w(t)F(t). Alternatively, to

reduce the sidelobes in the time signal F̂(−ω̇0t), one can apply windowing to its Fourier

transform, which can be determined as follows:

ˆ̂F(ω)=
∫∞

−∞
F̂(−ω̇0t)e

−jωtdt =
∫∞

−∞
F̂(ω′)ejωω

′/ω̇0 dω′/ω̇0 = 2π

ω̇0

F(ω/ω̇0)

that is, the time-domain envelope F(t) evaluated at t = ω/ω̇0. Thus, a time window

w(t) can just as well be applied in the frequency domain in the form:

ˆ̂F(ω)= F(ω/ω̇0) ⇒ ˆ̂Fw(ω)= w(ω/ω̇0)F(ω/ω̇0)

Since w(t) is concentrated over −T/2 ≤ t ≤ T/2, the frequency window w(ω/ω̇0)

will be concentrated over

−T
2
≤ ω

ω̇0

≤ T

2
⇒ −Ω

2
≤ω ≤ Ω

2

whereΩ = ω̇0T = 2πB. For example, a Hamming window, which affords a suppression

of the sidelobes by 40 dB, can be applied in the time or frequency domain:

w(t) = 1+ 2α cos

(
2πt

T

)

, −T
2
≤ t ≤ T

2

w(ω/ω̇0) = 1+ 2α cos

(
2πω

Ω

)

, −Ω
2
≤ω ≤ Ω

2

(3.10.23)
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where 2α = 0.46/0.54, or, α = 0.4259.† The time-domain window can be implemented

in a straightforward fashion using delays. Writing w(t) in exponential form, we have

w(t)= 1+α[e2πjt/T + e−2πjt/T
]

The spectrum of Fw(t)= w(t)F(t)=
(

1+α[e2πjt/T + e−2πjt/T
])

F(t) will be:

F̂w(ω)= F̂(ω)+α
[

F̂(ω− 2π/T)+F̂(ω+ 2π/T)
]

Thus, the envelope of the compressed signal will be:

F̂w(−ω̇0t) = F̂(−ω̇0t)+α
[

F̂(−ω̇0t − 2π/T)+F̂(−ω̇0t + 2π/T)
]

= F̂(−ω̇0t)+α
[

F̂
(−ω̇0(t +Tcompr)

)+ F̂(−ω̇0(t −Tcompr)
)]

where Tcompr = 2πT/ω̇0 = 1/B. It follows that the compressed output will be:

Ecompr(t)=
√

jBT ejω0t−jω̇0t
2/2 [sinc(Bt)+α sinc(Bt + 1)+α sinc(Bt − 1)] (3.10.24)

where sinc(x)= sin(πx)/πx, and we wrote B(t±Tcompr)= (Bt± 1). Fig. 3.10.5 shows

the Hamming windowed chirped pulse and the corresponding compressed output com-

puted from Eq. (3.10.24).
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Fig. 3.10.5 Hamming windowed FM pulse and its compressed version, with T = 30, B = 4.

The price to pay for reducing the sidelobes is a somewhat wider mainlobe width.

Measured at the 4-dB level, the width of the compressed pulse is Tcompr = 1.46/B, as

compared with 1/B in the unwindowed case.

Matched Filter

A more appropriate choice for the compression filter is the matched filter, which maxi-

mizes the receiver’s SNR. Without getting into the theoretical justification, a filter matched

to a transmitted waveform E(t) has the conjugate-reflected impulse response h(t)=
†This definition of w(t) differs from the ordinary Hamming window by a factor of 0.54.
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E∗(−t) and corresponding frequency response H(ω)= Ê∗(ω). In particular for the

rectangular chirped pulse, we have:

E(t)= rect

(
t

T

)

ejω0t+jω̇0t
2/2 ⇒ h(t)= E∗(−t)= rect

(
t

T

)

ejω0t−jω̇0t
2/2 (3.10.25)

which differs from our simplified compression filter by the factor rect(t/T). Its fre-

quency response is given by the conjugate of Eq. (3.10.19)

H(ω)=
√

−2πj

ω̇0

ej(ω−ω0)
2/2ω̇0 D(ω) , D(ω)= F(w+)−F(w−)

1− j (3.10.26)

We have seen that the factor D(ω) is essentially unity within the band |f − f0| ≤
B/2. Thus again, the matched filter resembles the filter (3.10.10) within this band. The

resulting output of the matched filter is remarkably similar to that of Eq. (3.10.18):

Ecompr(t)= ejω0t T
sin(πB|t| −πBt2/T)

πB|t| , for −T ≤ t ≤ T (3.10.27)

while it vanishes for |t| > T.

In practice, the matched/compression filters are conveniently realized either dig-

itally using digital signal processing (DSP) techniques or using surface acoustic wave

(SAW) devices [379]. Similarly, the waveform generator of the chirped pulse may be

realized using DSP or SAW methods. A convenient generation method is to send an

impulse (or, a broadband pulse) to the input of a filter that has as frequency response

H(ω)= Ê(ω), so that the impulse response of the filter is the signal E(t) that we wish

to generate.

Signal design in radar is a subject in itself and the present discussion was only meant

to be an introduction motivated by the similarity to dispersion compensation.

3.11 Further Reading

The topics discussed in this chapter are vast and diverse. The few references given

below are inevitably incomplete.

References [164–187] discuss the relationship between group velocity and energy ve-

locity for lossless or lossy media, as well as the issue of electromagnetic field momentum

and radiation pressure.

Some references on pulse propagation, spreading, chirping, and dispersion compen-

sation in optical fibers, plasmas, and other media are [188–240], while precursors are

discussed in Sommerfeld [1286], Brillouin [188], and [241–253].

Some theoretical and experimental references on fast and negative group velocity

are [254–309]. Circuit realizations of negative group delays are discussed in [310–314].

References [315–346] discuss slow light and electromagnetically induced transparency

and related experiments.

Some references on chirp radar and pulse compression are [347–386]. These include

phase-coding methods, as well as alternative phase modulation methods for Doppler-

resistant applications.
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3.12 Problems

3.1 Using the definitions (3.2.5), show that the group and phase velocities are related by:

vg = vp + β
dvp

dβ

3.2 It was mentioned earlier that when vg > c, the peak of a pulse shifts forward in time as

it propagates. With reference to Fig. 3.2.2, let tpeak be the time of the peak of the initial

pulse E(0, t). First, show that the peak of the propagated pulse E(z, t) occurs at time

tprop = tpeak+z/vg. Then, show that the peak value E(z, tprop) does not depend on the initial

peak E(0, tpeak) but rather it depends causally on the values E(0, t), for t0 ≤ t ≤ tpeak −Δt,
where Δt = z/c − z/vg, which is positive if vg > c. What happens if 0 < vg < c and if

vg < 0?

3.3 Consider case 6 of the exactly solvable examples of Sec. 3.3 describing a lossy transmission

line with distributed parameters L′, C′, R′, G′. The voltage and current along the line satisfy

the so-called telegrapher’s equations:

∂V

∂z
+ L′ ∂I

∂t
+R′I = 0 ,

∂I

∂z
+C′ ∂V

∂t
+G′V = 0 (3.12.1)

The voltage impulse response V(z, t) of the line is given by Eq. (3.3.1), where tf = z/c,

a+ b = R′/L′, a− b = G′/C′, and c = 1/
√
L′C′:

V(z, t)= δ(t − tf)e−atf + e−at
I1
(

b
√

t2 − t2f
)

√

t2 − t2f
btf u(t − tf)

Show that the corresponding current I(z, t) is given by

√

L′

C′
I(z, t)= δ(t − tf)e−atf + e−at

⎡

⎣
I1
(

b
√

t2 − t2f
)

√

t2 − t2f
bt − bI0

(

b
√

t2 − t2f
)

⎤

⎦u(t − tf)

by verifying that V and I satisfy Eqs. (3.12.1). Hint: Use the relationships: I′0(x)= I1(x) and

I′1(x)= I0(x)−I1(x)/x between the Bessel functions I0(x) and I1(x).

Next, show that the Fourier transforms of V(z, t) and I(z, t) are:

V̂(z,ω)= e−γz , Î(z,ω)= e−γz

Z

where γ,Z are the propagation constant and characteristic impedance (see Sec. 11.6):

γ = jk =
√

R′ + jωL′
√

G′ + jωC′ , Z =
√

R′ + jωL′
G′ + jωC′

3.4 Computer Experiment—Transient Behavior. Reproduce the results and graphs of the Figures

3.4.1, 3.4.2, and 3.4.3.

3.5 Consider the propagated envelope of a pulse under the linear approximation of Eq. (3.5.13),

that is, F(z, t)= F(0, t−k′0z), for the case of a complex-valued wavenumber, k′0 = β′0− jα′0.

For a gaussian envelope:

F(z, t)= F(0, t − k′0z)= exp

[

−
(

t − (β′0 − jα′0)z
)2

2τ2
0

]
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Determine an expression for its magnitude |F(z, t)|. Then show that the maximum of

|F(z, t)| with respect to t at a given fixed z is moving with the group velocity vg = 1/β′0.

Alternatively, at fixed t show that the maximum with respect to z of the snapshot |F(z, t)|
is moving with velocity [194]:

v = β′0
β′20 −α′20

3.6 Consider the propagating wave E(z, t)= F(z, t)ejω0t−jk0z. Assuming the quadratic approx-

imation (3.5.9), show that the envelope F(z, t) satisfies the partial differential equation:

(

∂

∂z
+ k′0

∂

∂t
− j k

′′
0

2

∂2

∂t2

)

F(z, t)= 0

Show that the envelope impulse response g(z, t) of Eq. (3.5.16) also satisfies this equation.

And that so does the gaussian pulse of Eq. (3.6.4).

3.7 Let F(z, t) be the narrowband envelope of a propagating pulse as in Eq. (3.5.5). Let z(t)

be a point on the snapshot F(z, t) that corresponds to a particular constant value of the

envelope, that is, F(z(t), t)= constant. Show that the point z(t) is moving with velocity:

ż(t)= − ∂tF
∂zF

Under the linear approximation of Eq. (3.5.13), show that the above expression leads to the

group velocity ż(t)= 1/k′0.

Alteratively, use the condition |F(z, t)|2 = constant, and show that in this case

ż(t)= − Re(∂tF/F)

Re(∂zF/F)

Under the linear approximation and assuming that the initial envelope F(0, t) is real-valued,

show that ż = 1/Re(k′0).

3.8 Given the narrowband envelope F(z, t) of a propagating pulse as in Eq. (3.5.5), show that it

satisfies the identity:

e−j(k−k0)z F̂(0,ω−ω0)=
∫ ∞

−∞
F(z, t)e−j(ω−ω0)t dt

Define the “centroid” time t(z) by the equation

t(z)=
∫∞
−∞ t F(z, t)dt
∫∞
−∞ F(z, t)dt

Using the above identity, show that t(z) satisfies the equation:

t(z)= t(0)+k′0z (3.12.2)

Therefore, t(z) may be thought of as a sort of group delay. Note that no approximations

are needed to obtain Eq. (3.12.2).

3.9 Consider the narrowband envelope F(z, t) of a propagating pulse E(z, t)= F(z, t)ejω0t−jk0z

and assume that the medium is lossless so that k(ω) is real-valued. Show the identity

∫∞

−∞
|E(z, t)|2e−jωt dt = 1

2π

∫ ∞

−∞
ejk(ω

′)z Ê∗(0,ω′) e−jk(ω
′+ω)z Ê(0,ω′ +ω)dω′
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Define the average time delay and average inverse group velocity through:

t̄(z)=
∫∞
−∞ t |F(z, t)|2 dt
∫∞
−∞ |F(z, t)|2 dt

, k̄′0 =
∫∞
−∞ k

′(ω0 +ω)|F̂(0,ω)|2 dω
∫∞
−∞ |F̂(0,ω)|2 dω

where F̂(0,ω) is defined in Eq. (3.5.2). Using the above identity, show the relationship:

t̄(z)= t̄(0)+k̄′0z

3.10 Computer Experiment—Propagation with Negative Group Velocity. Consider the pulse prop-

agation experiment described in Figs. 3.9.3 and 3.9.4, which is a variation of the experiment

in Ref. [268]. The wavenumbers in vacuum, in the absorption and gain media will be de-

noted by kv, ka, kg. They can be calculated from Eqs. (3.9.1)–(3.9.6) with f = 0,+1,−1,

respectively.

Let E(t) and Ê(ω) be the initially launched waveform and its Fourier transform on the

vacuum side of the interface with the absorbing medium at z = 0. Because the refractive

indices n(ω) are very nearly unity, we will ignore all the reflected waves and assume that

the wave enters the successive media with unity transmission coefficient.

a. Show that the wave will be given as follows in the successive media shown in Fig. 3.9.3:

E(z, t)= 1

2π

∫ ∞

−∞
Ê(ω)dω

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ejωt−jkvz if z ≤ 0

ejωt−jkaz if 0 < z ≤ a
ejωt−jkaa−jkv(z−a) if a < z ≤ 3a

ejωt−j(ka+2kv)a−jkg(z−3a) if 3a < z ≤ 4a

ejωt−j(ka+2kv+kg)a−jkv(z−4a) if 4a < z

(3.12.3)

Thus, in each region, the pulse will have the following form, with appropriate defini-

tions of the wavenumbers q(ω), k(ω), and offset d:

E(z, t)= 1

2π

∫ ∞

−∞
Ê(ω)ejωt−jqa−jk(z−d)dω (3.12.4)

b. Consider, next, a gaussian pulse with width τ0, modulating a carrier ω0, defined at

z = 0 as follows:

E(t)= e−t2/2τ2
0 ejω0t ⇔ Ê(ω)=

√

2πτ2
0 e

−τ2
0(ω−ω0)

2/2 (3.12.5)

Assuming a sufficiently narrow bandwidth (small 1/τ0 or large τ0,) the wavenumbers

q(ω) and k(ω) in Eq. (3.12.4) can be expanded up to second order about the carrier

frequency ω0 giving:

q(ω) = q0 + q′0(ω−ω0)+q′′0 (ω−ω0)
2/2

k(ω) = k0 + k′0(ω−ω0)+k′′0 (ω−ω0)
2/2

(3.12.6)

where the quantitiesq0 = q(ω0), q
′
0 = q′(ω0), etc., can be calculated from Eqs. (3.9.1)–

(3.9.6). Inserting these expansions into Eq. (3.12.4), show that the pulse waveform is

given by:

E(z, t) = ejω0t−jq0a−jk0(z−d)

√
√
√
√

τ2
0

τ2
0 + jq′′0 a+ jk′′0 (z− d)

· exp

[

−
(

t − q′0a− k′0(z− d)
)2

2
(

τ2
0 + jq′′0 a+ jk′′0 (z− d)

)

]
(3.12.7)
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c. Assume the following values of the various parameters:

c = 1, ωp = 1, γ = 0.01, ωr = 5, τ0 = 40, a = 50, ω0 = 5.35

The carrier frequency ω0 is chosen to lie in the right wing of the resonance and lies

in the negative-group-velocity range for the gain medium (this range is approximately

[5.005, 5.5005] in the above frequency units.)

Calculate the values of the parameters q0, q′0, q′′0 , k0, k′0, k′′0 within the various ranges

of z as defined by Eq. (3.12.3), and present these values in a table form.

Thus, E(z, t) can be evaluated for each value of t and for all the z’s in the four ranges.

Eq. (3.12.7) can easily be vectorized for each scalar t and a vector of z’s.

Make a MATLAB movie of the pulse envelope
∣
∣E(z, t)

∣
∣, that is, for each successive t,

plot the envelope versus z. Take z to vary over −2a ≤ z ≤ 6a and t over −100 ≤ t ≤
300. Such a movie can be made with the following code fragment:

z = -2*a : 6*a; % vector of z’s

t = -100 : 300; % vector of t’s

for i=1:length(t),

% here insert code that calculates the vector E = E(z, t(i))

plot(z/a, abs(E)); % plot as function of z

xlim([-2,6]); xtick([0,1,3,4]); grid % keep axes the same

ylim([0,1]); ytick(0:1:1); % xtick, ytick are part of ewa

text(-1.8, 0.35, strcat(’t=’,num2str(t(i))), ’fontsize’, 15);

F(:,i) = getframe; % save current frame

end

movie(F); % replay movie - check syntax of movie() for playing options

Discuss your observations, and explain what happens within the absorption and gain

media. An example of such a movie may be seen by running the file grvmovie1.m in

the movies subdirectory of the ewa toolbox.

d. Reproduce the graphs of Fig. 3.9.4 by evaluating the snapshots at the time instants:

t = [−50, 0, 40, 120, 180, 220, 230, 240, 250, 260]

e. For both the absorbing and the gain media, plot the real and imaginary parts of the

refractive index n = nr − jni and the real part of the group index ng versus frequency

in the interval 4 ≤ ω ≤ 6. Indicate on the graph the operating frequency points. For

the gain case, indicate the ranges over which Re(ng) is negative.

f. Repeat Parts c–d for the carrier frequency ω0 = 5.8 which lies in the superluminal

range 0 < Re(ng)< 1.

3.11 Consider Eqs. (3.9.1)–(3.9.6) for the single-resonance Lorentz model that was used in the

previous experiment. Following [268], define the detuning parameters:

ξ = ω−ωr

ωp
, ξ0 = ω0 −ωr

ωp
(3.12.8)

128 3. Pulse Propagation in Dispersive Media

and make the following assumptions regarding the range of these quantities:

γ≪ωp ≪ωr and
ωp

ωr
≪ |ξ| ≪ ωr

ωp
(3.12.9)

Thus, γ/ωp ≪ 1, ωp/ωr ≪ 1, and ξ, ξ0 can be taken to be order of 1. In the above

experiment, they were ξ0 = 0.35 and ξ0 = 0.8.

Show that the wavenumber k(ω), and its first and second derivatives k′(ω), k′′(ω), can be

expressed approximately to first order in the quantities γ/ωp and ωp/ωr as follows [268]:

k(ω) = ω

c

[

1− f

4ξ

ωp

ωr
− j f

8ξ2

(
ωp

ωr

)(

γ

ωp

)]

k′(ω) = 1

c

[

1+ f

4ξ2
+ j f

4ξ3

(

γ

ωp

)]

k′′(ω) = − 1

cωp

[

f

2ξ3
+ j 3f

4ξ4

(

γ

ωp

)]

The group velocity vg is obtained from the real part of k′(ω):

1

vg
= Re[k′(ω)]= 1

c

[

1+ f

4ξ2

]

⇒ vg = c

1+ f

4ξ2

Thus, vg = c in vacuum (f = 0) and vg < c in the absorbing medium (f = 1). For the gain

medium (f = −1), we have vg < 0 if |ξ| < 1/2, and vg > c if |ξ| > 1/2.

Verify that this approximation is adequate for the numerical values given in the previous

problem.

3.12 Consider a chirped pulse whose spectrum has an ideal rectangular shape and an ideal

quadratic phase, where Ω = 2πB and ω̇0 = 2πB/T:

Ê(ω)=
√

2πj

ω̇0

rect

(
ω−ω0

Ω

)

e−j(ω−ω0)
2/2ω̇0

This is the ideal spectrum that all waveforms in chirp radar strive to have. Show that the

corresponding time signal E(t) is given in terms of the Fresnel function F(x) by

E(t)= F(t) ejω0t+jω̇0t
2/2 , F(t)= F(τ+)−F(τ−)

1− j , τ± =
√

2BT

(

±1

2
− t

T

)

Show that the output of the compression filter (3.10.10) is given by

Ecompr(t)=
√

jBT
sin(πBt)

πBt
ejω0t

3.13 Computer Experiment—Pulse Compression. Take T = 30, B = 4, f0 = 0. Plot the real parts of

the signals E(t) and Ecompr(t) of the previous problem versus t over the interval−T ≤ t ≤ T.

Some example graphs are shown in Fig. 3.12.1.

3.14 Consider the following chirped pulse, where ω̇0 = 2πB/T:

E(t)= sin(πt/T)

πt/T
ejω0t+jω̇0t

2/2
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Show that the output of the compression filter (3.10.10) is given by

Ecompr(t)=
√

jBT ejω0t−jω̇0t
2/2 rect(Bt)

Moreover, show that the spectrum of E(t) is given in terms of the Fresnel function F(x) as

follows:

Ê(ω)= F(w+)−F(w−)
1− j , w± =

√

2

BT

(

±1

2
− (f − f0)T

)

3.15 Computer Experiment—Pulse Compression. Take T = 30, B = 4, f0 = 0.

a. Plot the real parts of the signals E(t) and Ecompr(t) of the previous problem over the

interval −T ≤ t ≤ T. Some example graphs are shown in Fig. 3.12.2.

b. Plot the magnitude spectrum |Ê(ω)| in dB versus frequency over the interval −B/2 ≤
f ≤ B/2 (normalize the spectrum to its maximum at f = f0.) Verify that the spectrum

lies essentially within the desired bandwidth B and determine its 4-dB width.

c. Write Ê(ω) in the form:

Ê(ω)= e−j(ω−ω0)
2/2ω̇0 D(ω) , D(ω)= F(w+)−F(w−)

1− j ej(ω−ω0)
2/2ω̇0

Plot the residual phase spectrum Arg
[

D(ω)
]

over the above frequency interval. Verify

that it remains essentially flat, confirming that the phase of Ê(ω) has the expected

quadratic dependence on ω. Show that the small residual constant phase is numeri-

cally is equal to the phase of the complex number (1+ j)F(1/√2BT).
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Fig. 3.12.1 Example graphs for Problem 3.13.

3.16 Consider the chirped gaussian pulse of effective duration T, where ω̇0 = Ω/T:

E(t)= e−t2/2T2
ejω0t+jω̇0t

2/2 , −∞ < t <∞

Show that the output of the compression filter (3.10.10) is given by

Ecompr(t)=
√

jΩT ejω0t−jω̇0t
2/2 e−Ω

2t2/2

which has an effective duration of 1/Ω. Show that the spectrum of E(t) is given by:

Ê(ω)=
√

2πj

ω̇0

e−j(ω−ω0)
2/2/ω̇0

√

ΩT

ΩT + j exp

[

− (ω−ω0)
2

2ω̇0(ΩT + j)

]
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Fig. 3.12.2 Example graphs for Problem 3.15.

Show that in the limit of large time-bandwidth product,ΩT≫ 1, the last exponential factor

becomes

exp

[

−(ω−ω0)
2

2Ω2

]

which shows that the effective width of the chirped spectrum is Ω.

3.17 Stationary-Phase Approximation. Consider a radar waveform E(t)= F(t)ejθ(t), with enve-

lope F(t) and phase θ(t).

a. Using the stationary-phase approximation of Eq. (F.22) of Appendix F, show that the

spectrum of E(t) can be expressed approximately as:

Ê(ω)=
∫∞

−∞
F(t)ejθ(t)e−jωt dt ≃

√

2πj

θ̈(tω)
E(tω)e

−jωtω =
√

2πj

θ̈(tω)
F(tω)e

jθ(tω)e−jωtω

where tω is the solution of the equation θ̇(t)=ω, obtained by applying the stationary-

phase approximation to the phase function φ(t)= θ(t)−ωt.
b. For the case of a linearly chirped signal E(t)= F(t)ejω0t+jω̇0t

2/2, show that the above

approximation reads:

Ê(ω)≃
√

2πj

ω̇0

F

(
ω−ω0

ω̇0

)

e−j(ω−ω0)
2/2ω̇0

Thus, it has the usual quadratic phase dispersion. Show that if F(t) has finite duration

over the time interval |t| ≤ T/2, then, the above approximate spectrum is sharply

confined within the band |ω−ω0| ≤ Ω/2, with bandwidth Ω = ω̇0T.

c. Consider the inverse Fourier transform of the above expression:

1

2π

∫ ∞

−∞

√

2πj

ω̇0

F

(
ω−ω0

ω̇0

)

e−j(ω−ω0)
2/2ω̇0ejωtdω

Define the phase function φ(ω)=ωt− (ω−ω0)
2/2ω̇0. By applying the stationary-

phase approximation to the above integral with respect to the phase function φ(ω),

show that the above inverse Fourier transform is precisely equal to the original chirped

signal, that is, E(t)= F(t)ejω0t+jω̇0t
2/2.
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d. Apply the compression filter (3.10.10) to the approximate spectrum of Part b, and show

that the corresponding compressed signal is in the time domain:

Ecompr(t)=
√

jω̇0

2π
ejω0t F̂(−ω̇0t)

where F̂(ω) is the Fourier transform of F(t). This is similar, but not quite identical,

to the exact expression (3.10.14).

e. Show that Part c is a general result. Consider the stationary-phase approximation

spectrum of Part a. Its inverse Fourier transform is:

1

2π

∫ ∞

−∞

√

2πj

θ̈(tω)
F(tω)e

jθ(tω)e−jωtωejωtdω

Define the phase function φ(ω)= θ(tω)−ωtω+ωt. Show that the stationary-phase

approximation applied to this integral with respect to the phase functionφ(ω) recov-

ers the original waveform E(t)= F(t)ejθ(t).
[Hint: the condition θ̇(tω)=ω implies θ̈(tω)(dtω/dω)= 1.]

3.18 An envelope signal F(t) is processed through two successive pulse compression filters with

chirping parameters ω̇1 and ω̇2, as shown below.

where Gi(ω)= ejω2/2ω̇i , i = 1,2. Show that if the chirping parameter of the intermediate

quadratic modulation is chosen to be ω̇0 = ω̇1+ω̇2, then the overall output is a time-scaled

version of the input:

Fout(t)= j
√

ω̇2

ω̇1

ejω̇0ω̇2t
2/2ω̇1 F

(

−ω̇2t

ω̇1

)

4

Propagation in Birefringent Media

4.1 Linear and Circular Birefringence

In this chapter, we discuss wave propagation in anisotropic media that are linearly or cir-

cularly birefringent. In such media, uniform plane waves can be decomposed in two or-

thogonal polarization states (linear or circular) that propagate with two different speeds.

The two states develop a phase difference as they propagate, which alters the total po-

larization of the wave. Such media are used in the construction of devices for generating

different polarizations.

Linearly birefringent materials can be used to change one polarization into another,

such as changing linear into circular. Examples are the so-called uniaxial crystals, such

as calcite, quartz, ice, tourmaline, and sapphire.

Optically active or chiral media are circularly birefringent. Examples are sugar solu-

tions, proteins, lipids, nucleic acids, amino acids, DNA, vitamins, hormones, and virtually

most other natural substances. In such media, circularly polarized waves go through

unchanged, with left- and right-circular polarizations propagating at different speeds.

This difference causes linearly polarized waves to have their polarization plane rotate

as they propagate—an effect known as natural optical rotation.

A similar but not identical effect—the Faraday rotation—takes place in gyroelec-

tric media, which are ordinary isotropic materials (glass, water, conductors, plasmas)

subjected to constant external magnetic fields that break their isotropy. Gyromagnetic

media, such as ferrites subjected to magnetic fields, also become circularly birefringent.

We discuss all four birefringent cases (linear, chiral, gyroelectric, and gyromagnetic)

and the type of constitutive relationships that lead to the corresponding birefringent

behavior. We begin by casting Maxwell’s equations in different polarization bases.

An arbitrary polarization can be expressed uniquely as a linear combination of two

polarizations along two orthogonal directions.† For waves propagating in the z-direction,

we may use the two linear directions {x̂, ŷ}, or the two circular ones for right and left

polarizations {ê+, ê−}, where ê+ = x̂ − jŷ and ê− = x̂ + jŷ.‡ Indeed, we have the

following identity relating the linear and circular bases:

†For complex-valued vectors e1, e2, orthogonality is defined with conjugation: e∗1 · e2 = 0.
‡Note that ê± satisfy: ê∗± · ê± = 2, ê∗+ · ê− = 0, ê+ × ê− = 2j ẑ, and ẑ× ê± = ±j ê±.
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larization of the wave. Such media are used in the construction of devices for generating

different polarizations.

Linearly birefringent materials can be used to change one polarization into another,

such as changing linear into circular. Examples are the so-called uniaxial crystals, such

as calcite, quartz, ice, tourmaline, and sapphire.
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tions, proteins, lipids, nucleic acids, amino acids, DNA, vitamins, hormones, and virtually

most other natural substances. In such media, circularly polarized waves go through

unchanged, with left- and right-circular polarizations propagating at different speeds.

This difference causes linearly polarized waves to have their polarization plane rotate

as they propagate—an effect known as natural optical rotation.

A similar but not identical effect—the Faraday rotation—takes place in gyroelec-

tric media, which are ordinary isotropic materials (glass, water, conductors, plasmas)

subjected to constant external magnetic fields that break their isotropy. Gyromagnetic
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We discuss all four birefringent cases (linear, chiral, gyroelectric, and gyromagnetic)

and the type of constitutive relationships that lead to the corresponding birefringent

behavior. We begin by casting Maxwell’s equations in different polarization bases.

An arbitrary polarization can be expressed uniquely as a linear combination of two

polarizations along two orthogonal directions.† For waves propagating in the z-direction,

we may use the two linear directions {x̂, ŷ}, or the two circular ones for right and left

polarizations {ê+, ê−}, where ê+ = x̂ − jŷ and ê− = x̂ + jŷ.‡ Indeed, we have the

following identity relating the linear and circular bases:
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E = x̂Ex + ŷEy = ê+ E+ + ê− E− , where E± = 1

2
(Ex ± jEy) (4.1.1)

The circular components E+ and E− represent right and left polarizations (in the

IEEE convention) if the wave is moving in the positive z-direction, but left and right if it

is moving in the negative z-direction.

Because the propagation medium is not isotropic, we need to start with the source-

free Maxwell’s equations before we assume any particular constitutive relationships:

∇∇∇× E = −jωB , ∇∇∇×H = jωD , ∇∇∇ ·D = 0 , ∇∇∇ · B = 0 (4.1.2)

For a uniform plane wave propagating in the z-direction, we may replace the gradient

by ∇∇∇ = ẑ∂z. It follows that the curls ∇∇∇× E = ẑ × ∂zE and ∇∇∇× H = ẑ × ∂zH will be

transverse to the z-direction. Then, Faraday’s and Ampère’s laws imply that Dz = 0

and Bz = 0, and hence both of Gauss’ laws are satisfied. Thus, we are left only with:

ẑ× ∂zE = −jωB

ẑ× ∂zH = jωD
(4.1.3)

These equations do not “see” the components Ez,Hz. However, in all the cases that

we consider here, the conditions Dz = Bz = 0 will imply also that Ez = Hz = 0. Thus,

all fields are transverse, for example, E = x̂Ex + ŷEy = ê+ E+ + ê− E−. Equating x, y

components in the two sides of Eq. (4.1.3), we find in the linear basis:

∂zEx = −jωBy , ∂zEy = jωBx
∂zHy = −jωDx , ∂zHx = jωDy (linear basis) (4.1.4)

Using the vector property ẑ × ê± = ±j ê± and equating circular components, we

obtain the circular-basis version of Eq. (4.1.3) (after canceling some factors of j):

∂zE± = ∓ωB±
∂zH± = ±ωD± (circular basis) (4.1.5)

4.2 Uniaxial and Biaxial Media

In uniaxial and biaxial homogeneous anisotropic dielectrics, the D−E constitutive rela-

tionships are given by the following diagonal forms, where in the biaxial case all diagonal

elements of the permittivity matrix are distinct:

⎡

⎢
⎣

Dx
Dy
Dz

⎤

⎥
⎦ =

⎡

⎢
⎣

ǫe 0 0

0 ǫo 0

0 0 ǫo

⎤

⎥
⎦

⎡

⎢
⎣

Ex
Ey
Ez

⎤

⎥
⎦ and

⎡

⎢
⎣

Dx
Dy
Dz

⎤

⎥
⎦ =

⎡

⎢
⎣

ǫ1 0 0

0 ǫ2 0

0 0 ǫ3

⎤

⎥
⎦

⎡

⎢
⎣

Ex
Ey
Ez

⎤

⎥
⎦ (4.2.1)

For the uniaxial case, the x-axis is taken to be the extraordinary axis with ǫ1 = ǫe,
whereas the y and z axes are ordinary axes with permittivities ǫ2 = ǫ3 = ǫo.
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The ordinary z-axis was chosen to be the propagation direction in order for the

transverse x, y axes to correspond to two different permittivities. In this respect, the

uniaxial and biaxial cases are similar, and therefore, we will work with the biaxial case.

Setting Dx = ǫ1Ex and Dy = ǫ2Ey in Eq. (4.1.4) and assuming B = μ0H, we have:

∂zEx = −jωμ0Hy , ∂zEy = jωμ0Hx
∂zHy = −jωǫ1Ex , ∂zHx = jωǫ2Ey

(4.2.2)

Differentiating these once more with respect to z, we obtain the decoupled Helmholtz

equations for the x-polarized and y-polarized components:

∂2
zEx = −ω2μ0ǫ1Ex

∂2
zEy = −ω2μ0ǫ2Ey

(4.2.3)

The forward-moving solutions are:

Ex(z)= Ae−jk1z , k1 =ω
√
μ0ǫ1 = k0n1

Ey(z)= Be−jk2z , k2 =ω
√
μ0ǫ2 = k0n2

(4.2.4)

where k0 =ω√μ0ǫ0 =ω/c0 is the free-space wavenumber and we defined the refractive

indices n1 =
√

ǫ1/ǫ0 and n2 =
√

ǫ2/ǫ0. Therefore, the total transverse field at z = 0 and

at distance z = l inside the medium will be:

E(0) = x̂A+ ŷB

E(l) = x̂Ae−jk1l + ŷBe−jk2l = [

x̂A+ ŷBej(k1−k2)l
]

e−jk1l
(4.2.5)

The relative phase φ = (k1 − k2)l between the x- and y-components introduced by

the propagation is called retardance:

φ = (k1 − k2)l = (n1 − n2)k0l = (n1 − n2)
2πl

λ
(4.2.6)

where λ is the free-space wavelength. Thus, the polarization nature of the field keeps

changing as it propagates.

In order to change linear into circular polarization, the wave may be launched into

the birefringent medium with a linear polarization having equal x- and y-components.

After it propagates a distance l such that φ = (n1 − n2)k0l = π/2, the wave will have

changed into left-handed circular polarization:

E(0) = A(x̂+ ŷ
)

E(l) = A(x̂+ ŷejφ
)

e−jk1l = A(x̂+ j ŷ
)

e−jk1l
(4.2.7)

Polarization-changing devices that employ this property are called retarders and are

shown in Fig. 4.2.1. The above example is referred to as a quarter-wave retarder because

the condition φ = π/2 may be written as (n1 − n2)l = λ/4.
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Fig. 4.2.1 Linearly and circularly birefringent retarders.

4.3 Chiral Media

Ever since the first experimental observations of optical activity by Arago and Biot in

the early 1800s and Fresnel’s explanation that optical rotation is due to circular bire-

fringence, there have been many attempts to explain it at the molecular level. Pasteur

was the first to postulate that optical activity is caused by the chirality of molecules.

There exist several versions of constitutive relationships that lead to circular bire-

fringence [716–732]. For single-frequency waves, they are all equivalent to each other.

For our purposes, the following so-called Tellegen form is the most convenient [33]:

D = ǫE− jχH

B = μH+ jχE
(chiral media) (4.3.1)

where χ is a parameter describing the chirality properties of the medium.

It can be shown that the reality (for a lossless medium) and positivity of the energy

density function (E∗ ·D+H∗ · B)/2 requires that the constitutive matrix

[

ǫ −jχ
jχ μ

]

be hermitian and positive definite. This implies that ǫ, μ,χ are real, and furthermore,

that |χ| < √μǫ. Using Eqs. (4.3.1) in Maxwell’s equations (4.1.5), we obtain:

∂zE± = ∓ωB± = ∓ω(μH± + jχE±)
∂zH± = ±ωD± = ±ω(ǫE± − jχH±)

(4.3.2)

Defining c = 1/
√
μǫ, η = √

μ/ǫ, k = ω/c = ω√μǫ, and the following real-valued

dimensionless parameter a = cχ = χ/√μǫ (so that |a| < 1), we may rewrite Eqs. (4.3.2)
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in the following matrix forms:

∂

∂z

[

E±
ηH±

]

= ∓
[

jka k

−k jka

][

E±
ηH±

]

(4.3.3)

These matrix equations may be diagonalized by appropriate linear combinations. For

example, we define the right-polarized (forward-moving) and left-polarized (backward-

moving) waves for the {E+,H+} case:

ER+ = 1

2

[

E+ − jηH+
]

EL+ = 1

2

[

E+ + jηH+
]

⇔

E+ = ER+ + EL+

H+ = − 1

jη

[

ER+ − EL+
] (4.3.4)

It then follows from Eq. (4.3.3) that {ER+, EL+} will satisfy the decoupled equations:

∂

∂z

[

ER+
EL+

]

=
[

−jk+ 0

0 jk−

][

ER+
EL+

]

⇒ ER+(z)= A+ e−jk+z
EL+(z)= B+ ejk−z (4.3.5)

where k+, k− are defined as follows:

k± = k(1± a)=ω
(√
μǫ± χ) (4.3.6)

We may also define circular refractive indices by n± = k±/k0, where k0 is the free-

space wavenumber, k0 =ω√μ0ǫ0. Setting also n = k/k0 = √μǫ/√μ0ǫ0, we have:

k± = n±k0 , n± = n(1± a) (4.3.7)

For the {E−,H−} circular components, we define the left-polarized (forward-moving)

and right-polarized (backward-moving) fields by:

EL− = 1

2

[

E− + jηH−
]

ER− = 1

2

[

E− − jηH−
]

⇔

E− = EL− + ER−

H− = 1

jη

[

EL− − ER−
] (4.3.8)

Then, {EL−, ER−} will satisfy:

∂

∂z

[

EL−
ER−

]

=
[

−jk− 0

0 jk+

][

EL−
ER−

]

⇒ EL−(z)= A− e−jk−z
ER−(z)= B− ejk+z (4.3.9)

In summary, we obtain the complete circular-basis fields E±(z):

E+(z) = ER+(z)+EL+(z)= A+ e−jk+z + B+ ejk−z

E−(z) = EL−(z)+ER−(z)= A− e−jk−z + B− ejk+z
(4.3.10)

Thus, the E+(z) circular component propagates forward with wavenumber k+ and

backward with k−, and the reverse is true of the E−(z) component. The forward-moving



4.3. Chiral Media 137

component of E+ and the backward-moving component of E−, that is, ER+ and ER−, are

both right-polarized and both propagate with the same wavenumber k+. Similarly, the

left-polarized waves EL+ and EL− both propagate with k−.

Thus, a wave of given circular polarization (left or right) propagates with the same

wavenumber regardless of its direction of propagation. This is a characteristic difference

of chiral versus gyrotropic media in external magnetic fields.

Consider, next, the effect of natural rotation. We start with a linearly polarized field

at z = 0 and decompose it into its circular components:

E(0)= x̂Ax + ŷAy = ê+A+ + ê−A− , with A± = 1

2
(Ax ± jAy)

where Ax,Ay must be real for linear polarization. Propagating the circular components

forward by a distance l according to Eq. (4.3.10), we find:

E(l) = ê+A+ e−jk+l + ê−A− e−jk−l

= [

ê+A+e−j(k+−k−)l/2 + ê−A−ej(k+−k−)l/2
]

e−j(k++k−)l/2

= [

ê+A+e−jφ + ê−A−ejφ
]

e−j(k++k−)l/2

(4.3.11)

where we defined the angle of rotation:

φ = 1

2
(k+ − k−)l = akl (natural rotation) (4.3.12)

Going back to the linear basis, we find:

ê+A+e−jφ + ê−A−ejφ = (x̂− jŷ)1

2
(Ax + jAy)e−jφ + (x̂+ jŷ)1

2
(Ax − jAy)ejφ

= [

x̂ cosφ− ŷ sinφ
]

Ax +
[

ŷ cosφ+ x̂ sinφ
]

Ay

= x̂′Ax + ŷ′Ay

Therefore, at z = 0 and z = l, we have:

E(0)= [

x̂Ax + ŷAy
]

E(l)= [

x̂′Ax + ŷ′Ay
]

e−j(k++k−)l/2
(4.3.13)

The new unit vectors x̂′ = x̂ cosφ−ŷ sinφ and ŷ′ = ŷ cosφ+x̂ sinφ are recognized

as the unit vectors x̂, ŷ rotated clockwise (ifφ > 0) by the angleφ, as shown in Fig. 4.2.1

(for the case Ax �= 0, Ay = 0.) Thus, the wave remains linearly polarized, but its

polarization plane rotates as it propagates.

If the propagation is in the negative z-direction, then as follows from Eq. (4.3.10), the

roles of k+ and k− are interchanged so that the rotation angle becomesφ = (k−−k+)l/2,

which is the negative of that of Eq. (4.3.12).

If a linearly polarized wave travels forward by a distance l, gets reflected, and travels

back to the starting point, the total angle of rotation will be zero. By contrast, in the

Faraday rotation case, the angle keeps increasing so that it doubles after a round trip

(see Problem 4.10.)
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4.4 Gyrotropic Media

Gyrotropic† media are isotropic media in the presence of constant external magnetic

fields. A gyroelectric medium (at frequency ω) has constitutive relationships:

⎡

⎢
⎣

Dx
Dy
Dz

⎤

⎥
⎦ =

⎡

⎢
⎣

ǫ1 jǫ2 0

−jǫ2 ǫ1 0

0 0 ǫ3

⎤

⎥
⎦

⎡

⎢
⎣

Ex
Ey
Ez

⎤

⎥
⎦ , B = μH (4.4.1)

For a lossless medium, the positivity of the energy density function requires that the

permittivity matrix be hermitian and positive-definite, which implies that ǫ1, ǫ2, ǫ3 are

real, and moreover, ǫ1 > 0, |ǫ2| ≤ ǫ1, and ǫ3 > 0. The quantity ǫ2 is proportional to the

external magnetic field and reverses sign with the direction of that field.

A gyromagnetic medium, such as a ferrite in the presence of a magnetic field, has

similar constitutive relationships, but with the roles of D and H interchanged:

⎡

⎢
⎣

Bx
By
Bz

⎤

⎥
⎦ =

⎡

⎢
⎣

μ1 jμ2 0

−jμ2 μ1 0

0 0 μ3

⎤

⎥
⎦

⎡

⎢
⎣

Hx
Hy
Hz

⎤

⎥
⎦ , D = ǫE (4.4.2)

where again μ1 > 0, |μ2| ≤ μ1, and μ3 > 0 for a lossless medium.

In the circular basis of Eq. (4.1.1), the above gyrotropic constitutive relationships

take the simplified forms:

D± = (ǫ1 ± ǫ2)E± , B± = μH± , (gyroelectric)

B± = (μ1 ± μ2)H± , D± = ǫE± , (gyromagnetic)
(4.4.3)

where we ignored the z-components, which are zero for a uniform plane wave propa-

gating in the z-direction. For example,

Dx ± jDy = (ǫ1Ex + jǫ2Ey)±j(ǫ1Ey − jǫ2Ex)= (ǫ1 ± ǫ2)(Ex ± jEy)
Next, we solve Eqs. (4.1.5) for the forward and backward circular-basis waves. Con-

sidering the gyroelectric case first, we define the following quantities:

ǫ± = ǫ1 ± ǫ2 , k± =ω
√
μǫ± , η± =

√

μ

ǫ±
(4.4.4)

Using these definitions and the constitutive relations D± = ǫ±E±, Eqs. (4.1.5) may

be rearranged into the following matrix forms:

∂

∂z

[

E±
η±H±

]

=
[

0 ∓k±
±k± 0

][

E±
η±H±

]

(4.4.5)

These may be decoupled by defining forward- and backward-moving fields as in

Eqs. (4.3.4) and (4.3.8), but using the corresponding circular impedances η±:

ER+ = 1

2

[

E+ − jη+H+
]

EL+ = 1

2

[

E+ + jη+H+
]

EL− = 1

2

[

E− + jη−H−
]

ER− = 1

2

[

E− − jη−H−
]

(4.4.6)

†The term “gyrotropic” is sometimes also used to mean “optically active.”
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These satisfy the decoupled equations:

∂

∂z

[

ER+
EL+

]

=
[

−jk+ 0

0 jk+

][

ER+
EL+

]

⇒ ER+(z)= A+ e−jk+z
EL+(z)= B+ ejk+z

∂

∂z

[

EL−
ER−

]

=
[

−jk− 0

0 jk−

][

EL−
ER−

]

⇒ EL−(z)= A− e−jk−z
ER−(z)= B− ejk−z

(4.4.7)

Thus, the complete circular-basis fields E±(z) are:

E+(z) = ER+(z)+EL+(z)= A+ e−jk+z + B+ ejk+z

E−(z) = EL−(z)+ER−(z)= A− e−jk−z + B− ejk−z
(4.4.8)

Now, the E+(z) circular component propagates forward and backward with the same

wavenumber k+, while E−(z) propagates with k−. Eq. (4.3.13) and the steps leading to

it remain valid here. The rotation of the polarization plane is referred to as the Faraday

rotation. If the propagation is in the negative z-direction, then the roles of k+ and k−
remain unchanged so that the rotation angle is still the same as that of Eq. (4.3.12).

If a linearly polarized wave travels forward by a distance l, gets reflected, and travels

back to the starting point, the total angle of rotation will be double that of the single

trip, that is, 2φ = (k+ − k−)l.
Problems 1.10 and 4.12 discuss simple models of gyroelectric behavior for conduc-

tors and plasmas in the presence of an external magnetic field. Problem 4.14 develops

the Appleton-Hartree formulas for plane waves propagating in plasmas, such as the

ionosphere [733–737].

The gyromagnetic case is essentially identical to the gyroelectric one. Eqs. (4.4.5) to

(4.4.8) remain the same, but with circular wavenumbers and impedances defined by:

μ± = μ1 ± μ2 , k± =ω
√
ǫμ± , η± =

√
μ±
ǫ

(4.4.9)

Problem 4.13 discusses a model for magnetic resonance exhibiting gyromagnetic

behavior. Magnetic resonance has many applications—from NMR imaging to ferrite mi-

crowave devices [738–749]. Historical overviews may be found in [747,749].

4.5 Linear and Circular Dichroism

Dichroic polarizers, such as polaroids, are linearly birefringent materials that have widely

different attenuation coefficients along the two polarization directions. For a lossy ma-

terial, the field solutions given in Eq. (4.2.4) are modified as follows:

Ex(z)= Ae−jk1z = Ae−α1ze−jβ1z , k1 =ω
√
μǫ1 = β1 − jα1

Ey(z)= Be−jk2z = Be−α2ze−jβ12 , k2 =ω
√
μǫ2 = β2 − jα2

(4.5.1)

where α1,α2 are the attenuation coefficients. Passing through a length l of such a

material, the initial and output polarizations will be as follows:
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E(0)= x̂A+ ŷB

E(l)= x̂Ae−jk1l + ŷBe−jk2l = (

x̂Ae−α1l + ŷBe−α2lejφ
)

e−jβ1l
(4.5.2)

In addition to the phase changeφ = (β1−β2)l, the field amplitudes have attenuated

by the unequal factors a1 = e−α1l and a2 = e−α2l. The resulting polarization will be

elliptic with unequal semi-axes. If α2 ≫ α1, then a2 ≪ a1 and the y-component can be

ignored in favor of the x-component.

This is the basic principle by which a polaroid material lets through only a preferred

linear polarization. An ideal linear polarizer would have a1 = 1 and a2 = 0, correspond-

ing toα1 = 0 andα2 = ∞. Typical values of the attenuations for commercially available

polaroids are of the order of a1 = 0.9 and a2 = 10−2, or 0.9 dB and 40 dB, respectively.

Chiral media may exhibit circular dichroism [718,731], in which the circular wavenum-

bers become complex, k± = β± − jα±. Eq. (4.3.11) reads now:

E(l) = ê+A+ e−jk+l + ê−A− e−jk−l

= [

ê+A+e−j(k+−k−)l/2 + ê−A−ej(k+−k−)l/2
]

e−j(k++k−)l/2

= [

ê+A+e−ψ−jφ + ê−A−eψ+jφ
]

e−j(k++k−)l/2

(4.5.3)

where we defined the complex rotation angle:

φ− jψ = 1

2
(k+ − k−)l = 1

2
(β+ − β−)l− j 1

2
(α+ −α−)l (4.5.4)

Going back to the linear basis as in Eq. (4.3.13), we obtain:

E(0)= [

x̂Ax + ŷAy
]

E(l)= [

x̂′A′x + ŷ′A′y
]

e−j(k++k−)l/2 (4.5.5)

where {x̂′, ŷ′} are the same rotated (by φ) unit vectors of Eq. (4.3.13), and

A′x = Ax coshψ− jAy sinhψ

A′y = Ay coshψ+ jAx sinhψ
(4.5.6)

Because the amplitudes A′x,A′y are now complex-valued, the resulting polarization

will be elliptical.

4.6 Oblique Propagation in Birefringent Media

Here, we discuss TE and TM waves propagating in oblique directions in linearly birefrin-

gent media. We will use these results in Chap. 8 to discuss reflection and refraction in

such media, and to characterize the properties of birefringent multilayer structures.

Applications include the recently manufactured (by 3M, Inc.) multilayer birefrin-

gent polymer mirrors that have remarkable and unusual optical properties, collectively

referred to as giant birefringent optics (GBO) [694].

Oblique propagation in chiral and gyrotropic media is discussed in the problems.

Further discussions of wave propagation in anisotropic media may be found in [30–32].
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We recall from Sec. 2.10 that a uniform plane wave propagating in a lossless isotropic

dielectric in the direction of a wave vector k is given by:

E(r)= Ee−j k·r , H(r)= He−j k·r , with k̂ · E = 0 , H = n

η0

k̂× E (4.6.1)

where n is the refractive index of the medium n = √

ǫ/ǫ0, η0 the free-space impedance,

and k̂ the unit-vector in the direction of k, so that,

k = k k̂ , k = |k| =ω√μ0ǫ = nk0 , k0 = ω

c0

=ω√μ0ǫ0 (4.6.2)

and k0 is the free-space wavenumber. Thus, E,H, k̂ form a right-handed system.

In particular, following the notation of Fig. 2.10.1, if k is chosen to lie in the xz plane

at an angle θ from the z-axis, that is, k̂ = x̂ sinθ+ ẑ cosθ, then there will be two inde-

pendent polarization solutions: TM, parallel, or p-polarization, and TE, perpendicular,

or s-polarization, with fields given by

(TM, p-polarization): E = E0(x̂ cosθ− ẑ sinθ) , H = n

η0

E0 ŷ

(TE, s-polarization): E = E0 ŷ , H = n

η0

E0(−x̂ cosθ+ ẑ sinθ)
(4.6.3)

where, in both the TE and TM cases, the propagation phase factor e−j k·r is:

e−j k·r = e−j(kzz+kxx) = e−jk0n(z cosθ+x sinθ) (4.6.4)

The designation as parallel or perpendicular is completely arbitrary here and is taken

with respect to the xz plane. In the reflection and refraction problems discussed in

Chap. 7, the dielectric interface is taken to be the xy plane and the xz plane becomes

the plane of incidence.

In a birefringent medium, the propagation of a uniform plane wave with arbitrary

wave vector k is much more difficult to describe. For example, the direction of the

Poynting vector is not towards k, the electric field E is not orthogonal to k, the simple

dispersion relationship k = nω/c0 is not valid, and so on.

In the previous section, we considered the special case of propagation along an ordi-

nary optic axis in a birefringent medium. Here, we discuss the somewhat more general

case in which the xyz coordinate axes coincide with the principal dielectric axes (so that

the permittivity tensor is diagonal,) and we take the wave vector k to lie in the xz plane

at an angle θ from the z-axis. The geometry is depicted in Fig. 4.6.1.

Although this case is still not the most general one with a completely arbitrary direc-

tion for k, it does contain most of the essential features of propagation in birefringent

media. The 3M multilayer films mentioned above have similar orientations for their

optic axes [694].

The constitutive relations are assumed to be B = μ0H and a diagonal permittivity

tensor for D. Let ǫ1, ǫ2, ǫ3 be the permittivity values along the three principal axes and

define the corresponding refractive indices ni =
√

ǫi/ǫ0, i = 1,2,3. Then, the D -E

relationship becomes:
⎡

⎢
⎣

Dx
Dy
Dz

⎤

⎥
⎦ =

⎡

⎢
⎣

ǫ1 0 0

0 ǫ2 0

0 0 ǫ3

⎤

⎥
⎦

⎡

⎢
⎣

Ex
Ey
Ez

⎤

⎥
⎦ = ǫ0

⎡

⎢
⎣

n2
1 0 0

0 n2
2 0

0 0 n2
3

⎤

⎥
⎦

⎡

⎢
⎣

Ex
Ey
Ez

⎤

⎥
⎦ (4.6.5)
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Fig. 4.6.1 Uniform plane waves in a birefringent medium.

For a biaxial medium, the three ni are all different. For a uniaxial medium, we take

the xy-axes to be ordinary, with n1 = n2 = no, and the z-axis to be extraordinary, with

n3 = ne.† The wave vector k can be resolved along the z and x directions as follows:

k = k k̂ = k(x̂ sinθ+ ẑ cosθ)= x̂kx + ẑkz (4.6.6)

The ω-k relationship is determined from the solution of Maxwell’s equations. By

analogy with the isotropic case that has k = nk0 = nω/c0, we may define an effective

refractive index N such that:

k = Nk0 = N ω

c0

(effective refractive index) (4.6.7)

We will see in Eq. (4.6.22) by solving Maxwell’s equations that N depends on the

chosen polarization (according to Fig. 4.6.1) and on the wave vector direction θ:

N =

⎧

⎪⎪⎨

⎪⎪⎩

n1n3
√

n2
1 sin2 θ+ n2

3 cos2 θ
, (TM, p-polarization)

n2, (TE, s-polarization)

(4.6.8)

For the TM case, we may rewrite the N-θ relationship in the form:

1

N2
= cos2 θ

n2
1

+ sin2 θ

n2
3

(effective TM index) (4.6.9)

Multiplying by k2 and using k0 = k/N, and kx = k sinθ, kz = k cosθ, we obtain the

ω-k relationship for the TM case:

ω2

c2
0

= k2
z

n2
1

+ k
2
x

n2
3

(TM, p-polarization) (4.6.10)

Similarly, we have for the TE case:

†In Sec. 4.2, the extraordinary axis was the x-axis.
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ω2

c2
0

= k2

n2
2

(TE, s-polarization) (4.6.11)

Thus, the TE mode propagates as if the medium were isotropic with index n = n2,

whereas the TM mode propagates in a more complicated fashion. If the wave vector k

is along the ordinary x-axis (θ = 90o), then k = kx = n3ω/c0 (this was the result of

the previous section), and if k is along the extraordinary z-axis (θ = 0o), then we have

k = kz = n1ω/c0.

For TM modes, the group velocity is not along k. In general, the group velocity

depends on the ω-k relationship and is computed as v = ∂ω/∂k. From Eq. (4.6.10), we

find the x- and z-components:

vx = ∂ω

∂kx
= kxc

2
0

ωn2
3

= c0
N

n2
3

sinθ

vz = ∂ω

∂kz
= kzc

2
0

ωn2
1

= c0
N

n2
1

cosθ

(4.6.12)

The velocity vector v is not parallel to k. The angle θ̄ that v forms with the z-axis is

given by tan θ̄ = vx/vz. It follows from (4.6.12) that:

tan θ̄ = n2
1

n2
3

tanθ (group velocity direction) (4.6.13)

Clearly, θ̄ �= θ if n1 �= n3. The relative directions of k and v are shown in Fig. 4.6.2.

The group velocity is also equal to the energy transport velocity defined in terms of the

Poynting vector PPP and energy density w as v = PPP/w. Thus, v and PPP have the same

direction. Moreover, with the electric field being orthogonal to the Poynting vector, the

angle θ̄ is also equal to the angle the E-field forms with the x-axis.

Fig. 4.6.2 Directions of group velocity, Poynting vector, wave vector, and electric field.

Next, we derive Eqs. (4.6.8) for N and solve for the field components in the TM

and TE cases. We look for propagating solutions of Maxwell’s equations of the type

E(r)= Ee−j k·r and H(r)= He−j k·r. Replacing the gradient operator by ∇∇∇ → −jk and

canceling some factors of j, Maxwell’s equations take the form:
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∇∇∇× E = −jωμ0H

∇∇∇×H = jωD

∇∇∇ ·D = 0

∇∇∇ ·H = 0

⇒

k× E =ωμ0H

k×H = −ωD

k ·D = 0

k ·H = 0

(4.6.14)

The last two equations are implied by the first two, as can be seen by dotting both

sides of the first two with k. Replacing k = k k̂ = Nk0k̂, whereN is still to be determined,

we may solve Faraday’s law for H in terms of E :

N
ω

c0

k̂× E =ωμ0H ⇒ H = N

η0

k̂× E (4.6.15)

where we used η0 = c0μ0. Then, Ampère’s law gives:

D = − 1

ω
k×H = − 1

ω
N
ω

c0

k̂×H = N2

η0c0

k̂× (E× k̂) ⇒ k̂× (E× k̂)= 1

ǫ0N2
D

where we used c0η0 = 1/ǫ0. The quantity k̂×(E× k̂) is recognized as the component of

E that is transverse to the propagation unit vector k̂. Using the BAC-CAB vector identity,

we have k̂× (E× k̂)= E− k̂(k̂ · E). Rearranging terms, we obtain:

E− 1

ǫ0N2
D = k̂(k̂ · E) (4.6.16)

Because D is linear in E, this is a homogeneous linear equation. Therefore, in order

to have a nonzero solution, its determinant must be zero. This provides a condition

from which N can be determined.

To obtain both the TE and TM solutions, we assume initially that E has all its three

components and rewrite Eq. (4.6.16) component-wise. Using Eq. (4.6.5) and noting that

k̂ · E = Ex sinθ+ Ez cosθ, we obtain the homogeneous linear system:

(

1− n2
1

N2

)

Ex = (Ex sinθ+ Ez cosθ)sinθ

(

1− n2
2

N2

)

Ey = 0

(

1− n2
3

N2

)

Ez = (Ex sinθ+ Ez cosθ)cosθ

(4.6.17)

The TE case has Ey �= 0 and Ex = Ez = 0, whereas the TM case has Ex �= 0, Ez �= 0,

and Ey = 0. Thus, the two cases decouple.

In the TE case, the second of Eqs. (4.6.17) immediately implies that N = n2. Setting

E = E0ŷ and using k̂× ŷ = −x̂ cosθ+ ẑ sinθ, we obtain the TE solution:



4.6. Oblique Propagation in Birefringent Media 145

E(r) = E0 ŷe−j k·r

H(r) = n2

η0

E0(−x̂ cosθ+ ẑ sinθ)e−j k·r (TE) (4.6.18)

where the TE propagation phase factor is:

e−j k·r = e−jk0n2(z cosθ+x sinθ) (TE propagation factor) (4.6.19)

The TM case requires a little more work. The linear system (4.6.17) becomes now:

(

1− n2
1

N2

)

Ex = (Ex sinθ+ Ez cosθ)sinθ

(

1− n2
3

N2

)

Ez = (Ex sinθ+ Ez cosθ)cosθ

(4.6.20)

Using the identity sin2 θ+ cos2 θ = 1, we may rewrite Eq. (4.6.20) in the matrix form:

⎡

⎢
⎢
⎣

cos2 θ− n2
1

N2
− sinθ cosθ

− sinθ cosθ sin2 θ− n2
3

N2

⎤

⎥
⎥
⎦

[

Ex
Ez

]

= 0 (4.6.21)

Setting the determinant of the coefficient matrix to zero, we obtain the desired con-

dition on N in order that a non-zero solution Ex, Ez exist:

(

cos2 θ− n2
1

N2

)(

sin2 θ− n2
3

N2

)

− sin2 θ cos2 θ = 0 (4.6.22)

This can be solved forN2 to give Eq. (4.6.9). From it, we may also derive the following

relationship, which will prove useful in applying Snel’s law in birefringent media:

N cosθ = n1

n3

√

n2
3 −N2 sin2 θ = n1

√
√
√
√1− N

2 sin2 θ

n2
3

(4.6.23)

With the help of the relationships given in Problem 4.16, the solution of the homo-

geneous system (4.6.20) is found to be, up to a proportionality constant:

Ex = A n3

n1

cosθ , Ez = −A n1

n3

sinθ (4.6.24)

The constant A can be expressed in terms of the total magnitude of the field E0 =
|E| =

√

|Ex|2 + |Ez|2. Using the relationship (4.7.11), we find (assuming A > 0):

A = E0
N

√

n2
1 + n2

3 −N2
(4.6.25)

The magnetic field H can also be expressed in terms of the constant A. We have:
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H = N

η0

k̂× E = N

η0

(x̂ sinθ+ ẑ cosθ)×(x̂Ex + ẑEz)

= N

η0

ŷ(Ex cosθ− Ez sinθ)= N

η0

ŷA

(
n3

n1

cos2 θ+ n1

n3

sin2 θ

)

= N

η0

ŷA
n1n3

N2
= A

η0

ŷ
n1n3

N

(4.6.26)

where we used Eq. (4.7.10). In summary, the complete TM solution is:

E(r) = E0
N

√

n2
1 + n2

3 −N2

(

x̂
n3

n1

cosθ− ẑ
n1

n3

sinθ

)

e−j k·r

H(r) = E0

η0

n1n3
√

n2
1 + n2

3 −N2
ŷe−j k·r

(TM) (4.6.27)

where the TM propagation phase factor is:

e−j k·r = e−jk0N(z cosθ+x sinθ) (TM propagation factor) (4.6.28)

The solution has been put in a form that exhibits the proper limits at θ = 0o and

90o. It agrees with Eq. (4.6.3) in the isotropic case. The angle that E forms with the x-axis

in Fig. 4.6.2 is given by tan θ̄ = −Ez/Ex and agrees with Eq. (4.6.13).

Next, we derive expressions for the Poynting vector and energy densities. It turns

out—as is common in propagation and waveguide problems—that the magnetic energy

density is equal to the electric one. Using Eq. (4.6.27), we find:

PPP = 1

2
Re(E×H∗)= E2

0

2η0

n1n3N

n2
1 + n2

3 −N2

(

x̂
n1

n3

sinθ+ ẑ
n3

n1

cosθ

)

(4.6.29)

and for the electric, magnetic, and total energy densities:

we = 1

2
Re(D · E∗)= 1

4
ǫ0

(

n2
1|Ex|2 + n2

3|Ez|2
) = 1

4
ǫ0E

2
0

n2
1n

2
3

n2
1 + n2

3 −N2

wm = 1

2
Re(B ·H∗)= 1

4
μ0|Hy|2 = 1

4
ǫ0E

2
0

n2
1n

2
3

n2
1 + n2

3 −N2
= we

w = we +wm = 2we = 1

2
ǫ0E

2
0

n2
1n

2
3

n2
1 + n2

3 −N2

(4.6.30)

The vectorPPP is orthogonal to E and its direction is θ̄ given by Eq. (4.6.13), as can be

verified by taking the ratio tan θ̄ = Px/Pz. The energy transport velocity is the ratio of

the energy flux to the energy density—it agrees with the group velocity (4.6.12):

v = PPP
w
= c0

(

x̂
N

n2
3

sinθ+ ẑ
N

n2
1

cosθ

)

(4.6.31)
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To summarize, the TE and TM uniform plane wave solutions are given by Eqs. (4.6.18)

and (4.6.27). We will use these results in Sects. 8.10 and 8.12 to discuss reflection and re-

fraction in birefringent media and multilayer birefringent dielectric structures. Further

discussion of propagation in birefringent media can be found in [634,57] and [694–715].

4.7 Problems

4.1 For the circular-polarization basis of Eq. (4.1.1), show

E = ê+E+ + ê−E− ⇒ ẑ× E = j ê+E+ − j ê−E− ⇒ ẑ× E± = ±jE±

4.2 Show the component-wise Maxwell equations, Eqs. (4.1.4) and (4.1.5), with respect to the

linear and circular polarization bases.

4.3 Suppose that the two unit vectors {x̂, ŷ} are rotated about the z-axis by an angleφ resulting

in x̂′ = x̂ cosφ + ŷ sinφ and ŷ′ = ŷ cosφ − x̂ sinφ. Show that the corresponding circular

basis vectors ê± = x̂∓ j ŷ and ê
′
± = x̂′ ∓ j ŷ′ change by the phase factors: ê

′
± = e±jφê± .

4.4 Consider a linearly birefringent 90o quarter-wave retarder. Show that the following input

polarizations change into the indicated output ones:

x̂± ŷ → x̂± j ŷ

x̂± j ŷ → x̂± ŷ

What are the output polarizations if the same input polarizations go through a 180o half-

wave retarder?

4.5 A polarizer lets through linearly polarized light in the direction of the unit vector êp =
x̂ cosθp + ŷ sinθp, as shown in Fig. 4.7.1. The output of the polarizer propagates in the

z-direction through a linearly birefringent retarder of length l, with birefringent refractive

indices n1, n2, and retardance φ = (n1 − n2)k0l.

Fig. 4.7.1 Polarizer-analyzer measurement of birefringence.

The output E(l) of the birefringent sample goes through an analyzing linear polarizer that

lets through polarizations along the unit vector êa = x̂ cosθa+ ŷ sinθa. Show that the light

intensity at the output of the analyzer is given by:

Ia =
∣
∣êa · E(l)

∣
∣2 =

∣
∣cosθa cosθp + ejφ sinθa sinθp

∣
∣2

For a circularly birefringent sample that introduces a natural or Faraday rotation of φ =
(k+ − k−)l/2, show that the output light intensity will be:

Ia =
∣
∣êa · E(l)

∣
∣2 = cos2(θp − θa −φ)

For both the linear and circular cases, what are some convenient choices for θa and θp?
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4.6 A linearly polarized wave with polarization direction at an angle θ with the x-axis goes

through a circularly birefringent retarder that introduces an optical rotation by the angle

φ = (k+ − k−)l/2. Show that the input and output polarization directions will be:

x̂ cosθ+ ŷ sinθ → x̂ cos(θ−φ)+ŷ sin(θ−φ)

4.7 Show that an arbitrary polarization vector can be expressed as follows with respect to a

linear basis {x̂, ŷ} and its rotated version {x̂′, ŷ′}:

E = A x̂+ B ŷ = A′ x̂′ + B′ ŷ′

where the new coefficients and the new basis vectors are related to the old ones by a rotation

by an angle φ:

[

A′

B′

]

=
[

cosφ sinφ

− sinφ cosφ

][

A

B

]

,

[

x̂′

ŷ′

]

=
[

cosφ sinφ

− sinφ cosφ

][

x̂

ŷ

]

4.8 Show that the source-free Maxwell’s equations (4.1.2) for a chiral medium characterized by

(4.3.1), may be cast in the matrix form, where k =ω√μǫ, η = √

μ/ǫ, and a = χ/√μǫ:

∇∇∇×
[

E

ηH

]

=
[

ka −jk
jk ka

][

E

ηH

]

Show that these may be decoupled by forming the “right” and “left” polarized fields:

∇∇∇×
[

ER

EL

]

=
[

k+ 0

0 −k−

][

ER

EL

]

, where ER = 1

2
(E− jηH) , EL = 1

2
(E+ jηH)

where k± = k(1 ± a). Using these results, show that the possible plane-wave solutions

propagating in the direction of a unit-vector k̂ are given by:

E(r)= E0(p̂− j ŝ)e−j k+·r and E(r)= E0(p̂+ j ŝ)e−j k−·r

where k± = k± k̂ and {p̂, ŝ, k̂} form a right-handed system of unit vectors, such as {x̂′, ŷ′, ẑ′}
of Fig. 2.10.1. Determine expressions for the corresponding magnetic fields. What freedom

do we have in selecting {p̂, ŝ} for a given direction k̂ ?

4.9 Using Maxwell’s equations (4.1.2), show the following Poynting-vector relationships for an

arbitrary source-free medium:

∇∇∇ · (E×H∗) = jω(

D∗ · E− B ·H∗)

∇∇∇ · Re
(

E×H∗) = −ω Im
(

D∗ · E+ B∗ ·H
)

Explain why a lossless medium must satisfy the condition ∇∇∇ · Re
(

E × H∗) = 0. Show that

this condition requires that the energy function w = (D∗ · E+ B∗ ·H)/2 be real-valued.

For a lossless chiral medium characterized by (4.3.1), show that the parameters ǫ, μ,χ are

required to be real. Moreover, show that the positivity of the energy functionw > 0 requires

that |χ| < √μǫ, as well as ǫ > 0 and μ > 0.



4.7. Problems 149

4.10 In a chiral medium, at z = 0 we lauch the fields ER+(0) and EL−(0), which propagate by a

distance l, get reflected, and come back to the starting point. Assume that at the point of

reversal the fields remain unchanged, that is, ER+(l)= EL+(l) and EL−(l)= ER−(l). Using

the propagation results (4.3.5) and (4.3.9), show that fields returned back at z = 0 will be:

EL+(0)= EL+(l)e−jk−l = ER+(l)e−jk−l = ER+(0)e−j(k++k−)l
ER−(0)= ER−(l)e−jk+l = EL−(l)e−jk+l = EL−(0)e−j(k++k−)l

Show that the overall natural rotation angle will be zero. For a gyrotropic medium, show

that the corresponding rountrip fields will be:

EL+(0)= EL+(l)e−jk−l = ER+(l)e−jk−l = ER+(0)e−2jk+l

ER−(0)= ER−(l)e−jk+l = EL−(l)e−jk+l = EL−(0)e−2jk−l

Show that the total Faraday rotation angle will be 2φ = (k+ − k−)l.
4.11 Show that the x, y components of the gyroelectric and gyromagnetic constitutive relation-

ships (4.4.1) and (4.4.2) may be written in the compact forms:

DT = ǫ1ET − jǫ2 ẑ× ET (gyroelectric)

BT = μ1HT − jμ2 ẑ×HT (gyromagnetic)

where the subscript T indicates the transverse (with respect to z) part of a vector, for exam-

ple, DT = x̂Dx + ŷDy.

4.12 Conductors and plasmas exhibit gyroelectric behavior when they are in the presence of an

external magnetic field. The equation of motion of conduction electrons in a constant mag-

netic field is mv̇ = e(E + v × B)−mαv, with the collisional damping term included. The

magnetic field is in the z-direction, B = ẑB0.

Assuming ejωt time dependence and decomposing all vectors in the circular basis (4.1.1),

for example, v = ê+v+ + ê−v− + ẑvz, show that the solution of the equation of motion is:

v± =
e

m
E±

α+ j(ω±ωB)
, vz =

e

m
Ez

α+ jω

where ωB = eB0/m is the cyclotron frequency. Then, show that the D−E constitutive

relationship takes the form of Eq. (4.4.1) with:

ǫ± = ǫ1 ± ǫ2 = ǫ0

[

1− jω2
p

ω
[

α+ j(ω±ωB)
]

]

, ǫ3 = ǫ0

[

1− jω2
p

ω(α+ jω)

]

where ω2
p = Ne2/mǫ0 is the plasma frequency and N, the number of conduction electrons

per unit volume. (See Problem 1.10 for some helpful hints.)

4.13 If the magnetic field Htot = ẑH0 + Hejωt is applied to a magnetizable sample, the in-

duced magnetic moment per unit volume (the magnetization) will have the form Mtot =
ẑM0 + Mejωt, where ẑM0 is the saturation magnetization due to ẑH0 acting alone. The

phenomenological equations governing Mtot, including a so-called Landau-Lifshitz damping

term, are given by [746]:

dMtot

dt
= γ(Mtot ×Htot)− α

M0H0

Mtot × (Mtot ×Htot)
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where γ is the gyromagnetic ratio and τ = 1/α, a relaxation time constant. Assuming that

|H| ≪ H0 and |M| ≪ M0, show that the linearized version of this equation obtained by

keeping only first order terms in H and M is:

jωM =ωM(ẑ×H)−ωH(ẑ×M)−α ẑ× [

(M− χ0 H)×ẑ
]

whereωM = γM0, ωH = γH0, and χ0 =M0/H0. Working in the circular basis (4.1.1), show

that the solution of this equation is:

M± = χ0

α± jωH

α+ j(ω±ωH)
H± ≡ χ±H± and Mz = 0

Writing B = μ0(H + M), show that the permeability matrix has the gyromagnetic form of

Eq. (4.4.2) with μ1 ± μ2 = μ± = μ0(1+ χ±) and μ3 = μ0. Show that the real and imaginary

parts of μ1 are given by [746]:

Re(μ1) = μ0 + μ0χ0

2

[

α2 +ωH(ω+ωH)

α2 + (ω+ωH)2
+ α

2 −ωH(ω−ωH)

α2 + (ω−ωH)2

]

Im(μ1) = −μ0χ0

2

[
αω

α2 + (ω+ωH)2
+ αω

α2 + (ω−ωH)2

]

Derive similar expressions for Re(μ2) and Im(μ2).

4.14 A uniform plane wave, Ee−j k·r and He−j k·r, is propagating in the direction of the unit vector

k̂ = ẑ′ = ẑ cosθ + ẑ sinθ shown in Fig. 2.10.1 in a gyroelectric medium with constitutive

relationships (4.4.1).

Show that Eqs. (4.6.14)–(4.6.16) remain valid provided we define the effective refractive index

N through the wavevector k = k k̂, where k = Nk0, k0 =ω√μǫ0.

Working in the circular-polarization basis (4.1.1), that is, E = ê+E+ + ê−E− + ẑEz, where

E± = (Ex ± jEy)/2, show that Eq. (4.6.16) leads to the homogeneous system:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1− 1

2
sin2 θ− ǫ+

ǫ0N2
−1

2
sin2 θ −1

2
sinθ cosθ

−1

2
sin2 θ 1− 1

2
sin2 θ− ǫ−

ǫ0N2
−1

2
sinθ cosθ

− sinθ cosθ − sinθ cosθ sin2 θ− ǫ3

ǫ0N2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎣

E+
E−
Ez

⎤

⎥
⎦ = 0 (4.7.1)

where ǫ± = ǫ1 ± ǫ2. Alternatively, show that in the linear-polarization basis:

⎡

⎢
⎣

ǫ1 − ǫ0N
2 cos2 θ jǫ2 ǫ0N

2 sinθ cosθ

−jǫ2 ǫ1 − ǫ0N
2 0

ǫ0N
2 sinθ cosθ 0 ǫ3 − ǫ0N

2 sin2 θ

⎤

⎥
⎦

⎡

⎢
⎣

Ex
Ey
Ez

⎤

⎥
⎦ = 0 (4.7.2)

For either basis, setting the determinant of the coefficient matrix to zero, show that a non-

zero E solution exists provided that N2 is one of the two solutions of:

tan2 θ = −ǫ3

ǫ1

(ǫ0N
2 − ǫ+)(ǫ0N

2 − ǫ−)
(ǫ0N2 − ǫ3)(ǫ0N2 − ǫe)

, where ǫe = 2ǫ+ǫ−
ǫ+ + ǫ−

= ǫ2
1 − ǫ2

2

ǫ1

(4.7.3)

Show that the two solutions for N2 are:

N2 =
(ǫ2

1 − ǫ2
2 − ǫ1ǫ3)sin2 θ+ 2ǫ1ǫ3 ±

√

(ǫ2
1 − ǫ2

2 − ǫ1ǫ3)2sin4 θ+ 4ǫ2
2ǫ

2
3 cos2 θ

2ǫ0(ǫ1 sin2 θ+ ǫ3 cos2 θ)
(4.7.4)
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For the special case k̂ = ẑ (θ = 0o), show that the two possible solutions of Eq. (4.7.1) are:

ǫ0N
2 = ǫ+ , k = k+ =ω√μǫ+ , E+ �= 0, E− = 0, Ez = 0

ǫ0N
2 = ǫ− , k = k− =ω√μǫ− , E+ = 0, E− �= 0, Ez = 0

For the case k̂ = x̂ (θ = 90o), show that:

ǫ0N
2 = ǫ3 , k = k3 =ω√μǫ3 , E+ = 0, E− = 0, Ez �= 0

ǫ0N
2 = ǫe , k = ke =ω√μǫe , E+ �= 0, E− = −ǫ+

ǫ−
E+ , Ez = 0

For each of the above four special solutions, derive the corresponding magnetic fields H .

Justify the four values ofN2 on the basis of Eq. (4.7.3). Discuss the polarization properties of

the four cases. For the “extraordinary” wave k = ke, show thatDx = 0 and Ex/Ey = −jǫ2/ǫ1.

Eq. (4.7.4) and the results of Problem 4.14 lead to the so-called Appleton-Hartree equations

for describing plasma waves in a magnetic field [733–737].

4.15 A uniform plane wave, Ee−j k·r and He−j k·r, is propagating in the direction of the unit vector

k̂ = ẑ′ = ẑ cosθ+ ẑ sinθ shown in Fig. 2.10.1 in a gyromagnetic medium with constitutive

relationships (4.4.2). Using Maxwell’s equations, show that:

k× E =ωB , k · B = 0

k×H = −ωǫE , k · E = 0
⇒ H− 1

μ0N2
B = k̂(k̂ ·H) (4.7.5)

where the effective refractive index N is defined through the wavevector k = k k̂, where

k = Nk0, k0 =ω√μ0ǫ. Working in the circular polarization basis H = ê+H++ ê−H−+ ẑHz,

where H± = (Hx ± jHy)/2, show that Eq. (4.7.5) leads to the homogeneous system:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1− 1

2
sin2 θ− μ+

μ0N2
−1

2
sin2 θ −1

2
sinθ cosθ

−1

2
sin2 θ 1− 1

2
sin2 θ− μ−

μ0N2
−1

2
sinθ cosθ

− sinθ cosθ − sinθ cosθ sin2 θ− μ3

μ0N2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎣

H+
H−
Hz

⎤

⎥
⎦ = 0 (4.7.6)

where μ± = μ1 ± μ2. Alternatively, show that in the linear-polarization basis:

⎡

⎢
⎣

μ1 − μ0N
2 cos2 θ jμ2 μ0N

2 sinθ cosθ

−jμ2 μ1 − μ0N
2 0

μ0N
2 sinθ cosθ 0 μ3 − μ0N

2 sin2 θ

⎤

⎥
⎦

⎡

⎢
⎣

Hx
Hy
Hz

⎤

⎥
⎦ = 0 (4.7.7)

For either basis, setting the determinant of the coefficient matrix to zero, show that a non-

zero E solution exists provided that N2 is one of the two solutions of:

tan2 θ = −μ3

μ1

(μ0N
2 − μ+)(μ0N

2 − μ−)
(μ0N2 − μ3)(μ0N2 − μe)

, where μe = 2μ+μ−
μ+ + μ−

= μ2
1 − μ2

2

μ1

(4.7.8)

Show that the two solutions for N2 are:

N2 =
(μ2

1 − μ2
2 − μ1μ3)sin2 θ+ 2μ1μ3 ±

√

(μ2
1 − μ2

2 − μ1μ3)2sin4 θ+ 4μ2
2μ

2
3 cos2 θ

2μ0(μ1 sin2 θ+ μ3 cos2 θ)

For the special case θ = 0o, show that the two possible solutions of Eq. (4.7.6) are:

μ0N
2 = μ+ , k = k+ =ω√ǫμ+ , H+ �= 0, H− = 0, Hz = 0

μ0N
2 = μ− , k = k+ =ω√ǫμ− , H+ = 0, H− �= 0, Hz = 0
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For the special case θ = 90o, show that:

μ0N
2 = μ3 , k = k3 =ω√ǫμ3 , H+ = 0, H− = 0, Hz �= 0

μ0N
2 = μe , k = ke =ω√ǫμe , H+ �= 0, H− = −μ+

μ−
H+ , Hz = 0

For each of the above four special solutions, derive the corresponding electric fields E . Justify

the four values of N2 on the basis of Eq. (4.7.8). Discuss the polarization properties of the

four cases. This problem is the dual of Problem 4.14.

4.16 Using Eq. (4.6.9) for the effective TM refractive index in a birefringent medium, show the

following additional relationships:

sin2 θ

1− n2
1

N2

+ cos2 θ

1− n2
3

N2

= 1 (4.7.9)

n3

n1

cos2 θ+ n1

n3

sin2 θ = n1n3

N2
(4.7.10)

n2
1

n2
3

sin2 θ+ n
2
3

n2
1

cos2 θ = n2
1 + n2

3 −N2

N2
(4.7.11)

sin2 θ =
1− n2

1

N2

1− n
2
1

n2
3

, cos2 θ =
1− n2

3

N2

1− n
2
3

n2
1

(4.7.12)

cos2 θ− n2
1

N2
= −n

2
1

n2
3

sin2 θ , sin2 θ− n2
3

N2
= −n

2
3

n2
1

cos2 θ (4.7.13)

Using these relationships, show that the homogeneous linear system (4.6.20) can be simpli-

fied into the form:

Ex
n1

n3

sinθ = −Ez n3

n1

cosθ , Ez
n3

n1

cosθ = −Ex n1

n3

sinθ
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Reflection and Transmission

5.1 Propagation Matrices

In this chapter, we consider uniform plane waves incident normally on material inter-

faces. Using the boundary conditions for the fields, we will relate the forward-backward

fields on one side of the interface to those on the other side, expressing the relationship

in terms of a 2×2 matching matrix.

If there are several interfaces, we will propagate our forward-backward fields from

one interface to the next with the help of a 2×2 propagation matrix. The combination of

a matching and a propagation matrix relating the fields across different interfaces will

be referred to as a transfer or transition matrix.

We begin by discussing propagation matrices. Consider an electric field that is lin-

early polarized in the x-direction and propagating along the z-direction in a lossless

(homogeneous and isotropic) dielectric. Setting E(z)= x̂Ex(z)= x̂E(z) and H(z)=
ŷHy(z)= ŷH(z), we have from Eq. (2.2.6):

E(z) = E0+e−jkz + E0−ejkz = E+(z)+E−(z)

H(z) = 1

η

[

E0+e−jkz − E0−ejkz
] = 1

η

[

E+(z)−E−(z)
] (5.1.1)

where the corresponding forward and backward electric fields at position z are:

E+(z)= E0+e−jkz

E−(z)= E0−ejkz
(5.1.2)

We can also express the fields E±(z) in terms of E(z),H(z). Adding and subtracting

the two equations (5.1.1), we find:

E+(z)= 1

2

[

E(z)+ηH(z)]

E−(z)= 1

2

[

E(z)−ηH(z)]
(5.1.3)

Eqs.(5.1.1) and (5.1.3) can also be written in the convenient matrix forms:
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[

E

H

]

=
[

1 1

η−1 −η−1

][

E+
E−

]

,

[

E+
E−

]

= 1

2

[

1 η

1 −η

][

E

H

]

(5.1.4)

Two useful quantities in interface problems are the wave impedance at z:

Z(z)= E(z)

H(z)
(wave impedance) (5.1.5)

and the reflection coefficient at position z:

Γ(z)= E−(z)
E+(z)

(reflection coefficient) (5.1.6)

Using Eq. (5.1.3), we have:

Γ = E−
E+

=
1

2
(E − ηH)

1

2
(E + ηH)

=
E

H
− η

E

H
+ η

= Z − η
Z + η

Similarly, using Eq. (5.1.1) we find:

Z = E

H
= E+ + E−

1

η
(E+ − E−)

= η
1+ E−

E+

1− E−
E+

= η 1+ Γ
1− Γ

Thus, we have the relationships:

Z(z)= η 1+ Γ(z)
1− Γ(z) ⇔ Γ(z)= Z(z)−η

Z(z)+η (5.1.7)

Using Eq. (5.1.2), we find:

Γ(z)= E−(z)
E+(z)

= E0−ejkz

E0+e−jkz
= Γ(0)e2jkz

where Γ(0)= E0−/E0+ is the reflection coefficient at z = 0. Thus,

Γ(z)= Γ(0)e2jkz (propagation of Γ) (5.1.8)

Applying (5.1.7) at z and z = 0, we have:

Z(z)−η
Z(z)+η = Γ(z)= Γ(0)e

2jkz = Z(0)−η
Z(0)+ηe

2jkz

This may be solved for Z(z) in terms of Z(0), giving after some algebra:

Z(z)= η Z(0)−jη tankz

η− jZ(0)tankz
(propagation of Z) (5.1.9)
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The reason for introducing so many field quantities is that the three quantities

{E+(z), E−(z), Γ(z)} have simple propagation properties, whereas {E(z),H(z),Z(z)}
do not. On the other hand, {E(z),H(z),Z(z)}match simply across interfaces, whereas

{E+(z), E−(z), Γ(z)} do not.

Eqs. (5.1.1) and (5.1.2) relate the field quantities at location z to the quantities at

z = 0. In matching problems, it proves more convenient to be able to relate these

quantities at two arbitrary locations.

Fig. 5.1.1 depicts the quantities {E(z),H(z), E+(z), E−(z),Z(z), Γ(z)} at the two

locations z1 and z2 separated by a distance l = z2 − z1. Using Eq. (5.1.2), we have for

the forward field at these two positions:

E2+ = E0+e−jkz2 , E1+ = E0+e−jkz1 = E0+e−jk(z2−l) = ejklE2+

Fig. 5.1.1 Field quantities propagated between two positions in space.

And similarly, E1− = e−jklE2−. Thus,

E1+ = ejklE2+ , E1− = e−jklE2− (5.1.10)

and in matrix form:
[

E1+
E1−

]

=
[

ejkl 0

0 e−jkl

][

E2+
E2−

]

(propagation matrix) (5.1.11)

We will refer to this as the propagation matrix for the forward and backward fields.

It follows that the reflection coefficients will be related by:

Γ1 = E1−
E1+

= E2−e−jkl

E2+ejkl
= Γ2e

−2jkl , or,

Γ1 = Γ2e
−2jkl (reflection coefficient propagation) (5.1.12)

Using the matrix relationships (5.1.4) and (5.1.11), we may also express the total

electric and magnetic fields E1,H1 at position z1 in terms of E2,H2 at position z2:

[

E1

H1

]

=
[

1 1

η−1 −η−1

][

E1+
E1−

]

=
[

1 1

η−1 −η−1

][

ejkl 0

0 e−jkl

][

E2+
E2−

]

= 1

2

[

1 1

η−1 −η−1

][

ejkl 0

0 e−jkl

][

1 η

1 −η

][

E2

H2

]
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which gives after some algebra:

[

E1

H1

]

=
[

coskl jη sinkl

jη−1 sinkl coskl

][

E2

H2

]

(propagation matrix) (5.1.13)

Writing η = η0/n, where n is the refractive index of the propagation medium,

Eq. (5.1.13) can written in following form, which is useful in analyzing multilayer struc-

tures and is common in the thin-film literature [628,630,634,645]:

[

E1

H1

]

=
[

cosδ jn−1η0 sinδ

jnη−1
0 sinδ cosδ

][

E2

H2

]

(propagation matrix) (5.1.14)

where δ is the propagation phase constant, δ = kl = k0nl = 2π(nl)/λ0, and nl the

optical length. Eqs. (5.1.13) and (5.1.5) imply for the propagation of the wave impedance:

Z1 = E1

H1

= E2 coskl+ jηH2 sinkl

jE2η−1 sinkl+H2 coskl
= η

E2

H2

coskl+ jη sinkl

η coskl+ j E2

H2

sinkl

which gives:

Z1 = η Z2 coskl+ jη sinkl

η coskl+ jZ2 sinkl
(impedance propagation) (5.1.15)

It can also be written in the form:

Z1 = η Z2 + jη tankl

η+ jZ2 tankl
(impedance propagation) (5.1.16)

A useful way of expressing Z1 is in terms of the reflection coefficient Γ2. Using (5.1.7)

and (5.1.12), we have:

Z1 = η 1+ Γ1

1− Γ1

= η 1+ Γ2e
−2jkl

1− Γ2e−2jkl
or,

Z1 = η 1+ Γ2e
−2jkl

1− Γ2e−2jkl
(5.1.17)

We mention finally two special propagation cases: the half-wavelength and the quarter-

wavelength cases. When the propagation distance is l = λ/2, or any integral multiple

thereof, the wave impedance and reflection coefficient remain unchanged. Indeed, we

have in this case kl = 2πl/λ = 2π/2 = π and 2kl = 2π. It follows from Eq. (5.1.12)

that Γ1 = Γ2 and hence Z1 = Z2.

If on the other hand l = λ/4, or any odd integral multiple thereof, then kl = 2π/4 =
π/2 and 2kl = π. The reflection coefficient changes sign and the wave impedance

inverts:

Γ1 = Γ2e
−2jkl = Γ2e

−jπ = −Γ2 ⇒ Z1 = η 1+ Γ1

1− Γ1

= η 1− Γ2

1+ Γ2

= η 1

Z2/η
= η2

Z2
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Thus, we have in the two cases:

l = λ

2
⇒ Z1 = Z2, Γ1 = Γ2

l = λ

4
⇒ Z1 = η2

Z2

, Γ1 = −Γ2

(5.1.18)

5.2 Matching Matrices

Next, we discuss the matching conditions across dielectric interfaces. We consider a

planar interface (taken to be the xy-plane at some location z) separating two dielec-

tric/conducting media with (possibly complex-valued) characteristic impedances η,η′,
as shown in Fig. 5.2.1.†

Fig. 5.2.1 Fields across an interface.

Because the normally incident fields are tangential to the interface plane, the bound-

ary conditions require that the total electric and magnetic fields be continuous across

the two sides of the interface:

E = E′
H = H′ (continuity across interface) (5.2.1)

In terms of the forward and backward electric fields, Eq. (5.2.1) reads:

E+ + E− = E′+ + E′−
1

η

(

E+ − E−
) = 1

η′
(

E′+ − E′−
) (5.2.2)

Eq. (5.2.2) may be written in a matrix form relating the fields E± on the left of the

interface to the fields E′± on the right:

[

E+
E−

]

= 1

τ

[

1 ρ

ρ 1

][

E′+
E′−

]

(matching matrix) (5.2.3)

†The arrows in this figure indicate the directions of propagation, not the direction of the fields—the field

vectors are perpendicular to the propagation directions and parallel to the interface plane.
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and inversely:

[

E′+
E′−

]

= 1

τ′

[

1 ρ′

ρ′ 1

][

E+
E−

]

(matching matrix) (5.2.4)

where {ρ,τ} and {ρ′, τ′} are the elementary reflection and transmission coefficients

from the left and from the right of the interface, defined in terms of η,η′ as follows:

ρ = η′ − η
η′ + η , τ = 2η′

η′ + η (5.2.5)

ρ′ = η− η′
η+ η′ , τ′ = 2η

η+ η′ (5.2.6)

Writing η = η0/n and η′ = η0/n
′, we have in terms of the refractive indices:

ρ = n− n′
n+ n′ , τ = 2n

n+ n′

ρ′ = n′ − n
n′ + n , τ′ = 2n′

n′ + n

(5.2.7)

These are also called the Fresnel coefficients. We note various useful relationships:

τ = 1+ ρ, ρ′ = −ρ, τ′ = 1+ ρ′ = 1− ρ, ττ′ = 1− ρ2 (5.2.8)

In summary, the total electric and magnetic fields E,H match simply across the

interface, whereas the forward/backward fields E± are related by the matching matrices

of Eqs. (5.2.3) and (5.2.4). An immediate consequence of Eq. (5.2.1) is that the wave

impedance is continuous across the interface:

Z = E

H
= E′

H′
= Z′

On the other hand, the corresponding reflection coefficients Γ = E−/E+ and Γ′ =
E′−/E′+ match in a more complicated way. Using Eq. (5.1.7) and the continuity of the

wave impedance, we have:

η
1+ Γ
1− Γ = Z = Z

′ = η′ 1+ Γ
′

1− Γ′

which can be solved to get:

Γ = ρ+ Γ′
1+ ρΓ′ and Γ′ = ρ′ + Γ

1+ ρ′Γ
The same relationship follows also from Eq. (5.2.3):

Γ = E−
E+

=
1

τ
(ρE′+ + E′−)

1

τ
(E′+ + ρE′−)

=
ρ+ E

′−
E′+

1+ ρE
′−
E′+

= ρ+ Γ′
1+ ρΓ′
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To summarize, we have the matching conditions for Z and Γ:

Z = Z′ ⇔ Γ = ρ+ Γ′
1+ ρΓ′ ⇔ Γ′ = ρ′ + Γ

1+ ρ′Γ (5.2.9)

Two special cases, illustrated in Fig. 5.2.1, are when there is only an incident wave

on the interface from the left, so that E′− = 0, and when the incident wave is only from

the right, so that E+ = 0. In the first case, we have Γ′ = E′−/E′+ = 0, which implies

Z′ = η′(1+ Γ′)/(1− Γ′)= η′. The matching conditions give then:

Z = Z′ = η′, Γ = ρ+ Γ′
1+ ρΓ′ = ρ

The matching matrix (5.2.3) implies in this case:
[

E+
E−

]

= 1

τ

[

1 ρ

ρ 1

][

E′+
0

]

= 1

τ

[

E′+
ρE′+

]

Expressing the reflected and transmitted fields E−, E′+ in terms of the incident field E+,

we have:

E− = ρE+
E′+ = τE+

(left-incident fields) (5.2.10)

This justifies the terms reflection and transmission coefficients for ρ and τ. In the

right-incident case, the condition E+ = 0 implies for Eq. (5.2.4):
[

E′+
E′−

]

= 1

τ′

[

1 ρ′

ρ′ 1

][

0

E−

]

= 1

τ′

[

ρ′E−
E−

]

These can be rewritten in the form:

E′+ = ρ′E′−
E− = τ′E′−

(right-incident fields) (5.2.11)

which relates the reflected and transmitted fields E′+, E− to the incident field E′−. In this

case Γ = E−/E+ = ∞ and the third of Eqs. (5.2.9) gives Γ′ = E′−/E′+ = 1/ρ′, which is

consistent with Eq. (5.2.11).

When there are incident fields from both sides, that is, E+, E′−, we may invoke the

linearity of Maxwell’s equations and add the two right-hand sides of Eqs. (5.2.10) and

(5.2.11) to obtain the outgoing fields E′+, E− in terms of the incident ones:

E′+ = τE+ + ρ′E′−
E− = ρE+ + τ′E′−

(5.2.12)

This gives the scattering matrix relating the outgoing fields to the incoming ones:

[

E′+
E−

]

=
[

τ ρ′

ρ τ′

][

E+
E′−

]

(scattering matrix) (5.2.13)

Using the relationships Eq. (5.2.8), it is easily verified that Eq. (5.2.13) is equivalent

to the matching matrix equations (5.2.3) and (5.2.4).
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5.3 Reflected and Transmitted Power

For waves propagating in the z-direction, the time-averaged Poynting vector has only a

z-component:

PPP = 1

2
Re
(

x̂E × ŷH∗
) = ẑ

1

2
Re(EH∗)

A direct consequence of the continuity equations (5.2.1) is that the Poynting vector

is conserved across the interface. Indeed, we have:

P = 1

2
Re(EH∗)= 1

2
Re(E′H′∗)= P′ (5.3.1)

In particular, consider the case of a wave incident from a lossless dielectric η onto a

lossy dielectric η′. Then, the conservation equation (5.3.1) reads in terms of the forward

and backward fields (assuming E′− = 0):

P = 1

2η

(|E+|2 − |E−|2
) = Re

( 1

2η′
)|E′+|2 = P′

The left hand-side is the difference of the incident and the reflected power and rep-

resents the amount of power transmitted into the lossy dielectric per unit area. We saw

in Sec. 2.6 that this power is completely dissipated into heat inside the lossy dielectric

(assuming it is infinite to the right.) Using Eqs. (5.2.10), we find:

P = 1

2η
|E+|2

(

1− |ρ|2)= Re
( 1

2η′
)|E+|2|τ|2 (5.3.2)

This equality requires that:

1

η
(1− |ρ|2)= Re

( 1

η′
)|τ|2 (5.3.3)

This can be proved using the definitions (5.2.5). Indeed, we have:

η

η′
= 1− ρ

1+ ρ ⇒ Re

(

η

η′

)

= 1− |ρ|2
|1+ ρ|2 =

1− |ρ|2
|τ|2

which is equivalent to Eq. (5.3.3), if η is lossless (i.e., real.) Defining the incident, re-

flected, and transmitted powers by

Pin = 1

2η
|E+|2

Pref = 1

2η
|E−|2 = 1

2η
|E+|2|ρ|2 = Pin|ρ|2

Ptr = Re
( 1

2η′
)|E′+|2 = Re

( 1

2η′
)|E+|2|τ|2 = Pin Re

( η

η′
)|τ|2

Then, Eq. (5.3.2) reads Ptr = Pin − Pref. The power reflection and transmission

coefficients, also known as the reflectance and transmittance, give the percentage of the

incident power that gets reflected and transmitted:
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Pref

Pin

= |ρ|2, Ptr

Pin

= 1− |ρ|2 = Re
( η

η′
)|τ|2 = Re

(n′

n

)|τ|2 (5.3.4)

If both dielectrics are lossless, then ρ,τ are real-valued. In this case, if there are

incident waves from both sides of the interface, it is straightforward to show that the

net power moving towards the z-direction is the same at either side of the interface:

P = 1

2η

(|E+|2 − |E−|2
) = 1

2η′
(|E′+|2 − |E′−|2

) = P′ (5.3.5)

This follows from the matrix identity satisfied by the matching matrix of Eq. (5.2.3):

1

τ2

[

1 ρ

ρ 1

][

1 0

0 −1

][

1 ρ

ρ 1

]

= η

η′

[

1 0

0 −1

]

(5.3.6)

If ρ,τ are real, then we have with the help of this identity and Eq. (5.2.3):

P = 1

2η

(|E+|2 − |E−|2
) = 1

2η

[

E∗+, E
∗
−
]

[

1 0

0 −1

][

E+
E−

]

= 1

2η

[

E′+
∗
, E′−

∗] 1

ττ∗

[

1 ρ∗

ρ∗ 1

][

1 0

0 −1

][

1 ρ

ρ 1

][

E′+
E′−

]

= 1

2η

η

η′
[

E′+
∗
, E′−

∗]
[

1 0

0 −1

][

E′+
E′−

]

= 1

2η′
(|E′+|2 − |E′−|2

) = P′

Example 5.3.1: Glasses have a refractive index of the order of n = 1.5 and dielectric constant

ǫ = n2ǫ0 = 2.25ǫ0. Calculate the percentages of reflected and transmitted powers for

visible light incident on a planar glass interface from air.

Solution: The characteristic impedance of glass will be η = η0/n. Therefore, the reflection and

transmission coefficients can be expressed directly in terms of n, as follows:

ρ = η− η0

η+ η0

= n−1 − 1

n−1 + 1
= 1− n

1+ n , τ = 1+ ρ = 2

1+ n

For n = 1.5, we find ρ = −0.2 and τ = 0.8. It follows that the power reflection and

transmission coefficients will be

|ρ|2 = 0.04, 1− |ρ|2 = 0.96

That is, 4% of the incident power is reflected and 96% transmitted. ⊓⊔

Example 5.3.2: A uniform plane wave of frequency f is normally incident from air onto a thick

conducting sheet with conductivity σ, and ǫ = ǫ0, μ = μ0. Show that the proportion

of power transmitted into the conductor (and then dissipated into heat) is given approxi-

mately by

Ptr

Pin

= 4Rs
η0

=
√

8ωǫ0

σ

Calculate this quantity for f = 1 GHz and copper σ = 5.8×107 Siemens/m.
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Solution: For a good conductor, we have
√

ωǫ0/σ≪ 1. It follows from Eq. (2.8.4) that Rs/η0 =
√

ωǫ0/2σ≪ 1. From Eq. (2.8.2), the conductor’s characteristic impedance is ηc = Rs(1+
j). Thus, the quantity ηc/η0 = (1+ j)Rs/η0 is also small. The reflection and transmission

coefficients ρ,τ can be expressed to first-order in the quantity ηc/η0 as follows:

τ = 2ηc
ηc + η0

≃ 2ηc
η0

, ρ = τ− 1 ≃ −1+ 2ηc
η0

Similarly, the power transmission coefficient can be approximated as

1− |ρ|2 = 1− |τ− 1|2 = 1− 1− |τ|2 + 2 Re(τ)≃ 2 Re(τ)= 2
2 Re(ηc)

η0

= 4Rs
η0

where we neglected |τ|2 as it is second order in ηc/η0. For copper at 1 GHz, we have
√

ωǫ0/2σ = 2.19×10−5, which gives Rs = η0

√

ωǫ0/2σ = 377×2.19×10−5 = 0.0082 Ω. It

follows that 1− |ρ|2 = 4Rs/η0 = 8.76×10−5.

This represents only a small power loss of 8.76×10−3 percent and the sheet acts as very

good mirror at microwave frequencies.

On the other hand, at optical frequencies, e.g., f = 600 THz corresponding to green

light with λ = 500 nm, the exact equations (2.6.5) yield the value for the character-

istic impedance of the sheet ηc = 6.3924 + 6.3888i Ω and the reflection coefficient

ρ = −0.9661+ 0.0328i. The corresponding power loss is 1− |ρ|2 = 0.065, or 6.5 percent.

Thus, metallic mirrors are fairly lossy at optical frequencies. ⊓⊔

Example 5.3.3: A uniform plane wave of frequency f is normally incident from air onto a thick

conductor with conductivity σ, and ǫ = ǫ0, μ = μ0. Determine the reflected and trans-

mitted electric and magnetic fields to first-order in ηc/η0 and in the limit of a perfect

conductor (ηc = 0).

Solution: Using the approximations for ρ and τ of the previous example and Eq. (5.2.10), we

have for the reflected, transmitted, and total electric fields at the interface:

E− = ρE+ =
(

−1+ 2ηc
η0

)

E+

E′+ = τE+ =
2ηc
η0

E+

E = E+ + E− = 2ηc
η0

E+ = E′+ = E′

For a perfect conductor, we have σ →∞ and ηc/η0 → 0. The corresponding total tangen-

tial electric field becomes zero E = E′ = 0, and ρ = −1, τ = 0. For the magnetic fields, we

need to develop similar first-order approximations. The incident magnetic field intensity

is H+ = E+/η0. The reflected field becomes to first order:

H− = − 1

η0

E− = − 1

η0

ρE+ = −ρH+ =
(

1− 2ηc
η0

)

H+

Similarly, the transmitted field is
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H′
+ =

1

ηc
E′+ =

1

ηc
τE+ = η0

ηc
τH+ = η0

ηc

2ηc
ηc + η0

H+ = 2η0

ηc + η0

H+ ≃ 2

(

1− ηc
η0

)

H+

The total tangential field at the interface will be:

H = H+ +H− = 2

(

1− ηc
η0

)

H+ = H′
+ = H′

In the perfect conductor limit, we findH = H′ = 2H+. As we saw in Sec. 2.6, the fields just

inside the conductor, E′+,H
′
+, will attenuate while they propagate. Assuming the interface

is at z = 0, we have:

E′+(z)= E′+e−αze−jβz, H′
+(z)= H′

+e
−αze−jβz

where α = β = (1− j)/δ, and δ is the skin depth δ = √

ωμσ/2. We saw in Sec. 2.6 that

the effective surface current is equal in magnitude to the magnetic field at z = 0, that is,

Js = H′
+. Because of the boundary condition H = H′ = H′

+, we obtain the result Js = H,

or vectorially, Js = H× ẑ = n̂×H, where n̂ = −ẑ is the outward normal to the conductor.

This result provides a justification of the boundary condition Js = n̂ × H at an interface

with a perfect conductor. ⊓⊔

5.4 Single Dielectric Slab

Multiple interface problems can be handled in a straightforward way with the help of

the matching and propagation matrices. For example, Fig. 5.4.1 shows a two-interface

problem with a dielectric slab η1 separating the semi-infinite media ηa and ηb.

Fig. 5.4.1 Single dielectric slab.

Let l1 be the width of the slab, k1 = ω/c1 the propagation wavenumber, and λ1 =
2π/k1 the corresponding wavelength within the slab. We have λ1 = λ0/n1, where λ0 is

the free-space wavelength andn1 the refractive index of the slab. We assume the incident

field is from the left medium ηa, and thus, in medium ηb there is only a forward wave.
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Let ρ1, ρ2 be the elementary reflection coefficients from the left sides of the two

interfaces, and let τ1, τ2 be the corresponding transmission coefficients:

ρ1 = η1 − ηa
η1 + ηa

, ρ2 = ηb − η1

ηb + η1

, τ1 = 1+ ρ1 , τ2 = 1+ ρ2 (5.4.1)

To determine the reflection coefficient Γ1 into medium ηa, we apply Eq. (5.2.9) to

relate Γ1 to the reflection coefficient Γ′1 at the right-side of the first interface. Then, we

propagate to the left of the second interface with Eq. (5.1.12) to get:

Γ1 = ρ1 + Γ′1
1+ ρ1Γ

′
1

= ρ1 + Γ2e
−2jk1l1

1+ ρ1Γ2e−2jk1l1
(5.4.2)

At the second interface, we apply Eq. (5.2.9) again to relate Γ2 to Γ′2. Because there

are no backward-moving waves in medium ηb, we have Γ′2 = 0. Thus,

Γ2 = ρ2 + Γ′2
1+ ρ2Γ

′
2

= ρ2

We finally find for Γ1:

Γ1 = ρ1 + ρ2e
−2jk1l1

1+ ρ1ρ2e−2jk1l1
(5.4.3)

This expression can be thought of as function of frequency. Assuming a lossless

medium η1, we have 2k1l1 = ω(2l1/c1)= ωT, where T = 2l1/c1 = 2(n1l1)/c0 is the

two-way travel time delay through medium η1. Thus, we can write:

Γ1(ω)= ρ1 + ρ2e
−jωT

1+ ρ1ρ2e−jωT
(5.4.4)

This can also be expressed as a z-transform. Denoting the two-way travel time delay

in the z-domain by z−1 = e−jωT = e−2jk1l1 , we may rewrite Eq. (5.4.4) as the first-order

digital filter transfer function:

Γ1(z)= ρ1 + ρ2z
−1

1+ ρ1ρ2z−1
(5.4.5)

An alternative way to derive Eq. (5.4.3) is working with wave impedances, which

are continuous across interfaces. The wave impedance at interface-2 is Z2 = Z′2, but

Z′2 = ηb because there is no backward wave in medium ηb. Thus, Z2 = ηb. Using the

propagation equation for impedances, we find:

Z1 = Z′1 = η1
Z2 + jη1 tank1l1
η1 + jZ2 tank1l1

= η1
ηb + jη1 tank1l1
η1 + jηb tank1l1

Inserting this into Γ1 = (Z1 − ηa)/(Z1 + ηa) gives Eq. (5.4.3). Working with wave

impedances is always more convenient if the interfaces are positioned at half- or quarter-

wavelength spacings.
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If we wish to determine the overall transmission response into medium ηb, that is,

the quantity T = E′2+/E1+, then we must work with the matrix formulation. Starting at

the left interface and successively applying the matching and propagation matrices, we

obtain:

[

E1+
E1−

]

= 1

τ1

[

1 ρ1

ρ1 1

][

E′1+
E′1−

]

= 1

τ1

[

1 ρ1

ρ1 1

][

ejk1l1 0

0 e−jk1l1

][

E2+
E2−

]

= 1

τ1

[

1 ρ1

ρ1 1

][

ejk1l1 0

0 e−jk1l1

]

1

τ2

[

1 ρ2

ρ2 1

][

E′2+
0

]

where we set E′2− = 0 by assumption. Multiplying the matrix factors out, we obtain:

E1+ = ejk1l1

τ1τ2

(

1+ ρ1ρ2e
−2jk1l1

)

E′2+

E1− = ejk1l1

τ1τ2

(

ρ1 + ρ2e
−2jk1l1

)

E′2+

These may be solved for the reflection and transmission responses:

Γ1 = E1−
E1+

= ρ1 + ρ2e
−2jk1l1

1+ ρ1ρ2e−2jk1l1

T = E′2+
E1+

= τ1τ2e
−jk1l1

1+ ρ1ρ2e−2jk1l1

(5.4.6)

The transmission response has an overall delay factor of e−jk1l1 = e−jωT/2, repre-

senting the one-way travel time delay through medium η1.

For convenience, we summarize the match-and-propagate equations relating the field

quantities at the left of interface-1 to those at the left of interface-2. The forward and

backward electric fields are related by the transfer matrix:

[

E1+
E1−

]

= 1

τ1

[

1 ρ1

ρ1 1

][

ejk1l1 0

0 e−jk1l1

][

E2+
E2−

]

[

E1+
E1−

]

= 1

τ1

[

ejk1l1 ρ1e
−jk1l1

ρ1e
jk1l1 e−jk1l1

][

E2+
E2−

] (5.4.7)

The reflection responses are related by Eq. (5.4.2):

Γ1 = ρ1 + Γ2e
−2jk1l1

1+ ρ1Γ2e−2jk1l1
(5.4.8)

The total electric and magnetic fields at the two interfaces are continuous across the

interfaces and are related by Eq. (5.1.13):

[

E1

H1

]

=
[

cosk1l1 jη1 sink1l1
jη−1

1 sink1l1 cosk1l1

][

E2

H2

]

(5.4.9)

Eqs. (5.4.7)–(5.4.9) are valid in general, regardless of what is to the right of the second

interface. There could be a semi-infinite uniform medium or any combination of multiple
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slabs. These equations were simplified in the single-slab case because we assumed that

there was a uniform medium to the right and that there were no backward-moving waves.

For lossless media, energy conservation states that the energy flux into medium η1

must equal the energy flux out of it. It is equivalent to the following relationship between

Γ and T, which can be proved using Eq. (5.4.6):

1

ηa

(

1− |Γ1|2
) = 1

ηb
|T|2 (5.4.10)

Thus, if we call |Γ1|2 the reflectance of the slab, representing the fraction of the

incident power that gets reflected back into medium ηa, then the quantity

1− |Γ1|2 = ηa
ηb
|T|2 = nb

na
|T|2 (5.4.11)

will be the transmittance of the slab, representing the fraction of the incident power that

gets transmitted through into the right medium ηb. The presence of the factors ηa, ηb
can be can be understood as follows:

Ptransmitted

Pincident

=
1

2ηb
|E′2+|2

1

2ηa
|E1+|2

= ηa
ηb
|T|2

5.5 Reflectionless Slab

The zeros of the transfer function (5.4.5) correspond to a reflectionless interface. Such

zeros can be realized exactly only in two special cases, that is, for slabs that have either

half-wavelength or quarter-wavelength thickness. It is evident from Eq. (5.4.5) that a

zero will occur if ρ1 + ρ2z
−1 = 0, which gives the condition:

z = e2jk1l1 = −ρ2

ρ1

(5.5.1)

Because the right-hand side is real-valued and the left-hand side has unit magnitude,

this condition can be satisfied only in the following two cases:

z = e2jk1l1 = 1, ρ2 = −ρ1, (half-wavelength thickness)

z = e2jk1l1 = −1, ρ2 = ρ1, (quarter-wavelength thickness)

The first case requires that 2k1l1 be an integral multiple of 2π, that is, 2k1l1 = 2mπ,

where m is an integer. This gives the half-wavelength condition l1 = mλ1/2, where λ1

is the wavelength in medium-1. In addition, the condition ρ2 = −ρ1 requires that:

ηb − η1

ηb + η1

= ρ2 = −ρ1 = ηa − η1

ηa + η1

⇔ ηa = ηb

that is, the media to the left and right of the slab must be the same. The second pos-

sibility requires e2jk1l1 = −1, or that 2k1l1 be an odd multiple of π, that is, 2k1l1 =
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(2m+1)π, which translates into the quarter-wavelength condition l1 = (2m+1)λ1/4.

Furthermore, the condition ρ2 = ρ1 requires:

ηb − η1

ηb + η1

= ρ2 = ρ1 = η1 − ηa
η1 + ηa

⇔ η2
1 = ηaηb

To summarize, a reflectionless slab, Γ1 = 0, can be realized only in the two cases:

half-wave: l1 =m λ1

2
, η1 arbitrary, ηa = ηb

quarter-wave: l1 = (2m+ 1)
λ1

4
, η1 = √ηaηb , ηa, ηb arbitrary

(5.5.2)

An equivalent way of stating these conditions is to say that the optical length of

the slab must be a half or quarter of the free-space wavelength λ0. Indeed, if n1 is the

refractive index of the slab, then its optical length is n1l1, and in the half-wavelength

case we have n1l1 = n1mλ1/2 =mλ0/2, where we used λ1 = λ0/n1. Similarly, we have

n1l1 = (2m+1)λ0/4 in the quarter-wavelength case. In terms of the refractive indices,

Eq. (5.5.2) reads:

half-wave: n1l1 =m λ0

2
, n1 arbitrary, na = nb

quarter-wave: n1l1 = (2m+ 1)
λ0

4
, n1 = √nanb , na, nb arbitrary

(5.5.3)

The reflectionless matching condition can also be derived by working with wave

impedances. For half-wavelength spacing, we have from Eq. (5.1.18) Z1 = Z2 = ηb. The

condition Γ1 = 0 requires Z1 = ηa, thus, matching occurs if ηa = ηb. Similarly, for the

quarter-wavelength case, we have Z1 = η2
1/Z2 = η2

1/ηb = ηa.

We emphasize that the reflectionless response Γ1 = 0 is obtained only at certain slab

widths (half- or quarter-wavelength), or equivalently, at certain operating frequencies.

These operating frequencies correspond to ωT = 2mπ, or, ωT = (2m+ 1)π, that is,

ω = 2mπ/T =mω0, or, ω = (2m+ 1)ω0/2, where we defined ω0 = 2π/T.

The dependence on l1 or ω can be seen from Eq. (5.4.5). For the half-wavelength

case, we substitute ρ2 = −ρ1 and for the quarter-wavelength case, ρ2 = ρ1. Then, the

reflection transfer functions become:

Γ1(z) = ρ1(1− z−1)

1− ρ2
1z
−1

, (half-wave)

Γ1(z) = ρ1(1+ z−1)

1+ ρ2
1z
−1

, (quarter-wave)

(5.5.4)

where z = e2jk1l1 = ejωT. The magnitude-square responses then take the form:

|Γ1|2 = 2ρ2
1

(

1− cos(2k1l1)
)

1− 2ρ2
1 cos(2k1l1)+ρ4

1

= 2ρ2
1(1− cosωT)

1− 2ρ2
1 cosωT + ρ4

1

, (half-wave)

|Γ1|2 = 2ρ2
1

(

1+ cos(2k1l1)
)

1+ 2ρ2
1 cos(2k1l1)+ρ4

1

= 2ρ2
1(1+ cosωT)

1+ 2ρ2
1 cosωT + ρ4

1

, (quarter-wave)

(5.5.5)
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These expressions are periodic in l1 with period λ1/2, and periodic inω with period

ω0 = 2π/T. In DSP language, the slab acts as a digital filter with sampling frequency

ω0. The maximum reflectivity occurs at z = −1 and z = 1 for the half- and quarter-

wavelength cases. The maximum squared responses are in either case:

|Γ1|2max =
4ρ2

1

(1+ ρ2
1)

2

Fig. 5.5.1 shows the magnitude responses for the three values of the reflection co-

efficient: |ρ1| = 0.9, 0.7, and 0.5. The closer ρ1 is to unity, the narrower are the reflec-

tionless notches.

Fig. 5.5.1 Reflection responses |Γ(ω)|2. (a) |ρ1| = 0.9, (b) |ρ1| = 0.7, (c) |ρ1| = 0.5.

It is evident from these figures that for the same value of ρ1, the half- and quarter-

wavelength cases have the same notch widths. A standard measure for the width is

the 3-dB width, which for the half-wavelength case is twice the 3-dB frequency ω3, that

is, Δω = 2ω3, as shown in Fig. 5.5.1 for the case |ρ1| = 0.5. The frequency ω3 is

determined by the 3-dB half-power condition:

|Γ1(ω3)|2 = 1

2
|Γ1|2max

or, equivalently:

2ρ2
1(1− cosω3T)

1− 2ρ2
1 cosω3T + ρ4

1

= 1

2

4ρ2
1

(1+ ρ2
1)

2

Solving for the quantity cosω3T = cos(ΔωT/2), we find:

cos
(ΔωT

2

) = 2ρ2
1

1+ ρ4
1

⇔ tan
(ΔωT

4

) = 1− ρ2
1

1+ ρ2
1

(5.5.6)

If ρ2
1 is very near unity, then 1 − ρ2

1 and Δω become small, and we may use the

approximation tanx ≃ x to get:

ΔωT

4
≃ 1− ρ2

1

1+ ρ2
1

≃ 1− ρ2
1

2
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which gives the approximation:

ΔωT = 2(1− ρ2
1) (5.5.7)

This is a standard approximation for digital filters relating the 3-dB width of a pole

peak to the radius of the pole [49]. For any desired value of the bandwidthΔω, Eq. (5.5.6)

or (5.5.7) may be thought of as a design condition that determines ρ1.

Fig. 5.5.2 shows the corresponding transmittances 1 − |Γ1(ω)|2 of the slabs. The

transmission response acts as a periodic bandpass filter. This is the simplest exam-

ple of a so-called Fabry-Perot interference filter or Fabry-Perot resonator. Such filters

find application in the spectroscopic analysis of materials. We discuss them further in

Chap. 6.

Fig. 5.5.2 Transmittance of half- and quarter-wavelength dielectric slab.

Using Eq. (5.5.5), we may express the frequency response of the half-wavelength

transmittance filter in the following equivalent forms:

1− |Γ1(ω)|2 = (1− ρ2
1)

2

1− 2ρ2
1 cosωT + ρ4

1

= 1

1+F sin2(ωT/2)
(5.5.8)

where the F is called the finesse in the Fabry-Perot context and is defined by:

F = 4ρ2
1

(1− ρ2
1)

2

The finesse is a measure of the peak width, with larger values of F corresponding

to narrower peaks. The connection of F to the 3-dB width (5.5.6) is easily found to be:

tan
(ΔωT

4

) = 1− ρ2
1

1+ ρ2
1

= 1
√

1+F (5.5.9)

Quarter-wavelength slabs may be used to design anti-reflection coatings for lenses,

so that all incident light on a lens gets through. Half-wavelength slabs, which require that

the medium be the same on either side of the slab, may be used in designing radar domes

(radomes) protecting microwave antennas, so that the radiated signal from the antenna

goes through the radome wall without getting reflected back towards the antenna.
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Example 5.5.1: Determine the reflection coefficients of half- and quarter-wave slabs that do not

necessarily satisfy the impedance conditions of Eq. (5.5.2).

Solution: The reflection response is given in general by Eq. (5.4.6). For the half-wavelength case,

we have e2jk1l1 = 1 and we obtain:

Γ1 = ρ1 + ρ2

1+ ρ1ρ2

=
η1 − ηa
η1 + ηa

+ ηb − η1

ηb + η1

1+ η1 − ηa
η1 + ηa

ηb − η1

ηb + η1

= ηb − ηa
ηb + ηa

= na − nb
na + nb

This is the same as if the slab were absent. For this reason, half-wavelength slabs are

sometimes referred to as absentee layers. Similarly, in the quarter-wavelength case, we

have e2jk1l1 = −1 and find:

Γ1 = ρ1 − ρ2

1− ρ1ρ2

= η2
1 − ηaηb
η2

1 + ηaηb
= nanb − n2

1

nanb + n2
1

The slab becomes reflectionless if the conditions (5.5.2) are satisfied. ⊓⊔

Example 5.5.2: Antireflection Coating. Determine the refractive index of a quarter-wave antire-

flection coating on a glass substrate with index 1.5.

Solution: From Eq. (5.5.3), we have with na = 1 and nb = 1.5:

n1 =
√
nanb =

√
1.5 = 1.22

The closest refractive index that can be obtained is that of cryolite (Na3AlF6) with n1 =
1.35 and magnesium fluoride (MgF2) with n1 = 1.38. Magnesium fluoride is usually pre-

ferred because of its durability. Such a slab will have a reflection coefficient as given by

the previous example:

Γ1 = ρ1 − ρ2

1− ρ1ρ2

= η2
1 − ηaηb
η2

1 + ηaηb
= nanb − n2

1

nanb + n2
1

= 1.5− 1.382

1.5+ 1.382
= −0.118

with reflectance |Γ|2 = 0.014, or 1.4 percent. This is to be compared to the 4 percent

reflectance of uncoated glass that we determined in Example 5.3.1.

Fig. 5.5.3 shows the reflectance |Γ(λ)|2 as a function of the free-space wavelength λ. The

reflectance remains less than one or two percent in the two cases, over almost the entire

visible spectrum.

The slabs were designed to have quarter-wavelength thickness at λ0 = 550 nm, that is, the

optical length was n1l1 = λ0/4, resulting in l1 = 112.71 nm and 99.64 nm in the two cases

of n1 = 1.22 and n1 = 1.38. Such extremely thin dielectric films are fabricated by means

of a thermal evaporation process [628,630].

The MATLAB code used to generate this example was as follows:

n = [1, 1.22, 1.50]; L = 1/4; refractive indices and optical length

lambda = linspace(400,700,101) / 550; visible spectrum wavelengths

Gamma1 = multidiel(n, L, lambda); reflection response of slab
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Fig. 5.5.3 Reflectance over the visible spectrum.

The syntax and use of the function multidiel is discussed in Sec. 6.1. The dependence

of Γ on λ comes through the quantity k1l1 = 2π(n1l1)/λ. Since n1l1 = λ0/4, we have

k1l1 = 0.5πλ0/λ. ⊓⊔

Example 5.5.3: Thick Glasses. Interference phenomena, such as those arising from the mul-

tiple reflections within a slab, are not observed if the slabs are “thick” (compared to the

wavelength.) For example, typical glass windows seem perfectly transparent.

If one had a glass plate of thickness, say, of l = 1.5 mm and index n = 1.5, it would have

optical length nl = 1.5×1.5 = 2.25 mm = 225×104 nm. At an operating wavelength

of λ0 = 450 nm, the glass plate would act as a half-wave transparent slab with nl =
104(λ0/2), that is, 104 half-wavelengths long.

Such plate would be very difficult to construct as it would require that l be built with

an accuracy of a few percent of λ0/2. For example, assuming n(Δl)= 0.01(λ0/2), the

plate should be constructed with an accuracy of one part in a million: Δl/l = nΔl/(nl)=
0.01/104 = 10−6. (That is why thin films are constructed by a carefully controlled evapo-

ration process.)

More realistically, a typical glass plate can be constructed with an accuracy of one part in a

thousand, Δl/l = 10−3, which would mean that within the manufacturing uncertainty Δl,

there would still be ten half-wavelengths, nΔl = 10−3(nl)= 10(λ0/2).

The overall power reflection response will be obtained by averaging |Γ1|2 over severalλ0/2

cycles, such as the above ten. Because of periodicity, the average of |Γ1|2 over several cycles

is the same as the average over one cycle, that is,

|Γ1|2 = 1

ω0

∫ω0

0
|Γ1(ω)|2 dω

where ω0 = 2π/T and T is the two-way travel-time delay. Using either of the two expres-

sions in Eq. (5.5.5), this integral can be done exactly resulting in the average reflectance

and transmittance:

|Γ1|2 = 2ρ2
1

1+ ρ2
1

, 1− |Γ1|2 = 1− ρ2
1

1+ ρ2
1

= 2n

n2 + 1
(5.5.10)
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where we used ρ1 = (1 − n)/(1 + n). This explains why glass windows do not exhibit a

frequency-selective behavior as predicted by Eq. (5.5.5). For n = 1.5, we find 1 − |Γ1|2 =
0.9231, that is, 92.31% of the incident light is transmitted through the plate.

The same expressions for the average reflectance and transmittance can be obtained by

summing incoherently all the multiple reflections within the slab, that is, summing the

multiple reflections of power instead of field amplitudes. The timing diagram for such

multiple reflections is shown in Fig. 5.6.1.

Indeed, if we denote by pr = ρ2
1 and pt = 1− pr = 1− ρ2

1, the power reflection and trans-

mission coefficients, then the first reflection of power will be pr . The power transmitted

through the left interface will be pt and through the second interface p2
t (assuming the

same medium to the right.) The reflected power at the second interface will be ptpr and

will come back and transmit through the left interface giving p2
tpr .

Similarly, after a second round trip, the reflected power will be p2
tp

3
r , while the transmitted

power to the right of the second interface will be p2
tp

2
r , and so on. Summing up all the

reflected powers to the left and those transmitted to the right, we find:

|Γ1|2 = pr + p2
tpr + p2

tp
3
r + p2

tp
5
r + · · · = pr +

p2
tpr

1− p2
r
= 2pr

1+ pr

1− |Γ1|2 = p2
t + p2

tp
2
r + p2

tp
4
r + · · · =

p2
t

1− p2
r
= 1− pr

1+ pr

where we used pt = 1− pr . These are equivalent to Eqs. (5.5.10). ⊓⊔

Example 5.5.4: Radomes. A radome protecting a microwave transmitter has ǫ = 4ǫ0 and is

designed as a half-wavelength reflectionless slab at the operating frequency of 10 GHz.

Determine its thickness.

Next, suppose that the operating frequency is 1% off its nominal value of 10 GHz. Calculate

the percentage of reflected power back towards the transmitting antenna.

Determine the operating bandwidth as that frequency interval about the 10 GHz operating

frequency within which the reflected power remains at least 30 dB below the incident

power.

Solution: The free-space wavelength is λ0 = c0/f0 = 30 GHz cm/10 GHz = 3 cm. The refractive

index of the slab is n = 2 and the wavelength inside it, λ1 = λ0/n = 3/2 = 1.5 cm. Thus,

the slab thickness will be the half-wavelength l1 = λ1/2 = 0.75 cm, or any other integral

multiple of this.

Assume now that the operating frequency is ω = ω0 + δω, where ω0 = 2πf0 = 2π/T.

Denoting δ = δω/ω0, we can write ω = ω0(1 + δ). The numerical value of δ is very

small, δ = 1% = 0.01. Therefore, we can do a first-order calculation in δ. The reflection

coefficient ρ1 and reflection response Γ are:

ρ1 = η− η0

η+ η0

= 0.5− 1

0.5+ 1
= −1

3
, Γ1(ω)= ρ1(1− z−1)

1− ρ2
1z
−1

= ρ1(1− e−jωT)
1− ρ2

1e
−jωT

where we used η = η0/n = η0/2. Noting that ωT = ω0T(1 + δ)= 2π(1 + δ), we can

expand the delay exponential to first-order in δ:

z−1 = e−jωT = e−2πj(1+δ) = e−2πje−2πjδ = e−2πjδ ≃ 1− 2πjδ
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Thus, the reflection response becomes to first-order in δ:

Γ1 ≃ ρ1

(

1− (1− 2πjδ)
)

1− ρ2
1(1− 2πjδ)

= ρ12πjδ

1− ρ2
1 + ρ2

12πjδ
≃ ρ12πjδ

1− ρ2
1

where we replaced the denominator by its zeroth-order approximation because the numer-

ator is already first-order in δ. It follows that the power reflection response will be:

|Γ1|2 = ρ2
1(2πδ)

2

(1− ρ2
1)

2

Evaluating this expression for δ = 0.01 and ρ1 = −1/3, we find |Γ|2 = 0.00049, or

0.049 percent of the incident power gets reflected. Next, we find the frequency about

ω0 at which the reflected power is A = 30 dB below the incident power. Writing again,

ω =ω0 + δω =ω0(1+ δ) and assuming δ is small, we have the condition:

|Γ1|2 = ρ2
1(2πδ)

2

(1− ρ2
1)

2
= Prefl

Pinc

= 10−A/10 ⇒ δ = 1− ρ2
1

2π|ρ1|
10−A/20

Evaluating this expression, we find δ = 0.0134, or δω = 0.0134ω0. The bandwidth will

be twice that, Δω = 2δω = 0.0268ω0, or in Hz, Δf = 0.0268f0 = 268 MHz. ⊓⊔

Example 5.5.5: Because of manufacturing imperfections, suppose that the actual constructed

thickness of the above radome is 1% off the desired half-wavelength thickness. Determine

the percentage of reflected power in this case.

Solution: This is essentially the same as the previous example. Indeed, the quantity θ =ωT =
2k1l1 = 2ωl1/c1 can change either because of ω or because of l1. A simultaneous in-

finitesimal change (about the nominal value θ0 =ω0T = 2π) will give:

δθ = 2(δω)l1/c1 + 2ω0(δl1)/c1 ⇒ δ = δθ

θ0

= δω

ω0

+ δl1
l1

In the previous example, we varied ω while keeping l1 constant. Here, we vary l1, while

keepingω constant, so that δ = δl1/l1. Thus, we have δθ = θ0δ = 2πδ. The correspond-

ing delay factor becomes approximately z−1 = e−jθ = e−j(2π+δθ) = 1 − jδθ = 1 − 2πjδ.

The resulting expression for the power reflection response is identical to the above and its

numerical value is the same if δ = 0.01. ⊓⊔

Example 5.5.6: Because of weather conditions, suppose that the characteristic impedance of

the medium outside the above radome is 1% off the impedance inside. Calculate the per-

centage of reflected power in this case.

Solution: Suppose that the outside impedance changes to ηb = η0 + δη. The wave impedance

at the outer interface will be Z2 = ηb = η0 + δη. Because the slab length is still a half-

wavelength, the wave impedance at the inner interface will be Z1 = Z2 = η0 + δη. It

follows that the reflection response will be:

Γ1 = Z1 − η0

Z1 + η0

= η0 + δη− η0

η0 + δη+ η0

= δη

2η0 + δη
≃ δη

2η0

where we replaced the denominator by its zeroth-order approximation in δη. Evaluating

at δη/η0 = 1% = 0.01, we find Γ1 = 0.005, which leads to a reflected power of |Γ1|2 =
2.5×10−5, or, 0.0025 percent. ⊓⊔
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5.6 Time-Domain Reflection Response

We conclude our discussion of the single slab by trying to understand its behavior in

the time domain. The z-domain reflection transfer function of Eq. (5.4.5) incorporates

the effect of all multiple reflections that are set up within the slab as the wave bounces

back and forth at the left and right interfaces. Expanding Eq. (5.4.5) in a partial fraction

expansion and then in power series in z−1 gives:

Γ1(z)= ρ1 + ρ2z
−1

1+ ρ1ρ2z−1
= 1

ρ1

− 1

ρ1

(1− ρ2
1)

1+ ρ1ρ2z−1
= ρ1 +

∞∑

n=1

(1− ρ2
1)(−ρ1)

n−1ρn2 z
−n

Using the reflection coefficient from the right of the first interface, ρ′1 = −ρ1, and the

transmission coefficients τ1 = 1+ρ1 and τ′1 = 1+ρ′1 = 1−ρ1, we have τ1τ
′
1 = 1−ρ2

1.

Then, the above power series can be written as a function of frequency in the form:

Γ1(ω)= ρ1 +
∞∑

n=1

τ1τ
′
1(ρ

′
1)
n−1ρn2 z

−n = ρ1 +
∞∑

n=1

τ1τ
′
1(ρ

′
1)
n−1ρn2 e

−jωnT

where we set z−1 = e−jωT. It follows that the time-domain reflection impulse response,

that is, the inverse Fourier transform of Γ1(ω), will be the sum of discrete impulses:

Γ1(t)= ρ1δ(t)+
∞∑

n=1

τ1τ
′
1(ρ

′
1)
n−1ρn2 δ(t − nT) (5.6.1)

This is the response of the slab to a forward-moving impulse striking the left inter-

face at t = 0, that is, the response to the input E1+(t)= δ(t). The first term ρ1δ(t) is the

impulse immediately reflected at t = 0 with the reflection coefficient ρ1. The remaining

terms represent the multiple reflections within the slab. Fig. 5.6.1 is a timing diagram

that traces the reflected and transmitted impulses at the first and second interfaces.

Fig. 5.6.1 Multiple reflections building up the reflection and transmission responses.

The input pulse δ(t) gets transmitted to the inside of the left interface and picks up

a transmission coefficient factor τ1. InT/2 seconds this pulse strikes the right interface
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and causes a reflected wave whose amplitude is changed by the reflection coefficient ρ2

into τ1ρ2.

Thus, the pulse τ1ρ2δ(t − T/2) gets reflected backwards and will arrive at the left

interface T/2 seconds later, that is, at time t = T. A proportion τ′1 of it will be transmit-

ted through to the left, and a proportion ρ′1 will be re-reflected towards the right. Thus,

at time t = T, the transmitted pulse into the left medium will be τ1τ
′
1ρ2δ(t − T), and

the re- reflected pulse τ1ρ
′
1ρ2δ(t −T).

The re-reflected pulse will travel forward to the right interface, arriving there at time

t = 3T/2 getting reflected backwards picking up a factor ρ2. This will arrive at the left

at time t = 2T. The part transmitted to the left will be now τ1τ
′
1ρ
′
1ρ

2
2δ(t − 2T), and

the part re-reflected to the right τ1ρ
′
1

2ρ2
2δ(t−2T). And so on, after the nth round trip,

the pulse transmitted to the left will be τ1τ
′
1(ρ

′
1)
n−1ρn2δ(t − nT). The sum of all the

reflected pulses will be Γ1(t) of Eq. (5.6.1).

In a similar way, we can derive the overall transmission response to the right. It is

seen in the figure that the transmitted pulse at time t = nT+(T/2)will beτ1τ2(ρ
′
1)
nρn2 .

Thus, the overall transmission impulse response will be:

T(t)=
∞∑

n=0

τ1τ2(ρ
′
1)
nρn2 δ(t − nT −T/2)

It follows that its Fourier transform will be:

T(ω)=
∞∑

n=0

τ1τ2(ρ
′
1)
nρn2e

−jnωTe−jωT/2

which sums up to Eq. (5.4.6):

T(ω)= τ1τ2e
−jωT/2

1− ρ′1ρ2e−jωT
= τ1τ2e

−jωT/2

1+ ρ1ρ2e−jωT
(5.6.2)

For an incident field E1+(t) with arbitrary time dependence, the overall reflection

response of the slab is obtained by convolving the impulse response Γ1(t) with E1+(t).
This follows from the linear superposition of the reflection responses of all the frequency

components of E1+(t), that is,

E1−(t)=
∫∞

−∞
Γ1(ω)E1+(ω)ejωt

dω

2π
, where E1+(t)=

∫∞

−∞
E1+(ω)ejωt

dω

2π

Then, the convolution theorem of Fourier transforms implies that:

E1−(t)=
∫∞

−∞
Γ1(ω)E1+(ω)ejωt

dω

2π
=
∫ −∞

−∞
Γ1(t

′)E1+(t − t′)dt′ (5.6.3)

Inserting (5.6.1), we find that the reflected wave arises from the multiple reflections

of E1+(t) as it travels and bounces back and forth between the two interfaces:

E1−(t)= ρ1E1+(t)+
∞∑

n=1

τ1τ
′
1(ρ

′
1)
n−1ρn2 E1+(t − nT) (5.6.4)
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For a causal waveform E1+(t), the summation over n will be finite, such that at each

time t ≥ 0 only the terms that have t− nT ≥ 0 will be present. In a similar fashion, we

find for the overall transmitted response into medium ηb :

E′2+(t)=
∫ −∞

−∞
T(t′)E1+(t − t′)dt′ =

∞∑

n=0

τ1τ2(ρ
′
1)
nρn2 E1+(t − nT −T/2) (5.6.5)

We will use similar techniques later on to determine the transient responses of trans-

mission lines.

5.7 Two Dielectric Slabs

Next, we consider more than two interfaces. As we mentioned in the previous section,

Eqs. (5.4.7)–(5.4.9) are general and can be applied to all successive interfaces. Fig. 5.7.1

shows three interfaces separating four media. The overall reflection response can be

calculated by successive application of Eq. (5.4.8):

Γ1 = ρ1 + Γ2e
−2jk1l1

1+ ρ1Γ2e−2jk1l1
, Γ2 = ρ2 + Γ3e

−2jk2l2

1+ ρ2Γ3e−2jk2l2

Fig. 5.7.1 Two dielectric slabs.

If there is no backward-moving wave in the right-most medium, then Γ′3 = 0, which

implies Γ3 = ρ3. Substituting Γ2 into Γ1 and denoting z1 = e2jk1l1 , z2 = e2jk2l2 , we

eventually find:

Γ1 = ρ1 + ρ2z
−1
1 + ρ1ρ2ρ3z

−1
2 + ρ3z

−1
1 z−1

2

1+ ρ1ρ2z
−1
1 + ρ2ρ3z

−1
2 + ρ1ρ3z

−1
1 z−1

2

(5.7.1)

The reflection response Γ1 can alternatively be determined from the knowledge of

the wave impedance Z1 = E1/H1 at interface-1:

Γ1 = Z1 − ηa
Z1 + ηa
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The fields E1,H1 are obtained by successively applying Eq. (5.4.9):

[

E1

H1

]

=
[

cosk1l1 jη1 sink1l1
jη−1

1 sink1l1 cosk1l1

][

E2

H2

]

=
[

cosk1l1 jη1 sink1l1
jη−1

1 sink1l1 cosk1l1

][

cosk2l2 jη2 sink2l2
jη−1

2 sink2l2 cosk2l2

][

E3

H3

]

But at interface-3, E3 = E′3 = E′3+ and H3 = Z−1
3 E3 = η−1

b E
′
3+, because Z3 = ηb.

Therefore, we can obtain the fields E1,H1 by the matrix multiplication:

[

E1

H1

]

=
[

cosk1l1 jη1 sink1l1
jη−1

1 sink1l1 cosk1l1

][

cosk2l2 jη2 sink2l2
jη−1

2 sink2l2 cosk2l2

][

1

η−1
b

]

E′3+

Because Z1 is the ratio of E1 andH1, the factor E′3+ cancels out and can be set equal

to unity.

Example 5.7.1: Determine Γ1 if both slabs are quarter-wavelength slabs. Repeat if both slabs

are half-wavelength and when one is half- and the other quarter-wavelength.

Solution: Because l1 = λ1/4 and l2 = λ2/4, we have 2k1l1 = 2k2l2 = π, and it follows that

z1 = z2 = −1. Then, Eq. (5.7.1) becomes:

Γ1 = ρ1 − ρ2 − ρ1ρ2ρ3 + ρ3

1− ρ1ρ2 − ρ2ρ3 + ρ1ρ3

A simpler approach is to work with wave impedances. Using Z3 = ηb, we have:

Z1 = η2
1

Z2

= η2
1

η2
2/Z3

= η2
1

η2
2

Z3 = η2
1

η2
2

ηb

Inserting this into Γ1 = (Z1 − ηa)/(Z1 + ηa), we obtain:

Γ1 = η2
1ηb − η2

2ηa

η2
1ηb + η2

2ηa

The two expressions for Γ1 are equivalent. The input impedance Z1 can also be obtained

by matrix multiplication. Because k1l1 = k2l2 = π/2, we have cosk1l1 = 0 and sink1l1 = 1

and the propagation matrices for E1,H1 take the simplified form:

[

E1

H1

]

=
[

0 jη1

jη−1
1 0

][

0 jη2

jη−1
2 0

][

1

η−1
b

]

E′3+ =
[

−η1η
−1
2

−η2η
−1
1 η

−1
b

]

E′3+

The ratioE1/H1 gives the same answer forZ1 as above. When both slabs are half-wavelength,

the impedances propagate unchanged: Z1 = Z2 = Z3, but Z3 = ηb.

If η1 is half- and η2 quarter-wavelength, then, Z1 = Z2 = η2
2/Z3 = η2

2/ηb. And, if the

quarter-wavelength is first and the half-wavelength second, Z1 = η2
1/Z2 = η2

1/Z3 = η2
1/ηb.

The corresponding reflection coefficient Γ1 is in the three cases:

Γ1 = ηb − ηa
ηb + ηa

, Γ1 = η2
2 − ηaηb
η2

2 + ηaηb
, Γ1 = η2

1 − ηaηb
η2

1 + ηaηb

These expressions can also be derived by Eq. (5.7.1), or by the matrix method. ⊓⊔
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The frequency dependence of Eq. (5.7.1) arises through the factors z1, z2, which can

be written in the forms: z1 = ejωT1 and z2 = ejωT2 , where T1 = 2l1/c1 and T2 = 2l2/c2

are the two-way travel time delays through the two slabs.

A case of particular interest arises when the slabs are designed to have the equal

travel-time delays so that T1 = T2 ≡ T. Then, defining a common variable z = z1 =
z2 = ejωT, we can write the reflection response as a second-order digital filter transfer

function:

Γ1(z)= ρ1 + ρ2(1+ ρ1ρ3)z
−1 + ρ3z

−2

1+ ρ2(ρ1 + ρ3)z−1 + ρ1ρ3z−2
(5.7.2)

In the next chapter, we discuss further the properties of such higher-order reflection

transfer functions arising from multilayer dielectric slabs.

5.8 Reflection by a Moving Boundary

Reflection and transmission by moving boundaries, such as reflection from a moving

mirror, introduce Doppler shifts in the frequencies of the reflected and transmitted

waves. Here, we look at the problem of normal incidence on a dielectric interface that

is moving with constant velocity v perpendicularly to the interface, that is, along the

z-direction as shown in Fig. 5.8.1. Additional examples may be found in [470–488]. The

case of oblique incidence is discussed in Sec. 7.12.

Fig. 5.8.1 Reflection and transmission at a moving boundary.

The dielectric is assumed to be non-magnetic and lossless with permittivity ǫ. The

left medium is free space ǫ0. The electric field is assumed to be in the x-direction and

thus, the magnetic field will be in the y-direction. We consider two coordinate frames, the

fixed frame S with coordinates {t, x, y, z}, and the moving frame S′ with {t′, x′, y′, z′}.
The two sets of coordinates are related by the Lorentz transformation equations (H.1)

of Appendix H.

We are interested in determining the Doppler-shifted frequencies of the reflected and

transmitted waves, as well as the reflection and transmission coefficients as measured

in the fixed frame S.



5.8. Reflection by a Moving Boundary 179

The procedure for solving this type of problem—originally suggested by Einstein

in his 1905 special relativity paper [470]—is to solve the reflection and transmission

problem in the moving frame S′ with respect to which the boundary is at rest, and

then transform the results back to the fixed frame S using the Lorentz transformation

properties of the fields. In the fixed frame S, the fields to the left and right of the

interface will have the forms:

left

⎧

⎨

⎩

Ex = Eiej(ωt−kiz) + Erej(ωrt+krz)

Hy = Hiej(ωt−kiz) −Hrej(ωrt+krz) right

⎧

⎨

⎩

Ex = Etej(ωtt−ktz)

Hy = Htej(ωtt−ktz) (5.8.1)

where ω,ωr,ωt and ki, kr, kt are the frequencies and wavenumbers of the incident,

reflected, and transmitted waves measured in S. Because of Lorentz invariance, the

propagation phases remain unchanged in the frames S and S′, that is,

φi =ωt − kiz =ω′t′ − k′iz′ = φ′i
φr =ωrt + krz =ω′t′ + k′rz′ = φ′r
φt =ωtt − ktz =ω′t′ − k′tz′ = φ′t

(5.8.2)

In the frame S′ where the dielectric is at rest, all three frequencies are the same

and set equal to ω′. This is a consequence of the usual tangential boundary conditions

applied to the interface at rest. Note that φr can be written as φr = ωrt − (−kr)z
implying that the reflected wave is propagating in the negative z-direction. In the rest

frame S′ of the boundary, the wavenumbers are:

k′i =
ω′

c
, k′r =

ω′

c
, k′t =ω′√ǫμ0 = nω

′

c
(5.8.3)

where c is the speed of light in vacuum and n = √

ǫ/ǫ0 is the refractive index of the

dielectric at rest. The frequencies and wavenumbers in the fixed frame S are related

to those in S′ by applying the Lorentz transformation of Eq. (H.14) to the frequency-

wavenumber four-vectors (ω/c,0,0, ki), (ωr/c,0,0,−kr), and (ωt/c,0,0, kt):

ω = γ(ω′ + βck′i)=ω′γ(1+ β)

ki = γ(k′i +
β

c
ω′)= ω′

c
γ(1+ β)

ωr = γ
(

ω′ + βc(−k′r)
) =ω′γ(1− β)

−kr = γ(−k′r +
β

c
ω′)= −ω

′

c
γ(1− β)

ωt = γ(ω′ + βck′t)=ω′γ(1+ βn)

kt = γ(k′t +
β

c
ω′)= ω′

c
γ(n+ β)

(5.8.4)

where β = v/c and γ = 1/
√

1− β2. Eliminating the primed quantities, we obtain the

Doppler-shifted frequencies of the reflected and transmitted waves:

ωr =ω1− β
1+ β , ωt =ω1+ βn

1+ β (5.8.5)
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The phase velocities of the incident, reflected, and transmitted waves are:

vi = ω

ki
= c , vr = ωr

kr
= c , vt = ωt

kt
= c1+ βn

n+ β (5.8.6)

These can also be derived by applying Einstein’s velocity addition theorem of Eq. (H.8).

For example, we have for the transmitted wave:

vt = vd + v
1+ vdv/c2

= c/n+ v
1+ (c/n)v/c2

= c1+ βn
n+ β

where vd = c/n is the phase velocity within the dielectric at rest. To first-order in

β = v/c, the phase velocity within the moving dielectric becomes:

vt = c1+ βn
n+ β ≃ c

n
+ v

(

1− 1

n2

)

The second term is known as the “Fresnel drag.” The quantity nt = (n+β)/(1+βn)
may be thought of as the “effective” refractive index of the moving dielectric as measured

in the fixed system S.

Next, we derive the reflection and transmission coefficients. In the rest-frame S′ of

the dielectric, the fields have the usual forms derived earlier in Sections 5.1 and 5.2:

left

⎧

⎪⎨

⎪⎩

E′x = E′i
(

ejφ
′
i + ρejφ′r)

H′y =
1

η0

E′i
(

ejφ
′
i − ρejφ′r) right

⎧

⎪⎨

⎪⎩

E′x = τE′iejφ
′
t

H′y =
1

η
τE′ie

jφ′t
(5.8.7)

where

η = η0

n
, ρ = η− η0

η+ η0

= 1− n
1+ n , τ = 1+ ρ = 2

1+ n
The primed fields can be transformed to the fixed frame S using the inverse of the

Lorentz transformation equations (H.31), that is,

Ex = γ(E′x + βcB′y)= γ(E′x + βη0H
′
y)

Hy = γ(H′y + cβD′x)= γ(H′y + cβǫE′x)
(5.8.8)

where we replaced B′y = μ0H
′
y, cμ0 = η0, and D′x = ǫE′x (of course, ǫ = ǫ0 in the left

medium). Using the invariance of the propagation phases, we find for the fields at the

left side of the interface:

Ex = γ
[

E′i(e
jφi+ρejφr)+βE′i(ejφi−ρejφr)

] = E′iγ
[

(1+β)ejφi+ρ(1−β)ejφr] (5.8.9)

Similarly, for the right side of the interface we use the property η0/η = n to get:

Ex = γ
[

τE′ie
jφt + βnτE′iejφt

] = γτE′i(1+ βn)ejφt (5.8.10)

Comparing these with Eq. (5.8.1), we find the incident, reflected, and transmitted

electric field amplitudes:

Ei = γE′i(1+ β) , Er = ργE′i(1− β) , Et = τγE′i(1+ βn) (5.8.11)
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from which we obtain the reflection and transmission coefficients in the fixed frame S:

Er
Ei
= ρ1− β

1+ β ,
Et
Ei
= τ1+ βn

1+ β (5.8.12)

The case of a perfect mirror is also covered by these expressions by setting ρ = −1

and τ = 0. Eq. (5.8.5) is widely used in Doppler radar applications. Typically, the

boundary (the target) is moving at non-relativistic speeds so that β = v/c≪ 1. In such

case, the first-order approximation of (5.8.5) is adequate:

fr ≃ f(1− 2β)= f(1− 2
v

c

) ⇒ Δf

f
= −2

v

c
(5.8.13)

where Δf = fr − f is the Doppler shift. The negative sign means that fr < f if the target

is receding away from the source of the wave, and fr > f if it is approaching the source.

As we mentioned in Sec. 2.12, if the source of the wave is moving with velocity va and

the target with velocity vb (with respect to a common fixed frame, such as the ground),

then one must use the relative velocity v = vb − va in the above expression:

Δf

f
= fr − f

f
= 2

va − vb
c

(5.8.14)

5.9 Problems

5.1 Fill in the details of the equivalence between Eq. (5.2.2) and (5.2.3), that is,

E+ + E− = E′+ + E′−
1

η

(

E+ − E−
) = 1

η′
(

E′+ − E′−
) ⇔

[

E+
E−

]

= 1

τ

[

1 ρ

ρ 1

][

E′+
E′−

]

5.2 Fill in the details of the equivalences stated in Eq. (5.2.9), that is,

Z = Z′ ⇔ Γ = ρ+ Γ′
1+ ρΓ′ ⇔ Γ′ = ρ′ + Γ

1+ ρ′Γ

Show that if there is no left-incident field from the right, then Γ = ρ, and if there is no

right-incident field from the left, then, Γ′ = 1/ρ′. Explain the asymmetry of the two cases.

5.3 Let ρ,τ be the reflection and transmission coefficients from the left side of an interface and

let ρ′, τ′ be those from the right, as defined in Eq. (5.2.5). One of the two media may be

lossy, and therefore, its characteristic impedance and hence ρ,τ may be complex-valued.

Show and interpret the relationships:

1− |ρ|2 = Re
( η

η′
)|τ|2 = Re(τ∗τ′)

5.4 Show that the reflection and transmission responses of the single dielectric slab of Fig. 5.4.1

are given by Eq. (5.4.6), that is,

Γ = ρ1 + ρ2e
−2jk1l1

1+ ρ1ρ2e−2jk1l1
, T = E′2+

E1+
= τ1τ2e

−jk1l1

1+ ρ1ρ2e−2jk1l1
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Moreover, using these expressions show and interpret the relationship:

1

ηa

(

1− |Γ|2) = 1

ηb
|T|2

5.5 A 1-GHz plane wave is incident normally onto a thick copper plate (σ = 5.8×107 S/m.) Can

the plate be considered to be a good conductor at this frequency? Calculate the percentage

of the incident power that enters the plate. Calculate the attenuation coefficient within the

conductor and express it in units of dB/m. What is the penetration depth in mm?

5.6 With the help of Fig. 5.5.1, argue that the 3-dB width Δω is related to the 3-dB frequency

ω3 by Δω = 2ω3 and Δω =ω0 − 2ω3, in the cases of half- and quarter-wavelength slabs.

Then, show that ω3 and Δω are given by:

cosω3T = ± 2ρ2
1

1+ ρ4
1

, tan

(
ΔωT

4

)

= 1− ρ2
1

1+ ρ2
1

5.7 A fiberglass (ǫ = 4ǫ0) radome protecting a microwave antenna is designed as a half-wavelength

reflectionless slab at the operating frequency of 12 GHz.

a. Determine three possible thicknesses (in cm) for this radome.

b. Determine the 15-dB and 30-dB bandwidths in GHz about the 12 GHz operating fre-

quency , defined as the widths over which the reflected power is 15 or 30 dB below the

incident power.

5.8 A 5 GHz wave is normally incident from air onto a dielectric slab of thickness of 1 cm and

refractive index of 1.5, as shown below. The medium to the right of the slab has an index of

2.25.

a. Write an analytical expression of the reflectance |Γ(f)|2 as a function of frequency

and sketch it versus f over the interval 0 ≤ f ≤ 15 GHz. What is the value of the

reflectance at 5 GHz?

b. Next, the 1-cm slab is moved to the left by a distance of 3 cm, creating an air-gap

between it and the rightmost dielectric. Repeat all the questions of part (a).

c. Repeat part (a), if the slab thickness is 2 cm.

5.9 A single-frequency plane wave is incident obliquely from air onto a planar interface with

a medium of permittivity ǫ = 2ǫ0, as shown below. The incident wave has the following

phasor form:

E(z)=
(

x̂+ ẑ√
2
+ j ŷ

)

e−jk(z−x)/
√

2 (5.9.1)
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a. Determine the angle of incidenceθ in degrees and decide which of the two dashed lines

in the figure represents the incident wave. Moreover, determine the angle of refraction

θ′ in degrees and indicate the refracted wave’s direction on the figure below.

b. Write an expression for the reflected wave that is similar to Eq. (5.9.1), but also includes

the dependence on the TE and TM Fresnel reflection coefficients (please evaluate these

coefficients numerically.) Similarly, give an expression for the transmitted wave.

c. Determine the polarization type (circular, elliptic, left, right, linear, etc.) of the incident

wave and of the reflected wave.

5.10 A uniform plane wave is incident normally on a planar interface, as shown below. The

medium to the left of the interface is air, and the medium to the right is lossy with an

effective complex permittivity ǫc, complex wavenumber k′ = β′ − jα′ = ω
√
μ0ǫc, and

complex characteristic impedance ηc =
√

μ0/ǫc. The electric field to the left and right of the

interface has the following form:

Ex =

⎧

⎪⎨

⎪⎩

E0e
−jkz + ρE0e

jkz, z ≤ 0

τE0e
−jk′z, z ≥ 0

where ρ,τ are the reflection and transmission coefficients.

1. Determine the magnetic field at both sides of the interface.

2. Show that the Poynting vector only has a z-component, given as follows at the two

sides of the interface:

P = |E0|2
2η0

(

1− |ρ|2) , P′ = |E0|2
2ωμ0

β′|τ|2e−2α′z

3. Moreover, show that P = P′ at the interface, (i.e., at z = 0).

5.11 Consider a lossy dielectric slab of thickness d and complex refractive index nc = nr − jni at

an operating frequency ω, with air on both sides as shown below.

a. Let k = β−jα = k0nc and ηc = η0/nc be the corresponding complex wavenumber and

characteristic impedance of the slab, where k0 = ω√μ0ǫ0 = ω/c0 and η0 =
√

μ0/ǫ0.

Show that the transmission response of the slab may be expressed as follows:

T = 1

coskd+ j 1

2

(

nc + 1

nc

)

sinkd

b. At the cell phone frequency of 900 MHz, the complex refractive index of concrete is

nc = 2.5− 0.14j. Calculate the percentage of the transmitted power through a 20-cm

concrete wall. How is this percentage related to T and why?

c. Is there anything interesting about the choice d = 20 cm? Explain.
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5.12 Consider the slab of the previous problem. The tangential electric field has the following

form in the three regions z ≤ 0, 0 ≤ z ≤ d, and z ≥ d:

E(z)=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

e−jk0z + Γejk0z , if z ≤ 0

Ae−jkz + Bejkz , if 0 ≤ z ≤ d
Te−jk0(z−d) , if z ≥ d

where k0 and k were defined in the previous problem.

a. What are the corresponding expressions for the magnetic field H(z)?

b. Set up and solve four equations from which the four unknowns Γ,A,B,T may be

determined.

c. If the slab is lossless and is designed to be a half-wave slab at the frequency ω, then

what is the value of T?

d. If the slab is is lossy with nc = nr − jni and is designed to be a half-wave slab with

respect to the real part β of k, that is, βd = π, then, show that T is given by:

T = − 1

coshαd+ 1

2

(

nc + 1

nc

)

sinhαd

5.13 Consider a two-layer dielectric structure as shown in Fig. 5.7.1, and let na, n1, n2, nb be the

refractive indices of the four media. Consider the four cases: (a) both layers are quarter-

wave, (b) both layers are half-wave, (c) layer-1 is quarter- and layer-2 half-wave, and (d) layer-1

is half- and layer-2 quarter-wave. Show that the reflection coefficient at interface-1 is given

by the following expressions in the four cases:

Γ1 = nan
2
2 − nbn2

1

nan
2
2 + nbn2

1

, Γ1 = na − nb
na + nb

, Γ1 = nanb − n2
1

nanb + n2
1

, Γ1 = nanb − n2
2

nanb + n2
2

5.14 Consider the lossless two-slab structure of Fig. 5.7.1. Write down all the transfer matrices

relating the fields Ei±, i = 1,2,3 at the left sides of the three interfaces. Then, show the

energy conservation equations:

1

ηa

(|E1+|2 − |E1−|2
) = 1

η1

(|E2+|2 − |E2−|2
) = 1

η2

(|E3+|2 − |E3−|2
) = 1

ηb
|E′3+|2

5.15 An alternative way of representing the propagation relationship Eq. (5.1.12) is in terms of the

hyperbolic w-plane variable defined in terms of the reflection coefficient Γ, or equivalently,

the wave impedance Z as follows:

Γ = e−2w
⇔ Z = η coth(w) (5.9.2)

Show the equivalence of these expressions. Writing Γ1 = e−2w1 and Γ2 = e−2w2 , show that

Eq. (5.1.12) becomes equivalent to:

w1 = w2 + jkl (propagation in w-domain) (5.9.3)

This form is essentially the mathematical (as opposed to graphical) version of the Smith

chart and is particularly useful for numerical computations using MATLAB.
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5.16 Plane A flying at a speed of 900 km/hr with respect to the ground is approaching plane B.

Plane A’s Doppler radar, operating at the X-band frequency of 10 GHz, detects a positive

Doppler shift of 2 kHz in the return frequency. Determine the speed of plane B with respect

to the ground. [Ans. 792 km/hr.]

5.17 The complete set of Lorentz transformations of the fields in Eq. (5.8.8) is as follows (see also

Eq. (H.31) of Appendix H):

Ex = γ(E′x + βcB′y), Hy = γ(H′
y + cβD′x), Dx = γ(D′x +

1

c
βH′

y), By = γ(B′y +
1

c
βE′x)

The constitutive relations in the rest frame S′ of the moving dielectric are the usual ones, that

is, B′y = μH′
y and D′x = ǫE′x. By eliminating the primed quantities in terms of the unprimed

ones, show that the constitutive relations have the following form in the fixed system S:

Dx =
(1− β2)ǫEx − β(n2 − 1)Hy/c

1− β2n2
, By =

(1− β2)μHy − β(n2 − 1)Ex/c

1− β2n2

where n is the refractive index of the moving medium, n = √

ǫμ/ǫ0μ0. Show that for free

space, the constitutive relations remain the same as in the frame S′.

6

Multilayer Structures

Higher-order transfer functions of the type of Eq. (5.7.2) can achieve broader reflection-

less notches and are used in the design of thin-film antireflection coatings, dielectric

mirrors, and optical interference filters [628–690,750–783], and in the design of broad-

band terminations of transmission lines [818–828].

They are also used in the analysis, synthesis, and simulation of fiber Bragg gratings

[784–804], in the design of narrow-band transmission filters for wavelength-division

multiplexing (WDM), and in other fiber-optic signal processing systems [814–817].

They are used routinely in making acoustic tube models for the analysis and synthe-

sis of speech, with the layer recursions being mathematically equivalent to the Levinson

lattice recursions of linear prediction [829–835]. The layer recursions are also used in

speech recognition, disguised as the Schur algorithm.

They also find application in geophysical deconvolution and inverse scattering prob-

lems for oil exploration [836–845].

The layer recursions—known as the Schur recursions in this context—are intimately

connected to the mathematical theory of lossless bounded real functions in the z-plane

and positive real functions in the s-plane and find application in network analysis, syn-

thesis, and stability [849–863].

6.1 Multiple Dielectric Slabs

The general case of arbitrary number of dielectric slabs of arbitrary thicknesses is shown

in Fig. 6.1.1. There are M slabs, M+ 1 interfaces, and M+ 2 dielectric media, including

the left and right semi-infinite media ηa and ηb.

The incident and reflected fields are considered at the left of each interface. The

overall reflection response, Γ1 = E1−/E1+, can be obtained recursively in a variety of

ways, such as by the propagation matrices, the propagation of the impedances at the

interfaces, or the propagation of the reflection responses.

The elementary reflection coefficients ρi from the left of each interface are defined

in terms of the characteristic impedances or refractive indices as follows:

ρi = ηi − ηi−1

ηi + ηi−1

= ni−1 − ni
ni−1 + ni

, i = 1,2, . . . ,M + 1 (6.1.1)
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and positive real functions in the s-plane and find application in network analysis, syn-
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6.1 Multiple Dielectric Slabs

The general case of arbitrary number of dielectric slabs of arbitrary thicknesses is shown

in Fig. 6.1.1. There are M slabs, M+ 1 interfaces, and M+ 2 dielectric media, including

the left and right semi-infinite media ηa and ηb.

The incident and reflected fields are considered at the left of each interface. The

overall reflection response, Γ1 = E1−/E1+, can be obtained recursively in a variety of

ways, such as by the propagation matrices, the propagation of the impedances at the

interfaces, or the propagation of the reflection responses.

The elementary reflection coefficients ρi from the left of each interface are defined

in terms of the characteristic impedances or refractive indices as follows:

ρi = ηi − ηi−1

ηi + ηi−1

= ni−1 − ni
ni−1 + ni

, i = 1,2, . . . ,M + 1 (6.1.1)
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Fig. 6.1.1 Multilayer dielectric slab structure.

where ηi = η0/ni, and we must use the convention n0 = na and nM+1 = nb, so that

ρ1 = (na − n1)/(na + n1) and ρM+1 = (nM − nb)/(nM + nb). The forward/backward

fields at the left of interface i are related to those at the left of interface i+ 1 by:

[

Ei+
Ei−

]

= 1

τi

[

ejkili ρie
−jkili

ρie
jkili e−jkili

][

Ei+1,+
Ei+1,−

]

, i =M,M − 1, . . . ,1 (6.1.2)

where τi = 1+ρi and kili is the phase thickness of the ith slab, which can be expressed

in terms of its optical thickness nili and the operating free-space wavelength by kili =
2π(nili)/λ. Assuming no backward waves in the right-most medium, these recursions

are initialized at the (M + 1)st interface as follows:

[

EM+1,+
EM+1,−

]

= 1

τM+1

[

1 ρM+1

ρM+1 1

][

E′M+1,+
0

]

= 1

τM+1

[

1

ρM+1

]

E′M+1,+

It follows that the reflection responses Γi = Ei−/Ei+ will satisfy the recursions:

Γi = ρi + Γi+1e
−2jkili

1+ ρiΓi+1e−2jkili
, i =M,M − 1, . . . ,1 (6.1.3)

and initialized by ΓM+1 = ρM+1. Similarly the recursions for the total electric and

magnetic fields, which are continuous across each interface, are given by:

[

Ei
Hi

]

=
[

coskili jηi sinkili
jη−1
i sinkili coskili

][

Ei+1

Hi+1

]

, i =M,M − 1, . . . ,1 (6.1.4)

and initialized at the (M + 1)st interface as follows:

[

EM+1

HM+1

]

=
[

1

η−1
b

]

E′M+1,+

It follows that the impedances at the interfaces, Zi = Ei/Hi, satisfy the recursions:
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Zi = ηi Zi+1 + jηi tankili
ηi + jZi+1 tankili

, i =M,M − 1, . . . ,1 (6.1.5)

and initialized by ZM+1 = ηb. The objective of all these recursions is to obtain the

overall reflection response Γ1 into medium ηa.

The MATLAB function multidiel implements the recursions (6.1.3) for such a multi-

dielectric structure and evaluates Γ1 andZ1 at any desired set of free-space wavelengths.

Its usage is as follows:

[Gamma1,Z1] = multidiel(n,L,lambda); % multilayer dielectric structure

where n,L are the vectors of refractive indices of the M + 2 media and the optical

thicknesses of the M slabs, that is, in the notation of Fig. 6.1.1:

n = [na, n1, n2, . . . , nM, nb], L = [n1l1, n2l2, . . . , nMlM]

and λ is a vector of free-space wavelengths at which to evaluate Γ1. Both the optical

lengths L and the wavelengths λ are in units of some desired reference wavelength, say

λ0, typically chosen at the center of the desired band. The usage of multidiel was

illustrated in Example 5.5.2. Additional examples are given in the next sections.

The layer recursions (6.1.2)–(6.1.5) remain essentially unchanged in the case of oblique

incidence (with appropriate redefinitions of the impedances ηi) and are discussed in

Chap. 7.

Next, we apply the layer recursions to the analysis and design of antireflection coat-

ings and dielectric mirrors.

6.2 Antireflection Coatings

The simplest example of antireflection coating is the quarter-wavelength layer discussed

in Example 5.5.2. Its primary drawback is that it requires the layer’s refractive index to

satisfy the reflectionless condition n1 = √nanb.

For a typical glass substrate with index nb = 1.50, we have n1 = 1.22. Materials with

n1 near this value, such as magnesium fluoride with n1 = 1.38, will result into some,

but minimized, reflection compared to the uncoated glass case, as we saw in Example

5.5.2.

The use of multiple layers can improve the reflectionless properties of the single

quarter-wavelength layer, while allowing the use of real materials. In this section, we

consider three such examples.

Assuming a magnesium fluoride film and adding between it and the glass another

film of higher refractive index, it is possible to achieve a reflectionless structure (at a

single wavelength) by properly adjusting the film thicknesses [630,655].

With reference to the notation of Fig. 5.7.1, we have na = 1, n1 = 1.38, n2 to be

determined, and nb = nglass = 1.5. The reflection response at interface-1 is related to

the response at interface-2 by the layer recursions:

Γ1 = ρ1 + Γ2e
−2jk1l1

1+ ρ1Γ2e−2jk1l1
, Γ2 = ρ2 + ρ3e

−2jk2l2

1+ ρ2ρ3e−2jk2l2
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The reflectionless condition is Γ1 = 0 at an operating free-space wavelength λ0. This

requires that ρ1 + Γ2e
−2jk1l1 = 0, which can be written as:

e2jk1l1 = −Γ2

ρ1

(6.2.1)

Because the left-hand side has unit magnitude, we must have the condition |Γ2| =
|ρ1|, or, |Γ2|2 = ρ2

1, which is written as:

∣
∣
∣
∣
∣

ρ2 + ρ3e
−2jk2l2

1+ ρ2ρ3e−2jk2l2

∣
∣
∣
∣
∣

2

= ρ2
2 + ρ2

3 + 2ρ2ρ3 cos 2k2l2

1+ ρ2
2ρ

2
3 + 2ρ2ρ3 cos 2k2l2

= ρ2
1

This can be solved for cos 2k2l2:

cos 2k2l2 =
ρ2

1(1+ ρ2
2ρ

2
3)−(ρ2

2 + ρ2
3)

2ρ2ρ3(1− ρ2
1)

Using the identity, cos 2k2l2 = 2 cos2 k2l2 − 1, we also find:

cos2 k2l2 = ρ2
1(1− ρ2ρ3)

2−(ρ2 − ρ3)
2

4ρ2ρ3(1− ρ2
1)

sin2 k2l2 = (ρ2 + ρ3)
2−ρ2

1(1+ ρ2ρ3)
2

4ρ2ρ3(1− ρ2
1)

(6.2.2)

It is evident from these expressions that not every combination of ρ1, ρ2, ρ3 will

admit a solution because the left-hand sides are positive and less than one. If we assume

that n2 > n1 and n2 > nb, then, we will have ρ2 < 0 and ρ3 > 0. Then, it is necessary

that the numerators of above expressions be negative, resulting into the conditions:

∣
∣
∣
∣
∣

ρ3 + ρ2

1+ ρ2ρ3

∣
∣
∣
∣
∣

2

< ρ2
1 <

∣
∣
∣
∣
∣

ρ3 − ρ2

1− ρ2ρ3

∣
∣
∣
∣
∣

2

The left inequality requires that
√
nb < n1 < nb, which is satisfied with the choices

n1 = 1.38 and nb = 1.5. Similarly, the right inequality is violated—and therefore there

is no solution—if
√
nb < n2 < n1

√
nb, which has the numerical range 1.22 < n2 < 1.69.

Catalan [630,655] used bismuth oxide (Bi2O3) with n2 = 2.45, which satisfies the

above conditions for the existence of solution. With this choice, the reflection coeffi-

cients are ρ1 = −0.16, ρ2 = −0.28, and ρ3 = 0.24. Solving Eq. (6.2.2) for k2l2 and then

Eq. (6.2.1) for k1l1, we find:

k1l1 = 2.0696, k2l2 = 0.2848 (radians)

Writing k1l1 = 2π(n1l1)/λ0, we find the optical lengths:

n1l1 = 0.3294λ0, n2l2 = 0.0453λ0

Fig. 6.2.1 shows the resulting reflection response Γ1 as a function of the free-space

wavelength λ, with λ0 chosen to correspond to the middle of the visible spectrum,

λ0 = 550 nm. The figure also shows the responses of the single quarter-wave slab of

Example 5.5.2.

The reflection responses were computed with the help of the MATLAB function mul-

tidiel. The MATLAB code used to implement this example was as follows:
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Fig. 6.2.1 Two-slab reflectionless coating.

na=1; nb=1.5; n1=1.38; n2=2.45;

n = [na,n1,n2,nb]; la0 = 550;

r = n2r(n);

c = sqrt((r(1)^2*(1-r(2)*r(3))^2 - (r(2)-r(3))^2)/(4*r(2)*r(3)*(1-r(1)^2)));

k2l2 = acos(c);

G2 = (r(2)+r(3)*exp(-2*j*k2l2))/(1 + r(2)*r(3)*exp(-2*j*k2l2));

k1l1 = (angle(G2) - pi - angle(r(1)))/2;

if k1l1 <0, k1l1 = k1l1 + 2*pi; end

L = [k1l1,k2l2]/2/pi;

la = linspace(400,700,101);

Ga = abs(multidiel(n, L, la/la0)).^2 * 100;

Gb = abs(multidiel([na,n1,nb], 0.25, la/la0)).^2 * 100;

Gc = abs(multidiel([na,sqrt(nb),nb], 0.25, la/la0)).^2 * 100;

plot(la, Ga, la, Gb, la, Gc);

The dependence on λ comes through the quantities k1l1 and k2l2, for example:

k1l1 = 2π
n1l1
λ

= 2π
0.3294λ0

λ

Essentially the same method is used in Sec. 13.7 to design 2-section series impedance

transformers. The MATLAB function twosect of that section implements the design.

It can be used to obtain the optical lengths of the layers, and in fact, it produces two

possible solutions:

L12 = twosect(1, 1/1.38, 1/2.45, 1/1.5)=
[

0.3294 0.0453

0.1706 0.4547

]

where each row represents a solution, so that L1 = n1l1/λ0 = 0.1706 and L2 =
n2l2/λ0 = 0.4547 is the second solution. The arguments of twosect are the inverses

of the refractive indices, which are proportional to the characteristic impedances of the

four media.
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Although this design method meets its design objectives, it results in a narrower

bandwidth compared to that of the ideal single-slab case. Varying n2 has only a minor

effect on the shape of the curve. To widen the bandwidth, and at the same time keep

the reflection response low, more than two layers must be used.

A simple approach is to fix the optical thicknesses of the films to some prescribed

values, such as quarter-wavelengths, and adjust the refractive indices hoping that the

required index values come close to realizable ones [630,656]. Fig. 6.2.2 shows the

two possible structures: the quarter-quarter two-film case and the quarter-half-quarter

three-film case.

Fig. 6.2.2 Quarter-quarter and quarter-half-quarter antireflection coatings.

The behavior of the two structures is similar at the design wavelength. For the

quarter-quarter case, the requirement Z1 = ηa implies:

Z1 = η2
1

Z2

= η2
1

η2
2/Z3

= η2
1

η2
2

ηb = ηa

which gives the design condition (see also Example 5.7.1):

na = n2
1

n2
2

nb (6.2.3)

The optical thicknesses are n1l1 = n2l2 = λ0/4. In the quarter-half-quarter case,

the half-wavelength layer acts as an absentee layer, that is, Z2 = Z3, and the resulting

design condition is the same:

Z1 = η2
1

Z2

= η2
1

Z3

= η2
1

η2
3/Z4

= η2
1

η2
3

ηb = ηa

yielding in the condition:

na = n2
1

n2
3

nb (6.2.4)

The optical thicknesses are now n1l1 = n3l3 = λ0/4 and n2l2 = λ0/2. Conditions

(6.2.3) and (6.2.4) are the same as far as determining the refractive index of the second

quarter-wavelength layer. In the quarter-half-quarter case, the index n2 of the half-

wavelength film is arbitrary.
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In the quarter-quarter case, if the first quarter-wave film is magnesium fluoride with

n1 = 1.38 and the glass substrate has nglass = 1.5, condition (6.2.3) gives for the index

for the second quarter-wave layer:

n2 =
√

n2
1nb
na

=
√

1.382 × 1.50

1.0
= 1.69 (6.2.5)

The material cerium fluoride (CeF3) has an index of n2 = 1.63 at λ0 = 550 nm and

can be used as an approximation to the ideal value of Eq. (6.2.5). Fig. 6.2.3 shows the

reflectances |Γ1|2 for the two- and three-layer cases and for the ideal and approximate

values of the index of the second quarter-wave layer.
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Fig. 6.2.3 Reflectances of the quarter-quarter and quarter-half-quarter cases.

The design wavelength was λ0 = 550 nm and the index of the half-wave slab was

n2 = 2.2 corresponding to zirconium oxide (ZrO2). We note that the quarter-half-quarter

case achieves a much broader bandwidth over most of the visible spectrum, for either

value of the refractive index of the second quarter slab.

The reflectances were computed with the help of the function multidiel. The typ-

ical MATLAB code was as follows:

la0 = 550; la = linspace(400,700,101);

Ga = 100*abs(multidiel([1,1.38,2.2,1.63,1.5], [0.25,0.5,0.25], la/la0)).^2;

Gb = 100*abs(multidiel([1,1.38,2.2,1.69,1.5], [0.25,0.5,0.25], la/la0)).^2;

Gc = 100*abs(multidiel([1,1.22,1.5], 0.25, la/la0)).^2;

plot(la, Ga, la, Gb, la, Gc);

These and other methods of designing and manufacturing antireflection coatings for

glasses and other substrates can be found in the vast thin-film literature. An incomplete

set of references is [628–688]. Some typical materials used in thin-film coatings are given

below:
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material n material n

cryolite (Na3AlF6) 1.35 magnesium fluoride (MgF2) 1.38

Silicon dioxide SiO2 1.46 polystyrene 1.60

cerium fluoride (CeF3) 1.63 lead fluoride (PbF2) 1.73

Silicon monoxide SiO 1.95 zirconium oxide (ZrO2) 2.20

zinc sulfide (ZnS) 2.32 titanium dioxide (TiO2) 2.40

bismuth oxide (Bi2O3) 2.45 silicon (Si) 3.50

germanium (Ge) 4.20 tellurium (Te) 4.60

Thin-film coatings have a wide range of applications, such as displays; camera lenses,

mirrors, and filters; eyeglasses; coatings for energy-saving lamps and architectural win-

dows; lighting for dental, surgical, and stage environments; heat reflectors for movie

projectors; instrumentation, such as interference filters for spectroscopy, beam split-

ters and mirrors, laser windows, and polarizers; optics of photocopiers and compact

disks; optical communications; home appliances, such as heat reflecting oven windows;

rear-view mirrors for automobiles.

6.3 Dielectric Mirrors

The main interest in dielectric mirrors is that they have extremely low losses at optical

and infrared frequencies, as compared to ordinary metallic mirrors. On the other hand,

metallic mirrors reflect over a wider bandwidth than dielectric ones and from all incident

angles. However, omnidirectional dielectric mirrors are also possible and have recently

been constructed [773,774]. The omnidirectional property is discussed in Sec. 8.8. Here,

we consider only the normal-incidence case.

A dielectric mirror (also known as a Bragg reflector) consists of identical alternating

layers of high and low refractive indices, as shown in Fig. 6.3.1. The optical thicknesses

are typically chosen to be quarter-wavelength long, that is, nHlH = nLlL = λ0/4 at some

operating wavelength λ0. The standard arrangement is to have an odd number of layers,

with the high index layer being the first and last layer.

Fig. 6.3.1 Nine-layer dielectric mirror.

Fig. 6.3.1 shows the case of nine layers. If the number of layers is M = 2N + 1, the

number of interfaces will be 2N + 2 and the number of media 2N + 3. After the first
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layer, we may view the structure as the repetition ofN identical bilayers of low and high

index. The elementary reflection coefficients alternate in sign as shown in Fig. 6.3.1 and

are given by

ρ = nH − nL
nH + nL

, −ρ = nL − nH
nL + nH

, ρ1 = na − nH
na + nH

, ρ2 = nH − nb
nH + nb

(6.3.1)

The substrate nb can be arbitrary, even the same as the incident medium na. In

that case, ρ2 = −ρ1. The reflectivity properties of the structure can be understood by

propagating the impedances from bilayer to bilayer. For the example of Fig. 6.3.1, we

have for the quarter-wavelength case:

Z2 =
η2
L

Z3

= η2
L

η2
H

Z4 =
(
nH
nL

)2

Z4 =
(
nH
nL

)4

Z6 =
(
nH
nL

)6

Z8 =
(
nH
nL

)8

ηb

Therefore, after each bilayer, the impedance decreases by a factor of (nL/nH)
2.

After N bilayers, we will have:

Z2 =
(
nH
nL

)2N

ηb (6.3.2)

Using Z1 = η2
H/Z2, we find for the reflection response at λ0:

Γ1 = Z1 − ηa
Z1 + ηa

=
1−

(
nH
nL

)2N n2
H

nanb

1+
(
nH
nL

)2N n2
H

nanb

(6.3.3)

It follows that for large N, Γ1 will tend to −1, that is, 100 % reflection.

Example 6.3.1: For nine layers, 2N + 1 = 9, or N = 4, and nH = 2.32, nL = 1.38, and na =
nb = 1, we find:

Γ1 =
1−

(
2.32

1.38

)8

2.322

1+
(

2.32

1.38

)8

2.322

= −0.9942 ⇒ |Γ1|2 = 98.84 percent

ForN = 8, or 17 layers, we have Γ1 = −0.9999 and |Γ1|2 = 99.98 percent. If the substrate

is glass with nb = 1.52, the reflectances change to |Γ1|2 = 98.25 percent for N = 4, and

|Γ1|2 = 99.97 percent for N = 8. ⊓⊔

To determine the bandwidth around λ0 for which the structure exhibits high reflec-

tivity, we work with the layer recursions (6.1.2). Because the bilayers are identical, the

forward/backward fields at the left of one bilayer are related to those at the left of the

next one by a transition matrix F, which is the product of two propagation matrices of

the type of Eq. (6.1.2). The repeated application of the matrix F takes us to the right-most

layer. For example, in Fig. 6.3.1 we have:

[

E2+
E2−

]

= F
[

E4+
E4−

]

= F2

[

E6+
E6−

]

= F3

[

E8+
E8−

]

= F4

[

E10+
E10−

]
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where F is the matrix:

F = 1

1+ ρ

[

ejkLlL ρe−jkLlL

ρejkLlL e−jkLlL

]

1

1− ρ

[

ejkHlH −ρe−jkHlH
−ρejkHlH e−jkHlH

]

(6.3.4)

Defining the phase thicknesses δH = kHlH and δL = kLlL, and multiplying the

matrix factors out, we obtain the expression for F:

F = 1

1− ρ2

[

ej(δH+δL) − ρ2ej(δH−δL) −2jρe−jδH sinδL
2jρejδH sinδL e−j(δH+δL) − ρ2e−j(δH−δL)

]

(6.3.5)

By an additional transition matrix F1 we can get to the left of interface-1 and by an

additional matching matrix F2 we pass to the right of the last interface:

[

E1+
E1−

]

= F1

[

E2+
E2−

]

= F1F
4

[

E10+
E10−

]

= F1F
4F2

[

E′10+
0

]

where F1 and F2 are:

F1 = 1

τ1

[

ejkHlH ρ1e
−jkHlH

ρ1e
jkHlH e−jkHlH

]

, F2 = 1

τ2

[

1 ρ2

ρ2 1

]

(6.3.6)

where τ1 = 1+ ρ1, τ2 = 1+ ρ2, and ρ1, ρ2 were defined in Eq. (6.3.1). More generally,

for 2N + 1 layers, or N bilayers, we have:

[

E2+
E2−

]

= FN
[

E2N+2,+
E2N+2,−

]

,

[

E1+
E1−

]

= F1F
NF2

[

E′2N+2,+
0

]

(6.3.7)

Thus, the properties of the multilayer structure are essentially determined by the

Nth power, FN, of the bilayer transition matrix F. In turn, the behavior of FN is deter-

mined by the eigenvalue structure of F.

Let {λ+, λ−} be the two eigenvalues of F and let V be the eigenvector matrix. Then,

the eigenvalue decomposition of F and FN will be F = VΛV−1 and FN = VΛNV−1, where

Λ = diag{λ+, λ−}. Because F has unit determinant, its two eigenvalues will be inverses

of each other, that is, λ− = 1/λ+, or, λ+λ− = 1.

The eigenvalues λ± are either both real-valued or both complex-valued with unit

magnitude. We can represent them in the equivalent form:

λ+ = ejKl , λ− = e−jKl (6.3.8)

where l is the length of each bilayer, l = lL + lH. The quantity K is referred to as the

Bloch wavenumber. If the eigenvalues λ± are unit-magnitude complex-valued, then K

is real. If the eigenvalues are real, then K is pure imaginary, say K = −jα, so that

λ± = e±jKl = e±αl.
The multilayer structure behaves very differently depending on the nature of K. The

structure is primarily reflecting if K is imaginary and the eigenvalues λ± are real, and

it is primarily transmitting if K is real and the eigenvalues are pure phases. To see this,

we write Eq. (6.3.7) in the form:
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[

E2+
E2−

]

= VΛNV−1

[

E2N+2,+
E2N+2,−

]

⇒ V−1

[

E2+
E2−

]

= ΛNV−1

[

E2N+2,+
E2N+2,−

]

, or,

[

V2+
V2−

]

= ΛN

[

V2N+2,+
V2N+2,−

]

where we defined

[

V2+
V2−

]

= V−1

[

E2+
E2−

]

,

[

V2N+2,+
V2N+2,−

]

= V−1

[

E2N+2,+
E2N+2,−

]

We have V2+ = λN+V2N+2,+ and V2− = λN−V2N+2,− = λ−N+ V2N+2,− because ΛN is

diagonal. Thus,

V2N+2,+ = λ−N+ V2+ = e−jKNlV2+ , V2N+2,− = λN+V2− = ejKNlV2− (6.3.9)

The quantityNl is recognized as the total length of the bilayer structure, as depicted

in Fig. 6.3.1. It follows that if K is real, the factor λ−N+ = e−jKNl acts as a propagation

phase factor and the fields transmit through the structure.

On the other hand, if K is imaginary, we have λ−N+ = e−αNl and the fields attenuate

exponentially as they propagate into the structure. In the limit of large N, the trans-

mitted fields attenuate completely and the structure becomes 100% reflecting. For finite

but large N, the structure will be mostly reflecting.

The eigenvalues λ± switch from real to complex, as K switches from imaginary to

real, for certain frequency or wavenumber bands. The edges of these bands determine

the bandwidths over which the structure will act as a mirror.

The eigenvalues are determined from the characteristic polynomial of F, given by

the following expression which is valid for any 2×2 matrix:

det(F − λI)= λ2 − (trF)λ+ detF (6.3.10)

where I is the 2×2 identity matrix. Because (6.3.5) has unit determinant, the eigenvalues

are the solutions of the quadratic equation:

λ2 − (trF)λ+ 1 = λ2 − 2aλ+ 1 = 0 (6.3.11)

where we defined a = (trF)/2. The solutions are:

λ± = a±
√

a2 − 1 (6.3.12)

where it follows from Eq. (6.3.5) that a is given by:

a = 1

2
trF = cos(δH + δL)−ρ2 cos(δH − δL)

1− ρ2
(6.3.13)

Using λ+ = ejKl = a+
√
a2 − 1 = a+ j

√
1− a2, we also find:
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a = cosKl ⇒ K = 1

l
acos(a) (6.3.14)

The sign of the quantity a2− 1 determines whether the eigenvalues are real or com-

plex. The eigenvalues switch from real to complex—equivalently, K switches from imag-

inary to real—when a2 = 1, or, a = ±1. These critical values of K are found from

Eq. (6.3.14) to be:

K = 1

l
acos(±1)= mπ

l
(6.3.15)

where m is an integer. The lowest value is K = π/l and corresponds to a = −1 and to

λ+ = ejKl = ejπ = −1. Thus, we obtain the bandedge condition:

a = cos(δH + δL)−ρ2 cos(δH − δL)
1− ρ2

= −1

It can be manipulated into:

cos2
(δH + δL

2

) = ρ2 cos2
(δH − δL

2

)

(6.3.16)

The dependence on the free-space wavelength λ or frequency f = c0/λ comes

through δH = 2π(nHlH)/λ and δL = 2π(nLlL)/λ. The solutions of (6.3.16) in λ

determine the left and right bandedges of the reflecting regions.

These solutions can be obtained numerically with the help of the MATLAB function

omniband, discussed in Sec. 8.8. An approximate solution, which is exact in the case of

quarter-wave layers, is given below.

If the high and low index layers have equal optical thicknesses, nHlH = nLlL, such as

when they are quarter-wavelength layers, or when the optical lengths are approximately

equal, we can make the approximation cos
(

(δH − δL)/2
) = 1. Then, (6.3.16) simplifies

into:

cos2
(δH + δL

2

) = ρ2 (6.3.17)

with solutions:

cos
(δH + δL

2

) = ±ρ ⇒ δH + δL
2

= π(nHlH + nLlL)
λ

= acos(±ρ)

The solutions for the left and right bandedges and the bandwidth in λ are:

λ1 = π(nHlH + nLlL)
acos(−ρ) , λ2 = π(nHlH + nLlL)

acos(ρ)
, Δλ = λ2 − λ1 (6.3.18)

Similarly, the left/right bandedges in frequency are f1 = c0/λ2 and f2 = c0/λ1:

f1 = c0
acos(ρ)

π(nHlH + nLlL)
, f2 = c0

acos(−ρ)
π(nHlH + nLlL)

(6.3.19)
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Noting that acos(−ρ)= π/2+ asin(ρ) and acos(ρ)= π/2− asin(ρ), the frequency

bandwidth can be written in the equivalent forms:

Δf = f2 − f1 = c0
acos(−ρ)− acos(ρ)

π(nHlH + nLlL)
= c0

2 asin(ρ)

π(nHlH + nLlL)
(6.3.20)

Relative to some desired wavelength λ0 = c0/f0, the normalized bandwidths in

wavelength and frequency are:

Δλ

λ0

= π(nHlH + nLlL)
λ0

[

1

acos(ρ)
− 1

acos(−ρ)

]

(6.3.21)

Δf

f0
= 2λ0 asin(ρ)

π(nHlH + nLlL)
(6.3.22)

Similarly, the center of the reflecting band fc = (f1 + f2)/2 is:

fc
f0
= λ0

2(nHlH + nLlL)
(6.3.23)

If the layers have equal quarter-wave optical lengths at λ0, that is, nHlH = nLlL =
λ0/4, then, fc = f0 and the matrix F takes the simplified form:

F = 1

1− ρ2

[

e2jδ − ρ2 −2jρe−jδ sinδ

2jρejδ sinδ e−2jδ − ρ2

]

(6.3.24)

where δ = δH = δL = 2π(nHlH)/λ = 2π(λ0/4)/λ = (π/2)λ0/λ = (π/2)f/f0. Then,

Eqs. (6.3.21) and (6.3.22) simplify into:

Δλ

λ0

= π

2

[

1

acos(ρ)
− 1

acos(−ρ)

]

,
Δf

f0
= 4

π
asin(ρ) (6.3.25)

Example 6.3.2: Dielectric Mirror With Quarter-Wavelength Layers. Fig. 6.3.2 shows the reflec-

tion response |Γ1|2 as a function of the free-space wavelength λ and as a function of

frequency f = c0/λ. The high and low indices are nH = 2.32 and nL = 1.38, correspond-

ing to zinc sulfide (ZnS) and magnesium fluoride. The incident medium is air and the

substrate is glass with indices na = 1 and nb = 1.52. The left graph depicts the response

for the cases of N = 2,4,8 bilayers, or 2N + 1 = 5,9,17 layers, as defined in Fig. 6.3.1.

The design wavelength at which the layers are quarter-wavelength long is λ0 = 500 nm.

The reflection coefficient is ρ = 0.25 and the ratio nH/nL = 1.68. The wavelength band-

width calculated from Eq. (6.3.25) is Δλ = 168.02 nm and has been placed on the graph at

an arbitrary reflectance level. The left/right bandedges are λ1 = 429.73, λ2 = 597.75 nm.

The bandwidth covers most of the visible spectrum. As the number of bilayersN increases,

the reflection response becomes flatter within the bandwidth Δλ, and has sharper edges

and tends to 100%. The bandwidth Δλ represents the asymptotic width of the reflecting

band.

The right figure depicts the reflection response as a function of frequency f and is plotted

in the normalized variable f/f0. Because the phase thickness of each layer is δ = πf/2f0
and the matrix F is periodic in δ, the mirror behavior of the structure will occur at odd

multiples of f0 (or odd multiples of π/2 for δ.) As discussed in Sec. 6.6, the structure acts

as a sampled system with sampling frequency fs = 2f0, and therefore, f0 = fs/2 plays the

role of the Nyquist frequency.
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Fig. 6.3.2 Dielectric mirror with quarter-wavelength layers.

The typical MATLAB code used to generate these graphs was:

na = 1; nb = 1.52; nH = 2.32; nL = 1.38; % refractive indices

LH = 0.25; LL = 0.25; % optical thicknesses in units of λ0

la0 = 500; % λ0 in units of nm

rho = (nH-nL)/(nH+nL); % reflection coefficient ρ

la2 = pi*(LL+LH)*1/acos(rho) * la0; % right bandedge

la1 = pi*(LL+LH)*1/acos(-rho) * la0; % left bandedge

Dla = la2-la1; % bandwidth

N = 8; % number of bilayers

n = [na, nH, repmat([nL,nH], 1, N), nb]; % indices for the layers A|H(LH)N|G
L = [LH, repmat([LL,LH], 1, N)]; % lengths of the layers H(LH)N

la = linspace(300,800,501); % plotting range is 300 ≤ λ ≤ 800 nm

Gla = 100*abs(multidiel(n,L,la/la0)).^2; % reflectance as a function of λ

figure; plot(la,Gla);

f = linspace(0,6,1201); % frequency plot over 0 ≤ f ≤ 6f0

Gf = 100*abs(multidiel(n,L,1./f)).^2; % reflectance as a function of f

figure; plot(f,Gf);

Note that the function repmat replicates the LH bilayer N times. The frequency graph

shows only the case of N = 8. The bandwidth Δf , calculated from (6.3.25), has been

placed on the graph. The maximum reflectance (evaluated at odd multiples of f0) is equal

to 99.97%. ⊓⊔

Example 6.3.3: Dielectric Mirror with Unequal-Length Layers. Fig. 6.3.3 shows the reflection

response of a mirror having unequal optical lengths for the high and low index films.

The parameters of this example correspond very closely to the recently constructed om-

nidirectional dielectric mirror [773], which was designed to be a mirror over the infrared

band of 10–15 μm. The number of layers is nine and the number of bilayers,N = 4. The in-

dices of refraction are nH = 4.6 and nL = 1.6 corresponding to Tellurium and Polystyrene.
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Fig. 6.3.3 Dielectric mirror with unequal optical thicknesses.

Their ratio is nH/nL = 2.875 and the reflection coefficient, ρ = 0.48. The incident medium

and substrate are air and NaCl (n = 1.48.)

The center wavelength is taken to be at the middle of the 10–15 μm band, that is, λ0 =
12.5 μm. The lengths of the layers are lH = 0.8 and lL = 1.65 μm, resulting in the

optical lengths (relative to λ0) nHlH = 0.2944λ0 and nLlL = 0.2112λ0. The wavelength

bandwidth, calculated from Eq. (6.3.21), is Δλ = 9.07 μm. The typical MATLAB code for

generating the figures of this example was as follows:

la0 = 12.5;

na = 1; nb = 1.48; % NaCl substrate

nH = 4.6; nL = 1.6; % Te and PS

lH = 0.8; lL = 1.65; % physical lengths lH , lL
LH = nH*lH/la0, LL = nL*lL/la0; % optical lengths in units of λ0

rho = (nH-nL)/(nH+nL); % reflection coefficient ρ

la2 = pi*(LL+LH)*1/acos(rho) * la0; % right bandedge

la1 = pi*(LL+LH)*1/acos(-rho) * la0; % left bandedge

Dla = la2-la1; % bandwidth

la = linspace(5,25,401); % equally-spaced wavelengths

N = 4;

n = [na, nH, repmat([nL,nH], 1, N), nb]; % refractive indices of all media

L = [LH, repmat([LL,LH], 1, N)]; % optical lengths of the slabs

G = 100 * abs(multidiel(n,L,la/la0)).^2; % reflectance

plot(la,G);

The bandwidth Δλ shown on the graph is wider than that of the omnidirectional mirror

presented in [773], because our analysis assumes normal incidence only. The condition

for omnidirectional reflectivity for both TE and TM modes causes the bandwidth to narrow

by about half of what is shown in the figure. The reflectance as a function of frequency

is no longer periodic at odd multiples of f0 because the layers have lengths that are not

equal to λ0/4. The omnidirectional case is discussed in Example 8.8.3.
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The maximum reflectivity achieved within the mirror bandwidth is 99.99%, which is better

than that of the previous example with 17 layers. This can be explained because the ratio

nH/nL is much larger here. ⊓⊔

Although the reflectances in the previous two examples were computed with the help

of the MATLAB function multidiel, it is possible to derive closed-form expressions for

Γ1 that are valid for any number of bilayers N. Applying Eq. (6.1.3) to interface-1 and

interface-2, we have:

Γ1 = ρ1 + e−2jδHΓ2

1+ ρ1e−2jδHΓ2

(6.3.26)

where Γ2 = E2−/E2+, which can be computed from the matrix equation (6.3.7). Thus,

we need to obtain a closed-form expression for Γ2.

It is a general property of any 2×2 unimodular matrix F that its Nth power can

be obtained from the following simple formula, which involves the Nth powers of its

eigenvalues λ±:†

FN =
(

λN+ − λN−
λ+ − λ−

)

F −
(

λN−1+ − λN−1−
λ+ − λ−

)

I =WNF −WN−1I (6.3.27)

where WN = (λN+ − λN−)/(λ+ − λ−). To prove it, we note that the formula holds as a

simple identity when F is replaced by its diagonal version Λ = diag{λ+, λ−}:

ΛN =
(

λN+ − λN−
λ+ − λ−

)

Λ−
(

λN−1+ − λN−1−
λ+ − λ−

)

I (6.3.28)

Eq. (6.3.27) then follows by multiplying (6.3.28) from left and right by the eigenvector

matrix V and using F = VΛV−1 and FN = VΛNV−1. Defining the matrix elements of F

and FN by

F =
[

A B

B∗ A∗

]

, FN =
[

AN BN
B∗N A∗N

]

, (6.3.29)

it follows from (6.3.27) that:

AN = AWN −WN−1 , BN = BWN (6.3.30)

where we defined:

A = ej(δH+δL) − ρ2ej(δH−δL)

1− ρ2
, B = −2jρe−jδH sinδL

1− ρ2
(6.3.31)

Because F and FN are unimodular, their matrix elements satisfy the conditions:

|A|2 − |B|2 = 1 , |AN|2 − |BN|2 = 1 (6.3.32)

The first follows directly from the definition (6.3.29), and the second can be verified

easily. It follows now that the product FNF2 in Eq. (6.3.7) is:

†The coefficients WN are related to the Chebyshev polynomials of the second kind Um(x) through

WN = UN−1(a)= sin
(

N acos(a)
)

/
√

1− a2 = sin(NKl)/ sin(Kl).
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FNF2 = 1

τ2

[

AN + ρ2BN BN + ρ2AN
B∗N + ρ2A

∗
N A∗N + ρ2B

∗
N

]

Therefore, the desired closed-form expression for the reflection coefficient Γ2 is:

Γ2 =
B∗N + ρ2A

∗
N

AN + ρ2BN
= B∗WN + ρ2(A

∗WN −WN−1)

AWN −WN−1 + ρ2BWN
(6.3.33)

Suppose now that a2 < 1 and the eigenvalues are pure phases. Then, WN are oscil-

latory as functions of the wavelength λ or frequency f and the structure will transmit.

On the other hand, if f lies in the mirror bands, so that a2 > 1, then the eigenvalues

will be real with |λ+| > 1 and |λ−| < 1. In the limit of large N, WN and WN−1 will

behave like:

WN → λN+
λ+ − λ−

, WN−1 → λN−1+
λ+ − λ−

In this limit, the reflection coefficient Γ2 becomes:

Γ2 → B∗ + ρ2(A
∗ − λ−1+ )

A− λ−1+ + ρ2B
(6.3.34)

where we canceled some common diverging factors from all terms. Using conditions

(6.3.32) and the eigenvalue equation (6.3.11), and recognizing that Re(A)= a, it can be

shown that this asymptotic limit of Γ2 is unimodular, |Γ2| = 1, regardless of the value

of ρ2.

This immediately implies that Γ1 given by Eq. (6.3.26) will also be unimodular, |Γ1| =
1, regardless of the value of ρ1. In other words, the structure tends to become a perfect

mirror as the number of bilayers increases.

Next, we discuss some variations on dielectric mirrors that result in (a) multiband

mirrors and (b) longpass and shortpass filters that pass long or short wavelengths, in

analogy with lowpass and highpass filters that pass low or high frequencies.

Example 6.3.4: Multiband Reflectors. The quarter-wave stack of bilayers of Example 6.3.2 can

be denoted compactly as AH(LH)8G (for the case N = 8), meaning ’air’, followed by

a “high-index” quarter-wave layer, followed by four “low/high” bilayers, followed by the

“glass” substrate.

Similarly, Example 6.3.3 can be denoted by A(1.18H)(0.85L1.18H)4G, where the layer

optical lengths have been expressed in units of λ0/4, that is, nLlL = 0.85(λ0/4) and

nHlH = 1.18(λ0/4).

Another possibility for a periodic bilayer structure is to replace one or both of the L or

H layers by integral multiples thereof [632]. Fig. 6.3.4 shows two such examples. In the

first, each H layer has been replaced by a half-wave layer, that is, two quarter-wave layers

2H, so that the total structure is A(2H)(L2H)8G, where na,nb,nH ,nL are the same as in

Example 6.3.2. In the second case, eachH has been replaced by a three-quarter-wave layer,

resulting in A(3H)(L3H)8G.

The mirror peaks at odd multiples of f0 of Example 6.3.2 get split into two or three peaks

each. ⊓⊔
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Fig. 6.3.4 Dielectric mirrors with split bands.

Example 6.3.5: Shortpass and Longpass Filters. By adding an eighth-wave low-index layer, that

is, a (0.5L), at both ends of Example 6.3.2, we can decrease the reflectivity of the short

wavelengths. Thus, the stack AH(LH)8G is replaced by A(0.5L)H(LH)8(0.5L)G.

For example, suppose we wish to have high reflectivity over the [600,700] nm range and

low reflectivity below 500 nm. The left graph in Fig. 6.3.5 shows the resulting reflectance

with the design wavelength chosen to be λ0 = 650 nm. The parameters na, nb, nH, nL are

the same as in Example 6.3.2
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Fig. 6.3.5 Short- and long-pass wavelength filters.

The right graph of Fig. 6.3.5 shows the stack A(0.5H)L(HL)8(0.5H)G obtained from the

previous case by interchanging the roles of H and L. Now, the resulting reflectance is low

for the higher wavelengths. The design wavelength was chosen to be λ0 = 450 nm. It can

be seen from the graph that the reflectance is high within the band [400,500] nm and low

above 600 nm.

Superimposed on both graphs is the reflectance of the originalAH(LH)8G stack centered

at the corresponding λ0 (dotted curves.)
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Both of these examples can also be thought of as the periodic repetition of a symmetric

triple layer of the form A(BCB)NG. Indeed, we have the equivalences:

A(0.5L)H(LH)8(0.5L)G = A(0.5LH 0.5L)9G

A(0.5H)L(HL)8(0.5H)G = A(0.5HL0.5H)9G

The symmetric triple combination BCB can be replaced by an equivalent single layer, which

facilitates the analysis of such structures [630,658–660,662]. ⊓⊔

6.4 Propagation Bandgaps

There is a certain analogy between the electronic energy bands of solid state materials

arising from the periodicity of the crystal structure and the frequency bands of dielectric

mirrors arising from the periodicity of the bilayers. The high-reflectance bands play the

role of the forbidden energy bands (in the sense that waves cannot propagate through

the structure in these bands.) Such periodic dielectric structures have been termed

photonic crystals and have given rise to the new field of photonic bandgap structures,

which has grown rapidly over the past ten years with a large number of potential novel

applications [757–783].

Propagation bandgaps arise in any wave propagation problem in a medium with

periodic structure [750–756]. Waveguides and transmission lines that are periodically

loaded with ridges or shunt impedances, are examples of such media [880–884].

Fiber Bragg gratings, obtained by periodically modulating the refractive index of

the core (or the cladding) of a finite portion of a fiber, exhibit high reflectance bands

[784–804]. Quarter-wave phase-shifted fiber Bragg gratings (discussed in the next sec-

tion) act as narrow-band transmission filters and can be used in wavelength multiplexed

communications systems.

Other applications of periodic structures with bandgaps arise in structural engineer-

ing for the control of vibration transmission and stress [805–807], in acoustics for the

control of sound transmission through structures [808–813], and in the construction of

laser resonators and periodic lens systems [909,911]. A nice review of wave propagation

in periodic structures can be found in [751].

6.5 Narrow-Band Transmission Filters

The reflection bands of a dielectric mirror arise from the N-fold periodic replication of

high/low index layers of the type (HL)N, where H,L can have arbitrary lengths. Here,

we will assume that they are quarter-wavelength layers at the design wavelength λ0.

A quarter-wave phase-shifted multilayer structure is obtained by doubling (HL)N

to (HL)N(HL)N and then inserting a quarter-wave layer L between the two groups,

resulting in (HL)NL(HL)N. We are going to refer to such a structure as a Fabry-Perot

resonator (FPR)—it can also be called a quarter-wave phase-shifted Bragg grating.

An FPR behaves like a single L-layer at the design wavelength λ0. Indeed, noting that

at λ0 the combinations LL andHH are half-wave or absentee layers and can be deleted,

we obtain the successive reductions:
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(HL)NL(HL)N → (HL)N−1HLLHL(HL)N−1

→ (HL)N−1HHL(HL)N−1

→ (HL)N−1L(HL)N−1

Thus, the number of theHL layers can be successively reduced, eventually resulting

in the equivalent layer L (at λ0):

(HL)NL(HL)N → (HL)N−1L(HL)N−1 → (HL)N−2L(HL)N−2 → ·· · → L

Adding another L-layer on the right, the structure (HL)NL(HL)NL will act as 2L,

that is, a half-wave absentee layer at λ0. If such a structure is sandwiched between the

same substrate material, say glass, then it will act as an absentee layer, opening up a

narrow transmission window at λ0, in the middle of its reflecting band.

Without the quarter-wave layers L present, the structures G|(HL)N(HL)N|G and

G|(HL)N|G act as mirrors,† but with the quarter-wave layers present, the structure

G|(HL)NL(HL)NL|G acts as a narrow transmission filter, with the transmission band-

width becoming narrower as N increases.

By repeating the FPR (HL)NL(HL)N several times and using possibly different

lengthsN, it is possible to design a very narrow transmission band centered at λ0 having

a flat passband and very sharp edges.

Thus, we arrive at a whole family of designs, where starting with an ordinary dielec-

tric mirror, we may replace it with one, two, three, four, and so on, FPRs:

0. G|(HL)N1|G

1. G|(HL)N1L(HL)N1|L|G

2. G|(HL)N1L(HL)N1|(HL)N2L(HL)N2|G

3. G|(HL)N1L(HL)N1|(HL)N2L(HL)N2|(HL)N3L(HL)N3|L|G

4. G|(HL)N1L(HL)N1|(HL)N2L(HL)N2|(HL)N3L(HL)N3|(HL)N4L(HL)N4|G
(6.5.1)

Note that when an odd number of FPRs (HL)NL(HL)N are used, an extra L layer

must be added at the end to make the overall structure absentee. For an even number

of FPRs, this is not necessary.

Such filter designs have been used in thin-film applications [633–639] and in fiber

Bragg gratings, for example, as demultiplexers for WDM systems and for generating very-

narrow-bandwidth laser sources (typically at λ0 = 1550 nm) with distributed feedback

lasers [794–804]. We discuss fiber Bragg gratings in Sec. 12.4.

In a Fabry-Perot interferometer, the quarter-wave layer L sandwiched between the

mirrors (HL)N is called a “spacer” or a “cavity” and can be replaced by any odd multiple

of quarter-wave layers, for example, (HL)N(5L)(HL)N.

†G denotes the glass substrate.
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Several variations of FPR filters are possible, such as interchanging the role of H

and L, or using symmetric structures. For example, using eighth-wave layers L/2, the

following symmetric multilayer structure will also act like as a single L at λ0:

(
L

2
H
L

2

)N

L

(
L

2
H
L

2

)N

To create an absentee structure, we may sandwich this between two L/2 layers:

L

2

(
L

2
H
L

2

)N

L

(
L

2
H
L

2

)N L

2

This can be seen to be equivalent to (HL)N(2L)(LH)N, which is absentee at λ0.

This equivalence follows from the identities:

L

2

(
L

2
H
L

2

)N

≡ (LH)N L
2

(
L

2
H
L

2

)N L

2
≡ L

2
(HL)N

(6.5.2)

Example 6.5.1: Transmission Filter Design with One FPR. This example illustrates the basic

transmission properties of FPR filters. We choose parameters that might closely emu-

late the case of a fiber Bragg grating for WDM applications. The refractive indices of the

left and right substrates and the layers were: na = nb = 1.52, nL = 1.4, and nH = 2.1. The

design wavelength at which the layers are quarter wavelength is taken to be the standard

laser source λ0 = 1550 nm.

First, we compare the cases of a dielectric mirror (HL)N and its phase-shifted version using

a single FPR (cases 0 and 1 in Eq. (6.5.1)), with number of layersN1 = 6. Fig. 6.5.1 shows the

transmittance, that is, the quantity
(

1−|Γ1(λ)|2
)

plotted over the range 1200 ≤ λ ≤ 2000

nm.
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Fig. 6.5.1 Narrowband FPR transmission filters.

We observe that the mirror (case 0) has a suppressed transmittance over the entire reflect-

ing band, whereas the FPR filter (case 1) has a narrow peak at λ0. The asymptotic edges of
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the reflecting band are calculated from Eq. (6.3.18) to be λ1 = 1373.9 nm and λ2 = 1777.9

nm, resulting in a width of Δλ = 404 nm. The MATLAB code used to generated the left

graph was:

na = 1.52; nb = 1.52; nH = 2.1; nL = 1.4;

LH = 0.25; LL = 0.25; % optical thicknesses

la0 = 1550;

la = linspace(1200, 2000, 8001); % 1200 ≤ λ ≤ 2000 nm

N1 = 6;

n1 = repmat([nH,nL],1,N1);

L1 = repmat([LH,LL],1,N1);

n = [na, n1, nb];

L = L1;

G0 = 100*(1 - abs(multidiel(n,L,la/la0)).^2); % no phase shift

n1 = [repmat([nH,nL],1,N1), nL, repmat([nH,nL],1,N1)];

L1 = [repmat([LH,LL],1,N1), LL, repmat([LH,LL],1,N1)];

n = [na, n1, nL, nb];

L = [L1, LL];

G1 = 100*(1 - abs(multidiel(n,L,la/la0)).^2); % one phase shift

plot(la,G1,la,G0);

The location of the peak can be shifted by making the phase-shift different from λ/4. This

can be accomplished by changing the optical thickness of the middle L-layer to some other

value. The right graph of Fig. 6.5.1 shows the two cases where that length was chosen to

be nLlL = (0.6)λ0/4 and (1.3)λ0/4, corresponding to phase shifts of 54o and 117o. ⊓⊔

Example 6.5.2: Transmission Filter Design with Two FPRs. Fig. 6.5.2 shows the transmittance

of a grating with two FPRs (case 2 of Eq. (6.5.1)). The number of bilayers wereN1 = N2 = 8

in the first design, and N1 = N2 = 9 in the second.
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Fig. 6.5.2 Narrow-band transmission filter made with two FPRs.

The resulting transmittance bands are extremely narrow. The plotting scale is only from

1549 nm to 1551 nm. To see these bands in the context of the reflectance band, the
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transmittance (forN1 = N2 = 8) is plotted on the right graph over the range [1200,2000]

nm, which includes the full reflectance band of [1373.9,1777.9] nm.

Using two FPRs has the effect of narrowing the transmittance band and making it somewhat

flatter at its top. ⊓⊔

Example 6.5.3: Transmission Filter Design with Three and Four FPRs. Fig. 6.5.3 shows the trans-

mittance of a grating with three FPRs (case 3 of Eq. (6.5.1)). A symmetric arrangement of

FPRs was chosen such that N3 = N1.
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Fig. 6.5.3 Transmission filters with three FPRs of equal and unequal lengths.

The left graph shows the transmittances of the two design cases N1 = N2 = N3 = 8 and

N1 = N2 = N3 = 9, so that all the FPRs have the same lengths. The transmission band is

now flatter but exhibits some ripples. To get rid of the ripples, the length of the middle

FPR is slightly increased. The right graph shows the case N1 = N3 = 8 and N2 = 9, and

the case N1 = N3 = 9 and N2 = 10.

Fig. 6.5.4 shows the case of four FPRs (case 4 in Eq. (6.5.1).) Again, a symmetric arrangement

was chosen with N1 = N4 and N2 = N3.
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Fig. 6.5.4 Transmission filters with four FPRs of equal and unequal lengths.
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The left graph shows the two cases of equal lengths N1 = N2 = N3 = N4 = 8 and

N1 = N2 = N3 = N4 = 9. The right graphs shows the caseN1 = N4 = 8 andN2 = N4 = 9,

and the case N1 = N4 = 9 and N2 = N3 = 10. We notice again that the equal length cases

exhibit ripples, but increasing the length of the middle FPRs tends to eliminate them. The

typical MATLAB code for generating the case N1 = N4 = 9 and N2 = N3 = 10 was as

follows:

na = 1.52; nb = 1.52; nH = 2.1; nL = 1.4;

LH = 0.25; LL = 0.25;

la0 = 1550;

la = linspace(1549, 1551, 501);

N1 = 9; N2 = 10; N3 = N2; N4 = N1;

n1 = [repmat([nH,nL],1,N1), nL, repmat([nH,nL],1,N1)];

n2 = [repmat([nH,nL],1,N2), nL, repmat([nH,nL],1,N2)];

n3 = [repmat([nH,nL],1,N3), nL, repmat([nH,nL],1,N3)];

n4 = [repmat([nH,nL],1,N4), nL, repmat([nH,nL],1,N4)];

L1 = [repmat([LH,LL],1,N1), LL, repmat([LH,LL],1,N1)];

L2 = [repmat([LH,LL],1,N2), LL, repmat([LH,LL],1,N2)];

L3 = [repmat([LH,LL],1,N3), LL, repmat([LH,LL],1,N3)];

L4 = [repmat([LH,LL],1,N4), LL, repmat([LH,LL],1,N4)];

n = [na, n1, n2, n3, n4, nb];

L = [L1, L2, L3, L4];

G = 100*(1 - abs(multidiel(n,L,la/la0)).^2);

plot(la,G);

The resulting transmittance band is fairly flat with a bandwidth of approximately 0.15 nm,

as would be appropriate for dense WDM systems. The second design case with N1 = 8

and N2 = 9 has a bandwidth of about 0.3 nm.

The effect of the relative lengths N1,N2 on the shape of the transmittance band has been

studied in [800–802]. The equivalence of the low/high multilayer dielectric structures to

coupled-mode models of fiber Bragg gratings has been discussed in [791]. ⊓⊔

6.6 Equal Travel-Time Multilayer Structures

Here, we discuss the specialized, but useful, case of a multilayer structure whose layers

have equal optical thicknesses, or equivalently, equal travel-time delays, as for exam-

ple in the case of quarter-wavelength layers. Our discussion is based on [829] and on

[836,837].

Fig. 6.6.1 depicts such a structure consisting of M layers. The media to the left and

right are ηa and ηb and the reflection coefficients ρi at the M + 1 interfaces are as in

Eq. (6.1.1). We will discuss the general case when there are incident fields from both the

left and right media.

Let Ts denote the common two-way travel-time delay, so that,

2n1l1
c0

= 2n2l2
c0

= · · · = 2nMlM
c0

= Ts (6.6.1)
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Fig. 6.6.1 Equal travel-time multilayer structure.

Then, all layers have a common phase thickness, that is, for i = 1,2, . . . ,M:

δ = kili = ωnili
c0

= 1

2
ωTs (6.6.2)

where we wrote ki = ω/ci = ωni/c0. The layer recursions (6.1.2)–(6.1.5) simplify

considerably in this case. These recursions and other properties of the structure can be

described using DSP language.

Because the layers have a common roundtrip time delay Ts, the overall structure will

act as a sampled system with sampling periodTs and sampling frequency fs = 1/Ts. The

corresponding “Nyquist frequency”, f0 = fs/2, plays a special role. The phase thickness

δ can be expressed in terms of f and f0 as follows:

δ = 1

2
ωTs = 1

2
2πf

1

fs
= π f

fs
= π

2

f

f0

Therefore, at f = f0 (and odd multiples thereof), the phase thickness will be π/2 =
(2π)/4, that is, the structure will act as quarter-wave layers. Defining the z-domain

variable:

z = e2jδ = ejωTs = e2jkili (6.6.3)

we write Eq. (6.1.2) in the form:

[

Ei+
Ei−

]

= z1/2

τi

[

1 ρiz
−1

ρi z−1

][

Ei+1,+
Ei+1,−

]

, i =M,M − 1, . . . ,1 (6.6.4)

We may rewrite it compactly as:

Ei(z)= Fi(z)Ei+1(z) (6.6.5)

where we defined:

Fi(z)= z1/2

τi

[

1 ρiz
−1

ρi z−1

]

, Ei(z)=
[

Ei+(z)
Ei−(z)

]

(6.6.6)

The transition matrix Fi(z) has two interesting properties. Defining the complex

conjugate matrix F̄i(z)= Fi(z−1), we have:
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F̄i(z)
TJ3Fi(z)= 1− ρi

1+ ρi
J3 = ηi−1

ηi
J3

F̄i(z)= J1Fi(z)J1

(6.6.7)

where J1, J3 are the 2×2 matrices:†

J1 =
[

0 1

1 0

]

, J3 =
[

1 0

0 −1

]

(6.6.8)

In proving Eq. (6.6.7), we used the result (1−ρ2
i )/τ

2
i = (1−ρi)/(1+ρi)= ηi−1/ηi =

ni/ni−1. The first of Eqs. (6.6.7) implies energy conservation, that is, the energy flux into

medium i is equal to the energy flux into medium i+ 1, or,

1

2ηi−1

(Ēi+Ei+ − Ēi−Ei−)= 1

2ηi
(Ēi+1,+Ei+1,+ − Ēi+1,−Ei+1,−) (6.6.9)

This can be expressed compactly in the form:

Ē
T
i J3Ei = ηi−1

ηi
Ē
T
i+1J3Ei+1

which follows from Eq. (6.6.7):

Ē
T
i J3Ei = Ē

T
i+1F̄

T
i J3Fi Ei+1 = ηi−1

ηi
Ē
T
i+1J3Ei+1

The second of Eqs. (6.6.7) expresses time-reversal invariance and allows the con-

struction of a second, linearly independent, solution of the recursions (6.6.5):

Êi = J1Ēi =
[

Ēi−
Ēi+

]

= J1F̄i(z)Ēi+1 = Fi(z)J1Ēi+1 = Fi(z)Êi+1

The recursions (6.6.5) may be iterated now to the rightmost interface. By an addi-

tional boundary match, we may pass to the right of interface M + 1:

Ei = Fi(z)Fi+1(z)· · ·FM(z)FM+1E′M+1

where we defined the last transition matrix as

FM+1 = 1

τM+1

[

1 ρM+1

ρM+1 1

]

(6.6.10)

More explicitly, we have:

[

Ei+
Ei−

]

=z
(M+1−i)/2

νi

[

1 ρiz
−1

ρi z−1

][

1 ρi+1z
−1

ρi+1 z−1

]

· · ·

· · ·
[

1 ρMz
−1

ρM z−1

][

1 ρM+1

ρM+1 1

][

E′M+1,+
E′M+1,−

] (6.6.11)

†They are recognized as two of the three Pauli spin matrices.
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where we defined νi = τiτi+1 · · ·τMτM+1. We introduce the following definition for

the product of these matrices:

[

Ai(z) Ci(z)

Bi(z) Di(z)

]

=
[

1 ρiz
−1

ρi z−1

]

· · ·
[

1 ρMz
−1

ρM z−1

][

1 ρM+1

ρM+1 1

]

(6.6.12)

Because there are M + 1− i matrix factors that are first-order in z−1, the quantities

Ai(z), Bi(z), Ci(z), and Di(z) will be polynomials of order M + 1 − i in the variable

z−1. We may also express (6.6.12) in terms of the transition matrices Fi(z):

[

Ai(z) Ci(z)

Bi(z) Di(z)

]

= z−(M+1−i)/2νiFi(z)· · ·FM(z)FM+1 (6.6.13)

It follows from Eq. (6.6.7) that (6.6.13) will also satisfy similar properties. Indeed, it

can be shown easily that:

Ḡi(z)
TJ3Gi(z)= σ2

i J3, where σ2
i =

M+1∏

m=i
(1− ρ2

m)

GRi (z)= J1Gi(z)J1

(6.6.14)

where Gi(z) and its reverse GRi (z) consisting of the reversed polynomials are:

Gi(z)=
[

Ai(z) Ci(z)

Bi(z) Di(z)

]

, GRi (z)=
[

ARi (z) CRi (z)

BRi (z) DRi (z)

]

(6.6.15)

The reverse of a polynomial is obtained by reversing its coefficients, for example, if

A(z) has coefficient vector a = [a0, a1, a2, a3], then AR(z) will have coefficient vector

aR = [a3, a2, a1, a0]. The reverse of a polynomial can be obtained directly in the z-

domain by the property:

AR(z)= z−dA(z−1)= z−dĀ(z)

where d is the degree of the polynomial. For example, we have:

A(z) = a0 + a1z
−1 + a2z

−2 + a3z
−3

AR(z) = a3 + a2z
−1 + a1z

−2 + a0z
−3 = z−3(a0 + a1z+ a2z

2 + a3z
3)= z−3Ā(z)

Writing the second of Eqs. (6.6.14) explicitly, we have:

[

ARi (z) CRi (z)

BRi (z) DRi (z)

]

=
[

0 1

1 0

][

Ai(z) Ci(z)

Bi(z) Di(z)

][

0 1

1 0

]

=
[

Di(z) Bi(z)

Ci(z) Ai(z)

]

This implies that the polynomials Ci(z), Di(z) are the reverse of Bi(z), Ai(z), that

is, Ci(z)= BRi (z), Di(z)= ARi (z). Using this result, the first of Eqs. (6.6.14) implies the

following constraint between Ai(z) and Bi(z):

Āi(z)Ai(z)−B̄i(z)Bi(z)= σ2
i (6.6.16)
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Thus, the product of matrices in Eq. (6.6.12) has the form:

[

Ai(z) BRi (z)

Bi(z) ARi (z)

]

=
[

1 ρiz
−1

ρi z−1

]

· · ·
[

1 ρMz
−1

ρM z−1

][

1 ρM+1

ρM+1 1

]

(6.6.17)

This definition implies also the recursion:

[

Ai(z) BRi (z)

Bi(z) ARi (z)

]

=
[

1 ρiz
−1

ρi z−1

][

Ai+1(z) BRi+1(z)

Bi+1(z) ARi+1(z)

]

(6.6.18)

Therefore, each column will satisfy the same recursion:†

[

Ai(z)

Bi(z)

]

=
[

1 ρiz
−1

ρi z−1

][

Ai+1(z)

Bi+1(z)

]

(forward recursion) (6.6.19)

for i =M,M − 1, . . . ,1, and initialized by the 0th degree polynomials:

[

AM+1(z)

BM+1(z)

]

=
[

1

ρM+1

]

(6.6.20)

Eq. (6.6.11) reads now:

[

Ei+
Ei−

]

= z(M+1−i)/2

νi

[

Ai(z) BRi (z)

Bi(z) ARi (z)

][

E′M+1,+
E′M+1,−

]

(6.6.21)

Setting i = 1, we find the relationship between the fields incident on the dielectric

structure from the left to those incident from the right:

[

E1+
E1−

]

= zM/2

ν1

[

A1(z) BR1 (z)

B1(z) AR1 (z)

][

E′M+1,+
E′M+1,−

]

(6.6.22)

where ν1 = τ1τ2 · · ·τM+1. The polynomials A1(z) and B1(z) have degree M and

are obtained by the recursion (6.6.19). These polynomials incorporate all the multiple

reflections and reverberatory effects of the structure.

In referring to the overall transition matrix of the structure, we may drop the sub-

scripts 1 and M + 1 and write Eq. (6.6.22) in the more convenient form:

[

E+
E−

]

= zM/2

ν

[

A(z) BR(z)

B(z) AR(z)

][

E′+
E′−

]

(transfer matrix) (6.6.23)

Fig. 6.6.2 shows the general case of left- and right-incident fields, as well as when

the fields are incident only from the left or only from the right.

For both the left- and right-incident cases, the corresponding reflection and trans-

mission responses Γ,T and Γ′,T′ will satisfy Eq. (6.6.23):

[

1

Γ

]

= zM/2

ν

[

A(z) BR(z)

B(z) AR(z)

][

T
0

]

[

0

T′

]

= zM/2

ν

[

A(z) BR(z)

B(z) AR(z)

][

Γ′

1

] (6.6.24)

†Forward means order-increasing: as the index i decreases, the polynomial order M + 1− i increases.
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Fig. 6.6.2 Reflection and transmission responses of a multilayer structure.

Solving for Γ,T, we find:

Γ(z)= B(z)

A(z)
, T(z)= νz−M/2

A(z)
(6.6.25)

Similarly, we find for Γ′,T′:

Γ′(z)= −B
R(z)

A(z)
, T′(z)= ν′z−M/2

A(z)
(6.6.26)

where the constants ν and ν′ are the products of the left and right transmission coeffi-

cients τi = 1+ ρi and τ′i = 1− ρi, that is,

ν =
M+1∏

i=1

τi =
M+1∏

i=1

(1+ ρi) , ν′ =
M+1∏

i=1

τ′i =
M+1∏

i=1

(1− ρi) (6.6.27)

In deriving the expression for T′, we used the result (6.6.16), which for i = 1 reads:

Ā(z)A(z)−B̄(z)B(z)= σ2, where σ2 =
M+1∏

i=1

(1− ρ2
i ) (6.6.28)

Because AR(z)= z−MĀ(z), we can rewrite (6.6.28) in the form:

A(z)AR(z)−B(z)BR(z)= σ2z−M (6.6.29)

Noting that νν′ = σ2 and that

ν′

ν
=
M+1∏

i=1

1− ρi
1+ ρi

=
M+1∏

i=1

ηi−1

ηi
= ηa
ηb
,

we may replace ν and ν′ by the more convenient forms:

ν = σ
√

ηb
ηa
, ν′ = σ

√

ηa
ηb

(6.6.30)

Then, the transmission responses T and T′ can be expressed as:
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T(z)=
√

ηb
ηa
T(z), T′(z)=

√

ηa
ηb
T(z), T(z)= σz−M/2

A(z)
(6.6.31)

The magnitude squared of T(z) represents the transmittance, that is, the ratio of

the transmitted to incident powers, whereasT is the corresponding ratio of the electric

fields. Indeed, assuming E′− = 0, we have T = E′+/E+ and find:

Ptransmitted

Pincident

=
1

2ηb
|E′+|2

1

2ηa
|E+|2

= ηa
ηb
|T|2 = |T|2 (6.6.32)

where we used Eq. (6.6.31). Similarly, if the incident fields are from the right, then

assuming E+ = 0, the corresponding transmission coefficient will be T′ = E−/E′−, and

we find for the left-going transmittance:

P′transmitted

P′incident

=
1

2ηa
|E−|2

1

2ηb
|E′−|2

= ηb
ηa
|T′|2 = |T|2 (6.6.33)

Eqs. (6.6.32) and (6.6.33) state that the transmittance is the same from either side of

the structure. This result remains valid even when the slabs are lossy.

The frequency response of the structure is obtained by setting z = ejωTs . Denoting

A(ejωTs) simply by A(ω), we may express Eq. (6.6.28) in the form:

|A(ω)|2 − |B(ω)|2 = σ2 (6.6.34)

This implies the following relationship between reflectance and transmittance:

|Γ(ω)|2 + |T(ω)|2 = 1 (6.6.35)

Indeed, dividing Eq. (6.6.34) by |A(ω)|2 and using Eq. (6.6.31), we have:

1−
∣
∣
∣
∣

B(ω)

A(ω)

∣
∣
∣
∣

2

= σ2

|A(ω)|2 =
∣
∣
∣
∣
∣

σe−jMωTs/2

A(ω)

∣
∣
∣
∣
∣

2

⇒ 1− |Γ(ω)|2 = |T(ω)|2

Scattering Matrix

The transfer matrix in Eq. (6.6.23) relates the incident and reflected fields at the left

of the structure to those at the right of the structure. Using Eqs. (6.6.25), (6.6.26), and

(6.6.29), we may rearrange the transfer matrix (6.6.23) into a scattering matrix form that

relates the incoming fields E+, E′− to the outgoing fields E−, E′+. We have:

[

E−
E′+

]

=
[

Γ(z) T′(z)
T(z) Γ′(z)

][

E+
E′−

]

(scattering matrix) (6.6.36)

The elements of the scattering matrix are referred to as the S-parameters and are

used widely in the characterization of two-port (and multi-port) networks at microwave

frequencies.
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We discuss S-parameters in Sec. 14.1. It is a common convention in the literature to

normalize the fields to the impedances of the left and right media (the generator and

load impedances), as follows:

E± = 1√
ηa
E± = E ± ηaH

2
√
ηa

, E′± =
1√
ηb
E′± =

E′ ± ηbH′
2
√
ηb

(6.6.37)

Such normalized fields are referred to as power waves [1135]. Using the results of

Eq. (6.6.31), the scattering matrix may be written in terms of the normalized fields in

the more convenient form:

[

E−
E′+

]

=
[

Γ(z) T(z)

T(z) Γ′(z)

][

E+
E′−

]

= S(z)
[

E+
E′−

]

(6.6.38)

so that S(z) is now a symmetric matrix:

S(z)=
[

Γ(z) T(z)

T(z) Γ′(z)

]

(scattering matrix) (6.6.39)

One can verify also that Eqs. (6.6.25), (6.6.26), and (6.6.28) imply the following uni-

tarity properties of S(z):

S̄(z)TS(z)= I , S(ω)†S(ω)= I , (unitarity) (6.6.40)

where I is the 2×2 identity matrix, S̄(z)= S(z−1), and S(ω) denotes S(z) with z =
ejωTs , so that S̄(ω)T becomes the hermitian conjugate S(ω)†= S(ω)∗T.

The unitarity condition is equivalent to the power conservation condition that the

net incoming power into the (lossless) multilayer structure is equal to the net outgoing

reflected power from the structure. Indeed, in terms of the power waves, we have:

Pout = 1

2ηa
|E−|2 + 1

2ηb
|E′+|2 =

1

2
|E−|2 + 1

2
|E′+|2

= 1

2

[E∗−,E∗′+
]

[

E−
E′+

]

= 1

2

[E∗+,E∗′−
]

S†S

[

E+
E′−

]

= 1

2

[E∗+,E∗′−
]

I

[

E+
E′−

]

= 1

2
|E+|2 + 1

2
|E′−|2 =

1

2ηa
|E+|2 + 1

2ηb
|E′−|2 = Pin

Layer Recursions

Next, we discuss the layer recursions. The reflection responses at the successive in-

terfaces of the structure are given by similar equations to (6.6.25). We have Γi(z)=
Bi(z)/Ai(z) at the ith interface and Γi+1(z)= Bi+1(z)/Ai+1(z) at the next one. Us-

ing Eq. (6.6.19), we find that the responses Γi satisfy the following recursion, which is

equivalent to Eq. (6.1.3):

Γi(z)= ρi + z−1Γi+1(z)

1+ ρiz−1Γi+1(z)
, i =M,M − 1, . . . ,1 (6.6.41)
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It starts at ΓM+1(z)= ρM+1 and ends with Γ(z)= Γ1(z). The impedances at the

interfaces satisfy Eq. (6.1.5), which takes the specialized form in the case of equal phase

thicknesses:

Zi(s)= ηi Zi+1(s)+ηis
ηi + sZi+1(s)

, i =M,M − 1, . . . ,1 (6.6.42)

where we defined the variable s via the bilinear transformation:

s = 1− z−1

1+ z−1
(6.6.43)

Note that if z = e2jδ, then s = j tanδ. It is more convenient to think of the impedances

Zi(s) as functions of the variable s and the reflection responses Γi(z) as functions of

the variable z.

To summarize, given the characteristic impedances {ηa, η1, . . . , ηM, ηb}, equiva-

lently, the refractive indices {n1, n1, . . . , nM} of a multilayered structure, we can com-

pute the corresponding reflection coefficients {ρ1, ρ2, . . . , ρM+1} and then carry out the

polynomial recursions (6.6.19), eventually arriving at the final Mth order polynomials

A(z) and B(z), which define via Eq. (6.6.25) the overall reflection and transmission

responses of the structure.

Conversely, given the final polynomials A1(z)= A(z) and B1(z)= B(z), we invert

the recursion (6.6.19) and “peel off” one layer at a time, until we arrive at the rightmost

interface. In the process, we extract the reflection coefficients {ρ1, ρ2, . . . , ρM+1}, as

well as the characteristic impedances and refractive indices of the structure.

This inverse recursion is based on the property that the reflection coefficients appear

in the first and last coefficients of the polynomials Bi(z) andAi(z). Indeed, if we define

these coefficients by the expansions:

Bi(z)=
M+1−i∑

m=0

bi(m)z
−m , Ai(z)=

M+1−i∑

m=0

ai(m)z
−m

then, it follows from Eq. (6.6.19) that the first coefficients are:

bi(0)= ρi , ai(0)= 1 (6.6.44)

whereas the last coefficients are:

bi(M + 1− i)= ρM+1 , ai(M + 1− i)= ρM+1ρi (6.6.45)

Inverting the transition matrix in Eq. (6.6.19), we obtain the backward recursion:†

[

Ai+1(z)

Bi+1(z)

]

= 1

1− ρ2
i

[

1 −ρi
−ρiz z

][

Ai(z)

Bi(z)

]

(backward recursion) (6.6.46)

†Backward means order-decreasing: as the index i increases, the polynomial order M + 1− i decreases.
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for i = 1,2, . . . ,M, where ρi = bi(0). This recursion starts with the knowledge ofA1(z)

and B1(z). We note that each step of the recursion reduces the order of the polynomials

by one, until we reach the 0th order polynomials AM+1(z)= 1 and BM+1(z)= ρM+1.

The reverse recursions can also be applied directly to the reflection responses Γi(z)

and wave impedances Zi(s). It follows from Eq. (6.6.41) that the reflection coefficient ρi
can be extracted from Γi(z) if we set z = ∞, that is, ρi = Γi(∞). Then, solving Eq. (6.1.3)

for Γi+1(z), we obtain:

Γi+1(z)= z Γi(z)−ρi
1− ρiΓi(z)

, i = 1,2, . . . ,M (6.6.47)

Similarly, it follows from Eq. (6.6.42) that the characteristic impedance ηi can be

extracted from Zi(s) by setting s = 1, which is equivalent to z = ∞ under the transfor-

mation (6.6.43). Thus, ηi = Zi(1) and the inverse of (6.6.42) becomes:

Zi+1(s)= ηi Zi(s)−sηi
ηi − sZi(s)

, i = 1,2, . . . ,M (6.6.48)

The necessary and sufficient condition that the extracted reflection coefficients ρi
and the media impedances ηi are realizable, that is, |ρi| < 1 or ηi > 0, is that the

starting polynomial A(z) be a minimum-phase polynomial in z−1, that is, it must have

all its zeros inside the unit circle on the z-plane. This condition is in turn equivalent to

the requirement that the transmission and reflection responses T(z) and Γ(z) be stable

and causal transfer functions.

The order-increasing and order-decreasing recursions Eqs. (6.6.19) and (6.6.46) can

also be expressed in terms of the vectors of coefficients of the polynomials Ai(z) and

Bi(z). Defining the column vectors:

ai =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ai(0)

ai(1)
...

ai(M + 1− i)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, bi =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

bi(0)

bi(1)
...

bi(M + 1− i)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

we obtain for Eq. (6.6.19), with i =M,M − 1, . . . ,1:

ai =
[

ai+1

0

]

+ ρi
[

0

bi+1

]

bi = ρi
[

ai+1

0

]

+
[

0

bi+1

] (forward recursion) (6.6.49)

and initialized at aM+1 = [1] and bM+1 = [ρM+1]. Similarly, the backward recur-

sions (6.6.46) are initialized at the Mth order polynomials a1 = a and b1 = b. For

i = 1,2, . . . ,M and ρi = bi(0), we have:
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[

ai+1

0

]

= ai − ρibi
1− ρ2

i
[

0

bi+1

]

= −ρiai + bi

1− ρ2
i

(backward recursion) (6.6.50)

Example 6.6.1: Determine the number of layers M, the reflection coefficients at the M + 1

interfaces, and the refractive indices of the M + 2 media for a multilayer structure whose

overall reflection response is given by:

Γ(z)= B(z)

A(z)
= −0.1− 0.188z−1 − 0.35z−2 + 0.5z−3

1− 0.1z−1 − 0.064z−2 − 0.05z−3

Solution: From the degree of the polynomials, the number of layers is M = 3. The starting

polynomials in the backward recursion (6.6.50) are:

a1 = a =

⎡

⎢
⎢
⎢
⎣

1.000

−0.100

−0.064

−0.050

⎤

⎥
⎥
⎥
⎦
, b1 = b =

⎡

⎢
⎢
⎢
⎣

−0.100

−0.188

−0.350

0.500

⎤

⎥
⎥
⎥
⎦

From the first and last coefficients of b1, we find ρ1 = −0.1 and ρ4 = 0.5. Setting i = 1,

the first step of the recursion gives:

[

a2

0

]

= a1 − ρ1b1

1− ρ2
1

=

⎡

⎢
⎢
⎢
⎣

1.000

−0.120

−0.100

0.000

⎤

⎥
⎥
⎥
⎦
,

[

0

b2

]

= −ρ1a1 + b1

1− ρ2
1

=

⎡

⎢
⎢
⎢
⎣

0.000

−0.200

−0.360

0.500

⎤

⎥
⎥
⎥
⎦

Thus,

a2 =

⎡

⎢
⎣

1.000

−0.120

−0.100

⎤

⎥
⎦ , b2 =

⎡

⎢
⎣

−0.200

−0.360

0.500

⎤

⎥
⎦

The first coefficient of b2 is ρ2 = −0.2 and the next step of the recursion gives:

[

a3

0

]

= a2 − ρ2b2

1− ρ2
2

=

⎡

⎢
⎣

1.0

−0.2

0.0

⎤

⎥
⎦ ,

[

0

b3

]

= −ρ2a2 + b2

1− ρ2
2

=

⎡

⎢
⎣

0.0

−0.4

0.5

⎤

⎥
⎦

Thus,

a3 =
[

1.0

−0.2

]

, b3 =
[

−0.4

0.5

]

⇒ ρ3 = −0.4

The last step of the recursion for i = 3 is not necessary because we have already determined

ρ4 = 0.5. Thus, the four reflection coefficients are:
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[ρ1, ρ2, ρ3, ρ4]= [−0.1,−0.2,−0.4,0.5]

The corresponding refractive indices can be obtained by solving Eq. (6.1.1), that is, ni =
ni−1(1− ρi)/(1+ ρi). Starting with i = 1 and n0 = na = 1, we obtain:

[na, n1, n2, n3, nb]= [1,1.22,1.83,4.28,1.43]

The same results can be obtained by working with the polynomial version of the recursion,

Eq. (6.6.46). ⊓⊔

Example 6.6.2: Consider the quarter-quarter antireflection coating shown in Fig. 6.2.2 with

refractive indices [na, n1, n2, nb]= [1,1.38,1.63,1.50]. Determine the reflection coef-

ficients at the three interfaces and the overall reflection response Γ(z) of the structure.

Solution: In this problem we carry out the forward layer recursion starting from the rightmost

layer. The reflection coefficients computed from Eq. (6.1.1) are:

[ρ1, ρ2, ρ3]= [−0.1597,−0.0831,0.0415]

Starting the forward recursion with a3 = [1] and b3 = [ρ3]= [0.0415], we build the first

order polynomials:

a2 =
[

a3

0

]

+ ρ2

[

0

b3

]

=
[

1.0000

0.0000

]

+ (−0.0831)

[

0.0000

0.0415

]

=
[

1.0000

−0.0034

]

b2 = ρ2

[

a3

0

]

+
[

0

b3

]

= (−0.0831)

[

1.0000

0.0000

]

+
[

0.0000

0.0415

]

=
[

−0.0831

0.0415

]

Then, we build the 2nd order polynomials at the first interface:

a1 =
[

a2

0

]

+ ρ1

[

0

b2

]

=

⎡

⎢
⎣

1.0000

0.0098

−0.0066

⎤

⎥
⎦ , b1 = ρ1

[

a2

0

]

+
[

0

b2

]

=

⎡

⎢
⎣

−0.1597

−0.0825

0.0415

⎤

⎥
⎦

Thus, the overall reflection response is:

Γ(z)= Γ1(z)= B1(z)

A1(z)
= −0.1597− 0.0825z−1 + 0.0415z−2

1+ 0.0098z−1 − 0.0066z−2

Applying the reverse recursion on this reflection response would generate the same reflec-

tion coefficients ρ1, ρ2, ρ3. ⊓⊔

Example 6.6.3: Determine the overall reflection response of the quarter-half-quarter coating of

Fig. 6.2.2 by thinking of the half-wavelength layer as two quarter-wavelength layers of the

same refractive index.
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Solution: There are M = 4 quarter-wave layers with refractive indices:

[na, n1, n2, n3, n4, nb]= [1,1.38,2.20,2.20,1.63,1.50]

The corresponding reflection coefficients are:

[ρ1, ρ2, ρ3, ρ4, ρ5]= [−0.1597,−0.2291,0,0.1488,0.0415]

where the reflection coefficient at the imaginary interface separating the two halves of

the half-wave layer is zero. Starting the forward recursion with a5 = [1], b5 = [ρ5]=
[0.0415], we compute the higher-order polynomials:

a4 =
[

a5

0

]

+ ρ4

[

0

b5

]

=
[

1.0000

0.0062

]

, b4 = ρ4

[

a5

0

]

+
[

0

b5

]

=
[

0.1488

0.0415

]

a3 =
[

a4

0

]

+ ρ3

[

0

b4

]

=

⎡

⎢
⎣

1.0000

0.0062

0.0000

⎤

⎥
⎦ , b3 = ρ3

[

a4

0

]

+
[

0

b4

]

=

⎡

⎢
⎣

0.0000

0.1488

0.0415

⎤

⎥
⎦

a2 =
[

a3

0

]

+ ρ2

[

0

b3

]

=

⎡

⎢
⎢
⎢
⎣

1.0000

0.0062

−0.0341

−0.0095

⎤

⎥
⎥
⎥
⎦
, b2 = ρ2

[

a3

0

]

+
[

0

b3

]

=

⎡

⎢
⎢
⎢
⎣

−0.2291

−0.0014

0.1488

0.0415

⎤

⎥
⎥
⎥
⎦

a1 =
[

a2

0

]

+ ρ1

[

0

b2

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.0000

0.0428

−0.0339

−0.0333

−0.0066

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, b1 = ρ1

[

a2

0

]

+
[

0

b2

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.1597

−0.2300

0.0040

0.1503

0.0415

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Thus, the reflection response will be:

Γ(z)= B1(z)

A1(z)
= −0.1597− 0.2300z−1 + 0.0040z−2 + 0.1502z−3 + 0.0415z−4

1+ 0.0428z−1 − 0.0339z−2 − 0.0333z−3 − 0.0066z−4

We note that because ρ3 = 0, the polynomials A3(z) and A4(z) are the same and B3(z)

is simply the delayed version of B4(z), that is, B3(z)= z−1B4(z). ⊓⊔

Example 6.6.4: Determine the reflection polynomials for the cases M = 1, M = 2, and M = 3

with reflection coefficients {ρ1, ρ2}, {ρ1, ρ2, ρ3}, and {ρ1, ρ2, ρ3, ρ4}, respectively.

Solution: For M = 1, we have A2(z)= 1 and B2(z)= ρ2. Then, Eq. (6.6.19) gives:

[

A1(z)

B1(z)

]

=
[

1 ρ1z
−1

ρ1 z−1

][

A2(z)

B2(z)

]

=
[

1 ρ1z
−1

ρ1 z−1

][

1

ρ2

]

=
[

1+ ρ1ρ2z
−1

ρ1 + ρ2z
−1

]

For M = 2, we start with A3(z)= 1 and B3(z)= ρ3. The first step of the recursion gives:
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[

A2(z)

B2(z)

]

=
[

1 ρ2z
−1

ρ2 z−1

][

1

ρ3

]

=
[

1+ ρ2ρ3z
−1

ρ2 + ρ3z
−1

]

and the second step:

[

A1(z)

B1(z)

]

=
[

1 ρ1z
−1

ρ1 z−1

][

1+ ρ2ρ3z
−1

ρ2 + ρ3z
−1

]

=
[

1+ ρ2(ρ1 + ρ3)z
−1 + ρ1ρ3z

−2

ρ1 + ρ2(1+ ρ1ρ3)z
−1 + ρ3z

−2

]

For M = 3, we have A4(z)= 1 and B4(z)= ρ4. The first and second steps give:

[

A3(z)

B3(z)

]

=
[

1 ρ3z
−1

ρ3 z−1

][

1

ρ4

]

=
[

1+ ρ3ρ4z
−1

ρ3 + ρ4z
−1

]

[

A2(z)

B2(z)

]

=
[

1 ρ2z
−1

ρ2 z−1

][

1+ ρ3ρ4z
−1

ρ3 + ρ4z
−1

]

=
[

1+ ρ3(ρ2 + ρ4)z
−1 + ρ2ρ4z

−2

ρ2 + ρ3(1+ ρ2ρ4)z
−1 + ρ4z

−2

]

Then, the final step gives:

[

A1(z)

B1(z)

]

=
[

1 ρ1z
−1

ρ1 z−1

][

1+ ρ3(ρ2 + ρ4)z
−1 + ρ2ρ4z

−2

ρ2 + ρ3(1+ ρ2ρ4)z
−1 + ρ4z

−2

]

=
[

1+ (ρ1ρ2 + ρ2ρ3 + ρ3ρ4)z
−1 + (ρ1ρ3 + ρ2ρ4 + ρ1ρ2ρ3ρ4)z

−2 + ρ1ρ4z
−3

ρ1 + (ρ2 + ρ1ρ2ρ3 + ρ1ρ3ρ4)z
−1 + (ρ3 + ρ1ρ2ρ4 + ρ2ρ3ρ4)z

−2 + ρ4z
−3

]

As expected, in all cases the first and last coefficients ofAi(z) are 1 and ρiρM+1 and those

of Bi(z) are ρi and ρM+1.

An approximation that is often made in practice is to assume that the ρis are small and

ignore all the terms that involve two or more factors of ρi. In this approximation, we have

for the polynomials and the reflection response Γ(z)= B1(z)/A1(z), for the M = 3 case:

A1(z)= 1

B1(z)= ρ1 + ρ2z
−1 + ρ3z

−2 + ρ4z
−3 ⇒ Γ(z)= ρ1 + ρ2z

−1 + ρ3z
−2 + ρ4z

−3

This is equivalent to ignoring all multiple reflections within each layer and considering only

a single reflection at each interface. Indeed, the term ρ2z
−1 represents the wave reflected at

interface-2 and arriving back at interface-1 with a roundtrip delay of z−1. Similarly, ρ3z
−2

represents the reflection at interface-3 and has a delay of z−2 because the wave must make

a roundtrip of two layers to come back to interface-1, and ρ4z
−3 has three roundtrip delays

because the wave must traverse three layers. ⊓⊔

The two MATLAB functions frwrec and bkwrec implement the forward and back-

ward recursions (6.6.49) and (6.6.50), respectively. They have usage:

[A,B] = frwrec(r); % forward recursion - from r to A,B

[r,A,B] = bkwrec(a,b); % backward recursion - from a,b to r
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The input r of frwrec represents the vector of theM+ 1 reflection coefficients and

A,B are the (M + 1)×(M + 1) matrices whose columns are the polynomials ai and bi

(padded with zeros at the end to make them of lengthM+1.) The inputs a,b of bkwrec

are the final order-M polynomials a,b and the outputs r,A,B have the same meaning

as in frwrec. We note that the first row of B contains the reflection coefficients r.

The auxiliary functions r2n and n2r allow one to pass from the reflection coefficient

vector r to the refractive index vector n, and conversely. They have usage:

n = r2n(r); % reflection coefficients to refractive indices

r = n2r(n); % refractive indices to reflection coefficients

As an illustration, the MATLAB code:

a = [1, -0.1, -0.064, -0.05];

b = [-0.1, -0.188, -0.35, 0.5];

[r,A,B] = bkwrec(a,b);

n = r2n(r);

r = n2r(n);

will generate the output of Example 6.6.1:

r =

-0.1000 -0.2000 -0.4000 0.5000

A =

1.0000 1.0000 1.0000 1.0000

-0.1000 -0.1200 -0.2000 0

-0.0640 -0.1000 0 0

-0.0500 0 0 0

B =

-0.1000 -0.2000 -0.4000 0.5000

-0.1880 -0.3600 0.5000 0

-0.3500 0.5000 0 0

0.5000 0 0 0

n =

1.0000 1.2222 1.8333 4.2778 1.4259

r =

-0.1000 -0.2000 -0.4000 0.5000

Conversely, if the above r is the input to frwrec, the returned matrices A,B will be

identical to the above. The function r2n solves Eq. (6.1.1) for ni and always assumes that

the refractive index of the leftmost medium is unity. Once the ni are known, the function

multidiel may be used to compute the reflection response at any set of frequencies or

wavelengths.

6.7 Applications of Layered Structures

In addition to their application in dielectric thin-film and radome design, layered struc-

tures and the corresponding forward and backward layer recursions have a number of

applications in other wave propagation problems, such as the design of broadband ter-

minations of transmission lines, the analysis and synthesis of speech, geophysical signal

processing for oil exploration, the probing of tissue by ultrasound, and the design of

acoustic reflectors for noise control.

224 6. Multilayer Structures

It is remarkable also that the same forward and backward recursions (6.6.49) and

(6.6.50) are identical (up to reindexing) to the forward and backward Levinson recursions

of linear prediction [829], with the layer structures being mathematically equivalent to

the analysis and synthesis lattice filters. This connection is perhaps the reason behind

the great success of linear prediction methods in speech and geophysical signal pro-

cessing.

Moreover, the forward and backward layer recursions in their reflection forms, Eqs.

(6.6.41) and (6.6.47), and impedance forms, Eqs. (6.6.42) and (6.6.48), are the essential

mathematical tools for Schur’s characterization of lossless bounded real functions in the

z-plane and Richard’s characterization of positive real functions in the s-plane and have

been applied to network synthesis and to the development of transfer function stability

tests, such as the Schur-Cohn test [849–863].

In all wave problems there are always two associated propagating field quantities

playing the roles of the electric and magnetic fields. For forward-moving waves the

ratio of the two field quantities is constant and equal to the characteristic impedance of

the particular propagation medium for the particular type of wave.

For example, for transmission lines the two field quantities are the voltage and cur-

rent along the line, for sound waves they are the pressure and particle volume velocity,

and for seismic waves, the stress and particle displacement.

A transmission line connected to a multisegment impedance transformer and a load

is shown in Fig. 6.7.1. The characteristic impedances of the main line and the seg-

ments are Za and Z1, . . . , ZM, and the impedance of the load, Zb. Here, the impedances

{Za, Z1, . . . , ZM, Zb}, play the same role as {ηa, η1, . . . , ηM, ηb} in the dielectric stack

case.

Fig. 6.7.1 Multisegment broadband termination of a transmission line.

The segment characteristic impedances Zi and lengths li can be adjusted to obtain

an overall reflection response that is reflectionless over a wideband of frequencies [818–

828]. This design method is presented in Sec. 6.8.

In speech processing, the vocal tract is modeled as an acoustic tube of varying cross-

sectional area. It can be approximated by the piece-wise constant area approximation

shown in Fig. 6.7.2. Typically, ten segments will suffice.

The acoustic impedance of a sound wave varies inversely with the tube area, Z =
ρc/A, where ρ, c, and A are the air density, speed of sound, and tube area, respectively.

Therefore, as the sound wave propagates from the glottis to the lips, it will suffer reflec-

tions every time it encounters an interface, that is, whenever it enters a tube segment

of different diameter.

Multiple reflections will be set up within each segment and the tube will reverberate

in a complicated manner depending on the number of segments and their diameters.
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Fig. 6.7.2 Multisegment acoustic tube model of vocal tract.

By measuring the speech wave that eventually comes out of the lips (the transmission

response,) it is possible to remove, or deconvolve, the reverberatory effects of the tube

and, in the process, extract the tube parameters, such as the areas of the segments, or

equivalently, the reflection coefficients at the interfaces.

During speech, the configuration of the vocal tract changes continuously, but it does

so at mechanical speeds. For short periods of time (typically, of the order of 20–30

msec,) it may be considered to maintain a fixed configuration. From each such short

segment of speech, a set of configuration parameters, such as reflection coefficients,

is extracted. Conversely, the extracted parameters may be used to re-synthesize the

speech segment.

Such linear prediction based acoustic tube models of speech production are routinely

used in the analysis and synthesis of speech, speech recognition, speaker identification,

and speech coding for efficient data transmission, such as in wireless phones.

The seismic problem in geophysical signal processing is somewhat different. Here,

it is not the transmitted wave that is experimentally available, but rather the overall

reflected wave. Fig. 6.7.3 shows the typical case.

Fig. 6.7.3 Seismic probing of earth’s multilayer structure.

An impulsive input to the earth, such as an explosion near the surface, will set up

seismic elastic waves propagating downwards. As the various earth layers are encoun-

tered, reflections will take place. Eventually, each layer will be reverberating and an

overall reflected wave will be measured at the surface. With the help of the backward
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recursions, the parameters of the layered structure (reflection coefficients and impedan-

ces) are extracted and evaluated to determine the presence of a layer that contains an

oil deposit.

The application of the backward recursions has been termed dynamic predictive de-

convolution in the geophysical context [836–848]. An interesting historical account of

the early development of this method by Robinson and its application to oil exploration

and its connection to linear prediction is given in Ref. [842]. The connection to the con-

ventional inverse scattering methods based on the Gelfand-Levitan-Marchenko approach

is discussed in [843–848].

Fiber Bragg gratings (FBG), obtained by periodically modulating the refractive index

of the core (or the cladding) of a finite portion of a fiber, behave very similarly to di-

electric mirrors and exhibit high reflectance bands [784–804]. The periodic modulation

is achieved by exposing that portion of the fiber to intense ultraviolet radiation whose

intensity has the required periodicity. The periodicity shown in Fig. 6.7.4 can have arbi-

trary shape—not only alternating high/low refractive index layers as suggested by the

figure. We discuss FBGs further in Sec. 12.4.

Fig. 6.7.4 Fiber Bragg gratings acting as bandstop or bandpass filters.

Quarter-wave phase-shifted fiber Bragg gratings act as narrow-band transmission

filters and can be used as demultiplexing filters in WDM and dense WDM (DWDM) com-

munications systems. Assuming as in Fig. 6.7.4 that the inputs to the FBGs consist of

several multiplexed wavelengths, λ1, λ2, λ3, . . . , and that the FBGs are tuned to wave-

length λ2, then the ordinary FBG will act as an almost perfect reflector of λ2. If its

reflecting band is narrow, then the other wavelengths will transmit through. Similarly,

the phase-shifted FBG will act as a narrow-band transmission filter allowing λ2 through

and reflecting the other wavelengths if they lie within its reflecting band.

A typical DWDM system may carry 40 wavelengths at 10 gigabits per second (Gbps)

per wavelength, thus achieving a 400 Gbps bandwidth. In the near future, DWDM sys-

tems will be capable of carrying hundreds of wavelengths at 40 Gbps per wavelength,

achieving terabit per second rates [804].
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6.8 Chebyshev Design of Reflectionless Multilayers

In this section, we discuss the design of broadband reflectionless multilayer structures

of the type shown in Fig. 6.6.1, or equivalently, broadband terminations of transmission

lines as shown in Fig. 6.7.1, using Collin’s method based on Chebyshev polynomials

[818–828,653,672].

As depicted in Fig. 6.8.1, the desired specifications are: (a) the operating center

frequency f0 of the band, (b) the bandwidthΔf , and (c) the desired amount of attenuation

A (in dB) within the desired band, measured with respect to the reflectance value at dc.

Fig. 6.8.1 Reflectance specifications for Chebyshev design.

Because the optical thickness of the layers is δ = ωTs/2 = (π/2)(f/f0) and van-

ishes at dc, the reflection response at f = 0 should be set equal to its unmatched value,

that is, to the value when there are no layers:

|Γ(0)|2 = ρ2
0 =

(

ηb − ηa
ηa + ηb

)2

=
(
na − nb
na + nb

)2

(6.8.1)

Collin’s design method [818] assumes |Γ(f)|2 has the analytical form:

|Γ(f)|2 = e2
1T

2
M(x)

1+ e2
1T

2
M(x)

x = x0 cosδ = x0 cos
(πf

2f0

)

(6.8.2)

where TM(x)= cos
(

M acos(x)
)

is the Chebyshev polynomial (of the first kind) of order

M. The parameters M,e1, x0 are fixed by imposing the desired specifications shown in

Fig. 6.8.1.

Once these parameters are known, the order-M polynomials A(z),B(z) are deter-

mined by spectral factorization, so that |Γ(f)|2 = |B(f)|2/|A(f)|2. The backward layer

recursions, then, allow the determination of the reflection coefficients at the layer inter-

faces, and the corresponding refractive indices. Setting f = 0, or δ = 0, or cosδ = 1, or

x = x0, we obtain the design equation:

|Γ(0)|2 = e2
1T

2
M(x0)

1+ e2
1T

2
M(x0)

= e2
0

1+ e2
0

= ρ2
0 (6.8.3)
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where we defined e0 = e1TM(x0). Solving for e0, we obtain:

e2
0 =

ρ2
0

1− ρ2
0

= (na − nb)2

4nanb
(6.8.4)

Chebyshev polynomialsTM(x) are reviewed in more detail in Sec. 21.9 that discusses

antenna array design using the Dolph-Chebyshev window. The two key properties of

these polynomials are that they have equiripple behavior within the interval −1 ≤ x ≤ 1

and grow like xM for |x| > 1; see for example, Fig. 21.9.1.

By adjusting the value of the scale parameter x0, we can arrange the entire equiripple

domain, −1 ≤ x ≤ 1, of TM(x) to be mapped onto the desired reflectionless band

[f1, f2], where f1, f2 are the left and right bandedge frequencies about f0, as shown in

Fig. 6.8.1. Thus, we demand the conditions:

x0 cos
(πf2

2f0

) = −1, x0 cos
(πf1

2f0

) = 1

These can be solved to give:

πf2
2f0

= acos
(− 1

x0

) = π

2
+ asin

( 1

x0

)

πf1
2f0

= acos
( 1

x0

) = π

2
− asin

( 1

x0

)

(6.8.5)

Subtracting, we obtain the bandwidth Δf = f2 − f1:

π

2

Δf

f0
= 2 asin

(
1

x0

)

(6.8.6)

We can now solve for the scale parameter x0 in terms of the bandwidth:

x0 = 1

sin

(
π

4

Δf

f0

) (6.8.7)

It is evident from Fig. 6.8.1 that the maximum value of the bandwidth that one can

demand is Δfmax = 2f0. Going back to Eq. (6.8.5) and using (6.8.6), we see that f1 and

f2 lie symmetrically about f0, such that f1 = f0 −Δf/2 and f2 = f0 +Δf/2.

Next, we impose the attenuation condition. Because of the equiripple behavior over

the Δf band, it is enough to impose the condition at the edges of the band, that is, we

demand that when f = f1, or x = 1, the reflectance is down by A dB as compared to its

value at dc:

|Γ(f1)|2 = |Γ(0)|2 10−A/10 ⇒ e2
1T

2
M(1)

1+ e2
1T

2
M(1)

= e2
0

1+ e2
0

10−A/10

But, TM(1)= 1. Therefore, we obtain an equation for e2
1:

e2
1

1+ e2
1

= e2
0

1+ e2
0

10−A/10 (6.8.8)
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Noting that e0 = e1TM(x0), we solve Eq. (6.8.8) for the ratio TM(x0)= e0/e1:

TM(x0)= cosh
(

M acosh(x0)
) =

√

(1+ e2
0)10A/10 − e2

0 (6.8.9)

Alternatively, we can express A in terms of TM(x0):

A = 10 log10

(

T2
M(x0)+e2

0

1+ e2
0

)

(6.8.10)

where we used the definition TM(x0)= cosh
(

M acosh(x0)
)

because x0 > 1. Solving

(6.8.9) for M in terms of A, we obtain:

M = ceil(Mexact) (6.8.11)

where

Mexact =
acosh

(√

(1+ e2
0)10A/10 − e2

0

)

acosh(x0)
(6.8.12)

Because Mexact is rounded up to the next integer, the attenuation will be somewhat

larger than required. In summary, we calculate e0, x0,M from Eqs. (6.8.4), (6.8.7), and

(6.8.11). Finally, e1 is calculated from:

e1 = e0

TM(x0)
= e0

cosh
(

M acosh(x0)
) (6.8.13)

Next, we construct the polynomialsA(z) and B(z). It follows from Eqs. (6.6.25) and

(6.6.34) that the reflectance and transmittance are:

|Γ(f)|2 = |B(f)|2
|A(f)|2 , |T(f)|2 = 1− |Γ(f)|2 = σ2

|A(f)|2 ,

Comparing these with Eq. (6.8.2), we obtain:

|A(f)|2 = σ2
[

1+ e2
1T

2
M(x0 cosδ)

]

|B(f)|2 = σ2e2
1T

2
M(x0 cosδ)

(6.8.14)

The polynomial A(z) is found by requiring that it be a minimum-phase polynomial,

that is, with all its zeros inside the unit circle on the z-plane. To find this polynomial,

we determine the 2M roots of the right-hand-side of |A(f)|2 and keep only those M

that lie inside the unit circle. We start with the equation for the roots:

σ2
[

1+ e2
1T

2
M(x0 cosδ)

] = 0 ⇒ TM(x0 cosδ)= ± j

e1

Because TM(x0 cosδ)= cos
(

M acos(x0 cosδ)
)

, the desired M roots are given by:

x0 cosδm = cos

(acos
(− j

e1

)+mπ
M

)

, m = 0,1, . . . ,M − 1 (6.8.15)
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Indeed, these satisfy:

cos
(

M acos(x0 cosδm)
) = cos

(

acos
(− j

e1

)+mπ
)

= − j

e1

cosmπ = ± j

e1

Solving Eq. (6.8.15) for δm, we find:

δm = acos

[
1

x0

cos

(acos
(− j

e1

)+mπ
M

)]

, m = 0,1, . . . ,M − 1 (6.8.16)

Then, the M zeros of A(z) are constructed by:

zm = e2jδm , m = 0,1, . . . ,M − 1 (6.8.17)

These zeros lie inside the unit circle, |zm| < 1. (Replacing −j/e1 by +j/e1 in

Eq. (6.8.16) would generate M zeros that lie outside the unit circle; these are the ze-

ros of Ā(z).) Finally, the polynomial A(z) is obtained by multiplying the root factors:

A(z)=
M−1∏

m=0

(1− zmz−1)= 1+ a1z
−1 + a2z

−2 + · · · + aMz−M (6.8.18)

Once A(z) is obtained, we may fix the scale factor σ2 by requiring that the two

sides of Eq. (6.8.14) match at f = 0. Noting that A(f) at f = 0 is equal to the sum of the

coefficients of A(z) and that e1TM(x0)= e0, we obtain the condition:

∣
∣
∣
∣
∣
∣

M−1∑

m=0

am

∣
∣
∣
∣
∣
∣

2

= σ2(1+ e2
0) ⇒ σ = ±

∣
∣
∣
∣
∣
∣

M−1∑

m=0

am

∣
∣
∣
∣
∣
∣

√

1+ e2
0

(6.8.19)

Either sign ofσ leads to a solution, but its physical realizability (i.e., n1 ≥ 1) requires

that we choose the negative sign if na < nb, and the positive one if na > nb. (The

opposite choice of signs leads to the solution n′i = n2
a/ni, i = a,1, . . . ,M, b.)

The polynomial B(z) can now be constructed by taking the square root of the second

equation in (6.8.14). Again, the simplest procedure is to determine the roots of the right-

hand side and multiply the root factors. The root equations are:

σ2e2
1T

2
M(x0 cosδ)= 0 ⇒ TM(x0 cosδ)= 0

with M roots:

δm = acos

(
1

x0

cos
((m+ 0.5)π

M

)
)

, m = 0,1, . . . ,M − 1 (6.8.20)

The z-plane roots are zm = e2jδm , m = 0,1, . . . ,M− 1. The polynomial B(z) is now

constructed up to a constant b0 by the product:

B(z)= b0

M−1∏

m=0

(1− zmz−1) (6.8.21)
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As before, the factor b0 is fixed by matching Eq. (6.8.14) at f = 0. Because δm is

real, the zeros zm will all have unit magnitude and B(z) will be equal to its reverse

polynomial, BR(z)= B(z).
Finally, the reflection coefficients at the interfaces and the refractive indices are

obtained by sending A(z) and B(z) into the backward layer recursion.

The above design steps are implemented by the MATLAB functions chebtr, chebtr2,

and chebtr3 with usage:

[n,a,b] = chebtr(na,nb,A,DF); % Chebyshev multilayer design

[n,a,b,A] = chebtr2(na,nb,M,DF); % specify order and bandwidth

[n,a,b,DF] = chebtr3(na,nb,M,A); % specify order and attenuation

The inputs are the refractive indices na, nb of the left and right media, the desired at-

tenuation in dB, and the fractional bandwidth ΔF = Δf/f0. The output is the refractive

index vector n = [na, n1, n2, . . . , nM, nb] and the reflection and transmission polynomi-

als b and a. In chebtr2 and chebtr3, the order M is given. To clarify the design steps,

we give below the essential source code for chebtr:

e0 = sqrt((nb-na)^2/(4*nb*na));

x0 = 1/sin(DF*pi/4);

M = ceil(acosh(sqrt((e0^2+1)*10^(A/10) - e0^2))/acosh(x0));

e1 = e0/cosh(M*acosh(x0));

m=0:M-1;

delta = acos(cos((acos(-j/e1)+pi*m)/M)/x0);

z = exp(2*j*delta); % zeros of A(z)

a = real(poly(z)); % coefficients of A(z)

sigma = sign(na-nb)*abs(sum(a))/sqrt(1+e0^2); % scale factor σ

delta = acos(cos((m+0.5)*pi/M)/x0);

z = exp(2*j*delta); % zeros of B(z)

b = real(poly(z)); % unscaled coefficients of B(z)

b0 = sigma * e0 / abs(sum(b));

b = b0 * b; % rescaled B(z)

r = bkwrec(a,b); % backward recursion

n = na * r2n(r); % refractive indices

Example 6.8.1: Broadband antireflection coating. Design a broadband antireflection coating on

glass with na = 1, nb = 1.5, A = 20 dB, and fractional bandwidth ΔF = Δf/f0 = 1.5.

Then, design a coating with deeper and narrower bandwidth having parameters A = 30

dB and ΔF = Δf/f0 = 1.0.

Solution: The reflectances of the designed coatings are shown in Fig. 6.8.2. The two cases have

M = 8 and M = 5, respectively, and refractive indices:

n = [1,1.0309,1.0682,1.1213,1.1879,1.2627,1.3378,1.4042,1.4550,1.5]

n = [1,1.0284,1.1029,1.2247,1.3600,1.4585,1.5]

The specifications are better than satisfied because the method rounds up the exact value

of M to the next integer. These exact values were Mexact = 7.474 and Mexact = 4.728, and

were increased to M = 8 and M = 5.
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Fig. 6.8.2 Chebyshev designs. Reflectances are normalized to 0 dB at dc.

The desired bandedges shown on the graphs were computed from f1/f0 = 1−ΔF/2 and

f1/f0 = 1+ΔF/2. The designed polynomial coefficients a,b were in the two cases:

a =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.0000

0.0046

0.0041

0.0034

0.0025

0.0017

0.0011

0.0005

0.0002

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, b =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.0152

−0.0178

−0.0244

−0.0290

−0.0307

−0.0290

−0.0244

−0.0178

−0.0152

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and a =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.0000

0.0074

0.0051

0.0027

0.0010

0.0002

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, b =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.0140

−0.0350

−0.0526

−0.0526

−0.0350

−0.0140

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The zeros of the polynomials a were in the two cases:

z =

⎡

⎢
⎢
⎢
⎣

0.3978∠± 27.93o

0.3517∠± 73.75o

0.3266∠± 158.76o

0.3331∠± 116.34o

⎤

⎥
⎥
⎥
⎦

and z =

⎡

⎢
⎣

0.2112∠± 45.15o

0.1564∠180o

0.1678∠± 116.30o

⎤

⎥
⎦

They lie inside the unit circle by design. The typical MATLAB code used to generate these

examples was:

na = 1; nb = 1.5; A = 20; DF = 1.5;

n = chebtr(na,nb,A,DF);

M = length(n) - 2;

f = linspace(0,4,1601);

L = 0.25 * ones(1,M);

G0 = (na-nb)^2 / (na+nb)^2;

G = abs(multidiel(n,L,1./f)).^2;

plot(f, 10*log10(G/G0));
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The reflectances were computed with the function multidiel. The optical thickness inputs

to multidiel were all quarter-wavelength at f0. ⊓⊔

We note, in this example, that the coefficients of the polynomial B(z) are symmetric

about their middle, that is, the polynomial is self-reversing BR(z)= B(z). One conse-

quence of this property is that the vector of reflection coefficients is also symmetric

about its middle, that is,

[ρ1, ρ2, . . . , ρM, ρM+1]= [ρM+1, ρM, . . . , ρ2, ρ1] (6.8.22)

or, ρi = ρM+2−i, for i = 1,2, . . . ,M+1. These conditions are equivalent to the following

constraints among the resulting refractive indices:

ninM+2−i = nanb ⇔ ρi = ρM+2−i , i = 1,2, . . . ,M + 1 (6.8.23)

These can be verified easily in the above example. The proof of these conditions

follows from the symmetry of B(z). A simple argument is to use the single-reflection

approximation discussed in Example 6.6.4, in which the polynomialB(z) is to first-order

in the ρis:

B(z)= ρ1 + ρ2z
−1 + · · · + ρM+1z

−M

If the symmetry property ρi = ρM+2−i were not true, then B(z) could not satisfy the

propertyBR(z)= B(z). A more exact argument that does not rely on this approximation

can be given by considering the product of matrices (6.6.17).

In the design steps outlined above, we used MATLAB’s built-in function poly.m to

construct the numerator and denominator polynomials B(z),A(z) from their zeros.

These zeros are almost equally-spaced around the unit circle and get closer to each

other with increasing order M. This causes poly to lose accuracy around order 50–60.

In the three chebtr functions (as well as in the Dolph-Chebyshev array functions of

Chap. 21), we have used an improved version, poly2.m, with the same usage as poly,

that maintains its accuracy up to order of about 3000.

Fig. 6.8.3 shows a typical pattern of zeros for Example 6.8.1 for normalized band-

widths ofΔF = 1.85 andΔF = 1.95 and attenuation ofA = 30 dB. The zeros of B(z) lie

on the unit circle, and those of A(z), inside the circle. The function poly2 groups the

zeros in subgroups such that the zeros within each subgroup are not as closely spaced.

For example, for the left graph of Fig. 6.8.3, poly2 picks the zeros sequentially, whereas

for the right graph, it picks every other zero, thus forming two subgroups, then poly

is called on each subgroup, and the two resulting polynomials are convolved to get the

overall polynomial.

Finally, we discuss the design of broadband terminations of transmission lines shown

in Fig. 6.7.1. Because the media admittances are proportional to the refractive indices,

η−1
i = niη−1

vac, we need only replace ni by the line characteristic admittances:

[na, n1, . . . , nM, nb]→ [Ya, Y1, . . . , YM, Yb]

where Ya, Yb are the admittances of the main line and the load and Yi, the admittances

of the segments. Thus, the vector of admittances can be obtained by the MATLAB call:

Y = chebtr(Ya, Yb, A, DF); % Chebyshev transmission line impedance transformer
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 Δ F = 1.85,  M = 36  Δ F = 1.95,  M = 107

Fig. 6.8.3 Zero patterns of B(z) (open circles) and A(z) (filled circles), for A = 30 dB.

We also have the property (6.8.23), YiYM+2−i = YaYb, or, ZiZM+2−i = ZaZb, for

i = 1,2, . . . ,M + 1, where Yi = 1/Zi. One can work directly with impedances—the

following call would generate exactly the same solution, whereZ = [Za, Z1, . . . , ZM, Zb]:

Z = chebtr(Za, Zb, A, DF); % Chebyshev transmission line impedance transformer

In this design method, one does not have any control over the resulting refractive

indicesni or admittancesYi. This can be problematic in the design of antireflection coat-

ings because there do not necessarily exist materials with the designed nis. However,

one can replace or “simulate” any value of the refractive index of a layer by replac-

ing the layer with an equivalent set of three layers of available indices and appropriate

thicknesses [628–688].

This is not an issue in the case of transmission lines, especially microstrip lines,

because one can design a line segment of a desired impedance by adjusting the geometry

of the line, for example, by changing the diameters of a coaxial cable, the spacing of a

parallel-wire, or the width of a microstrip line.

6.9 Problems

6.1 A uniform plane wave of frequency of 1.25 GHz is normally incident from free space onto a

fiberglass dielectric slab (ǫ = 4ǫ0, μ = μ0) of thickness of 3 cm, as shown on the left figure

below.

a. What is the free-space wavelength of this wave in cm? What is its wavelength inside

the fiberglass?
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b. What percentage of the incident power is reflected backwards?

c. Next, an identical slab is inserted to the right of the first slab at a distance of 6 cm, as

shown on the right. What percentage of incident power is now reflected back?

6.2 Three identical dielectric slabs of thickness of 1 cm and dielectric constant ǫ = 4ǫ0 are

positioned as shown below. A uniform plane wave of frequency of 3.75 GHz is incident

normally onto the leftmost slab.

a. Determine the power reflection and transmission coefficients, |Γ|2 and |T|2, as per-

centages of the incident power.

b. Determine |Γ|2 and |T|2 if the three slabs and air gaps are replaced by a single slab of

thickness of 7 cm.

6.3 Three identical fiberglass slabs of thickness of 3 cm and dielectric constant ǫ = 4ǫ0 are

positioned at separations d1 = d2 = 6 cm, as shown below. A wave of free-space wavelength

of 24 cm is incident normally onto the left slab.

a. Determine the percentage of reflected power.

b. Repeat if the slabs are repositioned such that d1 = 12 cm and d2 = 6 cm.

6.4 Four identical dielectric slabs of thickness of 1 cm and dielectric constant ǫ = 4ǫ0 are posi-

tioned as shown below. A uniform plane wave of frequency of 3.75 GHz is incident normally

onto the leftmost slab.

a. Determine the reflectance |Γ|2 as a percentage.

b. Determine |Γ|2 if slabs A and C are removed and replaced by air.

c. Determine |Γ|2 if the air gap B between slabsA and C is filled with the same dielectric,

so that ABC is a single slab.
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6.5 A 2.5 GHz wave is normally incident from air onto a dielectric slab of thickness of 2 cm and

refractive index of 1.5, as shown below. The medium to the right of the slab has index 2.25.

a. Derive an analytical expression of the reflectance |Γ(f)|2 as a function of frequency

and sketch it versus f over the interval 0 ≤ f ≤ 10 GHz. What is the value of the

reflectance at 2.5 GHz?

b. Next, the 2-cm slab is moved to the left by a distance of 6 cm, creating an air-gap

between it and the rightmost dielectric. What is the value of the reflectance at 2.5

GHz?

6.6 Show that the antireflection coating design equations (6.2.2) can be written in the alternative

forms:

cos2 k2l2 = (n2
2 − nanb)(n2

2na − n2
1nb)

na(n
2
2 − n2

b)(n
2
2 − n2

1)
, sin2 k2l2 = n2

2(nb − na)(n2
1 − nanb)

na(n
2
2 − n2

b)(n
2
2 − n2

1)

Making the assumptions that n2 > n1 > na, n2 > nb, and nb > na, show that for the design

to have a solution, the following conditions must be satisfied:

n1 >
√
nanb and n2 > n1

√

nb
na

6.7 Show that the characteristic polynomial of any 2×2 matrix F is expressible in terms of the

trace and the determinant of F as in Eq. (6.3.10), that is,

det(F − λI)= λ2 − (trF)λ+ detF

Moreover, for a unimodular matrix show that the two eigenvalues are λ± = e±α where

α = acosh(a) and a = trF/2.

6.8 Show that the bandedge conditiona = −1 for a dielectric mirror is equivalent to the condition

of Eq. (6.3.16). Moreover, show that an alternative condition is:

cosδH cosδL − 1

2

(
nH
nL

+ nL
nH

)

sinδH sinδL = −1

6.9 Stating with the approximate bandedge frequencies given in Eq. (6.3.19), show that the band-

width and center frequency of a dielectric mirror are given by:

Δf = f2 − f1 = 2f0 asin(ρ)

π(LH + LL)
, fc = f1 + f2

2
= f0

2(LH + LL)

where LH = nHlH/λ0, LL = nLlL/λ0, and λ0 is a normalization wavelength, and f0 the

corresponding frequency f0 = c0/λ0.
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6.10 Computer Experiment—Antireflection Coatings. Compute and plot over the 400–700 nm

visible band the reflectance of the following antireflection coatings on glass, defined by the

refractive indices and normalized optical thicknesses:

a. n = [1,1.38,1.5], L = [0.25]

b. n = [1,1.38,1.63,1.5], L = [0.25,0.50]

c. n = [1,1.38,2.2,1.63,1.5], L = [0.25,0.50,0.25]

d. n = [1,1.38,2.08,1.38,2.08,1.5], L = [0.25,0.527,0.0828,0.0563]

The normalization wavelength is λ0 = 550 nm. Evaluate and compare the coatings in terms

of bandwidth. Cases (a-c) are discussed in Sec. 6.2 and case (d) is from [635].

6.11 Computer Experiment—Dielectric Sunglasses. A thin-film multilayer design of dielectric sun-

glasses was carried out in Ref. [1504] using 29 layers of alternating TiO2 (nH = 2.35) and

SiO2 (nL = 1.45) coating materials. The design may be found on the web page:

www.sspectra.com/designs/sunglasses.html.

The design specifications for the thin-film structure were that the transmittance be: (a) less

than one percent for wavelengths 400–500 nm, (b) between 15–25 percent for 510–790 nm,

and (c) less than one percent for 800–900 nm.

Starting with the high-index layer closest to the air side and ending with the high-index layer

closest to the glass substrate, the designed lengths of the 29 layers were in nm (read across):

21.12 32.41 73.89 123.90 110.55 129.47

63.17 189.07 68.53 113.66 62.56 59.58

27.17 90.29 44.78 73.58 50.14 94.82

60.40 172.27 57.75 69.00 28.13 93.12

106.07 111.15 32.68 32.82 69.95

Form the optical lengths nili and normalize them Li = nili/λ0, such that the maximum

optical length is a quarter wavelength at λ0. What is the value of λ0 in nm? Assuming the

glass substrate has index n = 1.5, compute and plot the reflectance and transmittance over

the band 400–900 nm.

6.12 Computer Experiment—Dielectric Mirror. Reproduce all the results and graphs of Example

6.3.2. In addition, carry out the computations for the cases of N = 16,32 bilayers.

In all cases, calculate the minimum and maximum reflectance within the high-reflectance

band. For one value ofN, calculate the reflectance using the closed-form expression (6.3.33)

and verify that it is the same as that produced by multidiel.

6.13 Computer Experiment—Dielectric Mirror. Reproduce all the results and graphs of Example

6.3.3. Repeat the computations and plots when the number of bilayers is N = 8,16. Repeat

for N = 4,8,16 assuming the layers are quarter-wavelength layers at 12.5 μm. In all cases,

calculate the minimum and maximum reflectance within the high-reflectance band.

6.14 Computer Experiment—Shortpass and Longpass Filters. Reproduce all the results and graphs

of Example 6.3.5. Redo the experiments by shifting the short-pass wavelength to λ0 = 750

nm in the first case, and the long-pass wavelength to λ0 = 350 nm in the second case. Plot

the reflectances over the extended band of 200–1000 nm.

6.15 Computer Experiment—Wide Infrared Bandpass Filter. A 47-layer infrared bandpass filter

with wide transmittance bandwidth was designed in Ref. [1504]. The design may be found

on the web page www.sspectra.com/designs/irbp.html.

The alternating low- and high-index layers were ZnS and Ge with indices 2.2 and 4.2. The

substrate was Ge with index 4. The design specifications were that the transmittance be: (a)

238 6. Multilayer Structures

less than 0.1% for wavelengths 2–3 μm, (b) greater than 99% for 3.3–5 μm, and (c) less than

0.1% for 5.5–7 μm.

Starting with a low-index layer near the air side and ending with a low-index layer at the

substrate, the layer lengths were in nm (read across):

528.64 178.96 250.12 123.17 294.15 156.86 265.60 134.34

266.04 147.63 289.60 133.04 256.22 165.16 307.19 125.25

254.28 150.14 168.55 68.54 232.65 125.48 238.01 138.25

268.21 98.28 133.58 125.31 224.72 40.79 564.95 398.52

710.47 360.01 724.86 353.08 718.52 358.23 709.26 370.42

705.03 382.28 720.06 412.85 761.47 48.60 97.33

Form the optical lengths nili and normalize them Li = nili/λ0, such that the maximum

optical length is a quarter wavelength at λ0. What is the value of λ0 in μm? Compute and

plot the reflectance and transmittance over the band 2–7 μm.

6.16 The figure below shows three multilayer structures. The first, denoted by (LH)3, consists of

three identical bilayers, each bilayer consisting of a low-index and a high-index quarter-wave

layer, with indices nL = 1.38 and nH = 3.45. The second multilayer, denoted by (HL)3, is

the same as the first one, but with the order of the layers reversed. The third one, denoted

by (LH)3(LL)(HL)3 consists of the first two side-by-side and separated by two low-index

quarter-wave layers LL.

In all three cases, determine the overall reflection response Γ, as well as the percentage of

reflected power, at the design frequency at which the individual layers are quarter-wave.

6.17 A radome protecting a microwave transmitter consists of a three-slab structure as shown

below. The medium to the left and right of the structure is air. At the carrier frequency of

the transmitter, the structure is required to be reflectionless, that is, Γ = 0.

a. Assuming that all three slabs are quarter-wavelength at the design frequency, what

should be the relationship among the three refractive indices n1, n2, n3 in order to

achieve a reflectionless structure?

b. What should be the relationship among the refractive indices n1, n2, n3 if the middle

slab (i.e., n2) is half-wavelength but the other two are still quarter-wavelength slabs?

c. For case (a), suppose that the medium to the right has a slightly different refractive

index from that of air, say, nb = 1+ǫ. Calculate the small resulting reflection response

Γ to first order in ǫ.
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6.18 In order to obtain a reflectionless interface between media na and nb, two dielectric slabs

of equal optical lengths L and refractive indices nb, na are positioned as shown below. (The

same technique can be used to connect two transmission lines of impedances Za and Zb.)

A plane wave of frequency f is incident normally from medium na. Let f0 be the frequency at

which the structure must be reflectionless. Let L be the common optical length normalized

to the free-space wavelength λ0 = c0/f0, that is, L = nala/λ0 = nblb/λ0.

a. Show that the reflection response into medium na is given by:

Γ = ρ1− (1+ ρ2)e−2jδ + e−4jδ

1− 2ρ2e−2jδ + ρ2e−4jδ
, ρ = na − nb

na + nb
, δ = 2πL

f

f0

b. Show that the interface will be reflectionless at frequency f0 provided the optical

lengths are chosen according to:

L = 1

4π
arccos

(

1+ ρ2

2

)

This is known as a twelfth-wave transformer because for ρ = 0, it gives L = 1/12.

6.19 A lossless dielectric slab of refractive index n1 and thickness l1 is positioned at a distance

l2 from a semi-infinite dielectric of refractive index n2, as shown below.

A uniform plane wave of free-space wavelength λ0 is incident normally on the slab from the

left. Assuming that the slab n1 is a quarter-wavelength slab, determine the length l2 (in units

of λ0) and the relationship between n1 and n2 in order that there be no reflected wave into

the leftmost medium (i.e., Γ1 = 0).

6.20 In order to provide structural strength and thermal insulation, a radome is constructed using

two identical dielectric slabs of length d and refractive index n, separated by an air-gap of

length d2, as shown below.

Recall that a reflectionless single-layer radome requires that the dielectric layer have half-

wavelength thickness.
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However, show that for the above dual-slab arrangement, either half- or quarter-wavelength

dielectric slabs may be used, provided that the middle air-gap is chosen to be a half-wavelength

layer, i.e., d2 = λ0/2, at the operating wavelength λ0. [Hint: Work with wave impedances at

the operating wavelength.]

6.21 Computer Experiment—Dielectric Mirror Bands. Consider the trace function given by Eq. (6.3.13)

of the text, that is,

a = cos(δH + δL)−ρ2 cos(δH − δL)
1− ρ2

The purpose of this problem is to study a as a function of frequency, which enters through:

δi = 2π

(

f

f0

)

Li , Li = nili
λ0

, i = H,L

and to identify the frequency bands where a switches from |a| ≤ 1 to |a| ≥ 1, that is, when

the dielectric mirror structure switches from transmitting to reflecting.

a. For the parameters given in Example 6.3.2 of the text, make a plot of a versus f over

the range 0 ≤ f ≤ 4f0, using f/f0 as your x-axis. Place on the graph the left and right

bandedge frequencies f1, f2 of the reflecting bands centered at f0 and odd multiples

thereof.

b. Repeat for the parameters na = 1, nH = 4.6, nL = 1.6, LH = 0.3, LL = 0.2. These

parameters are close to those of Example 6.3.2. You may use the function omniband

to calculate the left and right bandedge frequencies around f0.

In plotting a versus f/f0, you will notice that a can become greater than +1 near

f = 2f0. Determine the left and right bandedge frequencies around 2f0 and check to

see whether they define another reflecting band around 2f0.
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Oblique Incidence

7.1 Oblique Incidence and Snel’s Laws

With some redefinitions, the formalism of transfer matrices and wave impedances for

normal incidence translates almost verbatim to the case of oblique incidence.

By separating the fields into transverse and longitudinal components with respect

to the direction the dielectrics are stacked (the z-direction), we show that the transverse

components satisfy the identical transfer matrix relationships as in the case of normal

incidence, provided we replace the media impedances η by the transverse impedances

ηT defined below.

Fig. 7.1.1 depicts plane waves incident from both sides onto a planar interface sepa-

rating two media ǫ, ǫ′. Both cases of parallel and perpendicular polarizations are shown.

In parallel polarization, also known as p-polarization, π-polarization, or TM po-

larization, the electric fields lie on the plane of incidence and the magnetic fields are

Fig. 7.1.1 Oblique incidence for TM- and TE-polarized waves.
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perpendicular to that plane (along the y-direction) and transverse to the z-direction.

In perpendicular polarization, also known as s-polarization,† σ-polarization, or TE

polarization, the electric fields are perpendicular to the plane of incidence (along the

y-direction) and transverse to the z-direction, and the magnetic fields lie on that plane.

The figure shows the angles of incidence and reflection to be the same on either side.

This is Snel’s law† of reflection and is a consequence of the boundary conditions.

The figure also implies that the two planes of incidence and two planes of reflection

all coincide with the xz-plane. This is also a consequence of the boundary conditions.

Starting with arbitrary wavevectors k± = x̂kx± + ŷky± + ẑkz± and similarly for k′±,

the incident and reflected electric fields at the two sides will have the general forms:

E+e−j k+·r , E−e−j k−·r , E′+e
−j k′+·r , E′−e

−j k′−·r

The boundary conditions state that the net transverse (tangential) component of the

electric field must be continuous across the interface. Assuming that the interface is at

z = 0, we can write this condition in a form that applies to both polarizations:

ET+e−j k+·r + ET−e−j k−·r = E′T+e
−j k′+·r + E′T−e

−j k′−·r, at z = 0 (7.1.1)

where the subscript T denotes the transverse (with respect to z) part of a vector, that is,

ET = ẑ× (E× ẑ)= E− ẑEz. Setting z = 0 in the propagation phase factors, we obtain:

ET+e−j(kx+x+ky+y) + ET−e−j(kx−x+ky−y) = E′T+e
−j(k′x+x+k′y+y) + E′T−e

−j(k′x−x+k′y−y) (7.1.2)

For the two sides to match at all points on the interface, the phase factors must be

equal to each other for all x and y:

e−j(kx+x+ky+y) = e−j(kx−x+ky−y) = e−j(k′x+x+k′y+y) = e−j(k′x−x+k′y−y) (phase matching)

and this requires the x- and y-components of the wave vectors to be equal:

kx+ = kx− = k′x+ = k′x−
ky+ = ky− = k′y+ = k′y−

(7.1.3)

If the left plane of incidence is the xz-plane, so that ky+ = 0, then all y-components

of the wavevectors will be zero, implying that all planes of incidence and reflection will

coincide with the xz-plane. In terms of the incident and reflected angles θ±, θ′±, the

conditions on the x-components read:

k sinθ+ = k sinθ− = k′ sinθ′+ = k′ sinθ′− (7.1.4)

These imply Snel’s law of reflection:

θ+ = θ− ≡ θ
θ′+ = θ′− ≡ θ′

(Snel’s law of reflection) (7.1.5)

†from the German word senkrecht for perpendicular.
†named after Willebrord Snel, b.1580, almost universally misspelled as Snell.
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And also Snel’s law of refraction, that is, k sinθ = k′ sinθ′. Setting k = nk0, k′ = n′k0,

and k0 =ω/c0, we have:

n sinθ = n′ sinθ′ ⇒ sinθ

sinθ′
= n′

n
(Snel’s law of refraction) (7.1.6)

It follows that the wave vectors shown in Fig. 7.1.1 will be explicitly:

k = k+ = kxx̂+ kzẑ = k sinθ x̂+ k cosθ ẑ

k− = kxx̂− kzẑ = k sinθ x̂− k cosθ ẑ

k′ = k′+ = k′xx̂+ k′zẑ = k′ sinθ′ x̂+ k′ cosθ′ ẑ

k′− = k′xx̂− k′zẑ = k′ sinθ′ x̂− k′ cosθ′ ẑ

(7.1.7)

The net transverse electric fields at arbitrary locations on either side of the interface

are given by Eq. (7.1.1). Using Eq. (7.1.7), we have:

ET(x, z)= ET+e−j k+·r + ET−e−j k−·r = (

ET+e−jkzz + ET−ejkzz
)

e−jkxx

E′T(x, z)= E′T+e
−j k′+·r + E′T−e

−j k′−·r = (

E′T+e
−jk′zz + E′T−e

jk′zz
)

e−jk
′
xx

(7.1.8)

In analyzing multilayer dielectrics stacked along the z-direction, the phase factor

e−jkxx = e−jk
′
xx will be common at all interfaces, and therefore, we can ignore it and

restore it at the end of the calculations, if so desired. Thus, we write Eq. (7.1.8) as:

ET(z)= ET+e−jkzz + ET−ejkzz

E′T(z)= E′T+e
−jk′zz + E′T−e

jk′zz
(7.1.9)

In the next section, we work out explicit expressions for Eq. (7.1.9)

7.2 Transverse Impedance

The transverse components of the electric fields are defined differently in the two po-

larization cases. We recall from Sec. 2.10 that an obliquely-moving wave will have, in

general, both TM and TE components. For example, according to Eq. (2.10.9), the wave

incident on the interface from the left will be given by:

E+(r) =
[

(x̂ cosθ− ẑ sinθ)A+ + ŷB+
]

e−j k+·r

H+(r) = 1

η

[

ŷA+ − (x̂ cosθ− ẑ sinθ)B+
]

e−j k+·r
(7.2.1)

where the A+ and B+ terms represent the TM and TE components, respectively. Thus,

the transverse components are:

ET+(x, z) =
[

x̂A+ cosθ+ ŷB+
]

e−j(kxx+kzz)

HT+(x, z) = 1

η

[

ŷA+ − x̂B+ cosθ
]

e−j(kxx+kzz)
(7.2.2)
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Similarly, the wave reflected back into the left medium will have the form:

E−(r) =
[

(x̂ cosθ+ ẑ sinθ)A− + ŷB−
]

e−j k−·r

H−(r) = 1

η

[−ŷA− + (x̂ cosθ+ ẑ sinθ)B−
]

e−j k−·r
(7.2.3)

with corresponding transverse parts:

ET−(x, z) =
[

x̂A− cosθ+ ŷB−
]

e−j(kxx−kzz)

HT−(x, z) = 1

η

[−ŷA− + x̂B− cosθ
]

e−j(kxx−kzz)
(7.2.4)

Defining the transverse amplitudes and transverse impedances by:

AT± = A± cosθ , BT± = B±
ηTM = η cosθ , ηTE = η

cosθ

(7.2.5)

and noting that AT±/ηTM = A±/η and BT±/ηTE = B± cosθ/η, we may write Eq. (7.2.2)

in terms of the transverse quantities as follows:

ET+(x, z) =
[

x̂AT+ + ŷBT+
]

e−j(kxx+kzz)

HT+(x, z) =
[

ŷ
AT+
ηTM

− x̂
BT+
ηTE

]

e−j(kxx+kzz)
(7.2.6)

Similarly, Eq. (7.2.4) is expressed as:

ET−(x, z) =
[

x̂AT− + ŷBT−
]

e−j(kxx−kzz)

HT−(x, z) =
[−ŷ

AT−
ηTM

+ x̂
BT−
ηTE

]

e−j(kxx−kzz)
(7.2.7)

Adding up Eqs. (7.2.6) and (7.2.7) and ignoring the common factor e−jkxx, we find for

the net transverse fields on the left side:

ET(z) = x̂ETM(z)+ ŷETE(z)

HT(z) = ŷHTM(z)− x̂HTE(z)
(7.2.8)

where the TM and TE components have the same structure provided one uses the ap-

propriate transverse impedance:

ETM(z) = AT+e−jkzz +AT−ejkzz

HTM(z) = 1

ηTM

[

AT+e−jkzz −AT−ejkzz
] (7.2.9)

ETE(z) = BT+e−jkzz + BT−ejkzz

HTE(z) = 1

ηTE

[

BT+e−jkzz − BT−ejkzz
] (7.2.10)
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We summarize these in the compact form, where ET stands for either ETM or ETE :

ET(z) = ET+e−jkzz + ET−ejkzz

HT(z) = 1

ηT

[

ET+e−jkzz − ET−ejkzz
] (7.2.11)

The transverse impedance ηT stands for either ηTM or ηTE :

ηT =
⎧

⎨

⎩

η cosθ , TM, parallel, p-polarization

η

cosθ
, TE, perpendicular, s-polarization

(7.2.12)

Because η = ηo/n, it is convenient to define also a transverse refractive index

through the relationship ηT = η0/nT. Thus, we have:

nT =
⎧

⎨

⎩

n

cosθ
, TM, parallel, p-polarization

n cosθ , TE, perpendicular, s-polarization
(7.2.13)

For the right side of the interface, we obtain similar expressions:

E′T(z) = E′T+e−jk
′
zz + E′T−ejk

′
zz

H′T(z) =
1

η′T

(

E′T+e
−jk′zz − E′T−ejk

′
zz
) (7.2.14)

η′T =

⎧

⎪⎨

⎪⎩

η′ cosθ′ , TM, parallel, p-polarization

η′

cosθ′
, TE, perpendicular, s-polarization

(7.2.15)

n′T =

⎧

⎪⎨

⎪⎩

n′

cosθ′
, TM, parallel, p-polarization

n′ cosθ′ , TE, perpendicular, s-polarization

(7.2.16)

where E′T± stands for A′T± = A′± cosθ′ or B′T± = B′±.

For completeness, we give below the complete expressions for the fields on both

sides of the interface obtained by adding Eqs. (7.2.1) and (7.2.3), with all the propagation

factors restored. On the left side, we have:

E(r)= ETM(r)+ETE(r)

H(r)= HTM(r)+HTE(r)
(7.2.17)

where

ETM(r) = (x̂ cosθ− ẑ sinθ)A+e−j k+·r + (x̂ cosθ+ ẑ sinθ)A−e−j k−·r

HTM(r) = ŷ
1

η

(

A+e−j k+·r −A−e−j k−·r)

ETE(r) = ŷ
(

B+e−j k+·r + B−e−j k−·r)

HTE(r) = 1

η

[−(x̂ cosθ− ẑ sinθ)B+e−j k+·r + (x̂ cosθ+ ẑ sinθ)B−e−j k−·r]

(7.2.18)
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The transverse parts of these are the same as those given in Eqs. (7.2.9) and (7.2.10).

On the right side of the interface, we have:

E ′(r)= E ′TM(r)+E ′TE(r)

H ′(r)= H ′
TM(r)+H ′

TE(r)
(7.2.19)

E ′TM(r) = (x̂ cosθ′ − ẑ sinθ′)A′+e
−j k′+·r + (x̂ cosθ′ + ẑ sinθ′)A′−e

−j k′−·r

H ′
TM(r) = ŷ

1

η′
(

A′+e
−j k′+·r −A′−e−j k′−·r)

E ′TE(r) = ŷ
(

B′+e
−j k′+·r + B′−e−j k′−·r)

H ′
TE(r) =

1

η′
[−(x̂ cosθ′ − ẑ sinθ′)B′+e

−j k′+·r + (x̂ cosθ′ + ẑ sinθ′)B′−e
−j k′−·r]

(7.2.20)

7.3 Propagation and Matching of Transverse Fields

Eq. (7.2.11) has the identical form of Eq. (5.1.1) of the normal incidence case, but with

the substitutions:

η→ ηT , e±jkz → e±jkzz = e±jkz cosθ (7.3.1)

Every definition and concept of Chap. 5 translates into the oblique case. For example,

we can define the transverse wave impedance at position z by:

ZT(z)= ET(z)

HT(z)
= ηT ET+e

−jkzz + ET−ejkzz
ET+e−jkzz − ET−ejkzz

(7.3.2)

and the transverse reflection coefficient at position z:

ΓT(z)= ET−(z)
ET+(z)

= ET−ejkzz

ET+e−jkzz
= ΓT(0)e2jkzz (7.3.3)

They are related as in Eq. (5.1.7):

ZT(z)= ηT 1+ ΓT(z)
1− ΓT(z)

⇔ ΓT(z)= ZT(z)−ηT
ZT(z)+ηT

(7.3.4)

The propagation matrices, Eqs. (5.1.11) and (5.1.13), relating the fields at two posi-

tions z1, z2 within the same medium, read now:

[

ET1+
ET1−

]

=
[

ejkzl 0

0 e−jkzl

][

ET2+
ET2−

]

(propagation matrix) (7.3.5)

[

ET1

HT1

]

=
[

coskzl jηT sinkzl

jη−1
T sinkzl coskzl

][

ET2

HT2

]

(propagation matrix) (7.3.6)
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where l = z2− z1. Similarly, the reflection coefficients and wave impedances propagate

as:

ΓT1 = ΓT2e
−2jkzl , ZT1 = ηT ZT2 + jηT tankzl

ηT + jZT2 tankzl
(7.3.7)

The phase thickness δ = kl = 2π(nl)/λ of the normal incidence case, where λ is

the free-space wavelength, is replaced now by:

δz = kzl = kl cosθ = 2π

λ
nl cosθ (7.3.8)

At the interface z = 0, the boundary conditions for the tangential electric and mag-

netic fields give rise to the same conditions as Eqs. (5.2.1) and (5.2.2):

ET = E′T , HT = H′T (7.3.9)

and in terms of the forward/backward fields:

ET+ + ET− = E′T+ + E′T−
1

ηT

(

ET+ − ET−
) = 1

η′T

(

E′T+ − E′T−
) (7.3.10)

which can be solved to give the matching matrix:

[

ET+
ET−

]

= 1

τT

[

1 ρT
ρT 1

][

E′T+
E′T−

]

(matching matrix) (7.3.11)

where ρT, τT are transverse reflection coefficients, replacing Eq. (5.2.5):

ρT =
η′T − ηT
η′T + ηT

= nT − n′T
nT + n′T

τT =
2η′T

η′T + ηT
= 2nT
nT + n′T

(Fresnel coefficients) (7.3.12)

where τT = 1 + ρT. We may also define the reflection coefficients from the right side

of the interface: ρ′T = −ρT and τ′T = 1 + ρ′T = 1 − ρT. Eqs. (7.3.12) are known as the

Fresnel reflection and transmission coefficients.

The matching conditions for the transverse fields translate into corresponding match-

ing conditions for the wave impedances and reflection responses:

ZT = Z′T ⇔ ΓT =
ρT + Γ′T

1+ ρTΓ′T
⇔ Γ′T =

ρ′T + ΓT
1+ ρ′TΓT

(7.3.13)

If there is no left-incident wave from the right, that is, E′− = 0, then, Eq. (7.3.11) takes

the specialized form:

[

ET+
ET−

]

= 1

τT

[

1 ρT
ρT 1

][

E′T+
0

]

(7.3.14)

which explains the meaning of the transverse reflection and transmission coefficients:
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ρT = ET−
ET+

, τT =
E′T+
ET+

(7.3.15)

The relationship of these coefficients to the reflection and transmission coefficients

of the total field amplitudes depends on the polarization. For TM, we have ET± =
A± cosθ and E′T± = A′± cosθ′, and for TE, ET± = B± and E′T± = B′±. For both cases,

it follows that the reflection coefficient ρT measures also the reflection of the total

amplitudes, that is,

ρTM = A− cosθ

A+ cosθ
= A−
A+

, ρTE = B−
B+

whereas for the transmission coefficients, we have:

τTM = A′+ cosθ′

A+ cosθ
= cosθ′

cosθ

A′+
A+

, τTE = B′+
B+

In addition to the boundary conditions of the transverse field components, there are

also applicable boundary conditions for the longitudinal components. For example, in

the TM case, the component Ez is normal to the surface and therefore, we must have

the continuity condition Dz = D′z, or ǫEz = ǫ′E′z. Similarly, in the TE case, we must

have Bz = B′z. It can be verified that these conditions are automatically satisfied due to

Snel’s law (7.1.6).

The fields carry energy towards the z-direction, as well as the transverse x-direction.

The energy flux along the z-direction must be conserved across the interface. The cor-

responding components of the Poynting vector are:

Pz = 1

2
Re
[

ExH
∗
y − EyH∗x

]

, Px = 1

2
Re
[

EyH
∗
z − EzH∗y

]

For TM, we have Pz = Re[ExH
∗
y ]/2 and for TE, Pz = −Re[EyH

∗
x ]/2. Using the

above equations for the fields, we find that Pz is given by the same expression for both

TM and TE polarizations:

Pz = cosθ

2η

(|A+|2 − |A−|2
)

, or,
cosθ

2η

(|B+|2 − |B−|2
)

(7.3.16)

Using the appropriate definitions for ET± and ηT, Eq. (7.3.16) can be written in terms

of the transverse components for either polarization:

Pz = 1

2ηT

(|ET+|2 − |ET−|2
)

(7.3.17)

As in the normal incidence case, the structure of the matching matrix (7.3.11) implies

that (7.3.17) is conserved across the interface.

7.4 Fresnel Reflection Coefficients

We look now at the specifics of the Fresnel coefficients (7.3.12) for the two polarization

cases. Inserting the two possible definitions (7.2.13) for the transverse refractive indices,

we can express ρT in terms of the incident and refracted angles:
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ρTM =
n

cosθ
− n′

cosθ′
n

cosθ
+ n′

cosθ′

= n cosθ′ − n′ cosθ

n cosθ′ + n′ cosθ

ρTE = n cosθ− n′ cosθ′

n cosθ+ n′ cosθ′

(7.4.1)

We note that for normal incidence, θ = θ′ = 0, they both reduce to the usual

reflection coefficient ρ = (n− n′)/(n+ n′).† Using Snel’s law, n sinθ = n′ sinθ′, and

some trigonometric identities, we may write Eqs. (7.4.1) in a number of equivalent ways.

In terms of the angle of incidence only, we have:

ρTM =

√
(
n′

n

)2

− sin2 θ−
(
n′

n

)2

cosθ
√
(
n′

n

)2

− sin2 θ+
(
n′

n

)2

cosθ

ρTE =
cosθ−

√
(
n′

n

)2

− sin2 θ

cosθ+
√
(
n′

n

)2

− sin2 θ

(7.4.2)

Note that at grazing angles of incidence, θ→ 90o, the reflection coefficients tend to

ρTM → 1 and ρTE → −1, regardless of the refractive indices n,n′. One consequence of

this property is in wireless communications where the effect of the ground reflections

causes the power of the propagating radio wave to attenuate with the fourth (instead

of the second) power of the distance, thus, limiting the propagation range (see Example

20.3.5.)

We note also that Eqs. (7.4.1) and (7.4.2) remain valid when one or both of the media

are lossy. For example, if the right medium is lossy with complex refractive index n′c =
n′r − jn′i , then, Snel’s law, n sinθ = n′c sinθ′, is still valid but with a complex-valued θ′

and (7.4.2) remains the same with the replacement n′ → n′c. The third way of expressing

the ρs is in terms of θ,θ′ only, without the n,n′:

ρTM = sin 2θ′ − sin 2θ

sin 2θ′ + sin 2θ
= tan(θ′ − θ)

tan(θ′ + θ)

ρTE = sin(θ′ − θ)
sin(θ′ + θ)

(7.4.3)

Fig. 7.4.1 shows the special case of an air-dielectric interface. If the incident wave is

from the air side, then Eq. (7.4.2) gives with n = 1, n′ = nd, where nd is the (possibly

complex-valued) refractive index of the dielectric:

†Some references define ρTM with the opposite sign. Our convention was chosen because it has the

expected limit at normal incidence.
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ρTM =
√

n2
d − sin2 θ− n2

d cosθ
√

n2
d − sin2 θ+ n2

d cosθ
, ρTE =

cosθ−
√

n2
d − sin2 θ

cosθ+
√

n2
d − sin2 θ

(7.4.4)

If the incident wave is from inside the dielectric, then we set n = nd and n′ = 1:

ρTM =
√

n−2
d − sin2 θ− n−2

d cosθ
√

n−2
d − sin2 θ+ n−2

d cosθ
, ρTE =

cosθ−
√

n−2
d − sin2 θ

cosθ+
√

n−2
d − sin2 θ

(7.4.5)

Fig. 7.4.1 Air-dielectric interfaces.

The MATLAB function fresnel calculates the expressions (7.4.2) for any range of

values of θ. Its usage is as follows:

[rtm,rte] = fresnel(na,nb,theta); % Fresnel reflection coefficients

7.5 Maximum Angle and Critical Angle

As the incident angle θ varies over 0 ≤ θ ≤ 90o, the angle of refraction θ′ will have

a corresponding range of variation. It can be determined by solving for θ′ from Snel’s

law, n sinθ = n′ sinθ′:

sinθ′ = n

n′
sinθ (7.5.1)

If n < n′ (we assume lossless dielectrics here,) then Eq. (7.5.1) implies that sinθ′ =
(n/n′)sinθ < sinθ, or θ′ < θ. Thus, if the incident wave is from a lighter to a denser

medium, the refracted angle is always smaller than the incident angle. The maximum

value of θ′, denoted here by θ′c, is obtained when θ has its maximum, θ = 90o:

sinθ′c =
n

n′
(maximum angle of refraction) (7.5.2)
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Thus, the angle ranges are 0 ≤ θ ≤ 90o and 0 ≤ θ′ ≤ θ′c. Fig. 7.5.1 depicts this case,

as well as the case n > n′.

Fig. 7.5.1 Maximum angle of refraction and critical angle of incidence.

On the other hand, if n > n′, and the incident wave is from a denser onto a lighter

medium, then sinθ′ = (n/n′)sinθ > sinθ, or θ′ > θ. Therefore, θ′ will reach the

maximum value of 90o before θ does. The corresponding maximum value of θ satisfies

Snel’s law, n sinθc = n′ sin(π/2)= n′, or,

sinθc = n′

n
(critical angle of incidence) (7.5.3)

This angle is called the critical angle of incidence. If the incident wave were from the

right, θc would be the maximum angle of refraction according to the above discussion.

If θ ≤ θc, there is normal refraction into the lighter medium. But, if θ exceeds θc,

the incident wave cannot be refracted and gets completely reflected back into the denser

medium. This phenomenon is called total internal reflection. Because n′/n = sinθc, we

may rewrite the reflection coefficients (7.4.2) in the form:

ρTM =
√

sin2 θc − sin2 θ− sin2 θc cosθ
√

sin2 θc − sin2 θ+ sin2 θc cosθ
, ρTE =

cosθ−
√

sin2 θc − sin2 θ

cosθ+
√

sin2 θc − sin2 θ

When θ < θc, the reflection coefficients are real-valued. At θ = θc, they have the

values, ρTM = −1 and ρTE = 1. And, when θ > θc, they become complex-valued with

unit magnitude. Indeed, switching the sign under the square roots, we have in this case:

ρTM =
−j
√

sin2 θ− sin2 θc − sin2 θc cosθ

−j
√

sin2 θ− sin2 θc + sin2 θc cosθ
, ρTE =

cosθ+ j
√

sin2 θ− sin2 θc

cosθ− j
√

sin2 θ− sin2 θc

where we used the evanescent definition of the square root as discussed in Eqs. (7.7.9)

and (7.7.10), that is, we made the replacement

√

sin2 θc − sin2 θ −→ −j
√

sin2 θ− sin2 θc , for θ ≥ θc
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Both expressions for ρT are the ratios of a complex number and its conjugate, and

therefore, they are unimodular, |ρTM| = |ρTE| = 1, for all values ofθ > θc. The interface

becomes a perfect mirror, with zero transmittance into the lighter medium.

When θ > θc, the fields on the right side of the interface are not zero, but do not

propagate away to the right. Instead, they decay exponentially with the distance z. There

is no transfer of power (on the average) to the right. To understand this behavior of the

fields, we consider the solutions given in Eqs. (7.2.18) and (7.2.20), with no incident field

from the right, that is, with A′− = B′− = 0.

The longitudinal wavenumber in the right medium, k′z, can be expressed in terms of

the angle of incidence θ as follows. We have from Eq. (7.1.7):

k2
z + k2

x = k2 = n2k2
0

kz
′2 + kx′2 = k′2 = n′2k2

0

Because, k′x = kx = k sinθ = nk0 sinθ, we may solve for k′z to get:

k′2z = n′2k2
0 − k′2x = n′2k2

0 − k2
x = n′2k2

0 − n2k2
0 sin2 θ = k2

0(n
′2 − n2 sin2 θ)

or, replacing n′ = n sinθc, we find:

k′2z = n2k2
0(sin2 θc − sin2 θ) (7.5.4)

If θ ≤ θc, the wavenumber k′z is real-valued and corresponds to ordinary propa-

gating fields that represent the refracted wave. But if θ > θc, we have k′2z < 0 and k′z
becomes pure imaginary, say k′z = −jα′z. The z-dependence of the fields on the right of

the interface will be:

e−jk
′
zz = e−α′zz , α′z = nk0

√

sin2 θ− sin2 θc

Such exponentially decaying fields are called evanescent waves because they are

effectively confined to within a few multiples of the distance z = 1/α′z (the penetration

length) from the interface.

The maximum value of α′z, or equivalently, the smallest penetration length 1/α′z, is

achieved when θ = 90o, resulting in:

α′max = nk0

√

1− sin2 θc = nk0 cosθc = k0

√

n2 − n′2

Inspecting Eqs. (7.2.20), we note that the factor cosθ′ becomes pure imaginary be-

cause cos2 θ′ = 1 − sin2 θ′ = 1 − (n/n′)2sin2 θ = 1 − sin2 θ/ sin2 θc ≤ 0, for θ ≥ θc.
Therefore for either the TE or TM case, the transverse components ET and HT will

have a 90o phase difference, which will make the time-average power flow into the right

medium zero: Pz = Re(ETH
∗
T)/2 = 0.

Example 7.5.1: Determine the maximum angle of refraction and critical angle of reflection for

(a) an air-glass interface and (b) an air-water interface. The refractive indices of glass and

water at optical frequencies are: nglass = 1.5 and nwater = 1.333.
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Solution: There is really only one angle to determine, because if n = 1 and n′ = nglass, then

sin(θ′c)= n/n′ = 1/nglass, and if n = nglass and n′ = 1, then, sin(θc)= n′/n = 1/nglass.

Thus, θ′c = θc:

θc = asin

(
1

1.5

)

= 41.8o

For the air-water case, we have:

θc = asin

(
1

1.333

)

= 48.6o

The refractive index of water at radio frequencies and below is nwater = 9 approximately.

The corresponding critical angle is θc = 6.4o. ⊓⊔

Example 7.5.2: Prisms. Glass prisms with 45o angles are widely used in optical instrumentation

for bending light beams without the use of metallic mirrors. Fig. 7.5.2 shows two examples.

Fig. 7.5.2 Prisms using total internal reflection.

In both cases, the incident beam hits an internal prism side at an angle of 45o, which is

greater than the air-glass critical angle of 41.8o. Thus, total internal reflection takes place

and the prism side acts as a perfect mirror. ⊓⊔

Example 7.5.3: Optical Manhole. Because the air-water interface has θc = 48.6o, if we were to

view a water surface from above the water, we could only see inside the water within the

cone defined by the maximum angle of refraction.

Conversely, were we to view the surface of the water from underneath, we would see the

air side only within the critical angle cone, as shown in Fig. 7.5.3. The angle subtended by

this cone is 2×48.6 = 97.2o.

Fig. 7.5.3 Underwater view of the outside world.

The rays arriving from below the surface at an angle greater than θc get totally reflected.

But because they are weak, the body of water outside the critical cone will appear dark.

The critical cone is known as the “optical manhole” [50]. ⊓⊔
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Example 7.5.4: Apparent Depth. Underwater objects viewed from the outside appear to be

closer to the surface than they really are. The apparent depth of the object depends on

our viewing angle. Fig. 7.5.4 shows the geometry of the incident and refracted rays.

Fig. 7.5.4 Apparent depth of underwater object.

Letθ be the viewing angle and let z and z′ be the actual and apparent depths. Our perceived

depth corresponds to the extension of the incident ray at angleθ. From the figure, we have:

z = x cotθ′ and z′ = x cotθ. It follows that:

z′ = cotθ

cotθ′
z = sinθ′ cosθ

sinθ cosθ′
z

Using Snel’s law sinθ/ sinθ′ = n′/n = nwater, we eventually find:

z′ = cosθ
√

n2
water − sin2 θ

z

At normal incidence, we have z′ = z/nwater = z/1.333 = 0.75z.

Reflection and refraction phenomena are very common in nature. They are responsible for

the twinkling and aberration of stars, the flattening of the setting sun and moon, mirages,

rainbows, and countless other natural phenomena. Four wonderful expositions of such

effects are in Refs. [50–53]. See also the web page [1486]. ⊓⊔

Example 7.5.5: Optical Fibers. Total internal reflection is the mechanism by which light is

guided along an optical fiber. Fig. 7.5.5 shows a step-index fiber with refractive index

nf surrounded by cladding material of index nc < nf .

Fig. 7.5.5 Launching a beam into an optical fiber.

If the angle of incidence on the fiber-cladding interface is greater than the critical angle,

then total internal reflection will take place. The figure shows a beam launched into the
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fiber from the air side. The maximum angle of incidenceθa must be made to correspond to

the critical angle θc of the fiber-cladding interface. Using Snel’s laws at the two interfaces,

we have:

sinθa =
nf

na
sinθb , sinθc = nc

nf

Noting that θb = 90o − θc, we find:

sinθa =
nf

na
cosθc =

nf

na

√

1− sin2 θc =
√

n2
f − n2

c

na

For example, with na = 1, nf = 1.49, and nc = 1.48, we findθc = 83.4o andθa = 9.9o. The

angle θa is called the acceptance angle, and the quantity NA =
√

n2
f − n2

c , the numerical

aperture of the fiber.

Besides its use in optical fibers, total internal reflection has several other applications [552–

588], such as internal reflection spectroscopy, chemical and biological sensors, fingerprint

identification, surface plasmon resonance, and high resolution microscopy. ⊓⊔

Example 7.5.6: Fresnel Rhomb. The Fresnel rhomb is a glass prism depicted in Fig. 7.5.6 that

acts as a 90o retarder. It converts linear polarization into circular. Its advantage over the

birefringent retarders discussed in Sec. 4.1 is that it is frequency-independent or achro-

matic.

Fig. 7.5.6 Fresnel rhomb.

Assuming a refractive index n = 1.51, the critical angle is θc = 41.47o. The angle of the

rhomb, θ = 54.6o, is also the angle of incidence on the internal side. This angle has been

chosen such that, at each total internal reflection, the relative phase between the TE and

TM polarizations changes by 45o, so that after two reflections it changes by 90o.

The angle of the rhomb can be determined as follows. Forθ ≥ θc, the reflection coefficients

can be written as the unimodular complex numbers:

ρTE = 1+ jx
1− jx , ρTM = −1+ jxn2

1− jxn2
, x =

√

sin2 θ− sin2 θc

cosθ
(7.5.5)

where sinθc = 1/n. It follows that:

ρTE = e2jψTE , ρTM = ejπ+2jψTM

where ψTE, ψTM are the phase angles of the numerators, that is,

tanψTE = x , tanψTM = xn2
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The relative phase change between the TE and TM polarizations will be:

ρTM

ρTE

= e2jψTM−2jψTE+jπ

It is enough to require that ψTM −ψTE = π/8 because then, after two reflections, we will

have a 90o change:

ρTM

ρTE

= ejπ/4+jπ ⇒
(

ρTM

ρTE

)2

= ejπ/2+2jπ = ejπ/2

From the design condition ψTM −ψTE = π/8, we obtain the required value of x and then

of θ. Using a trigonometric identity, we have:

tan(ψTM −ψTE)= tanψTM − tanψTE

1+ tanψTM tanψTE

= xn2 − x
1+ n2x2

= tan
(π

8

)

This gives the quadratic equation for x:

x2 − 1

tan(π/8)

(

1− 1

n2

)

x+ 1

n2
= x2 − cos2 θc

tan(π/8)
x+ sin2 θc = 0 (7.5.6)

Inserting the two solutions of (7.5.6) into Eq. (7.5.5), we may solve for sinθ, obtaining two

possible solutions for θ:

sinθ =
√

x2 + sin2 θc
x2 + 1

(7.5.7)

We may also eliminate x and express the design condition directly in terms of θ:

cosθ
√

sin2 θ− sin2 θc

sin2 θ
= tan

(π

8

)

(7.5.8)

However, the two-step process is computationally more convenient. For n = 1.51, we find

the two roots of Eq. (7.5.6): x = 0.822 and x = 0.534. Then, (7.5.7) gives the two values

θ = 54.623o and θ = 48.624o. The rhomb could just as easily be designed with the second

value of θ.

For n = 1.50, we find the angles θ = 53.258o and 50.229o. For n = 1.52, we have

θ = 55.458o and 47.553o. See Problem 7.5 for an equivalent approach. ⊓⊔

Example 7.5.7: Goos-Hänchen Effect. When a beam of light is reflected obliquely from a denser-

to-rarer interface at an angle greater than the TIR angle, it suffers a lateral displacement,

relative to the ordinary reflected ray, known as the Goos-Hänchen shift, as shown Fig. 7.5.7.

Let n,n′ be the refractive indices of the two media with n > n′, and consider first the case

of ordinary reflection at an incident angle θ0 < θc. For a plane wave with a free-space

wavenumber k0 = ω/c0 and wavenumber components kx = k0n sinθ0, kz = k0n cosθ0,

the corresponding incident, reflected, and transmitted transverse electric fields will be:

Ei(x, z) = e−jkxxe−jkzz

Er(x, z) = ρ(kx)e−jkxxe+jkzz

Et(x, z) = τ(kx)e−jkxxe−jk
′
zz , k′z =

√

k2
0n

′2 − k2
x
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Fig. 7.5.7 Goos-Hänchen shift, with n > n′ and θ0 > θc.

where ρ(kx) and τ(kx)= 1+ ρ(kx) are the transverse reflection and transmission coeffi-

cients, viewed as functions of kx. For TE and TM polarizations, ρ(kx) is given by

ρTE(kx)= kz − k′z
kz + k′z

, ρTM(kx)= k′zn
2 − kzn′2

k′zn2 + kzn′2

A beam can be made up by forming a linear combination of such plane waves having a small

spread of angles about θ0. For example, consider a second plane wave with wavenumber

components kx + Δkx and kz + Δkz. These must satisfy (kx + Δkx)2+(kz + Δkz)2=
k2
x + k2

z = k2
0n

2, or to lowest order in Δkx,

kxΔkx + kzΔkz = 0 ⇒ Δkz = −Δkx kx
kz
= −Δkx tanθ0

Similarly, we have for the transmitted wavenumber Δk′z = −Δkx tanθ′0, where θ′0 is given

by Snel’s law, n sinθ0 = n′ sinθ′0. The incident, reflected, and transmitted fields will be

given by the sum of the two plane waves:

Ei(x, z) = e−jkxxe−jkzz + e−j(kx+Δkx)xe−j(kz+Δkz)z

Er(x, z) = ρ(kx)e−jkxxe+jkzz + ρ(kx +Δkx)e−j(kx+Δkx)xe+j(kz+Δkz)z

Et(x, z) = τ(kx)e−jkxxe−jk
′
zz + τ(kx +Δkx)e−j(kx+Δkx)xe−j(k

′
z+Δk′z)z

Replacing Δkz = −Δkx tanθ0 and Δk′z = −Δkx tanθ′0, we obtain:

Ei(x, z) = e−jkxxe−jkzz
[

1+ e−jΔkx(x−z tanθ0)
]

Er(x, z) = e−jkxxe+jkzz
[

ρ(kx)+ρ(kx +Δkx)e−jΔkx(x+z tanθ0)
]

Et(x, z) = e−jkxxe−jk
′
zz
[

τ(kx)+τ(kx +Δkx)e−jΔkx(x−z tanθ′0)
]

(7.5.9)

The incidence angle of the second wave is θ0 + Δθ, where Δθ is obtained by expanding

kx + Δkx = k0n sin(θ0 + Δθ) to first order, or, Δkx = k0n cosθ0Δθ. If we assume that

θ0 < θc, as well as θ0 + Δθ < θc, then ρ(kx) and ρ(kx + Δkx) are both real-valued. It
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follows that the two terms in the reflected wave Er(x, z) will differ by a small amplitude

change and therefore we can set ρ(kx + Δkx)≃ ρ(kx). Similarly, in the transmitted field

we may set τ(kx +Δkx)≃ τ(kx). Thus, when θ0 < θc, Eq. (7.5.9) reads approximately,

Ei(x, z) = e−jkxxe−jkzz
[

1+ e−jΔkx(x−z tanθ0)
]

Er(x, z) = ρ(kx)e−jkxxe+jkzz
[

1+ e−jΔkx(x+z tanθ0)
]

Et(x, z) = τ(kx)e−jkxxe−jk
′
zz
[

1+ e−jΔkx(x−z tanθ′0)
]

(7.5.10)

Noting that
∣
∣1 + e−jΔkx(x−z tanθ0)

∣
∣ ≤ 2, with equality achieved when x − z tanθ0 = 0, it

follows that the intensities of these waves are maximized along the ordinary geometric

rays defined by the beam angles θ0 and θ′0, that is, along the straight lines:

x− z tanθ0 = 0 , incident ray

x+ z tanθ0 = 0 , reflected ray

x− z tanθ′0 = 0 , transmitted ray

(7.5.11)

On the other hand, if θ0 > θc and θ0 + Δθ > θc, the reflection coefficients become

unimodular complex numbers, as in Eq. (7.5.5). Writing ρ(kx)= ejφ(kx), Eq. (7.5.9) gives:

Er(x, z)= e−jkxxe+jkzz
[

ejφ(kx) + ejφ(kx+Δkx)e−jΔkx(x+z tanθ0)
]

(7.5.12)

Introducing the Taylor series expansion, φ(kx +Δkx)≃ φ(kx)+Δkxφ′(kx), we obtain:

Er(x, z)= ejφ(kx)e−jkxxe+jkzz
[

1+ ejΔkxφ′(kx)e−jΔkx(x+z tanθ0)
]

Setting x0 = φ′(kx), we have:

Er(x, z)= ejφ(kx)e−jkxxe+jkzz
[

1+ e−jΔkx(x−x0+z tanθ0)
]

(7.5.13)

This implies that the maximum intensity of the reflected beam will now be along the shifted

ray defined by:

x− x0 + z tanθ0 = 0 , shifted reflected ray (7.5.14)

Thus, the origin of the Goos-Hänchen shift can be traced to the relative phase shifts arising

from the reflection coefficients in the plane-wave components making up the beam. The

parallel displacement, denoted by D in Fig. 7.5.7, is related to x0 by D = x0 cosθ0. Noting

that dkx = k0n cosθdθ, we obtain

D = cosθ0

dφ

dkx
= 1

k0n

dφ

dθ

∣
∣
∣
∣
θ0

(Goos-Hänchen shift) (7.5.15)

Using Eq. (7.5.5), we obtain the shifts for the TE and TM cases:

DTE = 2 sinθ0

k0n
√

sin2 θ0 − sin2 θc
, DTM = DTE · n′2

(n2 + n′2)sin2 θ0 − n′2
(7.5.16)

These expressions are not valid near the critical angle θ0 ≃ θc because then the Taylor

series expansion for φ(kx) cannot be justified. Since geometrically, z0 = D/(2 sinθ0), it

follows from (7.5.16) that the effective penetration depth into the n′ medium is given by:

zTE = 1

k0n
√

sin2 θ0 − sin2 θc
= 1

α′z
, zTM = 1

α′z

n′2

(n2 + n′2)sin2 θ0 − n′2
(7.5.17)
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where α′z =
√

k2
x − k2

0n
′2 = k0

√

n2 sin2 θ0 − n′2 = k0n
√

sin2 θ0 − sin2 θc . These expres-

sions are consistent with the field dependence e−jk
′
zz = e−α′zz inside the n′ medium, which

shows that the effective penetration length is of the order of 1/α′z . ⊓⊔

7.6 Brewster Angle

The Brewster angle is that angle of incidence at which the TM Fresnel reflection coef-

ficient vanishes, ρTM = 0. The TE coefficient ρTE cannot vanish for any angle θ, for

non-magnetic materials. A scattering model of Brewster’s law is discussed in [689].

Fig. 7.6.1 depicts the Brewster angles from either side of an interface.

The Brewster angle is also called the polarizing angle because if a mixture of TM

and TE waves are incident on a dielectric interface at that angle, only the TE or perpen-

dicularly polarized waves will be reflected. This is not necessarily a good method of

generating polarized waves because even though ρTE is non-zero, it may be too small

to provide a useful amount of reflected power. Better polarization methods are based

on using (a) multilayer structures with alternating low/high refractive indices and (b)

birefringent and dichroic materials, such as calcite and polaroids.

Fig. 7.6.1 Brewster angles.

The Brewster angle θB is determined by the condition, ρTM = 0, in Eq. (7.4.2). Setting

the numerator of that expression to zero, we have:

√
(
n′

n

)2

− sin2 θB =
(
n′

n

)2

cosθB (7.6.1)

After some algebra, we obtain the alternative expressions:

sinθB = n′√
n2 + n′2 ⇔ tanθB = n′

n
(Brewster angle) (7.6.2)

Similarly, the Brewster angle θ′B from the other side of the interface is:

sinθ′B =
n√

n2 + n′2 ⇔ tanθ′B =
n

n′
(Brewster angle) (7.6.3)
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The angle θ′B is related to θB by Snel’s law, n′ sinθ′B = n sinθB, and corresponds

to zero reflection from that side, ρ′TM = −ρTM = 0. A consequence of Eq. (7.6.2) is that

θB = 90o − θ′B, or, θB + θ′B = 90o. Indeed,

sinθB
cosθB

= tanθB = n′

n
= sinθB

sinθ′B

which implies cosθB = sinθ′B, or θB = 90o − θ′B. The same conclusion can be reached

immediately from Eq. (7.4.3). Because, θ′B − θB �= 0, the only way for the ratio of the

two tangents to vanish is for the denominator to be infinity, that is, tan(θ′B + θB)= ∞,

or, θB + θ′B = 90o.

As shown in Fig. 7.6.1, the angle of the refracted ray with the would-be reflected ray

is 90o. Indeed, this angle is 180o − (θ′B + θB)= 180o − 90o = 90o.

The TE reflection coefficient at θB can be calculated very simply by using Eq. (7.6.1)

into (7.4.2). After canceling a common factor of cosθB, we find:

ρTE(θB)=
1−

(
n′

n

)2

1+
(
n′

n

)2 =
n2 − n′2
n2 + n′2 (7.6.4)

Example 7.6.1: Brewster angles for water. The Brewster angles from the air and the water sides

of an air-water interface are:

θB = atan

(
1.333

1

)

= 53.1o , θ′B = atan

(
1

1.333

)

= 36.9o

We note that θB+θ′B = 90o. At RF, the refractive index is nwater = 9 and we find θB = 83.7o

and θ′B = 6.3o. We also find ρTE(θB)= −0.2798 and |ρTE(θB)|2 = 0.0783/ Thus, for TE

waves, only 7.83% of the incident power gets reflected at the Brewster angle. ⊓⊔

Example 7.6.2: Brewster Angles for Glass. The Brewster angles for the two sides of an air-glass

interface are:

θB = atan

(
1.5

1

)

= 56.3o , θ′B = atan

(
1

1.5

)

= 33.7o

Fig. 7.6.2 shows the reflection coefficients |ρTM(θ)|, |ρTE(θ)| as functions of the angle of

incidence θ from the air side, calculated with the MATLAB function fresnel.

Both coefficients start at their normal-incidence value |ρ| = |(1 − 1.5)/(1 + 1.5)| = 0.2

and tend to unity at grazing angle θ = 90o. The TM coefficient vanishes at the Brewster

angle θB = 56.3o.

The right graph in the figure depicts the reflection coefficients |ρ′TM(θ
′)|, |ρ′TE(θ

′)| as

functions of the incidence angle θ′ from the glass side. Again, the TM coefficient vanishes

at the Brewster angle θ′B = 33.7o. The typical MATLAB code for generating this graph was:

na = 1; nb = 1.5;

[thb,thc] = brewster(na,nb); % calculate Brewster angle

th = linspace(0,90,901); % equally-spaced angles at 0.1o intervals

[rte,rtm] = fresnel(na,nb,th); % Fresnel reflection coefficients

plot(th,abs(rtm), th,abs(rte));
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Fig. 7.6.2 TM and TE reflection coefficients versus angle of incidence.

The critical angle of reflection is in this case θ′c = asin(1/1.5)= 41.8o. As soon as θ′

exceeds θ′c, both coefficients become complex-valued with unit magnitude.

The value of the TE reflection coefficient at the Brewster angle is ρTE = −ρ′TE = −0.38,

and the TE reflectance |ρTE|2 = 0.144, or 14.4 percent. This is too small to be useful for

generating TE polarized waves by reflection.

Two properties are evident from Fig. 7.6.2. One is that |ρTM| ≤ |ρTE| for all angles of

incidence. The other is that θ′B ≤ θ′c. Both properties can be proved in general. ⊓⊔

Example 7.6.3: Lossy dielectrics. The Brewster angle loses its meaning if one of the media is

lossy. For example, assuming a complex refractive index for the dielectric, nd = nr − jni,
we may still calculate the reflection coefficients from Eq. (7.4.4). It follows from Eq. (7.6.2)

that the Brewster angle θB will be complex-valued.

Fig. 7.6.3 shows the TE and TM reflection coefficients versus the angle of incidence θ (from

air) for the two cases nd = 1.50 − 0.15j and nd = 1.50 − 0.30j and compares them with

the lossless case of nd = 1.5. (The values for ni were chosen only for plotting purposes

and have no physical significance.)

The curves retain much of their lossless shape, with the TM coefficient having a minimum

near the lossless Brewster angle. The larger the extinction coefficient ni, the larger the

deviation from the lossless case. In the next section, we discuss reflection from lossy

media in more detail. ⊓⊔

7.7 Complex Waves

In this section, we discuss some examples of complex waves that appear in oblique

incidence problems. We consider the cases of (a) total internal reflection, (b) reflection

from and refraction into a lossy medium, (c) the Zenneck surface wave, and (d) surface

plasmons. Further details may be found in [898–905] and [1291].

Because the wave numbers become complex-valued, e.g., k = βββ − jααα, the angle of

refraction and possibly the angle of incidence may become complex-valued. To avoid
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Fig. 7.6.3 TM and TE reflection coefficients for lossy dielectric.

unnecessary complex algebra, it proves convenient to recast impedances, reflection co-

efficients, and field expressions in terms of wavenumbers. This can be accomplished by

making substitutions such as cosθ = kz/k and sinθ = kx/k.

Using the relationships kη = ωμ and k/η = ωǫ, we may rewrite the TE and TM

transverse impedances in the forms:

ηTE = η

cosθ
= ηk

kz
= ωμ

kz
, ηTM = η cosθ = ηkz

k
= kz
ωǫ

(7.7.1)

We consider an interface geometry as shown in Fig. 7.1.1 and assume that there are

no incident fields from the right of the interface. Snel’s law implies that kx = k′x, where

kx = k sinθ =ω√μ0ǫ sinθ, if the incident angle is real-valued.

Assuming non-magnetic media from both sides of an interface (μ = μ′ = μ0), the TE

and TM transverse reflection coefficients will take the forms:

ρTE = η′TE − ηTE

η′TE + ηTE

= kz − k′z
kz + k′z

, ρTM = η′TM − ηTM

η′TM + ηTM

= k′zǫ− kzǫ′
k′zǫ+ kzǫ′

(7.7.2)

The corresponding transmission coefficients will be:

τTE = 1+ ρTE = 2kz
kz + k′z

, τTM = 1+ ρTM = 2k′zǫ
k′zǫ+ kzǫ′

(7.7.3)

We can now rewrite Eqs. (7.2.18) and (7.2.20) in terms of transverse amplitudes and

transverse reflection and transmission coefficients. Defining E0 = A+ cosθ or E0 = B+
in the TM or TE cases and replacing tanθ = kx/kz, tanθ′ = k′x/k′z = kx/k′z, we have for

the TE case for the fields at the left and right sides of the interface:
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E(r) = ŷE0

[

e−jkzz + ρTE e
jkzz

]

e−jkxx

H(r) = E0

ηTE

[(

−x̂+ kx
kz

ẑ

)

e−jkzz + ρTE

(

x̂+ kx
kz

ẑ

)

ejkzz
]

e−jkxx

E ′(r) = ŷτTE E0e
−jk′zze−jkxx

H ′(r) = τTE E0

η′TE

(

−x̂+ kx
k′z

ẑ

)

e−jk
′
zze−jkxx

(TE) (7.7.4)

and for the TM case:

E(r) = E0

[(

x̂− kx
kz

ẑ

)

e−jkzz + ρTM

(

x̂+ kx
kz

ẑ

)

ejkzz
]

e−jkxx

H(r) = ŷ
E0

ηTM

[

e−jkzz − ρTM e
jkzz

]

e−jkxx

E ′(r) = τTM E0

(

x̂− kx
k′z

ẑ

)

e−jk
′
zze−jkxx

H ′(r) = ŷ
τTM E0

η′TM

e−jk
′
zze−jkxx

(TM) (7.7.5)

Equations (7.7.4) and (7.7.5) are dual to each other, as are Eqs. (7.7.1). They transform

into each other under the duality transformation E → H, H → −E, ǫ → μ, and μ → ǫ.

See Sec. 18.2 for more on the concept of duality.

In all of our complex-wave examples, the transmitted wave will be complex with

k′ = kxx̂+k′zẑ = βββ′−jααα′ = (βx−jαx)x̂+(β′z−jα′z)ẑ. This must satisfy the constraint

k′ · k′ = ω2μ0ǫ
′. Thus, the space dependence of the transmitted fields will have the

general form:

e−jk
′
zze−jkxx = e−j(β′z−jα′z)ze−j(βx−jαx)x = e−(α′zz+αxx)e−j(β′zz+βxx) (7.7.6)

For the wave to attenuate at large distances into the right medium, it is required that

α′z > 0. Except for the Zenneck-wave case, which has αx > 0, all other examples will

haveαx = 0, corresponding to a real-valued wavenumber k′x = kx = βx. Fig. 7.7.1 shows

the constant-amplitude and constant-phase planes within the transmitted medium de-

fined, respectively, by:

α′zz+αxx = const. , β′zz+ βxx = const. (7.7.7)

As shown in the figure, the corresponding angles φ and ψ that the vectors βββ′ and

ααα′ form with the z-axis are given by:

tanφ = βx
β′z
, tanψ = αx

α′z
(7.7.8)
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Fig. 7.7.1 Constant-phase and constant-amplitude planes for the transmitted wave.

The wave numbers kz, k
′
z are related to kx through

k2
z =ω2μǫ− k2

x , k′2z =ω2μǫ′ − k2
x

In calculating kz and k′z by taking square roots of the above expressions, it is neces-

sary, in complex-waves problems, to get the correct signs of their imaginary parts, such

that evanescent waves are described correctly. This leads us to define an “evanescent”

square root as follows. Let ǫ = ǫR − jǫI with ǫI > 0 for an absorbing medium, then

kz = sqrte
(

ω2μ(ǫR − jǫI)−k2
x

) =

⎧

⎪⎪⎨

⎪⎪⎩

√

ω2μ(ǫR − jǫI)−k2
x , if ǫI �= 0

−j
√

k2
x −ω2μǫR , if ǫI = 0

(7.7.9)

If ǫI = 0 andω2μǫR−k2
x > 0, then the two expressions give the same answer. But if

ǫI = 0 andω2μǫR−k2
x < 0, then kz is correctly calculated from the second expression.

The MATLAB function sqrte.m implements the above definition. It is defined by

y = sqrte(z)=
⎧

⎨

⎩

−j
√

|z| , if Re(z)< 0 and Im(z)= 0√
z , otherwise

(evanescent SQRT) (7.7.10)

Some examples of the issues that arise in taking such square roots are elaborated in

the next few sections.

7.8 Total Internal Reflection

We already discussed this case in Sec. 7.5. Here, we look at it from the point of view of

complex-waves. Both media are assumed to be lossless, but with ǫ > ǫ′. The angle of

incidence θ will be real, so that k′x = kx = k sinθ and kz = k cosθ, with k = ω√μ0ǫ.

Setting k′z = β′z − jα′z, we have the constraint equation:

k′2x + k′2z = k′2 ⇒ k′2z = (β′z − jα′z)2=ω2μ0ǫ
′ − k2

x =ω2μ0(ǫ
′ − ǫ sin2 θ)
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which separates into the real and imaginary parts:

β′2z −α′2z =ω2μ0(ǫ
′ − ǫ sin2 θ)= k2(sin2 θc − sin2 θ)

α′zβ
′
z = 0

(7.8.1)

where we set sin2 θc = ǫ′/ǫ and k2 = ω2μ0ǫ. This has two solutions: (a) α′z = 0 and

β′2z = k2(sin2 θc − sin2 θ), valid when θ ≤ θc, and (b) β′z = 0 and α′2z = k2(sin2 θ −
sin2 θc), valid when θ ≥ θc.

Case (a) corresponds to ordinary refraction into the right medium, and case (b), to

total internal reflection. In the latter case, we have k′z = −jα′z and the TE and TM

reflection coefficients (7.7.2) become unimodular complex numbers:

ρTE = kz − k′z
kz + k′z

= kz + jα′z
kz − jα′z

, ρTM = k′zǫ− kzǫ′
k′zǫ+ kzǫ′

= −kzǫ
′ + jα′zǫ

kzǫ′ − jα′zǫ
(7.8.2)

The complete expressions for the fields are given by Eqs. (7.7.4) or (7.7.5). The prop-

agation phase factor in the right medium will be in case (b):

e−jk
′
zze−jkxx = e−α′zze−jkxx

Thus, the constant-phase planes are the constant-x planes (φ = 90o), or, the yz-

planes. The constant-amplitude planes are the constant-z planes (ψ = 0o), or, the xy-

planes, as shown in Fig. 7.8.1.

Fig. 7.8.1 Constant-phase and constant-amplitude planes for total internal reflection (θ ≥ θc).

It follows from Eq. (7.8.2) that in case (b) the phases of the reflection coefficients are:

ρTE = e2jψTE , tanψTE = α′z
kz

=
√

k2
x − k2

0n
′2

√

k2
0n

2 − k2
x

=
√

sin2 θ− sin2 θc

cosθ

ρTM = ejπ+2jψTM , tanψTM = n2α′z
n′2kz

=
n2
√

k2
x − k2

0n
′2

n′2
√

k2
0n

2 − k2
x

=
n2
√

sin2 θ− sin2 θc

n′2 cosθ

(7.8.3)

where k0 =ω√μǫ0 is the free-space wave number.
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7.9 Oblique Incidence on a Lossy Medium

Here, we assume a lossless medium on the left side of the interface and a lossy one, such

as a conductor, on the right. The effective dielectric constant ǫ′ of the lossy medium is

specified by its real and imaginary parts, as in Eq. (2.6.2):

ǫ′ = ǫ′d − j
(

ǫ′′d +
σ

ω

)

= ǫ′R − jǫ′I (7.9.1)

Equivalently, we may characterize the lossy medium by the real and imaginary parts

of the wavenumber k′, using Eq. (2.6.12):

k′ = β′ − jα′ =ω
√

μ0ǫ′ =ω
√

μ0(ǫ
′
R − jǫ′I) (7.9.2)

In the left medium, the wavenumber is real with components kx = k sinθ, kz =
k cosθ, with k =ω√μ0ǫ. In the lossy medium, the wavenumber is complex-valued with

components k′x = kx and k′z = β′z − jα′z. Using Eq. (7.9.2) in the condition k′ · k′ = k′2,

we obtain:

k′2x + k′2z = k′2 ⇒ k2
x + (β′z − jα′z)2= (β′ − jα′)2=ω2μ0(ǫ

′
R − jǫ′I) (7.9.3)

which separates into its real and imaginary parts:

β′2z −α′2z = β′2 −α′2 − k2
x =ω2μ0ǫ

′
R − k2

x =ω2μ0(ǫ
′
R − ǫ sin2 θ)≡ DR

2β′zα
′
z = 2β′α′ =ω2μ0ǫ

′
I ≡ DI

(7.9.4)

where we replaced k2
x = k2 sin2 θ = ω2μ0ǫ sin2 θ. The solutions of Eqs. (7.9.4) leading

to a non-negative α′z are:

β′z =
⎡

⎣

√

D2
R +D2

I +DR
2

⎤

⎦

1/2

, α′z =
⎡

⎣

√

D2
R +D2

I −DR
2

⎤

⎦

1/2

(7.9.5)

For MATLAB implementation, it is simpler to solve Eq. (7.9.3) directly as a complex

square root (but see also Eq. (7.9.10)):

k′z = β′z − jα′z =
√

k′2 − k2
x =

√

ω2μ0(ǫ
′
R − jǫ′I)−k2

x =
√

DR − jDI (7.9.6)

Eqs. (7.9.5) define completely the reflection coefficients (7.7.2) and the field solutions

for both TE and TM waves given by Eqs. (7.7.4) and (7.7.5). Within the lossy medium the

transmitted fields will have space-dependence:

e−jk
′
zze−jkxx = e−α′zze−j(β′zz+kxx)

The fields attenuate exponentially with distance z. The constant phase and ampli-

tude planes are shown in Fig. 7.9.1.

For the reflected fields, the TE and TM reflection coefficients are given by Eqs. (7.7.2).

If the incident wave is linearly polarized having both TE and TM components, the corre-

sponding reflected wave will be elliptically polarized because the ratio ρTM/ρTE is now
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Fig. 7.9.1 Constant-phase and constant-amplitude planes for refracted wave.

complex-valued. Indeed, using the relationships k2
x+k2

z =ω2μ0ǫ and k2
x+k′2z =ω2μ0ǫ

′

in ρTM of Eq. (7.7.2), it can be shown that (see Problem 7.5):

ρTM

ρTE

= kzk
′
z − k2

x

kzk
′
z + k2

x
= k′z − k sinθ tanθ

k′z + k sinθ tanθ
= β′z − jα′z − k sinθ tanθ

β′z − jα′z + k sinθ tanθ
(7.9.7)

In the case of a lossless medium, ǫ′ = ǫ′R and ǫ′I = 0, Eq. (7.9.5) gives:

β′z =
√

|DR| +DR
2

, α′z =
√

|DR| −DR
2

(7.9.8)

If ǫ′R > ǫ, then DR = ω2μ0(ǫ
′
R − ǫ sin2 θ) is positive for all angles θ, and (7.9.8)

gives the expected result β′z =
√

DR =ω
√

μ0(ǫ
′
R − ǫ sin2 θ) and α′z = 0.

On the other hand, in the case of total internal reflection, that is, when ǫ′R < ǫ, the

quantity DR is positive for angles θ < θc, and negative for θ > θc, where the critical

angle is defined through ǫ′R = ǫ sin2 θc so thatDR =ω2μ0(sin2 θc−sin2 θ). Eqs. (7.9.8)

still give the right answers, that is, β′z =
√

|DR| and α′z = 0, if θ ≤ θc, and β′z = 0 and

α′z =
√

|DR|, if θ > θc.

For the case of a very good conductor, we have ǫ′I ≫ ǫ′R, or DI ≫ |DR|, and

Eqs. (7.9.5) give β′z ≃ α′z ≃
√

DI/2, or

β′z ≃ α′z ≃ β′ ≃ α′ ≃
√
ωμ0σ

2
, provided

σ

ωǫ
≫ 1 (7.9.9)

In this case, the angle of refraction φ for the phase vector βββ′ becomes almost zero

so that, regardless of the incidence angle θ, the phase planes are almost parallel to the

constant-z amplitude planes. Using Eq. (7.9.9), we have:

tanφ = kx
β′z
= ω

√
μ0ǫ sinθ

√

ωμ0σ/2
=
√

2ωǫ

σ
sinθ

which is very small regardless of θ. For example, for copper (σ = 5.7×107 S/m) at 10

GHz, and air on the left side (ǫ = ǫ0), we find
√

2ωǫ/σ = 1.4×10−4.

268 7. Oblique Incidence

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

|
ρ T

(θ
)|

θ θ

Air−Water at 1 GHz

 TM

 TE

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

|
ρ T

(θ
)|

θ θ

Air−Water at 100 MHz

 TM

 TE

Fig. 7.9.2 TM and TE reflection coefficients for air-water interface.

Example 7.9.1: Fig. 7.9.2 shows the TM and TE reflection coefficients as functions of the inci-

dent angle θ, for an air-sea water interface at 100 MHz and 1 GHz. For the air side we

have ǫ = ǫ0 and for the water side: ǫ′ = 81ǫ0 − jσ/ω, with σ = 4 S/m, which gives

ǫ′ = (81− 71.9j)ǫ0 at 1 GHz and ǫ′ = (81− 719j)ǫ0 at 100 MHz.

At 1 GHz, we calculate k′ = ω
√

μ0ǫ′ = β′ − jα′ = 203.90 − 77.45j rad/m and k′ =
β′ − jα′ = 42.04 − 37.57j rad/m at 100 MHz. The following MATLAB code was used to

carry out the calculations, using the formulation of this section:

ep0 = 8.854e-12; mu0 = 4*pi*1e-7;

sigma = 4; f = 1e9; w = 2*pi*f;

ep1 = ep0; ep2 = 81*ep0 - j*sigma/w;

k1 = w*sqrt(mu0*ep1); k2 = w*sqrt(mu0*ep2); % Eq. (7.9.2)

th = linspace(0,90,901); thr = pi*th/180;

k1x = k1*sin(thr); k1z = k1*cos(thr);

k2z = sqrt(w^2*mu0*ep2 - k1x.^2); % Eq. (7.9.6)

rte = abs((k1z - k2z)./(k1z + k2z)); % Eq. (7.7.2)

rtm = abs((k2z*ep1 - k1z*ep2)./(k2z*ep1 + k1z*ep2));

plot(th,rtm, th,rte);

The TM reflection coefficient reaches a minimum at the pseudo-Brewster angles 84.5o and

87.9o, respectively for 1 GHz and 100 MHz.

The reflection coefficients ρTM and ρTE can just as well be calculated from Eq. (7.4.2), with

n = 1 and n′ = √

ǫ′/ǫ0, where for 1 GHz we have n′ = √

81− 71.9j = 9.73−3.69j, and for

100 MHz, n′ = √

81− 719j = 20.06− 17.92j. ⊓⊔

In computing the complex square roots in Eq. (7.9.6), MATLAB usually gets the right

answer, that is, β′z ≥ 0 and α′z ≥ 0.

If ǫ′R > ǫ, thenDR =ω2μ0(ǫ
′
R−ǫ sin2 θ) is positive for all angles θ, and (7.9.6) may

be used without modification for any value of ǫ′I.
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If ǫ′R < ǫ and ǫ′I > 0, then Eq. (7.9.6) still gives the correct algebraic signs for any

angle θ. But when ǫ′I = 0, that is, for a lossless medium, then DI = 0 and k′z =
√

DR.

For θ > θc we have DR < 0 and MATLAB gives k′z =
√

DR =
√

−|DR| = j
√

|DR|, which

has the wrong sign for α′z (we saw that Eqs. (7.9.5) work correctly in this case.)

In order to coax MATLAB to produce the right algebraic sign for α′z in all cases, we

may redefine Eq. (7.9.6) by using double conjugation:

k′z = β′z − jα′z =
(√

(DR − jDI)∗
)∗

=

⎧

⎪⎨

⎪⎩

−j
√

|DR| , if DI = 0 and DR < 0
√

DR − jDI , otherwise
(7.9.10)

One word of caution, however, is that current versions of MATLAB (ver. ≤ 7.0) may

produce inconsistent results for (7.9.10) depending on whetherDI is a scalar or a vector

passing through zero.† Compare, for example, the outputs from the statements:

DI = 0; kz = conj(sqrt(conj(-1 - j*DI)));

DI = -1:1; kz = conj(sqrt(conj(-1 - j*DI)));

Note, however, that Eq. (7.9.10) does work correctly when DI is a single scalar with

DR being a vector of values, e.g., arising from a vector of angles θ.

Another possible alternative calculation is to add a small negative imaginary part to

the argument of the square root, for example with the MATLAB code:

kz = sqrt(DR-j*DI-j*realmin);

where realmin is MATLAB’s smallest positive floating point number (typically, equal

to 2.2251 × 10−308). This works well for all cases. Yet, a third alternative is to use

Eq. (7.9.6) and then reverse the signs whenever DI = 0 and DR < 0, for example:

kz = sqrt(DR-j*DI);

kz(DI==0 & DR<0) = -kz(DI==0 & DR<0);

Next, we discuss briefly the energy flux into the lossy medium. It is given by the z-

component of the Poynting vector, Pz = 1

2
ẑ ·Re(E×H∗). For the TE case of Eq. (7.7.4),

we find at the two sides of the interface:

Pz = |E0|2
2ωμ0

kz
(

1− |ρTE|2
)

, P′z =
|E0|2
2ωμ0

β′z|τTE|2e−2α′zz (7.9.11)

where we replaced ηTE = ωμ0/kz and η′TE = ωμ0/k
′
z. Thus, the transmitted power

attenuates with distance as the wave propagates into the lossy medium.

The two expressions match at the interface, expressing energy conservation, that is,

at z = 0, we have Pz = P′z, which follows from the condition (see Problem 7.7):

kz
(

1− |ρTE|2
) = β′z|τTE|2 (7.9.12)

Because the net energy flow is to the right in the transmitted medium, we must have

β′z ≥ 0. Because also kz > 0, then Eq. (7.9.12) implies that |ρTE| ≤ 1. For the case of

†this has been fixed in versions > v7.0.
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total internal reflection, we have β′z = 0, which gives |ρTE| = 1. Similar conclusions can

be reached for the TM case of Eq. (7.7.5). The matching condition at the interface is now:

ǫ

kz

(

1− |ρTM|2
) = Re

(
ǫ′

k′z

)

|τTM|2 =
ǫ′Rβ

′
z + ǫ′Iα′z
|k′z|2 |τTM|2 (7.9.13)

Using the constraint ω2μoǫ
′
I = 2β′zα′z, it follows that the right-hand side will again

be proportional toβ′z (with a positive proportionality coefficient.) Thus, the non-negative

sign of β′z implies that |ρTM| ≤ 1.

7.10 Zenneck Surface Wave

For a lossy medium ǫ′, the TM reflection coefficient cannot vanish for any real incident

angle θ because the Brewster angle is complex valued: tanθB =
√
ǫ′/ǫ =

√

(ǫ′R − jǫ′I)/ǫ.
However, ρTM can vanish if we allow a complex-valued θ, or equivalently, a complex-

valued incident wavevector k = βββ − jααα, even though the left medium is lossless. This

leads to the so-called Zenneck surface wave [32,898,899,905,1291].

The corresponding constant phase and amplitude planes in both media are shown

in Fig. 7.10.1. On the lossless side, the vectors βββ and ααα are necessarily orthogonal to

each other, as discussed in Sec. 2.11.

Fig. 7.10.1 Constant-phase and constant-amplitude planes for the Zenneck wave.

We note that the TE reflection coefficient can never vanish (unless μ �= μ′) because

this would require that k′z = kz, which together with Snel’s law k′x = kx, would imply

that k = k′, which is impossible for distinct media.

For the TM case, the fields are given by Eq. (7.7.5) with ρTM = 0 and τTM = 1. The

condition ρTM = 0 requires that k′zǫ = kzǫ′, which may be written in the equivalent form

k′zk2 = kzk′2. Together with k2
x + k2

z = k2 and k2
x + k′2z = k′2, we have three equations

in the three complex unknowns kx, kz, k
′
z. The solution is easily found to be:

kx = kk′√
k2 + k′2 , kz = k2

√
k2 + k′2 , k′z =

k′2√
k2 + k′2 (7.10.1)
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where k =ω√μ0ǫ and k′ = β′ − jα′ =ω√

μ0ǫ′. These may be written in the form:

kx =ω
√
μ0

√

ǫǫ′

ǫ+ ǫ′ , kz =ω
√
μ0

ǫ√
ǫ+ ǫ′ , k′z =ω

√
μ0

ǫ′√
ǫ+ ǫ′ (7.10.2)

Using k′x = kx, the space-dependence of the fields at the two sides is as follows:

e−j(kxx+kzz) = e−(αxx+αzz)e−j(βxx+βzz) , for z ≤ 0

e−j(k
′
xx+k′zz) = e−(αxx+α′zz)e−j(βxx+β′zz) , for z ≥ 0

Thus, in order for the fields not to grow exponentially with distance and to be con-

fined near the interface surface, it is required that:

αx > 0 , αz < 0 , α′z > 0 (7.10.3)

These conditions are guaranteed with the sign choices of Eq. (7.10.2). This can be

verified by writing

ǫ′ = |ǫ′|e−jδ

ǫ+ ǫ′ = |ǫ+ ǫ′|e−jδ1

ǫ′

ǫ+ ǫ′ =
∣
∣
∣
∣

ǫ′

ǫ+ ǫ′
∣
∣
∣
∣e

−j(δ−δ1)

and noting that δ2 = δ − δ1 > 0, as follows by inspecting the triangle formed by the

three vectors ǫ, ǫ′, and ǫ + ǫ′. Then, the phase angles of kx, kz, k
′
z are −δ2/2, δ1/2,

and −(δ2 + δ1/2), respectively, thus, implying the condition (7.10.3). In drawing this

triangle, we made the implicit assumption that ǫ′R > 0, which is valid for typical lossy

dielectrics. In the next section, we discuss surface plasmons for which ǫ′R < 0.

Although the Zenneck wave attenuates both along the x- and z-directions, the atten-

uation constant along x tends to be much smaller than that along z. For example, in the

weakly lossy approximation, we may write ǫ′ = ǫ′R(1− jτ), where τ = ǫ′I/ǫ′R≪ 1 is the

loss tangent of ǫ′. Then, we have the following first-order approximations in τ:

√
ǫ′ =

√

ǫ′R

(

1− jτ
2

)

,
1√
ǫ+ ǫ′ =

1
√

ǫ+ ǫ′R

(

1+ jτ
2

ǫ′R
ǫ+ ǫ′R

)

These lead to the first-order approximations for kx and kz:

kx =ω
√
μ0

√
√
√ ǫǫ′R
ǫ+ ǫ′R

(

1− jτ
2

ǫ

ǫ+ ǫ′R

)

, kz =ω
√
μ0

ǫ
√

ǫ+ ǫ′R

(

1+ jτ
2

ǫ′R
ǫ+ ǫ′R

)

It follows that:

αx =ω
√
μ0

√
√
√ ǫǫ′R
ǫ+ ǫ′R

τ

2

ǫ

ǫ+ ǫ′R
, αz = −ω

√
μ0

ǫ
√

ǫ+ ǫ′R
τ

2

ǫ′R
ǫ+ ǫ′R

⇒ αx
|αz|

=
√

ǫ

ǫ′R

Typically, ǫ′R > ǫ, implying that αx < |αz|. For example, for an air-water interface

we have at microwave frequencies ǫ′R/ǫ = 81, and for an air-ground interface, ǫ′R/ǫ = 6.
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If both media are lossless, then both k and k′ are real and Eqs. (7.10.1) yield the

usual Brewster angle formulas, that is,

tanθB = kx
kz
= k′

k
=
√
ǫ′√
ǫ
, tanθ′B =

kx
k′z
= k

k′
=
√
ǫ√
ǫ′

Example 7.10.1: For the data of the air-water interface of Example 7.9.1, we calculate the fol-

lowing Zenneck wavenumbers at 1 GHz and 100 MHz using Eq. (7.10.2):

f = 1 GHz f = 100 MHz

kx = βx − jαx = 20.89− 0.064j kx = βx − jαx = 2.1− 0.001j

kz = βz − jαz = 1.88+ 0.71j kz = βz − jαz = 0.06+ 0.05j

k′z = β′z − jα′z = 202.97− 77.80j k′z = β′z − jα′z = 42.01− 37.59j

The units are in rads/m. As required, αz is negative. We observe that αx ≪ |αz| and that

the attenuations are much more severe within the lossy medium. ⊓⊔

7.11 Surface Plasmons

Consider an interface between two non-magnetic semi-infinite media ǫ1 and ǫ2, as shown

in Fig. 7.11.1 The wavevectors k1 = x̂kx + ẑkz1 and k2 = x̂kx + ẑkz2 at the two sides

must have a common kx component, as required by Snel’s law, and their z-components

must satisfy:

k2
z1 = k2

0ε1 − k2
x , k2

z2 = k2
0ε2 − k2

x (7.11.1)

where we defined the relative dielectric constants ε1 = ǫ1/ǫ0, ε2 = ǫ2/ǫ0, and the free-

space wavenumber k0 =ω√μ0ǫ0 =ω/c0. The TM reflection coefficient is given by:

ρTM = kz2ε1 − kz1ε2

kz2ε1 + kz1ε2

Fig. 7.11.1 Brewster-Zenneck (ρTM = 0) and surface plasmon (ρTM = ∞) cases.
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Both the Brewster case for lossless dielectrics and the Zenneck case were charac-

terized by the condition ρTM = 0, or, kz2ε1 = kz1ε2. This condition together with

Eqs. (7.11.1) leads to the solution (7.10.2), which is the same in both cases:

kx = k0

√

ε1ε2

ε1 + ε2

, kz1 = k0ε1√
ε1 + ε2

, kz2 = k0ε2√
ε1 + ε2

(7.11.2)

Surface plasmons or polaritons are waves that are propagating along the interface

and attenuate exponentially perpendicularly to the interface in both media. They are

characterized by a pole of the reflection coefficient, that is, ρTM = ∞. For such waves to

exist, it is necessary to have the conditions:

ε1ε2 < 0 and ε1 + ε2 < 0 (7.11.3)

at least for the real-parts of these quantities, assuming their imaginary parts are small.

If the left medium is an ordinary lossless dielectric ε1 > 0, such as air, then we must

have ε2 < 0 and more strongly ε2 < −ε1. Conductors, such as silver and gold, have this

property for frequencies typically up to ultraviolet. Indeed, using the simple conductiv-

ity model (1.12.3), we have for the dielectric constant of a metal:

ǫ(ω)= ǫ0 + σ

jω
= ǫ0 +

ǫ0ω
2
p

jω(jω+ γ) ⇒ ε(ω)= 1− ω2
p

ω2 − jωγ (7.11.4)

Ignoring the imaginary part for the moment, we have

ε(ω)= 1− ω
2
p

ω2

which is negative forω <ωp. The plasma frequency is of the order of 1000–2000 THz,

and falls in the ultraviolet range. Thus, the condition (7.11.3) is easily met for optical

frequencies. If ε1 = 1, then, the condition ε2 < −ε1 requires further that

ε2 = 1− ω
2
p

ω2
< −1 ⇒ ω <

ωp√
2

and more generally, ω <ωp/
√

1+ ε1. The condition ρTM = ∞means that there is only

a “reflected” wave, while the incident field is zero. Indeed, it follows from Erefl = ρTMEinc,

or Einc = Erefl/ρTM, that Einc will tend to zero for finite Erefl and ρTM →∞.

The condition ρTM = ∞ is equivalent to the vanishing of the denominator of ρTM,

that is, kz2ε1 = −kz1ε2, which together with Eqs. (7.11.1) leads to a similar solution as

(7.10.2), but with a change in sign for kz2:

kx = k0

√

ε1ε2

ε1 + ε2

, kz1 = k0ε1√
ε1 + ε2

, kz2 = − k0ε2√
ε1 + ε2

(7.11.5)

The fields at the two sides of the interface are given by Eqs. (7.7.5) by taking the limit

ρTM →∞ and τTM = 1+ρTM →∞, which effectively amounts to keeping only the terms

that involve ρTM. The fields have a z-dependence ejkz1z on the left and e−jkz2z on the

right, and a common x-dependence e−jkxx:

E1 = E0

(

x̂+ kx
kz1

ẑ

)

ejkz1z e−jkxx

H1 = −ŷE0
ωǫ1

kz1

ejkz1z e−jkxx

∣
∣
∣
∣
∣
∣
∣
∣
∣

E2 = E0

(

x̂− kx
kz2

ẑ

)

e−jkz2z e−jkxx

H2 = ŷE0
ωǫ2

kz2

e−jkz2z e−jkxx
(7.11.6)
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It can be verified easily that these are solutions of Maxwell’s equations provided

that Eqs. (7.11.1) are satisfied. The boundary conditions are also satisfied. Indeed, the

Ex components are the same from both sides, and the conditions ε1Ez1 = ε2Ez2 and

Hy1 = Hy2 are both equivalent to the pole condition kz2ε1 = −kz1ε2.

The conditions (7.11.3) guarantee that kx is real and kz1, kz2
, pure imaginary. Setting

ε2 = −ε2r with ε2r > ε1, we have
√

ε1 + ε2 = √ε1 − ε2r = j√ε2r − ε1, and
√

ε1ε2 =√−ε1ε2r = j√ε1ε2r . Then, Eqs. (7.11.5) read

kx = k0

√

ε1ε2r

ε2r − ε1

, kz1 = −j k0ε1√
ε2r − ε1

, kz2 = −j k0ε2r√
ε2r − ε1

(7.11.7)

Setting kz1 = −jαz1 and kz2 = −jαz2, with both αs positive, the z-dependence at

both sides of the interface at z = 0 will be:

ejkz1z = eαz1z
∣
∣ e−jkz2z = e−αz2z

that is, exponentially decaying for both z < 0 and z > 0. Inserting ε2r = ω2
p/ω

2 − 1

into kx gives the so-called plasmon dispersion relationship, For example, if ε1 = 1,

k2
x =

ω2

c2
0

ω2
p −ω2

ω2
p − 2ω2

Defining the normalized variables ω̄ = ω/ωp and k̄ = kx/kp, where kp = ωp/c0,

we may rewrite the above relationship as,

k̄2 = ω̄2 1− ω̄2

1− 2ω̄2

with solution

ω̄ =

√
√
√
√
k̄2 + 1

2
−
√

k̄4 + 1

4
(7.11.8)

It is depicted in Fig. 7.11.2. In the large kx limit, it converges to the horizontal line

ω =ωp/
√

2. For small kx, it becomes the dispersion relationship in vacuum,ω = c0kx,

which is also depicted in this figure.

Because the curve stays to the right of the vacuum lineω = c0kx, that is, kx > ω/c0,

such surface plasmon waves cannot be excited by an impinging plane wave on the inter-

face. However, they can be excited with the help of frustrated total internal reflection,

which increases kx beyond its vacuum value and can match the value of Eq. (7.11.7) re-

sulting into a so-called surface plasmon resonance. We discuss this further in Sec. 8.5.

In fact, the excitation of such plasmon resonance can only take place if the metal

side is slightly lossy, that is, when ε2 = −ε2r − jε2i, with 0 < ε2i≪ ε2r . In this case, the

wavenumber kx acquires a small imaginary part which causes the gradual attenuation

of the wave along the surface, and similarly, kz1, kz2, acquire small real parts. Replacing

ε2r by ε2r + jε2i in (7.11.7), we now have:

kx = k0

√

ε1(ε2r + jε2i)

ε2r + jε2i − ε1

, kz1 = −jk0ε1
√

ε2r + jε2i − ε1

, kz2 = −jk0(ε2r + jε2i)
√

ε2r + jε2i − ε1

(7.11.9)
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plasmon dispersion relation

Fig. 7.11.2 Surface plasmon dispersion relationship.

Expanding kx to first-order in ε2i, we obtain the approximations:

kx = βx − jαx , βx = k0

√

ε1ε2r

ε2r − ε1

, αx = k0

(
ε1ε2r

ε2r − ε1

)3/2 ε2i

2ε2
2r

(7.11.10)

Example 7.11.1: Using the value ε2 = −16 − 0.5j for silver at λ0 = 632 nm, and air ε1 = 1,

we have k0 = 2π/λ0 = 9.94 rad/μm and Eqs. (7.11.9) give the following values for the

wavenumbers and the corresponding effective propagation length and penetration depths:

kx = βx − jαx = 10.27− 0.0107j rad/μm, δx = 1

αx
= 93.6 μm

kz1 = βz1 − jαz1 = −0.043− 2.57j rad/μm, δz1 = 1

αz1

= 390 nm

kz2 = βz2 − jαz2 = 0.601− 41.12j rad/μm, δz2 = 1

αz2

= 24 nm

Thus, the fields extend more into the dielectric than the metal, but at either side they are

confined to distances that are less than their free-space wavelength. ⊓⊔

Surface plasmons, and the emerging field of “plasmonics,” are currently active areas

of study [589–627] holding promise for the development of nanophotonic devices and

circuits that take advantage of the fact that plasmons are confined to smaller spaces

than their free-space wavelength and can propagate at decent distances in the nanoscale

regime (i.e., tens of μm compared to nm scales.) They are also currently used in chemical

and biological sensor technologies, and have other potential medical applications, such

as cancer treatments.

7.12 Oblique Reflection from a Moving Boundary

In Sec. 5.8 we discussed reflection and transmission from a moving interface at nor-

mal incidence. Here, we present the oblique incidence case. The dielectric medium is
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Fig. 7.12.1 Oblique reflection from a moving boundary.

assumed to be moving with velocity v perpendicularly to the interface, that is, in the

z-direction as shown in Fig. 7.12.1. Other geometries may be found in [470–488].

Let S and S′ be the stationary and the moving coordinate frames, whose coordinates

{t, x, y, z} and {t′, x′, y′, z′} are related by the Lorentz transformation of Eq. (H.1) of

Appendix H.

We assume a TE plane wave of frequency ω incident obliquely at the moving inter-

face at an angle θ, as measured in the stationary coordinate frame S. Let ωr,ωt be

the Doppler-shifted frequencies, and θr, θt, the angles of the reflected and transmitted

waves. Because of the motion, these angles no longer satisfy the usual Snel laws of

reflection and refraction—however, the do satisfy modified versions of these laws.

In the moving frame S′ with respect to which the dielectric is at rest, we have an

ordinary TE oblique incidence problem, solved for example by Eq. (7.7.4), and therefore,

all three frequencies will be the same, ω′ = ω′
r = ω′

t, and the corresponding angles

θ′, θ′r, θ
′
t will satisfy the ordinary Snel laws: θ′r = θ′ and sinθ′ = n sinθ′t, where

n = √

ǫ/ǫ0 and the left medium is assumed to be free space.

The electric field has only a y-component and will have the following form at the left

and right sides of the interface, in the frame S and in the frame S′:

Ey = Eiejφi + Erejφr , Ey = Etejφt

E′y = E′iejφ
′
i + E′rejφ

′
r , E′y = E′tejφ

′
t

(7.12.1)

where E′r = ρTEE
′
i and E′t = τTEE

′
i , and from Eq. (7.7.2),

ρTE =
k′iz − k′tz
k′iz + k′tz

= cosθ′ − n cosθ′t
cosθ′ + n cosθ′t

, τTE = 1+ ρTE = 2 cosθ′

cosθ′ + n cosθ′t
(7.12.2)

The propagation phases are Lorentz invariant in the two frames and are given by:

φi =ωt − kizz− kixx =ω′t′ − k′izz′ − k′ixx′ = φ′i
φr =ωrt + krzz− krxx =ω′t′ + k′rzz′ − k′rxx′ = φ′r
φt =ωtt − ktzz− ktxx =ω′t′ − k′tzz′ − k′txx′ = φ′t

(7.12.3)
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with incident, reflected, and transmitted wavenumbers given in the frame S′ by:

k′iz = k′rz = k′i cosθ′ , k′tz = k′t cosθ′t

k′ix = k′rx = k′i sinθ′ , k′tx = k′t sinθ′t
(7.12.4)

where k′i = k′r = ω′/c and k′t = ω′√ǫμ0 = nω′/c. The relationships between

the primed and unprimed frequencies and wavenumbers are obtained by applying the

Lorentz transformation (H.14) to the four-vectors (ω/c, kix,0, kiz), (ωr, krx,0,−krz),
and (ωt/c, ktx,0, ktz):

ω = γ(ω′ + βck′iz)=ω′γ(1+ β cosθ′)

kiz = γ(k′iz +
β

c
ω′)= ω′

c
γ(cosθ′ + β)

ωr = γ(ω′ − βck′rz)=ω′γ(1− β cosθ′)

−krz = γ(−k′rz +
β

c
ω′)= −ω

′

c
γ(cosθ′ − β)

ωt = γ(ω′ + βck′tz)=ω′γ(1+ βn cosθ′t)

ktz = γ(k′tz +
β

c
ω′)= ω′

c
γ(n cosθ′t + β)

(7.12.5)

where β = v/c and γ = 1/
√

1− β2. Combining Snel’s laws for the system S′ with the

invariance of the x-components of the wavevector under the Lorentz transformation

(H.14), we have also:

kix = krx = ktx = k′ix = k′rx = k′tx
ki sinθ = kr sinθr = kt sinθt = ω′

c
sinθ′ = ω′

c
sinθ′r = n

ω′

c
sinθ′t

(7.12.6)

Because the incident and reflected waves are propagating in free space, their wavenum-

bers will be ki =ω/c and kr =ωr/c. This also follows from the invariance of the scalar

(ω/c)2−k2 under Lorentz transformations. Indeed, because k′i = k′r = ω′/c in the S′

system, we will have:

ω2

c2
− k2

i =
ω′2

c2
− k′2i = 0 ,

ω2
r

c2
− k2

r =
ω′2

c2
− k′2r = 0

For the transmitted wavenumber kt, we find from Eqs. (7.12.5) and (7.12.6):

kt =
√

k2
tz + k2

tx =
ω′

c

√

γ2(n cosθ′t + β)2+n2 sin2 θ′t (7.12.7)

Setting vt = ωt/kt = c/nt, we obtain the “effective” refractive index nt within the

moving dielectric medium:

nt = c

vt
= ckt
ωt

=
√

γ2(n cosθ′t + β)2+n2 sin2 θ′t
γ(1+ βn cosθ′t)

(7.12.8)

At normal incidence, this is equivalent to Eq. (5.8.6). Replacing ki =ω/c, kr =ωr/c,

and kt =ωtnt/c in Eq. (7.12.6), we obtain the generalization of Snel’s laws:

ω sinθ =ωr sinθr =ωtnt sinθt =ω′ sinθ′ =ω′ sinθ′r =ω′n sinθ′t (7.12.9)
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For a stationary interface, all the frequency factors drop out and we obtain the or-

dinary Snel laws. The reflected and transmitted frequencies are θ-dependent and are

obtained from (7.12.5) by eliminating ω′:

ωr =ω1− β cosθ′

1+ β cosθ′
, ωt =ω1+ βn cosθ′t

1+ β cosθ′
(7.12.10)

Replacing kiz = ki cosθ = (ω/c)cosθ and krz = kr cosθr = (ωr/c)cosθr in

Eq. (7.12.5), we obtain the relationship of the angles θ,θr to the angle θ′:

cosθ = cosθ′ + β
1+ β cosθ′

, cosθr = cosθ′ − β
1− β cosθ′

(7.12.11)

which can also be written as:

cosθ′ = cosθ− β
1− β cosθ

= cosθr + β
1+ β cosθr

(7.12.12)

Solving for θr in terms of θ, we obtain:

cosθr = (1+ β2)cosθ− 2β

1− 2β cosθ+ β2
(7.12.13)

Inserting cosθ′ in Eq. (7.12.10), we find the reflected frequency in terms of θ:

ωr =ω1− 2β cosθ+ β2

1− β2
(7.12.14)

Eqs. (7.12.13) and (7.12.14) were originally derived by Einstein in his 1905 paper on

special relativity [470]. The quantity n cosθ′t can also be written in terms of θ. Using

Snel’s law and Eq. (7.12.12), we have:

n cosθ′t =
√

n2 − sin2 θ′ =
√

n2 − 1+ cos2 θ′ =

√
√
√
√n2 − 1+

(

cosθ− β
1− β cosθ

)2

, or,

n cosθ′t =
√

(n2 − 1)(1− β cosθ)2+(cosθ− β)2

1− β cosθ
≡ Q

1− β cosθ
(7.12.15)

Using (7.12.15) and the identity (1 + β cosθ′)(1 − β cosθ)= 1 − β2 , we find for the

transmitted frequency:

ωt =ω1+ βn cosθ′t
1+ β cosθ′

=ω1− β cosθ+ βQ
1− β2

(7.12.16)

The TE reflection coefficient (7.12.2) may also be expressed in terms of θ:

ρTE = cosθ′ − n cosθ′t
cosθ′ + n cosθ′t

= cosθ− β−Q
cosθ− β+Q (7.12.17)
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Next, we determine the reflected and transmitted fields in the frame S. The simplest

approach is to apply the Lorentz transformation (H.30) separately to the incident, re-

flected, and transmitted waves. In the S′ frame, a plane wave propagating along the unit

vector k̂
′

has magnetic field:

H ′ = 1

η
k̂
′ × E ′ ⇒ cB ′ = cμ0H ′ = η0

η
k̂
′ × E ′ = n k̂

′ × E ′ (7.12.18)

where n = 1 for the incident and reflected waves. Because we assumed a TE wave and

the motion is along the z-direction, the electric field will be perpendicular to the velocity,

that is, βββ · E ′ = 0. Using the BAC-CAB rule, Eq. (H.30) then gives:

E = E⊥ = γ(E ′⊥ −βββ× cB ′⊥)= γ(E ′ −βββ× cB ′)= γ
(

E ′ −βββ× (n k̂
′ × E ′)

)

= γ(E ′ − n(βββ · E′)k̂
′ + n(βββ · k̂

′
)E′

) = γE ′(1+ nβββ · k̂
′
)

(7.12.19)

Applying this result to the incident, reflected, and transmitted fields, we find:

Ei = γE′i(1+ β cosθ′)

Er = γE′r(1− β cosθ′)= γρTEE
′
i(1− β cosθ′)

Et = γE′t(1+ nβ cosθ′t)= γτTEE
′
i(1+ nβ cosθ′t)

(7.12.20)

It follows that the reflection and transmission coefficients will be:

Er
Ei
= ρTE

1− β cosθ′

1+ β cosθ′
= ρTE

ωr

ω
,
Et
Ei
= τTE

1+ nβ cosθ′t
1+ β cosθ′

= τTE
ωt

ω
(7.12.21)

The case of a perfect mirror corresponds to ρTE = −1 and τTE = 0. To be interpretable

as a reflection angle, θr must be in the range 0 ≤ θr ≤ 90o, or, cosθr > 0. This requires

that the numerator of (7.12.13) be positive, or,

(1+ β2)cosθ− 2β ≥ 0 ⇔ cosθ ≥ 2β

1+ β2
⇔ θ ≤ acos

( 2β

1+ β2

)

(7.12.22)

Because 2β/(1+ β2)> β, (7.12.22) also implies that cosθ > β, or, v < cz = c cosθ.

Thus, the z-component of the phase velocity of the incident wave can catch up with the

receding interface. At the maximum allowed θ, the angle θr reaches 90o. In the above,

we assumed that β > 0. For negative β, there are no restrictions on the range of θ.

7.13 Geometrical Optics

Geometrical optics and the concepts of wavefronts and rays can be derived from Maxwell’s

equations in the short-wavelength or high-frequency limit.

We saw in Chap. 2 that a uniform plane wave propagating in a lossless isotropic

dielectric in the direction of a wave vector k = k k̂ = nk0 k̂ is given by:

E(r)= E0 e
−jnk0 k̂·r , H(r)= H0 e

−jnk0 k̂·r , k̂ · E0 = 0 , H0 = n

η0

k̂× E0 (7.13.1)
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where n is the refractive index of the medium n = √

ǫ/ǫ0, k0 and η0 are the free-space

wavenumber and impedance, and k̂, the unit-vector in the direction of propagation.

The wavefronts are defined to be the constant-phase plane surfaces S(r)= const.,

where S(r)= n k̂ · r. The perpendiculars to the wavefronts are the optical rays.

In an inhomogeneous medium with a space-dependent refractive index n(r), the

wavefronts and their perpendicular rays become curved, and can be derived by consid-

ering the high-frequency limit of Maxwell’s equations. By analogy with Eqs. (7.13.1), we

look for solutions of the form:

E(r)= E0(r) e
−jk0S(r) , H(r)= H0(r) e

−jk0S(r) (7.13.2)

where we will assume that k0 is large and that E0,H0 are slowly-varying functions of r.

This means that their space-derivatives are small compared to k0 or to 1/λ. For example,

|∇∇∇× E0| ≪ k0.

Inserting these expressions into Maxwell’s equations and assuming μ = μ0 and ǫ =
n2ǫ0, we obtain:

∇∇∇× E = e−jk0S
(∇∇∇× E0 − jk0∇∇∇S× E0

) = −jωμ0H0 e
−jk0S

∇∇∇×H = e−jk0S
(∇∇∇×H0 − jk0∇∇∇S×H0

) = jn2ωǫ0E0 e
−jk0S

Assuming |∇∇∇×E0| ≪ |k0∇∇∇S×E0|, and similarly for H0, and dropping the common

phase factor e−jk0S, we obtain the high-frequency approximations:

−jk0∇∇∇S× E0 = −jωμ0H0

−jk0∇∇∇S×H0 = jn2ωǫ0E0

Replacing k0 =ω√μ0ǫ0, and defining the vector k̂ = 1

n
∇∇∇S, we find:

H0 = n

η0

k̂× E0 , E0 = −η0

n
k̂×H0 (7.13.3)

These imply the transversality conditions k̂ ·E0 = k̂ ·H0 = 0. The consistency of the

equations (7.13.3) requires that k̂ be a unit vector. Indeed, using the BAC-CAB rule, we

have:

k̂× (k̂× E0)= k̂(k̂ · E0)−E0(k̂ · k̂)= −E0(k̂ · k̂)= η0

n
k̂×H0 = −E0

Thus, we obtain the unit-vector condition, known as the eikonal equation:

k̂ · k̂ = 1 ⇒ |∇∇∇S|2 = n2 (eikonal equation) (7.13.4)

This equation determines the wavefront phase function S(r). The rays are the per-

pendiculars to the constant-phase surfaces S(r)= const., so that they are in the direction

of∇∇∇S or k̂. Fig. 7.13.1 depicts these wavefronts and rays.

The ray passing through a point r on the surface S(r)= SA, will move ahead by a

distance dr in the direction of the gradient ∇∇∇S. The length of dr is dl = (dr · dr)1/2.
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Fig. 7.13.1 Wavefront surfaces and rays.

The vector dr/dl is a unit vector in the direction of∇∇∇S and, therefore, it must be equal

to k̂. Thus, we obtain the defining equation for the rays:

dr

dl
= k̂ ⇒ dr

dl
= 1

n
∇∇∇S ⇒ n

dr

dl
=∇∇∇S (7.13.5)

The eikonal equation determines S, which in turn determines the rays. The ray

equation can be expressed directly in terms of the refractive index by eliminating S.

Indeed, differentiating (7.13.5), we have:

d

dl

(

n
dr

dl

)

= d

dl
(∇∇∇S)=

(
dr

dl
·∇∇∇

)

∇∇∇S = 1

n

(∇∇∇S ·∇∇∇)∇∇∇S

where, in differentiating along a ray, we used the expression for d/dl:

d

dl
= dr

dl
·∇∇∇ (7.13.6)

But, ∇∇∇(∇∇∇S · ∇∇∇S) = 2
(∇∇∇S · ∇∇∇)∇∇∇S, which follows from the differential identity

Eq. (C.16) of the Appendix. Therefore,

d

dl

(

n
dr

dl

)

= 1

n

(∇∇∇S ·∇∇∇)∇∇∇S = 1

2n
∇∇∇(∇∇∇S ·∇∇∇S) = 1

2n
∇∇∇(n2)= 1

2n
2n∇∇∇n , or,

d

dl

(

n
dr

dl

)

=∇∇∇n (ray equation) (7.13.7)

The vectors E0,H0, k̂ form a right-handed system as in the uniform plane-wave case.

The energy density and flux are:

we = 1

2
Re
[1

2
ǫE · E∗

] = 1

4
ǫ0n

2|E0|2

wm = 1

4
μ0|H0|2 = 1

4
μ0
n2

η2
0

|E0|2 = 1

4
ǫ0n

2|E0|2 = we

w = we +wm = 1

2
ǫ0n

2|E0|2

PPP = 1

2
Re
[

E×H∗
] = n

2η0

k̂ |E0|2

(7.13.8)
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Thus, the energy transport velocity is:

v = PPP
w
= c0

n
k̂ (7.13.9)

The velocity v depends on r, because n and k̂ do.

7.14 Fermat’s Principle

An infinitesimal movement by dl along a ray will change the wavefront phase function

by dS = ndl. Indeed, using Eq. (7.13.6) and the eikonal equation we find:

dS

dl
= dr

dl
·∇∇∇S = 1

n
∇∇∇S ·∇∇∇S = 1

n
n2 = n (7.14.1)

Integrating along a ray path from a point A on wavefront S(r)= SA to a point B on

wavefront S(r)= SB, as shown in Fig. 7.13.1, gives rise to the net phase change:

SB − SA =
∫ B

A
dS =

∫ B

A
ndl (7.14.2)

The right-hand side is recognized as the optical path length from A to B. It is pro-

portional to the travel time of moving from A to B with the ray velocity v given by

Eq. (7.13.9). Indeed, we have dl = v · k̂dt = c0 dt/n, or, dS = ndl = c0dt. Thus,

SB − SA =
∫ B

A
ndl = c0

∫ tB

tA

dt = c0(tB − tA) (7.14.3)

Fermat’s Principle states that among all possible paths connecting the two points A

and B, the geometrical optics ray path is the one the minimizes the optical path length

(7.14.3), or equivalently, the travel time between the two points. The solution to this

minimization problem is the ray equation (7.13.7).

Any path connecting the pointsA and Bmay be specified parametrically by the curve

r(τ), where the parameter τ varies over an interval τA ≤ τ ≤ τB. The length dlmay be

written as:

dl = (

dr · dr
)1/2 = (

ṙ · ṙ
)1/2

dτ , where ṙ = dr

dτ
(7.14.4)

Then, the functional to be minimized is:

∫ B

A
ndl =

∫ τB

τA

L(r, ṙ)dτ , where L(r, ṙ)= n(r)(ṙ · ṙ
)1/2

(7.14.5)

The minimization of Eq. (7.14.5) may be viewed as a problem in variational calculus

with Lagrangian function L. Its solution is obtained from the Euler-Lagrange equations:

d

dτ

(
∂L
∂ṙ

)

= ∂L
∂r

(7.14.6)
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See [864–866] for a review of such methods. The required partial derivatives are:

∂L
∂r

= ∂n

∂r

(

ṙ · ṙ
)1/2

,
∂L
∂ṙ

= n ṙ
(

ṙ · ṙ
)−1/2 = n dr

dτ

(

ṙ · ṙ
)−1/2

The Euler-Lagrange equations are then:

d

dτ

(

n
dr

dτ

(

ṙ · ṙ
)−1/2

)

= ∂n

∂r

(

ṙ · ṙ
)1/2

or,

(

ṙ · ṙ
)−1/2 d

dτ

(

n
dr

dτ

(

ṙ · ṙ
)−1/2

)

= ∂n

∂r
(7.14.7)

Using dl = (

ṙ · ṙ
)1/2

dτ, we may rewrite these in terms of the length variable dl,

resulting in the same equations as (7.13.7), that is,

d

dl

(

n
dr

dl

)

= ∂n

∂r
(7.14.8)

A variation of Fermat’s principle states that the phase change between two wave-

front surfaces is independent of the choice of the ray path taken between the surfaces.

Following a different ray between points A′ and B′, as shown in Fig. 7.13.1, gives the

same value for the net phase change as between the points A and B:

SB − SA =
∫ B

A
ndl =

∫ B′

A′
ndl′ (7.14.9)

This form is useful for deriving the shapes of parabolic reflector and hyperbolic lens

antennas discussed in Chap. 19.

It can also be used to derive Snel’s law of reflection and refraction. Fig. 7.14.1 shows

the three families of incident, reflected, and refracted plane wavefronts on a horizontal

interface between media na and nb, such that the incident, reflected, and refracted rays

are perpendicular to their corresponding wavefronts.

For the reflection problem, we consider the ray paths between the wavefront surfaces

A0A1 and A1A
′
2. Fermat’s principle implies that the optical path length of the rays

AOA′, A0A
′
0, and A2A

′
2 will be the same. This gives the condition:

na(la + l′a)= naL = naL′ ⇒ L = L′

where L and L′ are the lengths of the rays A0A0 and A2A
′
2. It follows that the two

triangles A0A2A
′
2 and A0A

′
0A

′
2 will be congruent. and therefore, their angles at the

vertices A0 and A′2 will be equal. Thus, θa = θ′a.

For the refraction problem, we consider the ray pathsAOB,A0B0, andA1B1 between

the wavefronts A0A1 and B0B1. The equality of the optical lengths gives now:

nala + nblb = nbLb = naLa ⇒ La
Lb
= nb
na

But, the triangles A0A1B1 and A0B0B1 have a common base A0B1. Therefore,

La
Lb
= sinθa

sinθb
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Fig. 7.14.1 Snel’s laws of reflection and refraction.

Thus, we obtain Snel’s law of refraction:

La
Lb
= sinθa

sinθb
= nb
na

⇒ na sinθa = nb sinθb

7.15 Ray Tracing

In this section, we apply Fermat’s principle of least optical path to derive the ray curves

in several integrable examples of inhomogeneous media.

As a special case of Eq. (7.14.8), we consider a stratified half-space z ≥ 0, shown in

Fig. 7.15.1, in which the refractive index is a function of z, but not of x.

Fig. 7.15.1 Rays in an inhomogeneous medium.
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Let θ be the angle formed by the tangent on the ray at point (x, z) and the vertical.

Then, we have from the figure dx = dl sinθ and dz = dl cosθ. Because ∂n/∂x = 0, the

ray equation (7.14.8) applied to the x-coordinate reads:

d

dl

(

n
dx

dl

)

= 0 ⇒ n
dx

dl
= const. ⇒ n sinθ = const. (7.15.1)

This is the generalization of Snel’s law to an inhomogeneous medium. The constant

may be determined by evaluating it at the entry point z = 0 and x = 0. We take the

constant to be na sinθa. Thus, we write (7.15.2) as:

n(z)sinθ(z)= na sinθa (generalized Snel’s law) (7.15.2)

The z-component of the ray equation is, using dz = dl cosθ:

d

dl

(

n
dz

dl

)

= dn

dz
⇒ cosθ

d

dz
(n cosθ) = dn

dz
(7.15.3)

This is a consequence of Eq. (7.15.2). To see this, we write:

n cosθ =
√

n2 − n2 sin2 θ =
√

n2 − n2
a sin2 θa (7.15.4)

Differentiating it with respect to z, we obtain Eq. (7.15.3). The ray in the left Fig. 7.15.1

is bending away from the z-axis with an increasing angle θ(z). This requires that n(z)

be a decreasing function of z. Conversely, if n(z) is increasing as in the right figure,

then θ(z) will be decreasing and the ray will curve towards the z-axis.

Thus, we obtain the rule that a ray always bends in the direction of increasing n(z)

and away from the direction of decreasing n(z).

The constants na and θa may be taken to be the launch values at the origin, that

is, n(0) and θ(0). Alternatively, if there is a discontinuous change between the lower

and upper half-spaces, we may take na, θa to be the refractive index and incident angle

from below.

The ray curves can be determined by relating x and z. From Fig. 7.15.1, we have

dx = dz tanθ, which in conjunction with Eqs. (7.15.2) and (7.15.4) gives:

dx

dz
= tanθ = n sinθ

n cosθ
= na sinθa
√

n2(z)−n2
a sin2 θa

(7.15.5)

Integrating, we obtain:

x =
∫ z

0

na sinθa
√

n2(z′)−n2
a sin2 θa

dz′ (ray curve) (7.15.6)

An object at the point (x, z) will appear to an observer sitting at the entry point O

as though it is at the apparent location (x, za), as shown in Fig. 7.15.1. The apparent or

virtual height will be za = x cotθa, which can be combined with Eq. (7.15.6) to give:

za =
∫ z

0

na cosθa
√

n2(z′)−n2
a sin2 θa

dz′ (virtual height) (7.15.7)

286 7. Oblique Incidence

The length za can be greater or less than z. For example, if the upper half-space is

homogeneous with nb < na, then za > z. If nb > na, then za < z, as was the case in

Example 7.5.4.

Next, we discuss a number of examples in which the integral (7.15.6) can be done

explicitly to derive the ray curves.

Example 7.15.1: Ionospheric Refraction. Radio waves of frequencies typically in the range of

about 4–40 MHz can be propagated at large distances such as 2000–4000 km by bouncing

off the ionosphere. Fig. 7.15.2 depicts the case of a flat ground.

Fig. 7.15.2 Ionospheric refraction.

The atmosphere has a typical extent of 600 km and is divided in layers: the troposphere up

to 10 km, the stratosphere at 10–50 km, and the ionosphere at 50–600 km. The ionosphere

is further divided in sublayers, such as the D, E, F1, and F2 layers at 50–100 km, 100–150

km, 150–250 km, and 250–400 km, respectively.

The ionosphere consists mostly of ionized nitrogen and oxygen at low pressure. The

ionization is due to solar radiation and therefore it varies between night and day. We

recall from Sec. 1.15 that a collisionless plasma has an effective refractive index:

n2 = ǫ(ω)

ǫ0

= 1− ω
2
p

ω2
, ω2

p =
Ne2

ǫ0m
(7.15.8)

The electron density N varies with the time of day and with height. Typically, N increases

through theD and E layers and reaches a maximum value in the F layer, and then decreases

after that because, even though the solar radiation is more intense, there are fewer gas

atoms to be ionized.

Thus, the ionosphere acts as a stratified medium in which n(z) first decreases with height

from its vacuum value of unity and then it increases back up to unity. We will indicate the

dependence on height by rewriting Eq. (7.15.8) in the form:

n2(z)= 1− f
2
p(z)

f2
, f2

p(z)=
N(z)e2

4π2ǫ0m
(7.15.9)

If the wave is launched straight up and its frequency f is larger than the largest fp, then

it will penetrate through the ionosphere and be lost. But, if there is a height such that

f = fp(z), then at that height n(z)= 0 and the wave will be reflected back down.
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If the wave is launched at an angle θa, then it follows from Snel’s law that while the

refractive index n(z) is decreasing, the angle of refraction θ(z) will be increasing and the

ray path will bend more and more away from z-axis as shown on the left of Fig. 7.15.1.

Below the ionosphere, we may assume that the atmosphere has refractive index na = 1.

Then, the angle θ(z) may be written as:

sin2 θ(z)= n2
a sin2 θa

n2(z)
= sin2 θa

1− f
2
p(z)

f2

(7.15.10)

Because sinθ(z) is required to be less than unity, we obtain the restriction:

sin2 θa ≤ 1− f
2
p(z)

f2
⇒ fp(z)≤ f cosθa (7.15.11)

If there is a height, say zmax, at which this becomes an equality, fp(zmax)= f cosθa, then

Eq. (7.15.10) would imply that sinθ(zmax)= 1, or that θ(zmax)= 90o. At that height, the

ray is horizontal and it will proceed to bend downwards, effectively getting reflected from

the ionosphere.

If f is so large that Eq. (7.15.11) is satisfied only as a strict inequality, then the wave will

escape through all the layers of the ionosphere. Thus, there is a maximum frequency, the

so called maximum usable frequency (MUF), that will guarantee a reflection. There is also a

lowest usable frequency (LUF) below which there is too much absorption of the wave, such

as in the D layer, to be reflected at sufficient strength for reception.

As an oversimplified, but analytically tractable, model of the ionosphere we assume that

the electron density increases linearly with height, up to a maximal height zmax. Thus, the

quantities f2
p(z) and n2(z) will also depend linearly on height:

f2
p(z)= f2

max

z

zmax

, n2(z)= 1− f
2
max

f2

z

zmax

, for 0 ≤ z ≤ zmax (7.15.12)

Over the assumed height range 0 ≤ z ≤ zmax, the condition (7.15.11) must also be satisfied.

This restricts further the range of z. We have:

f2
p(z)= f2

max

z

zmax

≤ f2 cos2 θa ⇒ z

zmax

≤ f2 cos2 θa
f2

max

(7.15.13)

If the right-hand side is greater than unity, so that f cosθa > fmax, then there is no height

z at which (7.15.11) achieves an equality, and the wave will escape. But, if f cosθa ≤ fmax,

then there is height, say z0, at which the ray bends horizontally, that is,

z0

zmax

= f2 cos2 θa
f2

max

⇒ z0 = zmaxf
2 cos2 θa
f2

max

(7.15.14)

The condition f cosθa ≤ fmax can be written as f ≤ fMUF, where the MUF is in this case,

fMUF = fmax/ cosθa. The integral (7.15.6) can be done explicitly resulting in:

x = 2zmax sin2 θa
a2

[

cosθa −
√

cos2 θa − a2
z

zmax

]

(7.15.15)

where we defined a = fmax/f . Solving for z in terms of x, we obtain:
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z− z0 = − 1

4F
(x− x0)

2 (7.15.16)

where

x0 = 2zmax sinθa cosθa
a2

, F = zmax sin2 θa
a2

Therefore, the ray follows a downward parabolic path with vertex at (x0, z0) and focal

length F, as shown in Fig. 7.15.3. ⊓⊔

Fig. 7.15.3 Parabolic ray.

Example 7.15.2: Mirages. Temperature gradients can cause several types of mirage effects that

are similar to ionospheric refraction. On a hot day, the ground is warmer than the air above

it and therefore, the refractive index of the air is lower at the ground than a short distance

above. (Normally, the air pressure causes the refractive index to be highest at the ground,

decreasing with height.)

Because n(z) decreases downwards, a horizontal ray from an object near the ground will

initially be refracted downwards, but then it will bend upwards again and may arrive at an

observer as though it were coming from below the ground, causing a mirage. Fig. 7.15.4

depicts a typical case. The ray path is like the ionospheric case, but inverted.

Such mirages are seen in the desert and on highways, which appear wet at far distances.

Various types of mirages are discussed in [50–52,1486].

As a simple integrable model, we may assume that n(z) increases linearly with height z,

that is, n(z)= n0 + κz, where κ is the rate of increase per meter. For heights near the

ground, this implies that n2(z) will also increase linearly:

n(z)= n0 + κz ⇒ n2(z)= n2
0 + 2n0κz (7.15.17)

We consider a ray launched at a downward angle θa from an object with (x, z) coordinates

(0, h), as shown. Let n2
a = n2

0 + 2n0κh be the refractive index at the launch height. For

convenience, we assume that the observer is also at height h. Because the ray will travel

downward to points z < h, and then bend upwards, we integrate the ray equation over the

limits [z, h] and find:

x =
∫ h

z

na sinθa
√

n2(z′)−n2
a sin2 θa

dz′ = na sinθa
n0κ

[

na cosθa −
√

n2
a cos2 θa + 2n0κ(z− h)

]
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where we used the approximation n2(z)= n2
0 + 2n0κz in the integral. Solving for z in

terms of x, we obtain the parabolic ray:

z = h+ x(x− 2x0)

4F
, x0 = d

2
= n2

a sinθa cosθa

n0κ
, F = n2

a sin2 θa

2n0κ

where d is the distance to the observer and F is the focal length. The apex of the parabola

is at x = x0 = d/2 at a height z0 given by:

z0 = h− x2
0

4F
⇒ z− z0 = 1

4F
(x− x0)

2

Fig. 7.15.4 Mirage due to a temperature gradient.

The launch angle that results in the ray being tangential to ground is obtained by setting

the apex height to zero, z0 = 0. This gives a condition that may be solved for θa:

x0 =
√

4Fh ⇒ sinθa = n0

na
⇒ F = n0

2κ
⇒ x0 =

√

2hn0

κ
(7.15.18)

The corresponding d = 2x0 is the maximum distance of the observer from the object for

which a ray can just touch the ground. ⊓⊔

Example 7.15.3: Atmospheric Refraction [50–52]. Because of the compression of gravity, the

density of the atmosphere† and its refractive index n are highest near the ground and

decrease exponentially with height. A simplified model [717], which assumes a uniform

temperature and constant acceleration of gravity, is as follows:

n(z)= 1+ (n0 − 1)e−z/hc (7.15.19)

The refractive index on the ground is approximately n0 = 1.0003 (it also has some de-

pendence on wavelength, which we ignore here.) The characteristic height hc is given by

hc = RT/Mg, where R,T,M,g are the universal gas constant, temperature in absolute

units, molecular mass of the atmosphere and acceleration of gravity:

R = 8.31
J

K mole
, M = 0.029

kg

mole
, g = 9.8

m

s2

For a temperature of T = 303K, or 30 oC, we find a height of hc = 8.86 km. At a height of

a few hc, the refractive index becomes unity.
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Fig. 7.15.5 Atmospheric refraction.

The bending of the light rays as they pass through the atmosphere cause the apparent

displacement of a distant object, such as a star, the sun, or a geosynchronous satellite.

Fig. 7.15.5 illustrates this effect. The object appears to be closer to the zenith.

The look-angle θ0 at the ground and the true angle of the object θ1 are related by Snel’s

law n1 sinθ1 = n0 sinθ0. But at large distances (many multiples of hc), we have n1 = 1.

Therefore,

sinθ1 = n0 sinθ0 (7.15.20)

The refraction angle is r = θ1 − θ0. Assuming a small r, we may use the approximation

sin(θ0 + r)= sinθ0 + r cosθ0. Then, Eq. (7.15.20) gives the approximate expression:

r = (n0 − 1)tanθ0

The maximum viewing angle in this model is such that n0 sinθ0 = sinθ1 = 1, correspond-

ing to θ1 = 90o and θ0 = asin(1/n0)= 88.6o, for n0 = 1.0003.

The model assumes a flat Earth. When the curvature of the Earth is taken into account, the

total atmospheric refraction near the horizon, that is, near θ0 = 90o, is about 0.65o for a

sea-level observer [50]. The setting sun subtends an angle of about 0.5o. Therefore, when

it appears about to set and its lower edge is touching the horizon, it has already moved

below the horizon.

The model of Eq. (7.15.19) may be integrated exactly. The ray curves are obtained from

Eq. (7.15.6). Setting na = n0, θa = θ0 and using the definition (7.15.20), we obtain:

x = hc tanθ1

[

atanh

(
A

B

)

− atanh

(
A0

B0

)]

= tanθ1

[

z+ hc ln

(
A+ B
A0 + B0

)]

(7.15.21)

where the quantities A,B,A0, B0 are defined as follows:

A = n(z)− sin2 θ1 , A0 = n0 − sin2 θ1

B = cosθ1

√

n2(z)− sin2 θ1 , B0 = cosθ1

√

n2
0 − sin2 θ1

Thus, A0, B0 are the values of A,B at z = 0. It can be shown that A > B and therefore, the

hyperbolic arc-tangents will be complex-valued. However, the difference of the two atanh

†The troposphere and some of the stratosphere, consisting mostly of molecular nitrogen and oxygen.
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terms is real and can be transformed into the second expression in (7.15.21) with the help

of the result A2 − B2 = (A2
0 − B2

0)e
−2z/hc .

In the limit of z≫ hc, the quantitiesA,B tend toA1 = B1 = cos2 θ1. and the ray equation

becomes the straight line with a slope of tanθ1:

x = (z+ z1)tanθ1 , z1 = hc ln

(
A1 + B1

A0 + B0

)

(7.15.22)

This asymptotic line is depicted in Fig. 7.15.5, intercepting the z-axis at an angle of θ1. ⊓⊔

Example 7.15.4: Bouguer’s Law. The previous example assumed a flat Earth. For a spherical

Earth in which the refractive index is a function of the radial distance r only, that is, n(r),

the ray tracing procedure must be modified.

Snel’s law n(z)sinθ(z)= n0 sinθ0 must be replaced by Bouguer’s law [634], which states

that the quantity rn(r)sinθ remain constant:

rn(r)sinθ(r)= r0n(r0)sinθ0 (Bouguer’s law) (7.15.23)

where θ(r) is the angle of the tangent to the ray and the radial vector. This law can be

derived formally by considering the ray equations in spherical coordinates and assuming

that n(r) depends only on r [865].

A simpler derivation is to divide the atmosphere in equal-width spherical layers and assume

that the refractive index is homogeneous in each layer. In Fig. 7.15.6, the layers are defined

by the radial distances and refractive indices ri, ni, i = 0,1,2, . . . .

Fig. 7.15.6 Ray tracing in spherically stratified medium.

For sufficiently small layer widths, the ray segments between the points A0,A1,A2, . . .

are tangential to the radial circles. At the interface point A3, Snel’s law gives n2 sinφ2 =
n3 sinθ3. On the other hand, from the triangle OA2A3, we have the law of sines:

r2

sinφ2

= r3

sin(π− θ2)
= r3

sinθ2

⇒ r2 sinθ2 = r3 sinφ2
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Combining with Snel’s law, we obtain:

r2n2 sinθ2 = r3n2 sinφ2 = r3n3 sinθ3

Thus, the product rini sinθi is the same for all i = 0,1,2, . . . . Defining an effective refrac-

tive index by neff(r)= n(r)r/r0, Bouguer’s law may be written as Snel’s law:

neff(r)sinθ(r)= n0 sinθ0

where we have the initial value neff(r0)= n0r0/r0 = n0. ⊓⊔

Example 7.15.5: Standard Atmosphere over Flat Earth. For radiowave propagation over ground,

the International Telecommunication Union (ITU) [873,874] defines a “standard” atmo-

sphere with the values n0 = 1.000315 and hc = 7.35 km, in Eq. (7.15.19).

For heights of about one kilometer, such that z ≪ hc, we may linearize the exponential,

e−z/hc = 1− z/hc, and obtain the refractive index for the standard atmosphere:

n(z)= n0 − κz , κ = n0 − 1

hc
= 315× 10−6

7.35× 103
= 4.2857× 10−8 m−1 (7.15.24)

This is similar to Eq. (7.15.17), with the replacement κ → −κ. Therefore, we expect the

rays to be parabolic bending downwards as in the case of the ionosphere. A typical ray

between two antennas at height h and distance d is shown in Fig. 7.15.7.

Fig. 7.15.7 Rays in standard atmosphere over a flat Earth.

Assuming an upward launch angle θa and defining the refractive index na at height h

through n2
a = n2

0 − 2n0κh, we obtain the ray equations by integrating over [h, z]:

x =
∫ z

h

na sinθa
√

n2(z′)−n2
a sin2 θa

dz′ = na sinθa
n0κ

[

na cosθa −
√

n2
a cos2 θa − 2n0κ(z− h)

]

where we used n2(z)= n2
0 − 2n0κz. Solving for z, we obtain the parabola:

z = h− x(x− 2x0)

4F
, x0 = d

2
= n2

a sinθa cosθa

n0κ
, F = n2

a sin2 θa

2n0κ

where d is the distance to the observer and F is the focal length. The apex of the parabola

is at x = x0 = d/2 at a height z0 given by:
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z0 = h+ x2
0

4F
⇒ z− z0 = − 1

4F
(x− x0)

2

The minus sign in the right-hand side corresponds to a downward parabola with apex at

the point (x0, z0). ⊓⊔

Example 7.15.6: Standard Atmosphere over Spherical Earth. We saw in Example 7.15.4 that

in Bouguer’s law the refractive index n(r) may be replaced by an effective index ne(r)=
n(r)r/r0. Applying this to the case of the Earth with r0 = R and r = R + z, where R is

the Earth radius and z the height above the surface, we have ne(z)= n(z)(R+ z)/R, or,

ne(z)= n(z)
(

1+ z

R

)

= (n0 − κz)
(

1+ z

R

)

Thus, the spherical Earth introduces the factor (1+z/R), which increases with height and

counteracts the decreasing n(z). Keeping only linear terms in z, we find:

ne(z)= n0 + κez , κe = n0

R
− κ (7.15.25)

For the average Earth radius R = 6370 km and the ITU values of n0 and κ given in

Eq. (7.15.24), we find that the effective κe is positive:

κe = 1.1418× 10−7 m−1 (7.15.26)

Making the approximation n2(z)= n2
0 + 2n0κez will result in parabolic rays bending up-

wards as in Example 7.15.2.

Often, an equivalent Earth radius is defined by κe = n0/Re so that the effective refractive

index may be assumed to arise only from the curvature of the equivalent Earth:

ne(z)= n0 + κez = n0

(

1+ z

Re

)

In units of R, we have:

Re
R
= n0

κeR
= n0

n0 − κR
= 1.3673 (7.15.27)

which is usually replaced by Re = 4R/3. In this model, the refractive index is assumed to

be uniform above the surface of the equivalent Earth, n(z)= n0.

The ray paths are determined by considering only the geometrical effect of the spherical

surface. For example, to determine the maximum distance x0 at which a ray from a trans-

mitter at height h just grazes the ground, we may either use the results of Eq. (7.15.18), or

consider a straight path that is tangential to the equivalent Earth, as shown in Fig. 7.15.8.

Setting κe = n0/Re in Eq. (7.15.18), we obtain:

x0 =
√

2n0h

κe
=
√

2hRe (7.15.28)
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Fig. 7.15.8 Rays over a spherical Earth.

On the other hand, because h≪ Re the arc length x0 = (OB)may be taken to be a straight

line in Fig. 7.15.8. Applying the Pythagorean theorem to the two orthogonal trianglesOAB

and CAB we find that:

x2
0 + h2 = d2 = (h+Re)2−R2

e = h2 + 2hRe ⇒ x2
0 = 2hRe

which is the same as Eq. (7.15.28). ⊓⊔

Example 7.15.7: Graded-Index Optical Fibers. In Example 7.5.5, we considered a step-index

optical fiber in which the rays propagate by undergoing total internal reflection bouncing

off the cladding walls. Here, we consider a graded-index fiber in which the refractive index

of the core varies radially from the center value nf to the cladding value nc at the edge of

the core. Fig. 7.15.9 shows the geometry.

Fig. 7.15.9 Graded-index optical fiber.

As a simple model, we assume a parabolic dependence on the radial distance. We may

write in cylindrical coordinates, where a is the radius of the core:

n2(ρ)= n2
f

(

1−Δ2 ρ
2

a2

)

, Δ2 =
n2
f − n2

c

n2
f

(7.15.29)

Inserting this expression into Eq. (7.15.6), and changing variables from z, x to ρ, z, the

integral can be done explicitly resulting in:

z = a sinθa
Δ

asin

(
ρΔ

a cosθa

)

(7.15.30)

Inverting the arc-sine, we may solve for ρ in terms of z obtaining the following sinusoidal

variation of the radial coordinate, where we also changed from the incident angle θa to

the initial launch angle φ0 = 90o − θa:
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ρ = tanφ0

κ
sin(κz) , κ = Δ

a cosφ0

(7.15.31)

For small launch angles φ0, the oscillation frequency becomes independent of φ0, that is,

κ = Δ/(a cosφ0)≃ Δ/a. The rays described by Eq. (7.15.31) are meridional rays, that is,

they lie on a plane through the fiber axis, such as the xz- or yz-plane.

There exist more general ray paths that have nontrivial azimuthal dependence and prop-

agate in a helical fashion down the guide [867–872]. ⊓⊔

7.16 Snel’s Law in Negative-Index Media

Consider the planar interface between a normal (i.e., positive-index) lossless medium

ǫ, μ and a lossless negative-index medium [387] ǫ′, μ′ with negative permittivity and

permeability, ǫ′ < 0 and μ′ < 0, and negative refractive index n′ = −√μ′ǫ′/μ0ǫ0. The

refractive index of the left medium is as usual n = √

μǫ/μ0ǫ0. A TE or TM plane wave

is incident on the interface at an angle θ, as shown in Fig. 7.16.1.

Fig. 7.16.1 Refraction into a negative-index medium.

Because n′ < 0, Snel’s law implies that the refracted ray will bend in the opposite

direction (e.g., with a negative refraction angle) than in the normal refraction case. This

follows from:

n sinθ = n′ sinθ′ = −|n′| sinθ′ = |n′| sin(−θ′) (7.16.1)

As a result, the wave vector k′ of the refracted wave will point towards the interface,

instead of away from it. Its x-component matches that of the incident wave vector k,

that is, k′x = kx, which is equivalent to Snel’s law (7.16.1), while its z-component points

towards the interface or the negative z-direction in the above figure.

Formally, we have k′ = k′ŝ′, where ŝ′ is the unit vector in the direction of the re-

fracted ray pointing away from the interface, and k′ = −ω√

μ′ǫ′ = n′k0, with k0 the

free-space wavenumber k0 =ω√μ0ǫ0 =ω/c0. As we see below, the energy flux Poynt-

ing vectorPPP′ of the refracted wave is opposite k′ and points in the direction of ŝ′, and

therefore, carries energy away from the interface. Thus, component-wise we have:

k′x = n′k0 sinθ′ = kx = nk0 sinθ , k′z = n′k0 cosθ′ = −|n′|k0 cosθ′ < 0
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The TE and TM wave solutions at both sides of the interface are still given by Eqs. (7.7.4)

and (7.7.5), and reproduced below (with ejωt suppressed):

E(r) = ŷE0

[

e−jkzz + ρTE e
jkzz

]

e−jkxx

H(r) = E0

ηTE

[(

−x̂+ kx
kz

ẑ

)

e−jkzz + ρTE

(

x̂+ kx
kz

ẑ

)

ejkzz
]

e−jkxx

E ′(r) = ŷτTE E0e
−jk′zze−jkxx

H ′(r) = τTE E0

η′TE

(

−x̂+ kx
k′z

ẑ

)

e−jk
′
zze−jkxx

(TE) (7.16.2)

where, allowing for magnetic media, we have

ηTE = ωμ

kz
, η′TE =

ωμ′

k′z
, ρTE = η′TE − ηTE

η′TE + ηTE

= kzμ
′ − k′zμ

kzμ′ + k′zμ
, τTE = 1+ ρTE (7.16.3)

For the TM case we have:

E(r) = E0

[(

x̂− kx
kz

ẑ

)

e−jkzz + ρTM

(

x̂+ kx
kz

ẑ

)

ejkzz
]

e−jkxx

H(r) = ŷ
E0

ηTM

[

e−jkzz − ρTM e
jkzz

]

e−jkxx

E ′(r) = τTM E0

(

x̂− kx
k′z

ẑ

)

e−jk
′
zze−jkxx

H ′(r) = ŷ
τTM E0

η′TM

e−jk
′
zze−jkxx

(TM) (7.16.4)

with

ηTM = kz
ωǫ

, η′TM =
k′z
ωǫ′

, ρTM = η′TM − ηTM

η′TM + ηTM

= k′zǫ− kzǫ′
k′zǫ+ kzǫ′

, τTM = 1+ ρTM (7.16.5)

One can verify easily that in both cases the above expressions satisfy Maxwell’s equa-

tions and the boundary conditions at the interface, provided that

k2
x + k2

z =ω2μǫ = n2k2
0

k2
x + k′2z =ω2μ′ǫ′ = n′2k2

0

(7.16.6)

In fact, Eqs. (7.16.2)–(7.16.6) describe the most general case of arbitrary, homoge-

neous, isotropic, positive- or negative-index, and possibly lossy, media on the left and

right and for either propagating or evanescent waves. We concentrate, next, on the case

when the left medium is a positive-index lossless medium, μ > 0 and ǫ > 0, and the

right one is lossless with μ′ < 0 and ǫ′ < 0, and consider a propagating incident wave

with kx = nk0 sinθ and kz = nk0 cosθ and assume, for now, that n ≤ |n′| to avoid

evanescent waves into the right medium. The Poynting vector PPP′ in the right medium
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can be calculated from Eqs. (7.16.2) and (7.16.4):

(TE): PPP′ = 1

2
Re(E ′ ×H ′∗)= 1

2
|τTE|2|E0|2

[

ẑ Re

(
k′z
ωμ′

)

+ x̂ Re

(
kx
ωμ′

)]

(TM): PPP′ = 1

2
Re(E ′ ×H ′∗)= 1

2
|τTM|2|E0|2

[

ẑ Re

(
ωǫ′

k′z

)

+ x̂ Re

(
ωǫ′kx
|k′z|2

)]
(7.16.7)

Because μ′ < 0 and ǫ′ < 0, and k′z is real, the requirement of positive energy flux

away from the interface, P′z > 0, requires that k′z < 0 in both cases. Similarly, because

kx > 0, the x-component of PPP′ will be negative, P′x < 0. Thus, the vector PPP′ has the

direction shown in Fig. 7.16.1. We note also that the z-component is preserved across

the interface, Pz = P′z. This follows from the relationships:

Pz = 1

2
|E0|2 kz

ωμ

(

1− |ρTE|2
) = 1

2
|E0|2|τTE|2 Re

(
k′z
ωμ′

)

= P′z

Pz = 1

2
|E0|2ωǫ

kz

(

1− |ρTM|2
) = 1

2
|E0|2|τTM|2 Re

(
ωǫ′

k′z

)

= P′z
(7.16.8)

If n > |n′|, the possibility of total internal reflection arises. When sinθ > |n′|/n,

then k′2z = n′2k2
0−k2

x = k2
0(n

′2−n2 sin2 θ) is negative and k′z becomes pure imaginary.

In this case, the real-parts in the right-hand side of Eq. (7.16.8) are zero, showing that

|ρTE| = |ρTM| = 1 and there is no (time-averaged) power flow into the right medium.

For magnetic media, including negative-index media, the Brewster angle may also

exist for TE polarization, corresponding to ρTE = 0. This condition is equivalent to

k′zμ = kzμ′. Similarly ρTM = 0 is equivalent to k′zǫ = kzǫ′. These two conditions imply

the following relationship for the Brewster angles:

ρTE = 0 ⇒ k′zμ = kzμ′ ⇒ (μ′2 − μ2)sin2 θB = μ′2 − μ
′ǫ′

μǫ
μ2

ρTM = 0 ⇒ k′zǫ = kzǫ′ ⇒ (ǫ′2 − ǫ2)sin2 θB = ǫ′2 − μ
′ǫ′

μǫ
ǫ2

(7.16.9)

Clearly, these may or may not have a solution, such that 0 < sin2 θB < 1, depending

on the relative values of the constitutive parameters. For non-magnetic media, μ = μ′ =
μ0, the TE case has no solution and the TM case reduces to the usual expression:

sin2 θB = ǫ′2 − ǫ′ǫ
ǫ′2 − ǫ2

= ǫ′

ǫ′ + ǫ =
n′2

n′2 + n2

Assuming that ǫ, μ and ǫ′, μ′ have the same sign (positive or negative), we may re-

place these quantities with their absolute values in Eq. (7.16.9). Defining the parameters

x = |μ′/μ| and y = |ǫ′/ǫ|, we may rewrite (7.16.9) in the form:

TE case:

(

1− 1

x2

)

sin2 θB =
(

1− y
x

)

TM case:

(

1− 1

y2

)

sin2 θB =
(

1− x
y

) (7.16.10)
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with the TE and TM cases being obtained from each other by the duality transformations

x → y and y → x. It is straightforward to verify that the ranges of the x, y parameters

for which a Brewster angle exists are as follows:

TE case: x > 1 , y < x , y >
1

x
, or, x < 1 , y > x , y <

1

x

TM case: y > 1 , x < y , y >
1

x
, or, y < 1 , x > y , y <

1

x

(7.16.11)

These regions [693], which are bounded by the curves y = x and y = 1/x, are shown

in Fig. 7.16.2. We note, in particular, that the TE and TM regions are non-overlapping.

Fig. 7.16.2 Brewster angle regions.

The unusual property of Snel’s law in negative-index media that the refracted ray

bends in the opposite direction than in the normal case has been verified experimentally

in artificial metamaterials constructed by arrays of wires and split-ring resonators [393],

and by transmission line elements [426–428,448,461]. Another consequence of Snel’s

law is the possibility of a perfect lens [394] in the case n′ = −1. We discuss this in

Sec. 8.6.

7.17 Problems

7.1 The matching of the tangential components of the electric and magnetic fields resulted in

Snel’s laws and the matching matrix Eq. (7.3.11). In both the TE and TM polarization cases,

show that the remaining boundary conditions Bz = B′z and Dz = D′z are also satisfied.

7.2 Show that the Fresnel coefficients (7.4.2) may be expressed in the forms:

ρTM = sin 2θ′ − sin 2θ

sin 2θ′ + sin 2θ
= tan(θ′ − θ)

tan(θ′ + θ) , ρTE = sin(θ′ − θ)
sin(θ′ + θ)

7.3 Show that the refractive index ratio n′/n can be expressed in terms of the ratio r = ρTM/ρTE

and the incident angle θ by:

n′

n
= sinθ

[

1+
(

1+ r
1− r

)2

tan2 θ

]1/2

This provides a convenient way of measuring the refractive index n′ from measurements of

the Fresnel coefficients [712]. It is valid also for complex n′.
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7.4 It is desired to design a Fresnel rhomb such that the exiting ray will be elliptically polarized

with relative phase difference φ between its TE and TM components. Let sinθc = 1/n be

the critical angle within the rhomb. Show that the rhomb angle replacing the 54.6o angle in

Fig. 7.5.6 can be obtained from:

sin2 θ =
cos2 θc ±

√

cos4 θc − 4 sin2 θc tan2(φ/4)

2 tan2(φ/4)+ cos2 θc ±
√

cos4 θc − 4 sin2 θc tan2(φ/4)

Show φ is required to satisfy tan(φ/4)≤ (n− n−1)/2.

7.5 Show the relationship (7.9.7) for the ratio ρTM/ρTE by first proving and then using the fol-

lowing identities in the notation of Eq. (7.7.4):

(k′z ± kz)(k2
x ± kzk′z)= k2k′z ± k′2kz

Using (7.9.7), show that when both media are lossless, the ratio ρTM/ρTE can be expressed

directly in terms of the angles of incidence and refraction, θ and θ′:

ρTM

ρTE

= cos(θ+ θ′)
cos(θ− θ′)

Using this result argue that |ρTM| ≤ |ρTE| at all angles θ. Argue also that θB + θ′B = 90o,

for the Brewster angles. Finally, show that for lossless media with ǫ > ǫ′, and angles of

incidence θ ≥ θc, where sinθc =
√
ǫ′/ǫ, we have:

ρTM

ρTE

=
j
√

sin2 θ− sin2 θc + sinθ tanθ

j
√

sin2 θ− sin2 θc − sinθ tanθ

Explain how this leads to the design equation (7.5.8) of the Fresnel rhomb.

7.6 Let the incident, reflected, and transmitted waves at an interface be:

E+(r)= E+e−j k+·r , E−(r)= E−e−j k−·r , E′(r)= E′0e
−j k′·r

where k± = kx x̂ ± kz ẑ and k′ = kx x̂ + k′z ẑ. Show that the reflection and transmission

coefficients defined in Eqs. (7.7.1)–(7.7.5) can be summarized compactly by the following

vectorial relationships, which are valid for both the TE and TM cases:

k± × (E′0 × k±)
k2

= 2kz
kz ± k′z

E±

7.7 Using Eqs. (7.7.4), derive the expressions (7.9.11) for the Poynting vectors. Derive similar

expressions for the TM case.

Using the definitions in Eqs. (7.3.12), show that if the left medium is lossless and the right

one lossy, the following relationship holds:

1

ηT

(

1− |ρT|2
) = Re

(

1

η′T

)

|τT|2

Then, show that Eqs. (7.9.12) and (7.9.13) are special cases of this result, specialized to the

TE and TM cases.
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7.8 A light ray enters a glass block from one side, suffers a total internal reflection from the top

side, and exits from the opposite side, as shown below. The glass refractive index is n = 1.5.

a. How is the exit angle θb related to the entry angle θa? Explain.

b. Show that all rays, regardless of the entry angle θa, will suffer total internal reflection

at the top side.

c. Suppose that the glass block is replaced by another dielectric with refractive index n.

What is the minimum value of n in order that all entering rays will suffer total internal

reflection at the top side?

7.9 An underwater object is viewed from air at an angle θ through a glass plate, as shown below.

Let z = z1+z2 be the actual depth of the object from the air surface, where z1 is the thickness

of the glass plate, and let n1, n2 be the refractive indices of the glass and water. Show that

the apparent depth of the object is given by:

z′ = z1 cosθ
√

n2
1 − sin2 θ

+ z2 cosθ
√

n2
2 − sin2 θ

7.10 An underwater object is viewed from air at an angle θ through two glass plates of refractive

indices n1, n2 and thicknesses z1, z2, as shown below. Let z3 be the depth of the object

within the water.
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a. Express the apparent depth z of the object in terms of the quantities θ, n0, n1, n2, n3

and z1, z2, z3.

b. Generalize the results of the previous two problems to an arbitrary number of layers.

c. Consider also the continuous limit in which the body of water is inhomogeneous with

a refractive index n(z) given as a function of the depth z.

7.11 As shown below, light must be launched from air into an optical fiber at an angle θ ≤ θa in

order to propagate by total internal reflection.

a. Show that the acceptance angle is given by:

sinθa =
√

n2
f − n2

c

na

b. For a fiber of length l, show that the exiting ray, at the opposite end, is exiting at the

same angle θ as the incidence angle.

c. Show that the propagation delay time through this fiber, for a ray entering at an angle

θ, is given as follows, where t0 = l/c0:

t(θ)=
t0n

2
f

√

n2
f − n2

a sin2 θ

d. What angles θ correspond to the maximum and minimum delay times? Show that the

difference between the maximum and minimum delay times is given by:

Δt = tmax − tmin =
t0nf(nf − nc)

nc

Such travel time delays cause “modal dispersion,” that can limit the rate at which digital

data may be transmitted (typically, the data rate must be fbps ≤ 1/(2Δt) ).
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7.12 You are walking along the hallway in your classroom building wearing polaroid sunglasses

and looking at the reflection of a light fixture on the waxed floor. Suddenly, at a distance d

from the light fixture, the reflected image momentarily disappears. Show that the refractive

index of the reflecting floor can be determined from the ratio of distances:

n = d

h1 + h2

where h1 is your height and h2 that of the light fixture. You may assume that light from

the fixture is unpolarized, that is, a mixture of 50% TE and 50% TM, and that the polaroid

sunglasses are designed to filter out horizontally polarized light. Explain your reasoning.†

7.13 Prove the effective depth formulas (7.5.17) of the Goos-Hänchen effect by directly differeti-

ating the reflection coefficient phases (7.8.3) with respect to kx, noting that the lateral shift

is x0 = 2dψ/dkx where ψ is either ψTE or ψTM.

7.14 First, prove Eq. (7.12.13) from Eqs. (7.12.11). Then, show the following relationships among

the angles θ,θr , θ
′:

tan(θ/2)

tan(θ′/2)
=
√

1− β
1+ β ,

tan(θr/2)

tan(θ′/2)
=
√

1+ β
1− β ,

tan(θr/2)

tan(θ/2)
= 1− β

1+ β

7.15 A TM plane wave is incident obliquely on a moving interface as shown in Fig. 7.12.1. Show

that the Doppler-shifted frequencies of the reflected and transmitted waves are still given

by Eqs. (7.12.14) and (7.12.16). Moreover, show that the Brewster angle is given by:

cosθB = 1+ β
√
n2 + 1

β+
√
n2 + 1

†See, H. A. Smith, “Measuring Brewster’s Angle Between Classes,” Physics Teacher, Febr. 1979, p.109.
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Multilayer Film Applications

8.1 Multilayer Dielectric Structures at Oblique Incidence

Using the matching and propagation matrices for transverse fields that we discussed

in Sec. 7.3, we derive here the layer recursions for multiple dielectric slabs at oblique

incidence.

Fig. 8.1.1 shows such a multilayer structure. The layer recursions relate the various

field quantities, such as the electric fields and the reflection responses, at the left of

each interface.

Fig. 8.1.1 Oblique incidence on multilayer dielectric structure.

We assume that there are no incident fields from the right side of the structure.

The reflection/refraction angles in each medium are related to each other by Snel’s law

applied to each of the M + 1 interfaces:

na sinθa = ni sinθi = nb sinθb , i = 1,2, . . . ,M (8.1.1)

It is convenient also to define by Eq. (7.3.8) the propagation phases or phase thick-

nesses for each of theM layers, that is, the quantities δi = kzili. Using kzi = k0ni cosθi,

where k0 is the free-space wavenumber, k0 = ω/c0 = 2πf/c0 = 2π/λ, we have for

i = 1,2, . . . ,M:

304 8. Multilayer Film Applications

δi = ω

c0

nili cosθi = 2π

λ
nili cosθi = 2π

λ
lini

√
√
√
√1− n

2
a sin2 θa

n2
i

(8.1.2)

where we used Eq. (8.1.1) to write cosθi =
√

1− sin2 θi =
√

1− n2
a sin2 θa/n

2
i . The

transverse reflection coefficients at the M + 1 interfaces are defined as in Eq. (6.1.1):

ρTi =
nT,i−1 − nTi
nT,i−1 + nTi

, i = 1,2, . . . ,M + 1 (8.1.3)

where we set nT0 = nTa, as in Sec. 6.1. and nT,M+1 = nTb. The transverse refractive

indices are defined in each medium by Eq. (7.2.13):

nTi =
⎧

⎨

⎩

ni
cosθi

, TM polarization

ni cosθi , TE polarization
, i = a,1,2, . . . ,M, b (8.1.4)

To obtain the layer recursions for the electric fields, we apply the propagation matrix

(7.3.5) to the fields at the left of interface i + 1 and propagate them to the right of the

interface i, and then, apply a matching matrix (7.3.11) to pass to the left of that interface:

[

ETi+
ETi−

]

= 1

τTi

[

1 ρTi
ρTi 1

][

ejδi 0

0 e−jδi

][

ET,i+1,+
ET,i+1,−

]

Multiplying the matrix factors, we obtain:

[

ETi+
ETi−

]

= 1

τTi

[

ejδi ρTie
−jδi

ρTie
jδi e−jδi

][

ET,i+1,+
ET,i+1,−

]

, i =M,M − 1, . . . ,1 (8.1.5)

This is identical to Eqs. (6.1.2) with the substitutions kili → δi and ρi → ρTi. The

recursion is initialized at the left of the (M+1)st interface by performing an additional

matching to pass to the right of that interface:

[

ET,M+1,+
ET,M+1,−

]

= 1

τT,M+1

[

1 ρT,M+1

ρT,M+1 1

][

E′T.M+1,+
0

]

(8.1.6)

It follows now from Eq. (8.1.5) that the reflection responses, ΓTi = ETi−/ETi+, will

satisfy the identical recursions as Eq. (6.1.5):

ΓTi =
ρTi + ΓT,i+1e

−2jδi

1+ ρTiΓT,i+1e−2jδi
, i =M,M − 1, . . . ,1 (8.1.7)

and initialized at ΓT,M+1 = ρT,M+1. Similarly, we obtain the following recursions for

the total transverse electric and magnetic fields at each interface (they are continuous

across each interface):

[

ETi
HTi

]

=
[

cosδi jηTi sinδi
jη−1
Ti sinδi cosδi

][

ET,i+1

HT,i+1

]

, i =M,M − 1, . . . ,1 (8.1.8)
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where ηTi are the transverse characteristic impedances defined by Eq. (7.2.12) and re-

lated to the refractive indices by ηTi = η0/nTi. The wave impedances, ZTi = ETi/HTi,
satisfy the following recursions initialized by ZT,M+1 = ηTb:

ZTi = ηTi
ZT,i+1 + jηTi tanδi

ηTi + jZT,i+1 tanδi
, i =M,M − 1, . . . ,1 (8.1.9)

The MATLAB function multidiel that was introduced in Sec. 6.1 can also be used

in the oblique case with two extra input arguments: the incidence angle from the left

and the polarization type, TE or TM. Its full usage is as follows:

[Gamma1,Z1] = multidiel(n,L,lambda,theta,pol); % multilayer dielectric structure

where theta is the angle θ = θa and pol is one of the strings ’te’ or ’tm’. If the angle

and polarization arguments are omitted, the function defaults to normal incidence for

which TE and TM are the same. The other parameters have the same meaning as in

Sec. 6.1.

In using this function, it is convenient to normalize the wavelength λ and the optical

lengths nili of the layers to some reference wavelength λ0. The frequency f will be

normalized to the corresponding reference frequency f0 = c0/λ0.

Defining the normalized thicknesses Li = nili/λ0, so that nili = Liλ0, and noting

that λ0/λ = f/f0, we may write the phase thicknesses (8.1.2) in the normalized form:

δi = 2π
λ0

λ
Li cosθi = 2π

f

f0
Li cosθi , i = 1,2, . . . ,M (8.1.10)

Typically, but not necessarily, the Li are chosen to be quarter-wavelength long at

λ0, that is, Li = 1/4. This way the same multilayer design can be applied equally well

at microwave or at optical frequencies. Once the wavelength scale λ0 is chosen, the

physical lengths of the layers li can be obtained from li = Liλ0/ni.

8.2 Lossy Multilayer Structures

The multidiel function can be revised to handle lossy media. The reflection response

of the multilayer structure is still computed from Eq. (8.1.7) but with some changes.

In Sec. 7.7 we discussed the general case when either one or both of the incident and

transmitted media are lossy.

In the notation of Fig. 8.1.1, we may assume that the incident medium na is lossless

and all the other ones, ni, i = 1,2, . . . ,M, b, are lossy (and nonmagnetic). To imple-

ment multidiel, one needs to know the real and imaginary parts of ni as functions

of frequency, that is, ni(ω)= nRi(ω)−jnIi(ω), or equivalently, the complex dielectric

constants of the lossy media:

ǫi(ω) = ǫRi(ω)−jǫIi(ω) , i = 1,2, . . . ,M, b

ni(ω) =
√

ǫi(ω)

ǫ0

=
√

ǫRi(ω)−jǫIi(ω)
ǫ0

= nRi(ω)−jnIi(ω)
(8.2.1)
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Snel’s law given in Eq. (8.1.1) remains valid, except now the angles θi and θb are

complex valued because ni, nb are. One can still define the transverse refractive indices

nTi through Eq. (8.1.4) using the complex-valued ni, and cosθi given by:

cosθi =
√

1− sin2 θi =
√
√
√
√1− n

2
a sin2 θa

n2
i

, i = a,1,2 . . . ,M, b (8.2.2)

The reflection coefficients defined in Eq. (8.1.3) are equivalent to those given in

Eq. (7.7.2) for the case of arbitrary incident and transmitted media.

The phase thicknesses δi now become complex-valued and are given by δi = kzili,
where kzi is computed as follows. From Snel’s law we have kxi = kxa =ω√μ0ǫ0na sinθa
= k0na sinθa, where k0 =ω√μ0ǫ0 =ω/c0 is the free-space wave number. Then,

kzi =
√

ω2μ0ǫi − k2
xi =

ω

c0

√

n2
i − n2

a sin2 θa , i = a,1, . . . ,M, b (8.2.3)

Thus, the complex phase thicknesses are given by:

δi = kzili = ωli
c0

√

n2
i − n2

a sin2 θa , i = 1,2, . . . ,M (8.2.4)

Writing c0 = f0λ0 for some reference frequency and wavelength, we may re-express

(8.2.4) in terms of the normalized frequency and normalized physical lengths:

δi = kzili = 2π
f

f0

li
λ0

√

n2
i − n2

a sin2 θa , i = 1,2, . . . ,M (8.2.5)

To summarize, given the complex ni(ω) as in Eq. (8.2.1) at each desired value of

ω, we calculate cosθi from Eq. (8.2.2), nTi and ρTi from Eqs. (8.1.4) and (8.1.3), and

thicknesses δi from Eq. (8.2.5). Then, we use (8.1.7) to calculate the reflection response.

The MATLAB function multidiel2 implements these steps, with usage:

[Gamma1,Z1] = multidiel2(n,l,f,theta,pol); % lossy multilayer structure

Once Γ1 is determined, one may calculate the power entering each layer as well as

the power lost within each layer. The time-averaged power per unit area entering the ith

layer is the z-component of the Poynting vector, which is given in terms of the transverse

E,H fields as follows:

Pi = 1

2
Re
(

ETiH
∗
Ti

)

, i = 1,2, . . . ,M (8.2.6)

The power absorbed within the ith layer is equal to the difference of the power

entering the layer and the power leaving it:

Ploss
i = Pi −Pi+1 , i = 1,2, . . . ,M (8.2.7)

The transverse fields can be calculated by inverting the recursion (8.1.8), that is,

[

ET,i+1

HT,i+1

]

=
[

cosδi −jηTi sinδi
−jη−1

Ti sinδi cosδi

][

ETi
HTi

]

, i = 1,2, . . . ,M (8.2.8)
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The recursion is initialized with the fields ET1,HT1 at the first interface. These can

be calculated with the help of Γ1:

ET1 = ET1+ + ET1− = ET1+(1+ Γ1)

HT1 = 1

ηTa

(

ET1+ − ET1−
) = 1

ηTa
ET1+(1− Γ1)

(8.2.9)

where ηTa = η0/nTa. The field ET1+ is the transverse component of the incident field.

If we denote the total incident field by Ein, then ET1+ will be given by:

ET1+ =
⎧

⎨

⎩

Ein , TE case

Ein cosθa , TM case
(8.2.10)

The total incident power (along the direction of the incident wave vector), its z-

component, and the power entering the first layer will be given as follows (in both the

TE and TM cases):

Pin = 1

2ηa
|Ein|2 , Pin,z = Pin cosθa , P1 = Pin,z

(

1− |Γ1|2
)

(8.2.11)

where ηa = η0/na. Thus, one can start with Ein =
√

2ηaPin, if the incident power is

known.

8.3 Single Dielectric Slab

Many features of oblique incidence on multilayer slabs can be clarified by studying the

single-slab case, shown in Fig. 8.3.1. Assuming that the media to the left and right are

the same, na = nb, it follows that θb = θa and also that ρT1 = −ρT2. Moreover, Snel’s

law implies na sinθa = n1 sinθ1.

Fig. 8.3.1 Oblique incidence on single dielectric slab.

Because there are no incident fields from the right, the reflection response at the

left of interface-2 is: ΓT2 = ρT2 = −ρT1. It follows from Eq. (8.1.7) that the reflection

response at the left of interface-1 will be:
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ΓT1 = ρT1 + ρT2e
−2jδ1

1+ ρT1ρT2e−2jδ1
= ρT1(1− e−2jδ1)

1− ρ2
T1e

−2jδ1
(8.3.1)

These are analogous to Eqs. (5.4.6) and (5.5.4). According to Eq. (8.1.10), the phase

thickness can be written in the following normalized form, where L1 = n1l1/λ0:

δ1 = 2π
λ0

λ
L1 cosθ1 = 2π

f

f0
L1 cosθ1 = π f

f1
(8.3.2)

f1 = f0
2L1 cosθ1

(8.3.3)

At frequencies that are integral multiples of f1, f = mf1, the reflection response

vanishes because 2δ1 = 2π(mf1)/f1 = 2πm and e−2jδ1 = 1. Similarly, at the half-

integral multiples, f = (m+ 0.5)f1, the response is maximum because e−2jδ1 = −1.

Because f1 depends inversely on cosθ1, then as the angle of incidence θa increases,

cosθ1 will decrease and f1 will shift towards higher frequencies. The maximum shift

will occur when θ1 reaches its maximum refraction value θ1c = asin(na/n1) (assuming

na < n1.)

Similar shifts occur for the 3-dB width of the reflection response notches. By the

same calculation that led to Eq. (5.5.9), we find for the 3-dB width with respect to the

variable δ1:

tan

(
Δδ1

2

)

= 1− ρ2
T1

1+ ρ2
T1

Setting Δδ1 = πΔf/f1, we solve for the 3-dB width in frequency:

Δf = 2f1
π

atan

(

1− ρ2
T1

1+ ρ2
T1

)

(8.3.4)

The left/right bandedge frequencies are f1 ± Δf/2. The dependence of Δf on the

incidence angle θa is more complicated here because ρT1 also depends on it.

In fact, as θa tends to its grazing value θa → 90o, the reflection coefficients for

either polarization have the limit |ρT1| → 1, resulting in zero bandwidth Δf . On the

other hand, at the Brewster angle, θaB = atan(n1/na), the TM reflection coefficient

vanishes, resulting in maximum bandwidth. Indeed, because atan(1)= π/4, we have

Δfmax = 2f1 atan(1)/π = f1/2.

Fig. 8.3.2 illustrates some of these properties. The refractive indices were na = nb =
1 and n1 = 1.5. The optical length of the slab was taken to be half-wavelength at the

reference wavelength λ0, so that n1l1 = 0.5λ0, or, L1 = 0.5.

The graphs show the TE and TM reflectances |ΓT1(f)|2 as functions of frequency

for the angles of incidence θ1 = 75o and θa = 85o. The normal incidence case is also

included for comparison.

The corresponding refracted angles were θ1 = asin
(

na asin(θa)/n1

) = 40.09o and

θ1 = 41.62o. Note that the maximum refracted angle is θ1c = 41.81o, and the Brewster

angle, θaB = 56.31o.
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Fig. 8.3.2 TE and TM reflectances of half-wavelength slab.

The notch frequencies were f1 = f0/(2L1 cosθ1)= 1.31f0 and f1 = 1.34f0 for the

angles θa = 75o and 85o. At normal incidence we have f1 = f0/(2L1)= f0, because

L1 = 0.5.

The graphs also show the 3-dB widths of the notches, calculated from Eq. (8.3.4).

The reflection responses were computed with the help of the function multidiel with

the typical MATLAB code:

na = 1; nb = 1;

n1 = 1.5; L1 = 0.5;

f = linspace(0,3,401);

theta = 75;

G0 = abs(multidiel([na,n1,nb], L1, 1./f)).^2;

Ge = abs(multidiel([na,n1,nb], L1, 1./f, theta, ’te’)).^2;

Gm = abs(multidiel([na,n1,nb], L1, 1./f, theta, ’tm’)).^2;

The shifting of the notch frequencies and the narrowing of the notch widths is evi-

dent from the graphs. Had we chosen θa = θaB = 56.31o, the TM response would have

been identically zero because of the factor ρT1 in Eq. (8.3.1).

The single-slab case is essentially a simplified version of a Fabry-Perot interferometer

[634], used as a spectrum analyzer. At multiples of f1, there are narrow transmittance

bands. Because f1 depends on f0/ cosθ1, the interferometer serves to separate different

frequencies f0 in the input by mapping them onto different angles θ1.

Next, we look at three further applications of the single-slab case: (a) frustrated total

internal reflection, (b) surface plasmon resonance, and (c) the perfect lens property of

negative-index media.

8.4 Frustrated Total Internal Reflection

As we discussed in Sec. 7.5, when a wave is incident at an angle greater than the total

internal reflection (TIR) angle from an optically denser medium na onto a rarer medium
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nb, with na > nb, then there is 100 percent reflection. The transmitted field into the

rarer medium nb is evanescent, decaying exponentially with distance.

However, if an object or another medium is brought near the interface from the

nb side, the evanescent field is “frustrated” and can couple into a propagating wave.

For example, if another semi-infinite medium na is brought close to the interface, then

the evanescent field can “tunnel” through to the other side, emerging as an attenuated

version of the incident wave. This effect is referred to as “frustrated” total internal

reflection.

Fig. 8.4.1 shows how this may be realized with two 45o prisms separated by a small air

gap. With na = 1.5 and nb = 1, the TIR angle is θc = asin(nb/na)= 41.8o, therefore,

θ = 45o > θc. The transmitted fields into the air gap reach the next prism with an

attenuated magnitude and get refracted into a propagating wave that emerges at the

same angle θ.

Fig. 8.4.1 Frustrated total internal reflection between two prisms separated by an air gap.

Fig. 8.4.2 shows an equivalent problem of two identical semi-infinite media na, sep-

arated by a medium nb of length d. Let εa = n2
a, εb = n2

b be the relative dielectric

constants. The components of the wavevectors in media na and nb are:

kx = k0na sinθ , k0 = ω

c0

kza =
√

k2
0n

2
a − k2

x = k0na cosθ

kzb =

⎧

⎪⎨

⎪⎩

k0

√

n2
b − n2

a sin2 θ , if θ ≤ θc
−jk0

√

n2
a sin2 θ− n2

b = −jαzb , if θ ≥ θc

(8.4.1)

where sinθc = nb/na. Because of Snel’s law, the kx component is preserved across the

interfaces. If θ > θc, then kzb is pure imaginary, that is, evanescent.

The transverse reflection and transmission responses are:

Γ = ρa + ρbe−2jkzbd

1+ ρaρbe−2jkzbd
= ρa(1− e−2jkzbd)

1− ρ2
ae−2jkzbd

T = τaτbe
−jkzbd

1+ ρaρbe−2jkzbd
= (1− ρ2

a)e
−jkzbd

1− ρ2
ae−2jkzbd

(8.4.2)
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Fig. 8.4.2 Frustrated total internal reflection.

where ρa, ρb are the transverse reflection coefficients at the a,b interfaces and τa =
1 + ρa and τb = 1 + ρb are the transmission coefficients, and we used the fact that

ρb = −ρa because the media to the left and right of the slab are the same. For the two

polarizations, ρa is given in terms of the above wavevector components as follows:

ρTE
a = kza − kzb

kza + kzb
, ρTM

a = kzbεa − kzaεb
kzbεa + kzaεb

(8.4.3)

For θ ≤ θc, the coefficients ρa are real-valued, and for θ ≥ θc, they are unimodular,

|ρa| = 1, given explicitly by

ρTE
a =

na cosθ+ j
√

n2
a sin2 θ− n2

b

na cosθ− j
√

n2
a sin2 θ− n2

b

, ρTM
a =

−jna
√

n2
a sin2 θ− n2

b − n2
b cosθ

−jna
√

n2
a sin2 θ− n2

b + n2
b cosθ

(8.4.4)

For all angles, it can be shown that 1− |Γ|2 = |T|2, which represents the amount of

power that enters perpendicularly into interface a and exits from interface b. For the

TIR case, Γ,T simplify into:

Γ = ρa(1− e−2αzbd)

1− ρ2
ae−2αzbd

, T = (1− ρ2
a)e

−αzbd

1− ρ2
ae−2αzbd

, αzb = 2π

λ0

√

n2
a sin2 θ− n2

b (8.4.5)

where we defined the free-space wavelength through k0 = 2π/λ0. Setting ρa = ejφa ,

the magnitude responses are given by:

|Γ|2 = sinh2(αzbd)

sinh2(αzbd)+ sin2φa
, |T|2 = sin2φa

sinh2(αzbd)+ sin2φa
(8.4.6)

For a prism with na = 1.5 and an air gap nb = 1, Fig. 8.4.3 shows a plot of Eqs. (8.4.5)

versus the distance d at the incidence angle θ = 45o. The reflectance becomes almost

100 percent for thickness of a few wavelengths.

Fig. 8.4.4 shows the reflectance versus angle over 0 ≤ θ ≤ 90o for the thicknesses

d = 0.4λ0 and d = 0.5λ0. The TM reflection response vanishes at the Brewster angle

θB = atan(nb/na)= 33.69o.
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Fig. 8.4.3 Reflectance and transmittance versus thickness d.

The case d = 0.5λ0 was chosen because the slab becomes a half-wavelength slab at

normal incidence, that is, kzbd = 2π/2 at θ = 0o, resulting in the vanishing of Γ as can

be seen from Eq. (8.4.2).

The half-wavelength condition, and the corresponding vanishing of Γ, can be re-

quired at any desired angle θ0 < θc, by demanding that kzbd = 2π/2 at that angle,

which fixes the separation d:

kzbd = π ⇒ 2πd

λ0

√

n2
b − n2

a sin2 θ0 = π ⇒ d = λ0

2
√

n2
b − n2

a sin2 θ0

Fig. 8.4.5 depicts the case θ0 = 20o, which fixes the separation to be d = 0.5825λ0.

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

 θB  θc

|
Γ

|
2

θ  (degrees)

Reflectance,  d/λ 0 = 0.4

 θB = 33.69o

 θc = 41.81o

 TM

 TE

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

 θB  θc

|
Γ

|
2

θ  (degrees)

Reflectance,  d/λ 0 = 0.5

 TM

 TE

Fig. 8.4.4 Reflectance versus angle of incidence.

The fields within the air gap can be determined using the layer recursions (8.1.5).

Let Ea+ be the incident transverse field at the left side of the interface a, and E± the

transverse fields at the right side. Using Eq. (8.1.5) and (8.1.6), we find for the TIR case:

E+ = (1+ ρa)Ea+
1− ρ2

ae−2αzbd
, E− = −ρae−2αzbd(1+ ρa)Ea+

1− ρ2
ae−2αzbd

(8.4.7)
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Fig. 8.4.5 Reflectance vanishes at θ0 = 20o.

The transverse electric field within the air gap will be then ET(z)= E+e−αzbz+E−eαzbz,
and similarly for the magnetic field. Using (8.4.7) we find:

ET(z) =
[

1+ ρa
1− ρ2

ae−2αzbd

]
[

e−αzbz − ρae−2αzbdeαzbz
]

Ea+

HT(z) =
[

1− ρa
1− ρ2

ae−2αzbd

]
[

e−αzbz + ρae−2αzbdeαzbz
]Ea+
ηaT

(8.4.8)

where ηaT is the transverse impedance of medium na, that is, with ηa = η0/na:

ηaT =
⎧

⎨

⎩

ηa cosθa , TM, or parallel polarization

ηa/ cosθa , TE, or perpendicular polarization

It is straightforward to verify that the transfer of power across the gap is independent

of the distance z and given by

Pz(z)= 1

2
Re
[

ET(z)H
∗
T(z)

] = (

1− |Γ|2) |Ea+|
2

2ηaT

Frustrated total internal reflection has several applications [552–588], such as in-

ternal reflection spectroscopy, sensors, fingerprint identification, surface plasmon res-

onance, and high resolution microscopy. In many of these applications, the air gap is

replaced by another, possibly lossy, medium. The above formulation remains valid with

the replacement εb = n2
b → εb = εbr − jεbi, where the imaginary part εri characterizes

the losses.

8.5 Surface Plasmon Resonance

We saw in Sec. 7.11 that surface plasmons are TM waves that can exist at an interface

between air and metal, and that their wavenumber kx of propagation along the interface

is larger that its free-space value at the same frequency. Therefore, such plasmons

cannot couple directly to plane waves incident on the interface.
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However, if the incident TM plane wave is from a dielectric and from an angle that is

greater than the angle of total internal reflection, then the corresponding wavenumber

will be greater than its vacuum value and it could excite a plasmon wave along the

interface. Fig. 8.5.1 depicts two possible configurations of how this can be accomplished.

Fig. 8.5.1 Kretschmann-Raether and Otto configurations.

In the so-called Kretschmann-Raether configuration [591,594], a thin metal film of

thickness of a fraction of a wavelength is sandwiched between a prism and air and the

incident wave is from the prism side. In the Otto configuration [592], there is an air

gap between the prism and the metal. The two cases are similar, but we will consider in

greater detail the Kretschmann-Raether configuration, which is depicted in more detail

in Fig. 8.5.2.

Fig. 8.5.2 Surface plasmon resonance excitation by total internal reflection.

The relative dielectric constant εa and refractive index na of the prism are related

by εa = n2
a. The air side has εb = n2

b = 1, but any other lossless dielectric will do as

long as it satisfies nb < na. The TIR angle is sinθc = nb/na, and the angle of incidence

from the prism side is assumed to be θ ≥ θc so that†

kx = k0na sinθ ≥ k0nb , k0 = ω

c0

(8.5.1)

†The geometrical picture in Fig. 8.5.2 is not valid forθ ≥ θc because the wavevectors are complex-valued.
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Because of Snel’s law, the kx component of the wavevector along the interface is

preserved across the media. The z-components in the prism and air sides are given by:

kza =
√

k2
0n

2
a − k2

x = k0na cosθ

kzb = −jαzb = −j
√

k2
x − k2

0n
2
b = −jk0

√

n2
a sin2 θ− n2

b

(8.5.2)

where kzb is pure imaginary because of the TIR assumption. Therefore, the transmitted

wave into the εb medium attenuates exponentially like e−jkzbz = e−αzbz.
For the metal layer, we assume that its relative dielectric constant is ε = −εr − jεi,

with a negative real part (εr > 0) and a small negative imaginary part (0 < εi≪ εr) that

represents losses. Moreover, in order for a surface plasmon wave to be supported on

the ε–εb interface, we must further assume that εr > εb. The kz component within the

metal will be complex-valued with a dominant imaginary part:

kz = −j
√

k2
x − k2

0ε = −j
√

k2
x + k2

0(εr + jεi) = −jk0

√

n2
a sin2 θ+ εr + jεi (8.5.3)

If there is a surface plasmon wave on the ε–εb interface, then as we saw in Sec. 7.7,

it will be characterized by the specific values of kx, kz, kzb:

kx0 = βx0 − jαx0 = k0

√

εεb
ε+ εb

, kz0 = − k0ε√
ε+ εb

, kzb0 = k0εb√
ε+ εb

(8.5.4)

Using Eq. (7.11.10), we have approximately to lowest order in εi:

βx0 = k0

√

εrεb
εr − εb

, αx0 = k0

(
εrεb
εr − εb

)3/2 εi

2ε2
r

(8.5.5)

and similarly for kz0, which has a small real part and a dominant imaginary part:

kz0 = βz0 − jαz0 , αz0 = k0εr√
εr − εb

, βz0 = k0(εr − 2εb)εi
(εr − εb)3/2

(8.5.6)

If the incidence angle θ is such that kx is near the real-part of kx0, that is, kx =
k0na sinθ = βx0, then a resonance takes place exciting the surface plasmon wave. Be-

cause of the finite thickness d of the metal layer and the assumed losses εi, the actual

resonance condition is not kx = βx0, but is modified by a small shift: kx = βx0 + β̄x0, to

be determined shortly.

At the resonance angle there is a sharp drop of the reflection response measured

at the prism side. Let ρa, ρb denote the TM reflection coefficients at the εa–ε and ε–

εb interfaces, as shown in Fig. 8.5.2. The corresponding TM reflection response of the

structure will be given by:

Γ = ρa + ρbe−2jkzd

1+ ρaρbe−2jkzd
= ρa + ρbe−2αzde−2jβzd

1+ ρaρbe−2αzde−2jβzd
(8.5.7)

where d is the thickness of the metal layer and kz = βz− jαz is given by Eq. (8.5.3). The

TM reflection coefficients are given by:

ρa = kzεa − kzaε
kzεa + kzaε

, ρb = kzbε− kzεb
kzbε+ kzεb

(8.5.8)
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where kza, kzb are given by (8.5.2). Explicitly, we have for θ ≥ θc:

ρa = −
ε
√

k2
0εa − k2

x + jεa
√

k2
x − k2

0ε

ε
√

k2
0εa − k2

x − jεa
√

k2
x − k2

0ε
= −

ε cosθ+ jna
√

εa sin2 θ− ε
ε cosθ− jna

√

εa sin2 θ− ε

ρb =
ε
√

k2
x − k2

0εb − εb
√

k2
x − k2

0ε

ε
√

k2
x − k2

0εb + εb
√

k2
x − k2

0ε
=
ε
√

εa sin2 θ− εb − εb
√

εa sin2 θ− ε
ε
√

εa sin2 θ− εb + εb
√

εa sin2 θ− ε

(8.5.9)

We note that for the plasmon resonance to be excited through such a configuration,

the metal must be assumed to be slightly lossy, that is, εi �= 0. If we assume that it

is lossless with a negative real part, ε = −εr , then, ρa becomes a unimodular complex

number, |ρa| = 1, for all angles θ, while ρb remains real-valued for θ ≥ θc, and also kz
is pure imaginary, βz = 0. Hence, it follows that:

|Γ|2 = |ρa|2 + 2 Re(ρa)ρbe
−2αzd + ρ2

be
−4αzd

1+ 2 Re(ρa)ρbe−2αzd + |ρa|2ρ2
be
−4αzd

= 1

Thus, it remains flat for θ ≥ θc. For θ ≤ θc, ρa is still unimodular, and ρb also

becomes unimodular, |ρb| = 1. Setting ρa = ejφa and ρb = ejφb , we find for θ ≤ θc:

|Γ|2 =
∣
∣
∣
∣
∣

ejφa + ejφbe−2αzd

1+ ejφaejφbe−2αzd

∣
∣
∣
∣
∣

2

= 1+ 2 cos(φa −φb)e−2αzd + e−4αzd

1+ 2 cos(φa +φb)e−2αzd + e−4αzd
(8.5.10)

which remains almost flat, exhibiting a slight variation with the angle for θ ≤ θc.
As an example, consider a quartz prism with na = 1.5, coated with a silver film of

thickness of d = 50 nm, and air on the other side εb = 1. The relative refractive index

of the metal is taken to be ε = −16−0.5j at the free-space wavelength of λ0 = 632 nm.

The corresponding free-space wave number is k0 = 2π/λ0 = 9.94 rad/μm.

Fig. 8.5.3 shows the TM reflection response (8.5.7) versus angle. The TIR angle is

θc = asin(nb/na)= 41.81o. The plasmon resonance occurs at the angle θres = 43.58o.

The graph on the right shows an expanded view over the angle range 41o ≤ θ ≤ 45o.

Both angles θc and θres are indicated on the graphs as black dots.

The computation can be carried out with the help of the MATLAB function multi-

diel1.m , or alternatively multidiel.m , with the sample code:

na = 1.5; ea = na^2; % prism side

er = 16; ei = 0.5; ep = -er-j*ei; % silver layer

nb = 1; eb = nb^2; % air side

d = 50; la0 = 632; % in units of nanometers

th = linspace(0,89,8901); % incident angle in degrees

n1 = sqrte(ep); % evanescent SQRT, needed if εi = 0

L1 = n1*d/la0; % complex optical length in units of λ0

n = [na, n1, nb]; % input to multidiel1

for i=1:length(th), % TM reflectance

Ga(i) = abs(multidiel1(n, L1, 1, th(i), ’tm’)).^2; % at λ/λ0 = 1

end

plot(th,Ga);
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Fig. 8.5.3 Surface plasmon resonance.

Fig. 8.5.4 shows the reflection response when the metal is assumed to be lossless with

ε = −16, all the other parameters being the same. As expected, there is no resonance

and the reflectance stays flat for θ ≥ θc, with mild variation for θ < θc.
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Fig. 8.5.4 Absence of resonance when metal is assumed to be lossless.

Let Ea+, Ea− be the forward and backward transverse electric fields at the left side

of interface a. The fields at the right side of the interface can be obtained by inverting

the matching matrix:

[

Ea+
Ea−

]

= 1

1+ ρa

[

1 ρa
ρa 1

][

E+
E−

]

⇒
[

E+
E−

]

= 1

1− ρa

[

1 −ρa
−ρa 1

][

Ea+
Ea−

]

Setting Ea− = ΓEa+, with Γ given by Eq. (8.5.7), we obtain:

E+ = 1− ρaΓ
1− ρa

Ea+ = (1+ ρa)Ea+
1+ ρaρbe−2jkzd

E− = −ρa + Γ
1− ρa

Ea+ = ρbe
−2jkzd(1+ ρa)Ea+

1+ ρaρbe−2jkzd
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The transverse electric and magnetic fields within the metal layer will be given by:

ET(z)= E+e−jkzz + E−ejkzz , HT(z)= 1

ηT

[

E+e−jkzz − E−ejkzz
]

Using the relationship ηT/ηaT = (1+ ρa)/(1− ρa), we have:

ET(z) =
[

1+ ρa
1+ ρaρbe−2jkzd

]
[

e−jkzz + ρbe−2jkzdejkzz
]

Ea+

HT(z) =
[

1− ρa
1+ ρaρbe−2jkzd

]
[

e−jkzz − ρbe−2jkzdejkzz
]Ea+
ηaT

(8.5.11)

where ηaT = ηa cosθ is the TM characteristic impedance of the prism. The power flow

within the metal strip is described by the z-component of the Poynting vector:

P(z)= 1

2
Re
[

ET(z)H
∗
T(z)

]

(8.5.12)

The power entering the conductor at interface a is:

Pin =
(

1− |Γ|2) |Ea+|
2

2ηaT
= 1

2
Re
[

ET(z)H
∗
T(z)

]
∣
∣
∣
∣
z=0

(8.5.13)

Fig. 8.5.5 shows a plot of the quantityP(z)/Pin versus distance within the metal, 0 ≤
z ≤ d, at the resonant angle of incidence θ = θres. Because the fields are evanescent in

the right medium nb, the power vanishes at interface b, that is, at z = d. The reflectance

at the resonance angle is |Γ|2 = 0.05, and therefore, the fraction of the incident power

that enters the metal layer and is absorbed by it is 1− |Γ|2 = 0.95.

0 10 20 30 40 50
0

0.5

1

z  (nm)

P
(z

) 
/ 
P

in

power flow versus distance

Fig. 8.5.5 Power flow within metal layer at the resonance angle θres = 43.58o.

The angle width of the resonance of Fig. 8.5.3, measured at the 3-dB level |Γ|2 = 1/2,

is very narrow, Δθ = 0.282o. The width Δθ, as well as the resonance angle θres, and

the optimum metal film thickness d, can be estimated by the following approximate

procedure.

To understand the resonance property, we look at the behavior of Γ in the neigh-

borhood of the plasmon wavenumber kx = kx0 given by (8.5.4). At this value, the TM
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reflection coefficient at the ε–εb interface develops a pole, ρb = ∞, which is equivalent

to the condition kzb0ε+ kz0εb = 0, with kzb0, kz0 defined by Eq. (8.5.4).

In the neighborhood of this pole, kx ≃ kx0, ρb will be given by ρb ≃ K0/(kx − kx0),
where K0 is the residue of the pole. It can be determined by:

K0 = lim
kx→kx0

(kx − kx0)ρb = lim
kx→kx0

(kx − kx0)kzbε− kzεb
kzbε+ kzεb

= kzbε− kzεb
d

dkx
(kzbε+ kzεb)

∣
∣
∣
∣
∣
∣
∣
kx=kx0

The derivative dkz/dkx can be determined by differentiating k2
z + k2

x = k2
0ε, that is,

kz dkz + kx dkx = 0, which gives dkz/dkx = −kx/kz, and similarly for dkzb/dkx. It

follows that:

K0 = kzb0ε− kz0εb

− kx0
kzb0

ε− kx0
kz0

εb

Inserting kx0, kz0, kzb0 from Eq. (8.5.4), we obtain:

K0 = k0

(
2

εb − ε
)(

εεb
ε+ εb

)3/2

(8.5.14)

The reflection response can then be approximated near kx ≃ kx0 by

Γ ≃
ρa + K0

kx − kx0
e−2jkzd

1+ ρa K0

kx − kx0
e−2jkzd

The quantities ρa and e−2jkzd can also be replaced by their values at kx0, kz0, kzb0,

thus obtaining:

Γ = ρa0

kx − kx0 + ρ−1
a0K0e

−2jkz0d

kx − kx0 + ρa0K0e−2jkz0d
(8.5.15)

where

ρa0 = kz0εa − kza0ε

kz0εa + kza0ε
= εa +

√

ε(εa − εb)+εaεb
εa −

√

ε(εa − εb)+εaεb
which was obtained using kza0 =

√

k2
0εa − k2

x0 and Eqs. (8.5.4). Replacing ε = −εr − jεi,
we may also write:

ρa0 = εa + j
√

(εr + jεi)(εa − εb)−εaεb
εa − j

√

(εr + jεi)(εa − εb)−εaεb
≡ −b0 + ja0 (8.5.16)

which serves as the definition of b0, a0. We also write:

ρ−1
a0 =

εa − j
√

(εr + jεi)(εa − εb)−εaεb
εa + j

√

(εr + jεi)(εa − εb)−εaεb
= −b0 + ja0

b2
0 + a2

0

≡ −b1 − ja1 (8.5.17)

We define also the wavenumber shifts that appear in the denominator and numerator

of (8.5.15) as follows:

k̄x0 = −ρa0K0e
−2jkz0d = (b0 − ja0)K0e

−2jkz0d ≡ β̄x0 − jᾱx0
k̄x1 = −ρ−1

a0K0e
−2jkz0d = (b1 + ja1)K0e

−2jkz0d ≡ β̄x1 + jᾱx1
(8.5.18)
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Then, Eq. (8.5.15) becomes, replacing kx0 = βx0 − jαx0

Γ = ρa0
kx − kx0 − k̄x1
kx − kx0 − k̄x0

= ρa0
(kx − βx0 − β̄x1)+j(αx0 − ᾱx1)
(kx − βx0 − β̄x0)+j(αx0 + ᾱx0)

(8.5.19)

resulting in the reflectance:

|Γ|2 = |ρa0|2 (kx − βx0 − β̄x1)
2+(αx0 − ᾱx1)2

(kx − βx0 − β̄x0)2+(αx0 + ᾱx0)2
(8.5.20)

The shifted resonance wavenumber is determined from the denominator of (8.5.19),

that is, kx,res = βx0+ β̄x0. The resonance angle is determined by the matching condition:

kx = k0na sinθres = kx,res = βx0 + β̄x0 (8.5.21)

The minimum value of |Γ|2 at resonance is obtained by setting kx = βx0 + β̄x0:

|Γ|2min = |ρa0|2 (β̄x0 − β̄x1)
2+(αx0 − ᾱx1)2

(αx0 + ᾱx0)2
(8.5.22)

We will see below that β̄x0 and β̄x1 are approximately equal, and so are ᾱx0 and ᾱx1.

The optimum thickness for the metal layer is obtained by minimizing the numerator of

|Γ|2min by imposing the condition αx0 = ᾱx1. This condition can be solved for d.

The angle width is obtained by solving for the left and right bandedge wavenumbers,

say kx,±, from the 3-dB condition:

|Γ|2 = |ρa0|2 (kx − βx0 − β̄x1)
2+(αx0 − ᾱx1)2

(kx − βx0 − β̄x0)2+(αx0 + ᾱx0)2
= 1

2
(8.5.23)

and then obtaining the left/right 3-dB angles by solving k0na sinθ± = kx,±.

Although Eqs. (8.5.16)–(8.5.23) can be easily implemented numerically, they are un-

necessarily complicated. A further simplification can be made by replacing the quanti-

ties K0, ρa0, and kz0 by their lossless values obtained by setting εi = 0. This makes ρa0

a unimodular complex number so that ρ−1
a0 = ρ∗a0. We have then the approximations:

K0 = k0

(
2

εr + εb

)(
εrεb
εr − εb

)3/2

ρa0 = εa + j
√

εr(εa − εb)−εaεb
εa − j

√

εr(εa − εb)−εaεb
≡ −b0 + ja0 , ρ−1

a0 = −b0 − ja0

kz0 = −jαz0 , αz0 = k0εr√
εr − εb

(8.5.24)

so that

b0 = εr(εa − εb)−εa(εa + εb)
(εa − εb)(εr + εb)

, a0 = 2εa
√

εr(εa − εb)−εaεb
(εa − εb)(εr + εb)

(8.5.25)

The wavenumber shifts (8.5.18) then become:

k̄x0 = (b0 − ja0)K0e
−2αz0d = β̄x0 − jᾱx0

k̄x1 = (b0 + ja0)K0e
−2αz0d = β̄x0 + jᾱx0 = k̄∗x0

(8.5.26)
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with

β̄x0 = b0K0e
−2αz0d , ᾱx0 = a0K0e

−2αz0d (8.5.27)

Then, the reflectance becomes in the neighborhood of the resonance:

|Γ|2 = (kx − βx0 − β̄x0)2+(αx0 − ᾱx0)2

(kx − βx0 − β̄x0)2+(αx0 + ᾱx0)2
(8.5.28)

with a minimum value:

|Γ|2min =
(αx0 − ᾱx0)2

(αx0 + ᾱx0)2
(8.5.29)

In this approximation, the resonance angle is determined from:

k0na sinθres = kres = βx0 + β̄x0 = k0

√

εrεb
εr − εb

+ b0K0e
−2αz0d (8.5.30)

Since the second term on the right-hand side represents a small correction, a neces-

sary condition that such a resonance angle would exist is obtained by setting θres = 90o

and ignoring the second term:

na >

√

εrεb
εr − εb

≡ nmin
a (8.5.31)

For example, for the parameters of Fig. 8.5.3, the minimum acceptable refractive

index na would be nmin
a = 1.033. Thus, using a glass prism with na = 1.5 is more than

adequate. If the right medium is water instead of air with nb = 1.33, then nmin
a = 1.41,

which comes close to the prism choice. The 3-dB angles are obtained by solving

|Γ|2 = (kx − kres)
2+(αx0 − ᾱx0)2

(kx − kres)2+(αx0 + ᾱx0)2
= 1

2

with solution kx,± = kres ±
√

6αx0ᾱx0 −α2
x0 − ᾱ2

x0 , or

k0na sinθ± = k0na sinθres ±
√

6αx0ᾱx0 −α2
x0 − ᾱ2

x0 (8.5.32)

The angle width shown on Fig. 8.5.3 was calculated by Δθ = θ+−θ− using (8.5.32).

The optimum thickness dopt is obtained from the condition αx0 = ᾱx0, which drives

|Γ|2min to zero. This condition requires that αx0 = a0K0e
−2αz0d, with solution:

dopt = 1

2αz0

ln

(
a0K0

αx0

)

= λ0

4π

√
εr − εb
εr

ln

(

4a0ε
2
r

εi(εr + εb)

)

(8.5.33)

where we replaced αx0 from Eq. (8.5.5). For the same parameters of Fig. 8.5.3, we cal-

culate the optimum thickness to be dopt = 56.08 nm, resulting in the new resonance

angle of θres = 43.55o, and angle-width Δθ = 0.227o. Fig. 8.5.6 shows the reflectance

in this case. The above approximations for the angle-width are not perfect, but they are

adequate.

One of the current uses of surface plasmon resonance is the detection of the pres-

ence of chemical and biological agents. This application makes use of the fact that the
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Fig. 8.5.6 Surface plasmon resonance at the optimum thickness d = dopt.
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Fig. 8.5.7 Shift of the resonance angle with the refractive index nb.

resonance angle θres is very sensitive to the dielectric constant of the medium nb. For

example, Fig. 8.5.7 shows the shift in the resonance angle for the two cases nb = 1.05

and nb = 1.33 (water). Using the same data as Fig. 8.5.3, the corresponding angles and

widths were θres = 46.57o, Δθ = 0.349o and θres = 70o, Δθ = 1.531o, respectively.

A number of applications of surface plasmons were mentioned in Sec. 7.11, such as

nanophotonics and biosensors. The reader is referred to [589–627] for further reading.

8.6 Perfect Lens in Negative-Index Media

The perfect lens property of negative-index media was originally discussed by Veselago

[387], who showed that a slab with ǫ = −ǫ0 and μ = −μ0, and hence with refractive

index n = −1, can focus perfectly a point-source of light. More recently, Pendry [394]

showed that such a slab can also amplify the evanescent waves from an object, and

completely restore the object’s spatial frequencies on the other side of the slab. The

possibility of overcoming the diffraction limit and improving resolution with such a

lens has generated a huge interest in the literature [387–469].
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Fig. 8.6.1 shows the perfect lens property. Consider a ray emanating from an object

at distance z0 to the left of the slab (z = −z0). Assuming vacuum on either side of

the slab (na = nb = 1), Snel’s law, implies that the angle of incidence will be equal to

the angle of refraction, bending in the same direction of the normal as the incident ray.

Indeed, because na = 1 and n = −1, we have:

na sinθa = n sinθ ⇒ sinθa = − sinθ ⇒ θa = −θ

Fig. 8.6.1 Perfect lens property of a negative-index medium with n = −1

Moreover, η = √

μ/ǫ = √

μ0/ǫ0 = η0 and the slab is matched to the vacuum. There-

fore, there will be no reflected ray at the left and the right interfaces. Indeed, the TE and

TM reflection coefficients at the left interface vanish at any angle, for example, we have

for the TM case, noting that cosθ = cos(−θa)= cosθa:

ρTM = η cosθ− η0 cosθa
η cosθ+ η0 cosθa

= cosθ− cosθa
cosθ+ cosθa

= 0

Assuming that z0 < d, whered is the slab thickness, it can be seen from the geometry

of Fig. 8.6.1 that the refracted rays will refocus at the point z = z0 within the slab and

then continue on to the right interface and refocus again at a distance d− z0 from the

slab, that is, at coordinate z = 2d− z0.

Next, we examine the field solutions inside and outside the slab for propagating and

for evanescent waves. For the TM case, the electric field will have the following form

within the three regions of z ≤ 0, 0 ≤ z ≤ d, and z ≥ d:

E =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[

E0

(

x̂− kx
kz

ẑ

)

e−jkzz + E0Γ

(

x̂+ kx
kz

ẑ

)

ejkzz
]

e−jkxx , for z ≤ 0

[

A+
(

x̂− kx
k′z

ẑ

)

e−jk
′
zz +A−

(

x̂+ kx
k′z

ẑ

)

ejk
′
zz

]

e−jkxx , for 0 ≤ z ≤ d

E0T

(

x̂− kx
kz

ẑ

)

e−jkz(z−d)e−jkxx , for z ≥ d

(8.6.1)

where Γ,T denote the overall transverse reflection and transmission coefficients, and

A+,A−, the transverse fields on the right-side of the left interface (i.e., at z = 0+). The
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corresponding magnetic field is:

H =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ŷE0

(
ωǫ

kz

)
[

e−jkzz − Γejkzz]e−jkxx , for z ≤ 0

ŷ

(
ωǫ′

k′z

)
[

A+e−jk
′
zz −A−ejk′zz

]

e−jkxx , for 0 ≤ z ≤ d

ŷE0T

(
ωǫ

kz

)

e−jkz(z−d)e−jkxx , for z ≥ d

(8.6.2)

where kx is preserved across the interfaces, and kz, k
′
z must satisfy:

k2
x + k2

z =ω2μ0ǫ0 , k2
x + k′2z =ω2μǫ (8.6.3)

Thus, kz = ±
√

ω2μ0ǫ0 − k2
x and k′z = ±

√

ω2μǫ− k2
x. The choice of square root

signs is discussed below. To include evanescent waves, we will define kz by means of

the evanescent square root, setting k0 =ω√μ0ǫ0:

kz = sqrte
(

k2
0 − k2

x)=

⎧

⎪⎨

⎪⎩

√

k2
0 − k2

x , if k2
x ≤ k2

0

−j
√

k2
x − k2

0 , if k2
x ≥ k2

0

(8.6.4)

We saw in Sec. 7.16 that for a single interface between a positive- and a negative-

index medium, and for propagating waves, we must have kz > 0 and k′z < 0 in order for

the power transmitted into the negative-index medium to flow away from the interface.

But in the case of a slab within which one could have both forward and backward waves,

the choice of the sign of k′z is not immediately obvious. In fact, it turns out that the

field solution remains invariant under the substitution k′z → −k′z, and therefore, one

could choose either sign for k′z. In particular, we could select it to be given also by its

evanescent square root, where n2 = ǫμ/ǫ0μ0:

k′z = sqrte
(

k2
0n

2 − k2
x)=

⎧

⎪⎨

⎪⎩

√

k2
0n

2 − k2
x , if k2

x ≤ k2
0n

2

−j
√

k2
x − k2

0n
2 , if k2

x ≥ k2
0n

2
(8.6.5)

By matching the boundary conditions at the two interfaces z = 0 and z = d, the

parameters Γ,A±, T are obtained from the usual transfer matrices (see Sec. 8.1):
[

E0

E0Γ

]

= 1

1+ ρTM

[

1 ρTM

ρTM 1

][

A+
A−

]

[

A+
A−

]

=
[

ejk
′
zd 0

0 e−jk
′
zd

]

1

1− ρTM

[

1 −ρTM

−ρTM 1

][

E0T

0

] (8.6.6)

where,

ρTM = k′zǫ− kzǫ′
k′zǫ+ kzǫ′

= ζTM − 1

ζTM + 1
, ζTM = η′TM

ηTM

= k′zǫ
kzǫ′

(8.6.7)

where ζTM is a normalized characteristic impedance. The solution of Eqs. (8.6.6) is then,

Γ = ρTM

(

1− e−2jk′zd
)

1− ρ2
TMe

−2jk′zd
= (ζ2

TM − 1)(1− e−2jk′zd)

(ζTM + 1)2−(ζTM − 1)2e−2jk′zd

T =
(

1− ρ2
TM

)

e−jk
′
zd

1− ρ2
TMe

−2jk′zd
= 4ζTM

(ζTM + 1)2ejk
′
zd − (ζTM − 1)2e−jk′zd

(8.6.8)
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Similarly, the coefficients A± are found to be:

A+ = 1− ρTMΓ

1− ρTM

= 1

2

[

1+ ζTM + (1− ζTM)Γ
]

E0

A− = −ρTM + Γ
1− ρTM

= 1

2

[

1− ζTM + (1+ ζTM)Γ
]

E0

(8.6.9)

The TE case is obtained from the TM case by a duality transformation, that is, by the

replacements, E → H, H → −E, ǫ→ μ, ǫ′ → μ′, and ρTM → ρTE, where

ρTE = kzμ
′ − k′zμ

kzμ′ + k′zμ
= ζTE − 1

ζTE + 1
, ζTE = η′TE

ηTE

= kzμ
′

k′zμ

The invariance under the transformation k′z → −k′z follows from these solutions.

For example, noting that ζTM → −ζTM under this transformation, we have:

Γ(−k′z)=
(ζ2

TM − 1)(1− e2jk′zd)

(−ζTM + 1)2−(−ζTM − 1)2e2jk′zd
= (ζ2

TM − 1)(1− e−2jk′zd)

(ζTM + 1)2−(ζTM − 1)2e−2jk′zd
= Γ(k′z)

Similarly, we find T(−k′z)= T(k′z) and A±(−k′z)= A∓(k′z). These imply that the

field solutions remain invariant. For example, the electric field inside the slab will be:

E(z,−k′z) =
[

A+(−k′z)
(

x̂− kx
−k′z ẑ

)

e−j(−k
′
z)z +A−(−k′z)

(

x̂+ kx
−k′z ẑ

)

ej(−k
′
z)z

]

e−jkxx

=
[

A+(k′z)
(

x̂− kx
k′z

ẑ

)

e−jk
′
zz +A−(k′z)

(

x̂+ kx
k′z

ẑ

)

ejk
′
zz

]

e−jkxx = E(z,+k′z)

Similarly, we have for the magnetic field inside the slab:

H(z,−k′z) = ŷ

(
ωǫ′

−k′z

)
[

A+(−k′z)e−j(−k
′
z)z −A−(−k′z)ej(−k

′
z)z

]

e−jkxx

= ŷ

(
ωǫ′

k′z

)
[

A+(k′z)e
−jk′zz −A−(k′z)ejk

′
zz
]

e−jkxx = H(z,+k′z)

Next, we apply these results to the case μ = −μ0 and ǫ = −ǫ0, having n = −1.

It follows from Eq. (8.6.5) that k′z = ∓kz with kz given by (8.6.4). In this case, ζTM =
k′zǫ/kzǫ′ = −k′z/kz = ±1. Then, Eq. (8.6.8) implies that Γ = 0 for either choice of sign.

Similarly, we have T = ejkzd, again for either sign of ζTM:

T = ejkzd =
⎧

⎨

⎩

ejkzd , if k2
x ≤ k2

0, kz =
√

k2
0 − k2

x

eαzd , if k2
x ≥ k2

0, kz = −j
√

k2
x − k2

0 ≡ −jαz
(8.6.10)

Thus, the negative-index medium amplifies the transmitted evanescent waves, which

was Pendry’s observation [394]. The two choices for k′z lead to the A± coefficients:

k′z = −kz ⇒ ζTM = +1 ⇒ A+ = E0 , A− = 0

k′z = +kz ⇒ ζTM = −1 ⇒ A+ = 0 , A− = E0
(8.6.11)

For either choice, the field solutions are the same. Indeed, inserting either set of

A+,A− into Eqs. (8.6.1) and (8.6.2), and using (8.6.10), we find:
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E =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E0

(

x̂− kx
kz

ẑ

)

e−jkzze−jkxx , for z ≤ 0

E0

(

x̂+ kx
kz

ẑ

)

ejkzze−jkxx , for 0 ≤ z ≤ d

E0

(

x̂− kx
kz

ẑ

)

e−jkz(z−2d)e−jkxx , for z ≥ d

(8.6.12)

and the corresponding magnetic field:

H =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ŷE0

(
ωǫ0

kz

)

e−jkzze−jkxx , for z ≤ 0

ŷE0

(
ωǫ0

kz

)

ejkzze−jkxx , for 0 ≤ z ≤ d

ŷE0

(
ωǫ0

kz

)

e−jkz(z−2d)e−jkxx , for z ≥ d

(8.6.13)

The solution effectively corresponds to the choice k′z = −kz and is valid for both

propagating and evanescent waves with kz given by (8.6.4). In Eq. (8.6.12) the constant

E0 refers to the value of the transverse electric field at z = 0. Changing the reference

point to z = −z0 at the left of the slab as shown in Fig. 8.6.1, amounts to replacing

E0 → E0e
−jkzz0 . Then, (8.6.12) reads:

E =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E0

(

x̂− kx
kz

ẑ

)

e−jkz(z+z0)e−jkxx , for − z0 ≤ z ≤ 0

E0

(

x̂+ kx
kz

ẑ

)

ejkz(z−z0)e−jkxx , for 0 ≤ z ≤ d

E0

(

x̂− kx
kz

ẑ

)

e−jkz(z−2d+z0)e−jkxx , for z ≥ d

(8.6.14)

Setting kz = −αz as in (8.6.4), we find the evanescent fields:

E =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E0

(

x̂− kx
−jαz

ẑ

)

e−αz(z+z0)e−jkxx , for − z0 ≤ z ≤ 0

E0

(

x̂+ kx
−jαz

ẑ

)

eαz(z−z0)e−jkxx , for 0 ≤ z ≤ d

E0

(

x̂− kx
−jαz

ẑ

)

e−αz(z−2d+z0)e−jkxx , for z ≥ d

(8.6.15)

The field is amplified inside the slab. The propagation factors along the z-direction

agree at the points z = −z0, z = z0, and z = 2d− z0,

e−jkz(z+z0)

∣
∣
∣
∣
z=−z0

= ejkz(z−z0)

∣
∣
∣
∣
z=z0

= e−jkz(z−2d+z0)

∣
∣
∣
∣
z=2d−z0

= 1

e−αz(z+z0)

∣
∣
∣
∣
z=−z0

= eαz(z−z0)

∣
∣
∣
∣
z=z0

= e−αz(z−2d+z0)

∣
∣
∣
∣
z=2d−z0

= 1

(8.6.16)
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which imply the complete restoration of the source at the focal points inside and to the

right of the slab:

Ex(x, z)
∣
∣
z=−z0

= Ex(x, z)
∣
∣
z=z0

= Ex(x, z)
∣
∣
z=2d−z0

(8.6.17)

Fig. 8.6.2 shows a plot of the evanescent component Ex(z) of Eq. (8.6.15) versus distance

z inside and outside the slab.

Fig. 8.6.2 Evanesenct wave amplification inside a negative-index medium.

Using the plane-wave spectrum representation of Sec. 18.17, a more general (single-

frequency) solution can be built by superposition of the plane waves (8.6.14) and (8.6.15).

If the field at the image plane z = −z0 has the general representation:

E(x,−z0)= 1

2π

∫∞

−∞
E0(kx)

(

x̂− kx
kz

ẑ

)

e−jkxx dkx (8.6.18)

where the integral over kx includes both propagating and evanescent modes and kz is

given by (8.6.4), then, then field in the three regions to the left of, inside, and to the right

of the slab will have the form:

E(x, z)= 1

2π

∫∞

−∞
E0(kx)

(

x̂− kx
kz

ẑ

)

e−jkz(z+z0)e−jkxx dkx , for − z0 ≤ z ≤ 0

E(x, z)= 1

2π

∫∞

−∞
E0(kx)

(

x̂+ kx
kz

ẑ

)

ejkz(z−z0)e−jkxx dkx , for 0 ≤ z ≤ d

E(x, z)= 1

2π

∫∞

−∞
E0(kx)

(

x̂− kx
kz

ẑ

)

e−jkz(z−2d+z0)e−jkxx dkx , for z ≥ d

It is evident that Eq. (8.6.17) is still satisfied, showing the perfect reconstruction of

the object field at the two image planes.

The perfect lens property is highly sensitive to the deviations from the ideal values of

ǫ = −ǫ0 and μ = −μ0, and to the presence of losses. Fig. 8.6.3 plots the transmittance in

dB, that is, the quantity 10 log10 |Te−jkzd|2 versus kx, with T computed from Eq. (8.6.8)

for different values of ǫ, μ and for d = 0.2λ = 0.2(2π/k0). In the ideal case, because

of the result (8.6.10), we have |Te−jkzd| = 1 for both propagating and evanescent values

of kx, that is, the transmittance is flat (at 0 dB) for all kx.
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Fig. 8.6.3 Transmittance under non-ideal conditions (ǫ, μ are in units of ǫ0, μ0).

The left graph shows the effect of losses while keeping the real parts of ǫ, μ at the

ideal values −ǫ0,−μ0. In the presence of losses, the transmittance acts like a lowpass

filter in the spatial frequency kx.

The right graph shows the effect of the deviation of the real parts of ǫ, μ from the

ideal values. If the real parts deviate, even slightly, from −ǫ0,−μ0, the transmittance

develops resonance peaks, which are related to the excitation of surface plasmons at the

two interfaces of the slab [403,404]. The peaks are due to the poles of the denominator

of T in Eq. (8.6.8), that is, the roots of

1− ρ2
TMe

−2jk′zd = 0 ⇒ e2jk′zd = ρ2
TM ⇒ ejk

′
zd = ±ρTM

For evanescent kx, we may replace kz = −jαz and k′z = −jα′z, where αz =
√

k2
x − k2

0

and α′z =
√

k2
x − k2

0n
2, and obtain the conditions:

eα
′
zd = ±ρTM = ±α

′
zǫ0 −αzǫ

α′zǫ0 +αzǫ
(8.6.19)

These are equivalent to [403,404]:

tanh

(
α′zd

2

)

= − αzǫ
α′zǫ0

, tanh

(
α′zd

2

)

= −α
′
zǫ0

αzǫ
(8.6.20)

For kx≫ k0, we may replace αz = α′z ≃ kx in (8.6.19) in order to get en estimate of

the resonant kx:

ekx,resd = ±ǫ0 − ǫ
ǫ0 + ǫ

⇒ eRe(kx,res)d =
∣
∣
∣
∣

ǫ0 − ǫ
ǫ0 + ǫ

∣
∣
∣
∣ ⇒ Re(kx,res)= 1

d
ln

∣
∣
∣
∣

ǫ0 − ǫ
ǫ0 + ǫ

∣
∣
∣
∣

(8.6.21)

and for the TE case, we must replace ǫs by μs. The value kx = Re(kx,res) represents

the highest achievable resolution by the slab, with the smallest resolvable transverse

distance being of the order of Δx = 1/Re(kx,res).

If ǫ is real-valued and near −ǫ0, then, kx,res is real and there will be an infinite res-

onance peak at kx = kx,res. This is seen in the above figure in the first two cases of
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ǫ/ǫ0 = μ/μ0 = −1.01 and ǫ/ǫ0 = μ/μ0 = −0.98 (the apparent finite height of these

two peaks is due to the finite grid of kx values in the graph.)

The last two cases have complex-valued ǫ, μ with a small imaginary part, with the

resulting peaks being finite. In all cases, the peak locations kx = Re(kx,res)—obtained by

solving Eqs. (8.6.20) numerically for kx,res—are indicated in the graphs by bullets placed

at the peak maxima. The numerical solutions were obtained by the following iterative

procedures, initialized at the approximate (complex-valued) solution of (8.6.21):

initialize: kx = 1

d
ln

(
ǫ0 − ǫ
ǫ0 + ǫ

)

for i = 1,2, . . . ,Niter, do:

α′z =
√

k2
x − k2

0n
2

αz = −ǫ0

ǫ
α′z tanh

(
α′zd

2

)

kx =
√

α2
z + k2

0

or,

kx = 1

d
ln

(

−ǫ0 − ǫ
ǫ0 + ǫ

)

, α′z =
√

k2
x − k2

0n
2

for i = 1,2, . . . ,Niter, do:

αz =
√

k2
x − k2

0

α′z = −
ǫ

ǫ0

αz tanh

(
α′zd

2

)

kx =
√

α′2z + k2
0n

2

The number of iterations was typically Niter = 30. Both graphs of Fig. 8.6.3 also show

dips at kx = k0. These are due to the zeros of the transmittance T arising from the

numerator factor (1 − ρ2
TM) in (8.6.10). At kx = k0, we have αz = 0 and ρTM = 1,

causing a zero in T. In addition to the zero at kx = k0, it is possible to also have poles

in the vicinity of k0, as indicated by the peaks and bullets in the graph. Fig. 8.6.4 shows

an expanded view of the structure of T near k0, with the kx restricted in the narrow

interval: 0.99k0 ≤ kx ≤ 1.01k0.

0.99 1 1.01

−20

0

20

kx/k0

d
B

Transmittance

Fig. 8.6.4 Expanded view of the zero/pole behavior in the vicinity of kx = k0.

For last two cases depicted on this graph that have |n2| = |ǫμ|/ǫ0μ0 ≲ 1, an ap-

proximate calculation of the pole locations near k0 is as follows. Sinceαz =
√

k2
x − k2

0 is

small, andα′z =
√

α2
z + k0(1− n2), we have to first order inαz,α

′
z ≃ k2

0

√
1− n2 ≡ α′z0,
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which is itself small. Then, we apply Eq. (8.6.21) to getαz and from it, the resonant kx,res:

αz = −ǫ0

ǫ
α′z0 tanh

(

α′z0d

2

)

⇒ kx,res =
√

α2
z + k2

0

8.7 Antireflection Coatings at Oblique Incidence

Antireflection coatings are typically designed for normal incidence and then used over

a limited range of oblique incidence, such as up to about 30o. As the angle of incidence

increases, the antireflection band shifts towards lower wavelengths or higher frequen-

cies. Any designed reflection zeros at normal incidence are no longer zeros at oblique

incidence.

If a particular angle of incidence is preferred, it is possible to design the antireflection

coating to match that angle. However, like the case of normal design, the effectiveness

of this method will be over an angular width of approximately 30o about the preferred

angle.

To appreciate the effects of oblique incidence, we look at the angular behavior of

our normal-incidence designs presented in Figs. 6.2.1 and 6.2.3.

The first example was a two-layer design with refractive indices na = 1 (air), n1 =
1.38 (magnesium fluoride), n2 = 2.45 (bismuth oxide), and nb = 1.5 (glass). The de-

signed normalized optical lengths of the layers were L1 = 0.3294 and L2 = 0.0453 at

λ0 = 550 nm.

Fig. 8.7.1 shows the TE and TM reflectances |ΓT1(λ)|2 as functions of λ, for the

incidence angles θ = 0o,20o,30o,40o.
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Fig. 8.7.1 Two-layer antireflection coating at oblique incidence.

We note the shifting of the responses towards lower wavelengths. The responses

are fairly acceptable up to about 20o–30o. The typical MATLAB code used to generate

these graphs was:

n = [1, 1.38, 2.45, 1.5]; L = [0.3294, 0.0453];

la0 = 550; la = linspace(400,700,101); pol=’te’;
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G0 = abs(multidiel(n, L, la/la0)).^2 * 100;

G20 = abs(multidiel(n, L, la/la0, 20, pol)).^2 * 100;

G30 = abs(multidiel(n, L, la/la0, 30, pol)).^2 * 100;

G40 = abs(multidiel(n, L, la/la0, 40, pol)).^2 * 100;

plot(la, [G0; G20; G30; G40]);

As we mentioned above, the design can be matched at a particular angle of incidence.

As an example, we choose θa = 30o and redesign the two-layer structure.

The design equations are still (6.2.2) and (6.2.1), but with the replacement of ni,

ρi by their transverse values nTi, ρTi, and the replacement of k1l1, k2l2 by the phase

thicknesses at λ = λ0, that is, δ1 = 2πL1 cosθ1 and δ2 = 2πL2 cosθ2. Moreover, we

must choose to match the design either for TE or TM polarization.

Fig. 8.7.2 illustrates such a design. The upper left graph shows the TE reflectance

matched at 30o. The designed optical thicknesses are in this case, L1 = 0.3509 and

L2 = 0.0528. The upper right graph shows the corresponding TM reflectance, which

cannot be matched simultaneously with the TE case.

The lower graphs show the same design, but now the TM reflectance is matched at

30o. The designed lengths were L1 = 0.3554 and L2 = 0.0386.
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Fig. 8.7.2 Two-layer antireflection coating matched at 30 degrees.
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The design steps are as follows. First, we calculate the refraction angles in all media

from Eq. (8.1.1), θi = asin(na sinθa/ni), for i = a,1,2, b. Then, assuming TE polariza-

tion, we calculate the TE refractive indices for all media nTi = ni cosθi, i = a,1,2, b.

Then, we calculate the transverse reflection coefficients ρTi from Eq. (8.1.3) and use

them to solve Eq. (6.2.2) and (6.2.1) for the phase thicknesses δ1, δ2. Finally, we calcu-

late the normalized optical lengths from Li = δi/(2π cosθi), i = 1,2. The following

MATLAB code illustrates these steps:

n = [1, 1.38, 2.45, 1.5]; na = 1;

tha = 30; thi = asin(na*sin(pi*tha/180)./n);

nt = n.*cos(thi); % for TM use nt = n./cos(thi)

r = n2r(nt);

c = sqrt((r(1)^2*(1-r(2)*r(3))^2 - (r(2)-r(3))^2)/(4*r(2)*r(3)*(1-r(1)^2)));

de2 = acos(c);

G2 = (r(2)+r(3)*exp(-2*j*de2))/(1 + r(2)*r(3)*exp(-2*j*de2));

de1 = (angle(G2) - pi - angle(r(1)))/2;

if de1 <0, de1 = de1 + 2*pi; end

L = [de1,de2]/2/pi;

L = L./cos(thi(2:3));

la0 = 550; la = linspace(400,700,401);

G30 = abs(multidiel(n, L, la/la0, 30, ’te’)).^2 * 100;

G20 = abs(multidiel(n, L, la/la0, 20, ’te’)).^2 * 100;

G40 = abs(multidiel(n, L, la/la0, 40, ’te’)).^2 * 100;

G0 = abs(multidiel(n, L, la/la0)).^2 * 100;

plot(la, [G30; G20; G40; G0]);

Our second example in Fig. 6.2.3 was a quarter-half-quarter 3-layer design with re-

fractive indices n1 = 1 (air), n1 = 1.38 (magnesium fluoride), n2 = 2.2 (zirconium oxide),

n3 = 1.63 (cerium fluoride), and nb = 1.5 (glass). The optical lengths of the layers were

L1 = L3 = 0.25 and L2 = 0.5.

Fig. 8.7.3 shows the TE and TM reflectances |ΓT1(λ)|2 as functions of λ, for the

incidence angles θ = 0o,20o,30o,40o.

The responses are fairly acceptable up to about 20o–30o, but are shifted towards

lower wavelengths. The typical MATLAB code used to generate these graphs was:

n = [1, 1.38, 2.2, 1.63, 1.5]; L = [0.25, 0.50, 0.25];

la0 = 550; la = linspace(400,700,401);

G0 = abs(multidiel(n, L, la/la0)).^2 * 100;

G20 = abs(multidiel(n, L, la/la0, 20, ’te’)).^2 * 100;

G30 = abs(multidiel(n, L, la/la0, 30, ’te’)).^2 * 100;

G40 = abs(multidiel(n, L, la/la0, 40, ’te’)).^2 * 100;

plot(la, [G0; G20; G30; G40]);
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Fig. 8.7.3 Three-layer antireflection coating at oblique incidence.

8.8 Omnidirectional Dielectric Mirrors

Until recently, it was generally thought that it was impossible to have an omnidirectional

dielectric mirror, that is, a mirror that is perfectly reflecting at all angles of incidence

and for both TE and TM polarizations. However, such mirrors are possible and have

recently been manufactured [773,774] and the conditions for their existence clarified

[773–777].

We consider the same dielectric mirror structure of Sec. 6.3, consisting of alternating

layers of high and low index. Fig. 8.8.1 shows such a structure under oblique incidence.

There are N bilayers and a total of M = 2N + 1 single layers, starting and ending with

a high-index layer.

Fig. 8.8.1 Dielectric mirror at oblique incidence.

The incidence angles on each interface are related by Snel’s law:

na sinθa = nH sinθH = nL sinθL = nb sinθb (8.8.1)

The phase thicknesses within the high- and low-index layers are in normalized form:
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δH = 2π
f

f0
LH cosθH , δL = 2π

f

f0
LL cosθL (8.8.2)

where LH = nHlH/λ0, LL = nLlL/λ0 are the optical thicknesses normalized to some λ0,

and f0 = c0/λ0. Note also, cosθi =
√

1− n2
a sin2 θa/n

2
i , i = H,L.

A necessary (but not sufficient) condition for omnidirectional reflectivity for both

polarizations is that the maximum angle of refraction θH,max inside the first layer be

less than the Brewster angle θB of the second interface, that is, the high-low interface,

so that the Brewster angle can never be accessed by a wave incident on the first interface.

If this condition is not satisfied, a TM wave would not be reflected at the second and all

subsequent interfaces and will transmit through the structure.

Because sinθH,max = na/nH and tanθB = nL/nH, or, sinθB = nL/
√

n2
H + n2

L, the

condition θH,max < θB, or the equivalent condition sinθH,max < sinθB, can be written

as na/nH < nL/
√

n2
H + n2

L, or

na <
nHnL

√

n2
H + n2

L

(8.8.3)

We note that the exact opposite of this condition is required in the design of multi-

layer Brewster polarizing beam splitters, discussed in the next section.

In addition to condition (8.8.3), in order to achieve omnidirectional reflectivity we

must require that the high-reflectance bands have a common overlapping region for all

incidence angles and for both polarizations.

To determine these bands, we note that the entire discussion of Sec. 6.3 carries

through unchanged, provided we use the transverse reflection coefficients and trans-

verse refractive indices. For example, the transverse version of the bilayer transition

matrix of Eq. (6.3.5) will be:

FT = 1

1− ρ2
T

[

ej(δH+δL) − ρ2
Te

j(δH−δL) −2jρTe
−jδH sinδL

2jρTe
jδH sinδL e−j(δH+δL) − ρ2

Te
−j(δH−δL)

]

(8.8.4)

where ρT = (nHT − nLT)/(nHT + nLT) and:

nHT =
⎧

⎨

⎩

nH
cosθH
nH cosθH

nLT =
⎧

⎨

⎩

nL
cosθL
nL cosθL

(TM polarization)

(TE polarization)
(8.8.5)

Explicitly, we have for the two polarizations:

ρTM = nH cosθL − nL cosθH
nH cosθL + nL cosθH

, ρTE = nH cosθH − nL cosθL
nH cosθH + nL cosθL

(8.8.6)

The trace of FT is as in Eq. (6.3.13):

a = cos(δH + δL)−ρ2
T cos(δH − δL)

1− ρ2
T

(8.8.7)
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The eigenvalues of the matrixFT areλ± = e±jKl, whereK = acos(a)/l and l = lH+lL.

The condition a = −1 determines the bandedge frequencies of the high-reflectance

bands. As in Eq. (6.3.16), this condition is equivalent to:

cos2
(δH + δL

2

) = ρ2
T cos2

(δH − δL
2

)

(8.8.8)

Defining the quantities L± = LH cosθH ± LL cosθL and the normalized frequency

F = f/f0, we may write:

δH ± δL
2

= π f

f0
(LH cosθH ± LL cosθL)= πFL± (8.8.9)

Then, taking square roots of Eq. (8.8.8), we have:

cos(πFL+)= ±|ρT| cos(πFL−)

The plus sign gives the left bandedge, F1 = f1/f0, and the minus sign, the right

bandedge, F2 = f2/f0. Thus, F1, F2 are the solutions of the equations:

cos(πF1L+) = |ρT| cos(πF1L−)

cos(πF2L+) = −|ρT| cos(πF2L−)
(8.8.10)

The bandwidth and center frequency of the reflecting band are:

Δf

f0
= ΔF = F2 − F1 ,

fc
f0
= Fc = F1 + F2

2
(8.8.11)

The corresponding bandwidth in wavelengths is defined in terms of the left and right

bandedge wavelengths:

λ1 = λ0

F2

= c0

f2
, λ2 = λ0

F1

= c0

f1
, Δλ = λ2 − λ1 (8.8.12)

An approximate solution of Eq. (8.8.10) can be obtained by setting L− = 0 in the

right-hand sides of Eq. (8.8.10):

cos(πF1L+)= |ρT| , cos(πF2L+)= −|ρT| (8.8.13)

with solutions:

F1 = acos(|ρT|)
πL+

, F2 = acos(−|ρT|)
πL+

(8.8.14)

Using the trigonometric identities acos(±|ρT|)= π/2 ∓ asin(|ρT|), we obtain the

bandwidth and center frequency:

Δf = f2 − f1 = 2f0 asin(|ρT|)
πL+

, fc = f1 + f2
2

= f0
2L+

(8.8.15)
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It follows that the center wavelength will be λc = c0/fc = 2L+λ0 or,

λc = 2L+λ0 = 2(lHnH cosθH + lLnL cosθL) (8.8.16)

At normal incidence, we have λc = 2(lHnH+ lLnL). For quarter-wavelength designs

at λ0 at normal incidence, we have L+ = 1/4+ 1/4 = 1/2, so that λc = λ0.

The accuracy of the approximate solution (8.8.14) depends on the ratio d = L−/L+.

Even if at normal incidence the layers were quarter-wavelength with LH = LL = 0.25,

the equality of LH and LL will no longer be true at other angles of incidence. In fact, the

quantity d is an increasing function of θa. For larger values of d, the exact solution of

(8.8.10) can be obtained by the following iteration:

initialize with F1 = F2 = 0,

for i = 0,1, . . . ,Niter, do:

F1 = 1

πL+
acos

(|ρT| cos(πF1L−)
)

F2 = 1

πL+
acos

(−|ρT| cos(πF2L−)
)

(8.8.17)

Evidently, the i = 0 iteration gives the zeroth-order solution (8.8.14). The iteration

converges extremely fast, requiring only 3–4 iterations Niter. The MATLAB function

omniband implements this algorithm. It has usage:

[F1,F2] = omniband(na,nH,nL,LH,LL,theta,pol,Niter) % bandedge frequencies

[F1,F2] = omniband(na,nH,nL,LH,LL,theta,pol) % equivalent to Niter = 0

where theta is the incidence angle in degrees, pol is one of the strings ’te’ or ’tm’ for

TE or TM polarization, and Niter is the desired number of iterations. If this argument

is omitted, only the i = 0 iteration is carried out.

It is straightforward but tedious to verify the following facts about the above solu-

tions. First, f1, f2 are increasing functions of θa for both TE and TM polarizations. Thus,

the center frequency of the band fc = (f1+f2)/2 shifts towards higher frequencies with

increasing angle θa. The corresponding wavelength intervals will shift towards lower

wavelengths.

Second, the bandwidth Δf = f2 − f1 is an increasing function of θa for TE, and a

decreasing one for TM polarization. Thus, as θa increases, the reflecting band for TE

expands and that of TM shrinks, while their (slightly different) centers fc shift upwards.

In order to achieve omnidirectional reflectivity, the TE and TM bands must have a

common overlapping intersection for all angles of incidence. Because the TM band is

always narrower than the TE band, it will determine the final common omnidirectional

band.

The worst case of overlap is for the TM band at 90o angle of incidence, which must

overlap with the TM/TE band at 0o. The left bandedge of this TM band, f1,TM(90o), must

be less than the right bandedge of the 0o band, f2(0
o). This is a sufficient condition for

omnidirectional reflectivity.

Thus, the minimum band shared by all angles of incidence and both polarizations

will be [f1,TM(90o), f2(0
o)], having width:
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Δfmin = f2(0o)−f1,TM(90o) (minimum omnidirectional bandwidth) (8.8.18)

In a more restricted sense, the common reflecting band for both polarizations and

for angles up to a given θa will be [f1,TM(θa), f2,TM(0
o)] and the corresponding band-

width:

Δf(θa)= f2(0o)−f1,TM(θa) (8.8.19)

In addition to computing the bandwidths of either the TM or the TE bands at any

angle of incidence, the function omniband can also compute the above common band-

widths. If the parameter pol is equal to ’tem’, then F1, F2 are those of Eqs. (8.8.18) and

(8.8.19). Its extended usage is as follows:

[F1,F2] = omniband(na,nH,nL,LH,LL,theta,’tem’) % Eq. (8.8.19)

[F1,F2] = omniband(na,nH,nL,LH,LL,90,’tem’) % Eq. (8.8.18)

[F1,F2] = omniband(na,nH,nL,LH,LL) % Eq. (8.8.18)

Next, we discuss some simulation examples that will help clarify the above remarks.

Example 8.8.1: The first example is the angular dependence of Example 6.3.2. In order to flatten

out and sharpen the edges of the reflecting bands, we useN = 30 bilayers. Fig. 8.8.2 shows

the TE and TM reflectances |ΓT1(λ)|2 as functions of the free-space wavelength λ, for the

two angles of incidence θa = 45o and 80o.

Fig. 8.8.3 depicts the reflectances as functions of frequency f . The refractive indices were

na = 1, nH = 2.32, nL = 1.38, nb = 1.52, and the bilayers were quarter-wavelength

LH = LL = 0.25 at the normalization wavelength λ0 = 500 nm.

The necessary condition (8.8.3) is satisfied and we find for the maximum angle of refraction

and the Brewster angle: θH,max = 25.53o and θB = 30.75o Thus, we have θH,max < θB.
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Fig. 8.8.2 TM and TE reflectances for nH = 2.32, nL = 1.38.

On each graph, we have indicated the corresponding bandwidth intervals calculated with

omniband. The indicated intervals are for 0o incidence, for TE and TM, and for the common

band Eq. (8.8.19) at θa. We observe the shifting of the bands towards higher frequencies,
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Fig. 8.8.3 TM and TE frequency responses for nH = 2.32, nL = 1.38.

or lower wavelengths, and the shrinking of the TM and expanding of the TE bands, and the

shrinking of the common band.

At 45o, there is still sufficient overlap, but at 80o, the TM band has shifted almost to the

end of the 0o band, resulting in an extremely narrow common band.

The arrows labeled fc0 and fc represent the (TM) band center frequencies at 0o and 45o or

80o. The calculated bandedges corresponding to 90o incidence were λ1 = λ0/F2,TM(0
o)=

429.73 nm and λ2 = λ0/F1,TM(90o)= 432.16 nm, with bandwidth Δλ = λ2 − λ1 = 2.43

nm. Thus, this structure does exhibit omnidirectional reflectivity, albeit over a very narrow

band. The MATLAB code used to generate these graphs was:

na = 1; nb = 1.52; nH = 2.32; nL = 1.38;

LH = 0.25; LL = 0.25;

la0 = 500;

la = linspace(300,800,501);

th = 45; N = 30;

n = [na, nH, repmat([nL,nH], 1, N), nb];

L = [LH, repmat([LL,LH], 1, N)];

Ge = 100*abs(multidiel(n,L,la/la0, th, ’te’)).^2;

Gm = 100*abs(multidiel(n,L,la/la0, th, ’tm’)).^2;

G0 = 100*abs(multidiel(n,L,la/la0)).^2;

plot(la,Gm, la,Ge, la,G0);

[F10,F20] = omniband(na,nH,nL,LH,LL, 0, ’te’);

[F1e,F2e] = omniband(na,nH,nL,LH,LL, th,’te’);

[F1m,F2m] = omniband(na,nH,nL,LH,LL, th,’tm’);

[F1,F2] = omniband(na,nH,nL,LH,LL, th,’tem’);

Because the reflectivity bands shrink with decreasing ratio nH/nL, if we were to slightly

decrease nH , then the TM band could be made to shift beyond the end of the 0o band and

there would be no common overlapping reflecting band for all angles. We can observe this

behavior in Fig. 8.8.4, which has nH = 2, with all the other parameters kept the same.
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Fig. 8.8.4 TM and TE reflectances for nH = 2, nL = 1.38.

At 45o there is a common overlap, but at 80o, the TM band has already moved beyond the 0o

band, while the TE band still overlaps with the latter. This example has no omnidirectional

reflectivity, although the necessary condition (8.8.3) is still satisfied with θH,max = 30o and

θB = 34.61o.

On the other hand, if we were to increase nH , all the bands will widen, and so will the

final common band, resulting in an omnidirectional mirror of wider bandwidth. Fig. 8.8.5

shows the case of nH = 3, exhibiting a substantial overlap and omnidirectional behavior.
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Fig. 8.8.5 TM and TE reflectances for nH = 3, nL = 1.38.

The minimum band (8.8.18) was [F1, F2]= [1.0465,1.2412] corresponding to the wave-

length bandedges λ1 = λ0/F2 = 402.84 nm and λ2 = λ0/F1 = 477.79 nm with a width of

Δλ = λ2 −λ1 = 74.95 nm, a substantial difference from that of Fig. 8.8.2. The bandedges

were computed with Nit = 0 in Eq. (8.8.17); with Nit = 3, we obtain the more accurate

values: [F1, F2]= [1.0505,1.2412].

To illustrate the dependence of the TE and TM bandwidths on the incident angle θa, we

have calculated and plotted the normalized bandedge frequencies F1(θa), F2(θa) for the
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range of angles 0 ≤ θa ≤ 90o for both polarizations. The left graph of Fig. 8.8.6 shows the

case nH = 3, nL = 1.38, and the right graph, the case nH = 2, nL = 1.38.
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Fig. 8.8.6 TM/TE bandgaps versus angle for nH = 3, nL = 1.38 and nH = 2, nL = 1.38.

We note that the TE band widens with increasing angle, whereas the TM band narrows. At

the same time, the band centers move toward higher frequencies. In the left graph, there

is a common band shared by both polarizations and all angles, that is, the band defined

by F2(0
o), and F1,TM(90o). For the right graph, the bandedge F1,TM(θa) increases beyond

F2(0
o) for angles θa greater than about 61.8o, and therefore, there is no omnidirectional

band. The calculations of F1(θa), F2(θa) were done with omniband with Niter = 3. ⊓⊔

Example 8.8.2: In Fig. 8.8.7, we study the effect of changing the optical lengths of the bilayers

from quarter-wavelength to LH = 0.3 and LL = 0.1. The main result is to narrow the

bands. This example, also illustrates the use of the iteration (8.8.17). The approximate

solution (8.8.15) and exact solutions for the 80o bandedge frequencies are obtained from

the two MATLAB calls:

[F1,F2] = omniband(na,nH,nL,LH,LL,80,’tem’,0);

[F1,F2] = omniband(na,nH,nL,LH,LL,80,’tem’,3);

with results [F1, F2]= [1.0933,1.3891] and [F1, F2]= [1.1315,1.3266], respectively.

Three iterations produce an excellent approximation to the exact solution. ⊓⊔

Example 8.8.3: Here, we revisit Example 6.3.3, whose parameters correspond to the recently

constructed omnidirectional infrared mirror [773]. Fig. 8.8.8 shows the reflectances as

functions of wavelength and frequency at θa = 45o and 80o for both TE and TM polar-

izations. At both angles of incidence there is a wide overlap, essentially over the desired

10–15 μm band.

The structure consisted of nine alternating layers of Tellurium (nH = 4.6) and Polystyrene

(nL = 1.6) on a NaCl substrate (nb = 1.48.) The physical lengths were lH = 0.8 and lL = 1.6

μm. The normalizing wavelength was λ0 = 12.5 μm. The optical thicknesses in units of

λ0 were LH = 0.2944 and LL = 0.2112.

The bandedges at 0o were [F1, F2]= [0.6764,1.2875] with center frequency Fc0 = 0.9819,

corresponding to wavelength λc0 = λ0/Fc0 = 12.73 μm. Similarly, at 45o, the band centers
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Fig. 8.8.7 Unequal length layers LH = 0.30, LL = 0.15.

for TE and TM polarizations were Fc,TE = 1.0272 and Fc,TM = 1.0313, resulting in the

wavelengths λc,TE = 12.17 and λc,TM = 12.12 μm (shown on the graphs are the TE centers
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Fig. 8.8.8 Nine-layer Te/PS omnidirectional mirror over the infrared.
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only.)

The final bandedges of the common reflecting band computed from Eq. (8.8.18) were

[F1, F2]= [0.8207,1.2875], resulting in the wavelength bandedges λ1 = λ0/F2 = 9.71

and λ2 = λ0/F1 = 14.95 μm, with a width of Δλ = λ2 − λ1 = 5.24 μm and band center

(λ1 +λ2)/2 = 12.33 μm (the approximation (8.8.15) gives 5.67 and 12.4 μm.) The graphs

were generated by the following MATLAB code:

la0 = 12.5; la = linspace(5,25,401);

na = 1; nb = 1.48; nH = 4.6; nL = 1.6;

lH = 0.8; lL = 1.65; LH = nH*lH/la0; LL = nL*lL/la0;

th = 45;

N = 4;

n = [na, nH, repmat([nL,nH], 1, N), nb];

L = [LH, repmat([LL,LH], 1, N)];

Ge = 100*abs(multidiel(n,L,la/la0, th, ’te’)).^2;

Gm = 100*abs(multidiel(n,L,la/la0, th, ’tm’)).^2;

G0 = 100*abs(multidiel(n,L,la/la0)).^2;

plot(la,Gm, la,Ge, la,G0);

Ni = 5;

[F10,F20] = omniband(na,nH,nL,LH,LL, 0, ’te’, Ni); % band at 0o

[F1e,F2e] = omniband(na,nH,nL,LH,LL, th,’te’, Ni); % TE band

[F1m,F2m] = omniband(na,nH,nL,LH,LL, th,’tm’, Ni); % TM band

[F1,F2] = omniband(na,nH,nL,LH,LL, th,’tem’,Ni); % Eq. (8.8.19)

[F1,F2] = omniband(na,nH,nL,LH,LL, 90,’tem’,Ni); % Eq. (8.8.18)

Finally, Fig. 8.8.9 shows the same example with the number of bilayers doubled to N = 8.

The mirror bands are flatter and sharper, but the widths are the same. ⊓⊔
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Fig. 8.8.9 Omnidirectional mirror with N = 8.

Example 8.8.4: The last example has parameters corresponding to the recently constructed

omnidirectional reflector over the visible range [774]. The refractive indices were na = 1,

nH = 2.6 (ZnSe), nL = 1.34 (Na3AlF6 cryolite), and nb = 1.5 (glass substrate.) The layer
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lengths were lH = lL = 90 nm. There were N = 9 bilayers or 2N + 1 = 19 layers, starting

and ending with nH .

With these values, the maximum angle of refraction is θH,max = 22.27o and is less than the

Brewster angle θB = 27.27o.

The normalizing wavelength was taken to beλ0 = 620 nm. Then, the corresponding optical

lengths were LL = nLlL/λ0 = 0.1945 and LH = nHlH/λ0 = 0.3774. The overall minimum

omnidirectional band is [λ1, λ2]= [605.42, 646.88] nm. It was computed by the MATLAB

call to omniband with Ni = 5 iterations:

[F1,F2] = omniband(na,nH,nL,LH,LL,90,’tem’,Ni);

la1 = la0/F2; la2 = la0/F1;

(The values of λ1, λ2 do not depend on the choice of λ0.) Fig. 8.8.10 shows the reflectance

at 45o and 80o. The upper panel of graphs has N = 9 bilayers as in [774]. The lower panel

hasN = 18 bilayers or 38 layers, and has more well-defined band gaps. The two arrows in

the figures correspond to the values of λ1, λ2 of the minimum omnidirectional band. ⊓⊔
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Fig. 8.8.10 Omnidirectional mirror over visible band.
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8.9 Polarizing Beam Splitters

The objective of an omnidirectional mirror is to achieve high reflectivity for both polar-

izations. However, in polarizers, we are interested in separating the TE and TM polariza-

tions. This can be accomplished with a periodic bilayer structure of the type shown in

Fig. 8.8.1, which is highly reflecting only for TE and highly transmitting for TM polariza-

tions. This is the principle of the so-called MacNeille polarizers [636,640,643,662,665,680–

686].

If the angle of incidence θa is chosen such that the angle of refraction in the first

high-index layer is equal to the Brewster angle of the high-low interface, then the TM

component will not be reflected at the bilayer interfaces and will transmit through. The

design condition is θH = θB, or sinθH = sinθB, which gives:

na sinθa = nH sinθH = nH sinθB = nHnL
√

n2
H + n2

L

(8.9.1)

This condition can be solved either for the angleθa or for the indexna of the incident

medium:

sinθa = nHnL

na

√

n2
H + n2

L

or, na = nHnL

sinθa

√

n2
H + n2

L

(8.9.2)

In either case, the feasibility of this approach requires the opposite of the condition

(8.8.3), that is,

na >
nHnL

√

n2
H + n2

L

(8.9.3)

If the angle θa is set equal to the convenient value of 45o, then, condition Eq. (8.9.2)

fixes the value of the refractive index na to be given by:

na =
√

2nHnL
√

n2
H + n2

L

(8.9.4)

Fig. 8.9.1 depicts such a multilayer structure sandwiched between two glass prisms

with 45o angles. The thin films are deposited along the hypotenuse of each prism and

the prisms are then cemented together. The incident, reflected, and transmitted beams

are perpendicular to the prism sides.

Not many combinations of available materials satisfy condition (8.9.4). One possible

solution is Banning’s [643] with nH = 2.3 (zinc sulfide), nL = 1.25 (cryolite), and na =
1.5532. Another solution is given in Clapham, et al, [665], with nH = 2.04 (zirconium

oxide), nL = 1.385 (magnesium fluoride), and na = 1.6205 (a form of dense flint glass.)

Fig. 8.9.2 shows the TE and TM reflectances of the case nH = 2.3 and nL = 1.25. The

incident and output media had na = nb = 1.5532. The maximum reflectivity for the TE

component is 99.99%, while that of the TM component is 3% (note the different vertical

scales in the two graphs.)
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Fig. 8.9.1 Polarizing beam splitter.

The number of bilayers was N = 5 and the center frequency of the TE band was

chosen to correspond to a wavelength of λc = 500 nm. To achieve this, the normal-

izing wavelength was required to be λ0 = 718.38 nm. The layer lengths were quarter-

wavelengths at λ0. The TE bandwidth calculated with omniband is also shown.

The Brewster angles inside the high- and low-index layers are θH = 28.52o and

θL = 61.48o. As expected, they satisfy θH + θL = 90o.
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Fig. 8.9.2 Polarizer with nH = 2.3 and nL = 1.25.

Fig. 8.9.3 shows the second case having nH = 2.04, nL = 1.385, na = nb = 1.6205.

The normalizing wavelength was λ0 = 716.27 nm in order to give λc = 500 nm. This

case achieves a maximum TE reflectivity of 99.89% and TM reflectivity of only 0.53%.

The typical MATLAB code generating these examples was:

nH = 2.3; nL = 1.25;

LH = 0.25; LL = 0.25;

na = nH*nL/sqrt(nH^2+nL^2)/sin(pi/4); nb=na;

[f1e,f2e] = omniband(na,nH,nL,LH,LL,th,’te’,5);
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Fig. 8.9.3 Polarizer with nH = 2.04 and nL = 1.385.

lac = 500;

la0 = lac*(f1e+f2e)/2; because λc = λ0/Fc

la = linspace(300,800,301);

N = 5;

n = [na, nH, repmat([nL,nH], 1, N), nb];

L = [LH, repmat([LL,LH], 1, N)];

Ge = 100*abs(multidiel(n,L,la/la0, th, ’te’)).^2;

Gm = 100*abs(multidiel(n,L,la/la0, th, ’tm’)).^2;

plot(la,Ge);

8.10 Reflection and Refraction in Birefringent Media

Uniform plane wave propagation in biaxial media was discussed in Sec. 4.6. We found

that there is an effective refractive index N such that k = Nk0 = Nω/c0. The index N,

given by Eq. (4.6.8), depends on the polarization of the fields and the direction of the

wave vector. The expressions for the TE and TM fields were given in Eqs. (4.6.18) and

(4.6.27).

Here, we discuss how such fields get reflected and refracted at planar interfaces

between biaxial media. Further discussion can be found in [634,57] and [694–715].

Fig. 7.1.1 depicts the TM and TE cases, with the understanding that the left and

right biaxial media are described by the triplets of principal indices n = [n1, n2, n3]

and n′ = [n′1, n′2, n′3], and that the E-fields are not perpendicular to the corresponding

wave vectors in the TM case. The principal indices are aligned along the xyz axes, the

xy-plane is the interface plane, and the xz-plane is the plane of incidence.

The boundary conditions require the matching of the electric field components that

are tangential to the interface, that is, the components Ex in the TM case or Ey in TE.

It proves convenient, therefore, to re-express Eq. (4.6.27) directly in terms of the Ex
component and Eq. (4.6.18) in terms of Ey.
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For the TM case, we write E = x̂Ex + ẑEz = Ex(x̂− ẑ tan θ̄), for the electric field of

the left-incident field, where we used Ez = −Ex tan θ̄. Similarly, for the magnetic field

we have from Eq. (4.6.26):

H = N

η0

ŷ(Ex cosθ− Ez sinθ)= N

η0

ŷEx cosθ

(

1− Ez
Ex

tanθ

)

= N

η0

ŷEx cosθ

(

1+ n
2
1

n2
3

tan2 θ

)

= N

η0

ŷEx cosθ

(

n2
3 cos2 θ+ n2

1 sin2 θ

n2
3 cos2 θ

)

= N

η0

ŷEx cosθ

(

n2
3n

2
1

N2n2
3 cos2 θ

)

= Ex
η0

n2
1

N cosθ
ŷ

where we replaced Ez/Ex = − tan θ̄ = −(n2
1/n

2
3)tanθ and used Eq. (4.7.10). Thus,

E(r) = Ex
(

x̂− ẑ
n2

1

n2
3

tanθ

)

e−j k·r

H(r) = Ex
η0

n2
1

N cosθ
ŷe−j k·r = Ex

ηTM

ŷe−j k·r
(TM) (8.10.1)

Similarly, we may rewrite the TE case of Eq. (4.6.18) in the form:

E(r) = Eyŷe−j k·r

H(r) = Ey

η0

n2 cosθ(−x̂+ ẑ tanθ)e−j k·r = Ey

ηTE

(−x̂+ ẑ tanθ)e−j k·r
(TE) (8.10.2)

The propagation phase factors are:

e−j k·r = e−jk0xN sinθ−jk0zN cosθ (TM and TE propagation factors) (8.10.3)

Unlike the isotropic case, the phase factors are different in the TM and TE cases

because the value of N is different, as given by Eq. (4.6.8), or,

N =

⎧

⎪⎪⎨

⎪⎪⎩

n1n3
√

n2
1 sin2 θ+ n2

3 cos2 θ
, (TM or p-polarization)

n2, (TE or s-polarization)

(8.10.4)

In Eqs. (8.10.1) and (8.10.2), the effective transverse impedances are defined by ηTM =
Ex/Hy and ηTE = −Ey/Hx, and are given as follows:

ηTM = η0
N cosθ

n2
1

, ηTE = η0

n2 cosθ
(transverse impedances) (8.10.5)

Defining the TM and TE effective transverse refractive indices through ηTM = η0/nTM

and ηTE = η0/nTE, we have:
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nTM = n2
1

N cosθ
= n1n3
√

n2
3 −N2 sin2 θ

nTE = n2 cosθ

(transverse refractive indices) (8.10.6)

where we used Eq. (4.6.23) for the TM case, that is,

N cosθ = n1

n3

√

n2
3 −N2 sin2 θ (8.10.7)

In the isotropic case, N = n1 = n2 = n3 = n, Eqs. (8.10.6) reduce to Eq. (7.2.13).

Next, we discuss the TM and TE reflection and refraction problems of Fig. 7.1.1.

Assuming that the interface is at z = 0, the equality of the total tangential electric

fields (Ex component for TM and Ey for TE), implies as in Sec. 7.1 that the propagation

phase factors must match at all values of x:

e−jkx+x = e−jkx−x = e−jk′x+x = e−jk′x−x

which requires that kx+ = kx− = k′x+ = k′x−, or, because kx = k sinθ = Nk0 sinθ:

N sinθ+ = N sinθ− = N′ sinθ′+ = N′ sinθ′−

This implies Snel’s law of reflection, that is, θ+ = θ− ≡ θ and θ′+ = θ′− ≡ θ′, and

Snel’s law of refraction,

N sinθ = N′ sinθ′ (Snel’s law for birefringent media) (8.10.8)

Thus, Snel’s law is essentially the same as in the isotropic case, provided one uses the

effective refractive index N. Because N depends on the polarization, there will be two

different refraction angles† for the same angle of incidence. In particular, Eq. (8.10.8)

can be written explicitly in the two polarization cases:

n1n3 sinθ
√

n2
1 sin2 θ+ n2

3 cos2 θ
= n′1n

′
3 sinθ′

√

n′21 sin2 θ′ + n′23 cos2 θ′
(TM) (8.10.9a)

n2 sinθ = n′2 sinθ′ (TE) (8.10.9b)

Both expressions reduce to Eq. (7.1.6) in the isotropic case. The explicit solutions of

Eq. (8.10.9a) for sinθ′ and sinθ are:

sinθ′ = n1n3n
′
3 sinθ

√
[

n′21 n
′2
3 (n

2
1 − n2

3)−n2
1n

2
3(n

′2
1 − n′23 )

]

sin2 θ+ n′21 n′23 n2
3

sinθ = n′1n
′
3n3 sinθ′

√
[

n2
1n

2
3(n

′2
1 − n′23 )−n′21 n′23 (n2

1 − n2
3)
]

sin2 θ′ + n2
1n

2
3n
′2
3

(8.10.10)

†Hence, the name birefringent.
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The MATLAB function snel, solves Eqs. (8.10.9) for θ′ given the angle of incidence

θ and the polarization type. It works for any type of medium, isotropic, uniaxial, or

biaxial. It has usage:

thb = snel(na,nb,tha,pol); % refraction angle from Snel’s law

The refractive index inputs na, nb may be entered as 1-, 2-, or 3-dimensional column

or row vectors, for example, na = [na] (isotropic), na = [nao, nae] (uniaxial), or na =
[na1, na2, na3] (biaxial).

Next, we discuss the propagation and matching of the transverse fields. All the

results of Sec. 7.3 translate verbatim to the birefringent case, provided one uses the

proper transverse refractive indices according to Eq. (8.10.6).

In particular, the propagation equations (7.3.5)–(7.3.7) for the transverse fields, for

the transverse reflection coefficients ΓT, and for the transverse wave impedances ZT,

remain unchanged.

The phase thickness δz for propagating along z by a distance l also remains the same

as Eq. (7.3.8), except that the index N must be used in the optical length, and therefore,

δz depends on the polarization:

δz = kzl = kl cosθ = Nk0l cosθ = 2π

λ
lN cosθ (8.10.11)

Using Eq. (8.10.7), we have explicitly:

δz = 2π

λ
l
n1

n3

√

n2
3 −N2 sin2 θ , (TM) (8.10.12a)

δz = 2π

λ
ln2 cosθ , (TE) (8.10.12b)

The transverse matching matrix (7.3.11) and Fresnel reflection coefficients (7.3.12)

remain the same. Explicitly, we have in the TM and TE cases:

ρTM = nTM − n′TM

nTM + n′TM

=
n2

1

N cosθ
− n′21
N′ cosθ′

n2
1

N cosθ
+ n′21
N′ cosθ′

ρTE = nTE − n′TE

nTE + n′TE

= n2 cosθ− n′2 cosθ′

n2 cosθ+ n′2 cosθ′

(8.10.13)

Using Eq. (8.10.6) and the TM and TE Snel’s laws, Eqs. (8.10.9), we may rewrite the

reflection coefficients in terms of the angle θ only:

ρTM =
n1n3

√

n′23 −N2 sin2 θ− n′1n′3
√

n2
3 −N2 sin2 θ

n1n3

√

n′23 −N2 sin2 θ+ n′1n′3
√

n2
3 −N2 sin2 θ

ρTE =
n2 cosθ−

√

n′22 − n2
2 sin2 θ

n2 cosθ+
√

n′22 − n2
2 sin2 θ

(8.10.14)
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The quantity N2 sin2 θ can be expressed directly in terms of θ and the refractive

indices of the incident medium. Using Eq. (8.10.4), we have:

N2 sin2 θ = n2
1n

2
3 sin2 θ

n2
1 sin2 θ+ n2

3 cos2 θ
(8.10.15)

The TE reflection coefficient behaves like the TE isotropic case. The TM coefficient

exhibits a much more complicated behavior. If n1 = n′1 but n3 �= n′3, it behaves like the

TM isotropic case. If n3 = n′3 but n1 �= n′1, the square-root factors cancel and it becomes

independent of θ:

ρTM = n1 − n′1
n1 + n′1

(8.10.16)

Another interesting case is when both media are uniaxial and n′3 = n1 and n′1 = n3,

that is, the refractive index vectors are n = [n1, n1, n3] and n′ = [n3, n3, n1]. It is

straightforward to show in this case that ρTM = ρTE at all angles of incidence. Multilayer

films made from alternating such materials exhibit similar TM and TE optical properties

[694].

The MATLAB function fresnel can evaluate Eqs. (8.10.14) at any range of incident

angles θ. The function determines internally whether the media are isotropic, uniaxial,

or biaxial.

8.11 Brewster and Critical Angles in Birefringent Media

The maximum angle of refraction, critical angle of incidence, and Brewster angle, have

their counterparts in birefringent media.

It is straightforward to verify that θ′ is an increasing function of θ in Eq. (8.10.9).

The maximum angle of refraction θ′c is obtained by setting θ = 90o in Eq. (8.10.9).

For the TE case, we obtain sinθ′c = n2/n
′
2. As in the isotropic case of Eq. (7.5.2), this

requires that n2 < n
′
2, that is, the incident medium is less dense than the transmitted

medium, with respect to the index n2. For the TM case, we obtain from Eq. (8.10.9a):

sinθ′c =
n3n

′
3

√

n2
3n
′2
3 + n′21 (n′23 − n2

3)
(maximum TM refraction angle) (8.11.1)

This requires that n3 < n′3. On the other hand, if n3 > n′3, we obtain the critical

angle of incidence θc that corresponds to θ′ = 90o in Eq. (8.10.10):

sinθc =
n3n

′
3

√

n2
3n
′2
3 + n2

1(n
2
3 − n′23 )

(critical TM angle) (8.11.2)

whereas for the TE case, we have sinθc = n′2/n2, which requires n2 > n
′
2.
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In the isotropic case, a Brewster angle always exists at which the TM reflection coeffi-

cient vanishes, ρTM = 0. In the birefringent case, the Brewster angle does not necessarily

exist, as is the case of Eq. (8.10.16), and it can also have the value zero, or even be imag-

inary.

The Brewster angle condition ρTM = 0 is equivalent to the equality of the transverse

refractive indices nTM = n′TM. Using Eq. (8.10.6), we obtain:

nTM = n′TM ⇒ n1n3
√

n2
3 −N2 sin2 θ

= n′1n
′
3

√

n′23 −N2 sin2 θ
(8.11.3)

whereN2 sin2 θ is given by Eq. (8.10.15). Solving for θ, we obtain the expression for the

Brewster angle from the left medium:

tanθB =
n3n

′
3

n2
1

√
√
√
√
n2

1 − n′21
n2

3 − n′23
(Brewster angle) (8.11.4)

Working instead with N′ sinθ′ = N sinθ, we obtain the Brewster angle from the

right medium, interchanging the roles of the primed and unprimed quantities:

tanθ′B =
n3n

′
3

n′21

√
√
√
√
n2

1 − n′21
n2

3 − n′23
(Brewster angle) (8.11.5)

Eqs. (8.11.4) and (8.11.5) reduce to Eqs. (7.6.2) and (7.6.3) in the isotropic case. It is

evident from Eq. (8.11.4) that θB is a real angle only if the quantity under the square

root is non-negative, that is, only if n1 > n
′
1 and n3 > n

′
3, or if n1 < n

′
1 and n3 < n

′
3.

Otherwise, θB is imaginary. In the special case, n1 = n′1 but n3 �= n′3, the Brewster

angle vanishes. If n3 = n′3, the Brewster angle does not exist, since then ρTM is given by

Eq. (8.10.16) and cannot vanish.

The MATLAB function brewster computes the Brewster angle θB, as well as the

critical angles θc and θ′c. For birefringent media the critical angles depend on the pola-

rization. Its usage is as follows:

[thB,thc] = brewster(na,nb) % isotropic case

[thB,thcTE,thcTM] = brewster(na,nb) % birefringent case

In multilayer systems, it is convenient to know if the Brewster angle of an internal

interface is accessible from the incident medium. Using Snel’s law we have in this case

Na sinθa = N sinθ, where θa is the incident angle and Na the effective index of the

incident medium. It is simpler, then, to solve Eq. (8.11.3) directly for θa:

N2
a sinθ2

a = N2 sin2 θB =
n2

3n
′2
3 (n

2
1 − n′21 )

n2
1n

2
3 − n′23 n′21

(8.11.6)

Example 8.11.1: To illustrate the variety of possible Brewster angle values, we consider the

following birefringent cases:
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(a) n = [1.63,1.63,1.5], n′ = [1.63,1.63,1.63]

(b) n = [1.54,1.54,1.63], n′ = [1.5,1.5,1.5]
(c) n = [1.8,1.8,1.5], n′ = [1.5,1.5,1.5]
(d) n = [1.8,1.8,1.5], n′ = [1.56,1.56,1.56]

These cases were discussed in [694]. The corresponding materials are: (a) birefringent

polyester and isotropic polyester, (b) syndiotactic polystyrene and polymethylmethacrylate

(PMMA), (c) birefringent polyester and PMMA, and (d) birefringent polyester and isotropic

polyester.

Because n1 = n′1 in case (a), the Brewster angle will be zero, θB = 0o. In case (b), we

calculate θB = 29.4o. Because n2 > n
′
2 and n3 > n

′
3, there will be both TE and TM critical

angles of reflection: θc,TE = 76.9o and θc,TM = 68.1o.

In case (c), the Brewster angle does not exist because n3 = n′3, and in fact, the TM reflection

coefficient is independent of the incident angle as in Eq. (8.10.16). The corresponding

critical angles of reflection are: θc,TE = 56.4o and θc,TM = 90o.

Finally, in case (d), because n2 > n′2 but n3 < n′3, the Brewster angle will be imaginary,

and there will be a TE critical angle of reflection and a TM maximum angle of refraction:

θc,TE = 60.1o and θ′c,TM = 74.1o.

Fig. 8.11.1 shows the TM and TE reflection coefficients |ρTM(θ)| of Eq. (8.10.14) versus θ

in the range 0 ≤ θ ≤ 90o.
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Fig. 8.11.1 TM and TE birefringent Fresnel reflection coefficients versus incident angle.

The TE coefficient in case (a) is not plotted because it is identically zero. In order to expand

the vertical scales, Fig. 8.11.2 shows the TM reflectances normalized by their values at

θ = 0o, that is, it plots the quantities |ρTM(θ)/ρTM(0
o)|2. Because in case (a) ρTM(0

o)= 0,

we have plotted instead the scaled-up quantity |100ρTM(θ)|2.

The typical MATLAB code used to compute the critical angles and generate these graphs

was:

th = linspace(0,90,361); % θ at 1/4o intervals

na = [1.63,1.63,1.5]; nb = [1.63,1.63,1.63]; % note the variety of
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Fig. 8.11.2 TM reflectances normalized at normal incidence.

[rte1,rtm1] = fresnel(na,nb,th); % equivalent ways of

[thb1,thcTE1,thcTM1] = brewster(na,nb); % entering na and nb

na = [1.54,1.63];

nb = [1.5, 1.5]; % FRESNEL and BREWSTER

[rte2,rtm2] = fresnel(na,nb,th); % internally extend

[thb2,thcTE2,thcTM2] = brewster(na,nb); % na,nb into 3-d arrays

na = [1.8, 1.5]; % same as na=[1.8,1.8,1.5]

nb = 1.5; % and nb=[1.5,1.5,1.5]

[rte3,rtm3] = fresnel(na,nb,th);

[thb3,thcTE3,thcTM3] = brewster(na,nb); % in this case, θB = []

na = [1.8,1.5];

nb = 1.56;

[rte4,rtm4] = fresnel(na,nb,th);

[thb4,thcTE4,thcTM4] = brewster(na,nb);

plot(th, abs([rtm1; rtm2; rtm3; rtm4]));

We note four striking properties of the birefringent cases that have no counterparts

for isotropic materials: (i) The Brewster angle can be zero, (ii) the Brewster angle may not

exist, (iii) the Brewster angle may be imaginary with the TE and TM reflection coefficients

both increasing monotonically with the incident angle, and (iv) there may be total internal

reflection in one polarization but not in the other.

8.12 Multilayer Birefringent Structures

With some redefinitions, all the results of Sec. 8.1 on multilayer dielectric structures

translate essentially unchanged to the birefringent case.

We assume the sameM-layer configuration shown in Fig. 8.1.1, where now each layer

is a biaxial material. The orthogonal optic axes of all the layers are assumed to be aligned

with the xyz film axes. The xz-plane is the plane of incidence, the layer interfaces are

parallel to the xy-plane, and the layers are arranged along the z-axis.
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The ith layer is described by the triplet of refractive indices ni = [ni1, ni2, ni3],

i = 1,2, . . . ,M. The incident and exit media a,b may also be birefringent with na =
[na1, na2, na3] and nb = [nb1, nb2, nb3], although in our examples, we will assume that

they are isotropic.

The reflection/refraction angles in each layer depend on the assumed polarization

and are related to each other by the birefringent version of Snel’s law, Eq. (8.10.8):

Na sinθa = Ni sinθi = Nb sinθb , i = 1,2 . . . ,M (8.12.1)

where Na,Ni,Nb are the effective refractive indices given by Eq. (8.10.4). The phase

thickness of the ith layer depends on the polarization:

δi = 2π

λ
liNi cosθi =

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

2π

λ
lini1

√
√
√
√1− N

2
a sin2 θa

n2
i3

, (TM)

2π

λ
lini2

√
√
√
√1− N

2
a sin2 θa

n2
i2

, (TE)

(8.12.2)

where we used Eq. (8.10.7) and Snel’s law to write in the TM and TE cases:

Ni cosθi =

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ni1
ni3

√

n2
i3 −N2

i sin2 θi = ni1

√
√
√
√1− N

2
i sin2 θi

n2
i3

= ni1

√
√
√
√1− N

2
a sin2 θa

n2
i3

ni2 cosθi = ni2
√

1− sin2 θi = ni2

√
√
√
√1− N

2
a sin2 θa

n2
i2

To use a unified notation for the TM and TE cases, we define the layer optical lengths

at normal-incidence, normalized by a fixed free-space wavelength λ0:

Li =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

lini1
λ0

, (TM)

lini2
λ0

, (TE)

, i = 1,2, . . . ,M (8.12.3)

We define also the cosine coefficients ci, which represent cosθi in the TE birefringent

case and in the TM isotropic case:

ci =

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

√
√
√
√1− N

2
a sin2 θa

n2
i3

, (TM)

√
√
√
√1− N

2
a sin2 θa

n2
i2

, (TE)

, i = 1,2, . . . ,M (8.12.4)

At normal incidence the cosine factors are unity, ci = 1. With these definitions,

Eq. (8.12.2) can be written compactly in the form:

δi = 2π
λ0

λ
Lici = 2π

f

f0
Lici , i = 1,2, . . . ,M (8.12.5)
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where λ is the operating free-space wavelength and f = c0/λ, f0 = c0/λ0. This is

the birefringent version of Eq. (8.1.10). A typical design might use quarter-wave layers,

Li = 1/4, at λ0 and at normal incidence.

The reflection coefficients ρTi at the interfaces are given by Eq. (8.1.3), but now the

transverse refractive indices are defined by the birefringent version of Eq. (8.1.4):

nTi =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

n2
i1

Ni cosθi
= ni1ni3
√

n2
i3 −N2

a sin2 θa
, (TM)

ni2 cosθi =
√

n2
i2 −N2

a sin2 θa , (TE)

, i = a,1,2, . . . ,M, b (8.12.6)

With the above redefinitions, the propagation and matching equations (8.1.5)–(8.1.9)

remain unchanged. The MATLAB function multidiel can also be used in the birefrin-

gent case to compute the frequency reflection response of a multilayer structure. Its

usage is still:

[Gamma1,Z1] = multidiel(n,L,lambda,theta,pol); % birefringent multilayer structure

where the input n is a 1×(M + 2) vector of refractive indices in the isotropic case, or a

3×(M + 2) matrix, where each column represents the triplet of birefringent indices of

each medium. For uniaxial materials, n may be entered as a 2×(M + 2) matrix.

8.13 Giant Birefringent Optics

The results of Sec. 8.8 can be applied almost verbatim to the birefringent case. In

Fig. 8.8.1, we assume that the high and low alternating layers are birefringent, described

by the triplet indices nH = [nH1, nH2, nH3] and nL = [nL1, nL2, nL3]. The entry and exit

media may also be assumed to be birefringent. Then, Snel’s laws give:

Na sinθa = NH sinθH = NL sinθL = Nb sinθb (8.13.1)

The phase thicknesses δH and δL within the high and low index layers are:

δH = 2π
f

f0
LHcH , δL = 2π

f

f0
LLcL (8.13.2)

where LH, cH and LL, cL are defined by Eqs. (8.12.3) and (8.12.4) for i = H,L. The

effective transverse refractive indices within the high and low index layers are given by

Eq. (8.12.6), again with i = H,L.

The alternating reflection coefficient ρT between the high/low interfaces is given by

Eq. (8.10.14), with the quantity N2 sin2 θ replaced by N2
a sin2 θa by Snel’s law:
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ρTM =
nH1nH3

√

n2
L3 −N2

a sin2 θa − nL1nL3

√

n2
H3 −N2

a sin2 θa

nH1nH3

√

n2
L3 −N2

a sin2 θa + nL1nL3

√

n2
H3 −N2

a sin2 θa

ρTE =
√

n2
H2 −N2

a sin2 θa −
√

n2
L2 −N2

a sin2 θa
√

n2
H2 −N2

a sin2 θa +
√

n2
L2 −N2

a sin2 θa

(8.13.3)

The multilayer structure will exhibit reflection bands whose bandedges can be cal-

culated from Eqs. (8.8.7)–(8.8.17), with the redefinition L± = LHcH±LLcL. The MATLAB

function omniband2 calculates the bandedges. It has usage:

[F1,F2] = omniband2(na,nH,nL,LH,LL,th,pol,N);

where pol is one of the strings ’te’ or ’tm’ for TE or TM polarization, and na, nH, nL

are 1-d, 2-d, or 3-d row or column vectors of birefringent refractive indices.

Next, we discuss some mirror design examples from [694] that illustrate some prop-

erties that are specific to birefringent media. The resulting optical effects in such mirror

structures are referred to as giant birefringent optics (GBO) in [694,1512].

Example 8.13.1: We consider a GBO mirror consisting of 50-bilayers of high and low index

quarter-wave layers with refractive indices nH = [1.8,1.8,1.5], nL = [1.5,1.5,1.5] (bire-

fringent polyester and isotropic PMMA.) The surrounding media are air, na = nb = 1.

The layers are quarter wavelength at the normalization wavelength λ0 = 700 nm at normal

incidence, so that for both polarizations we take LH = LL = 1/4.

Because the high/low index layers are matched along the z-direction, nH3 = nL3, the TM

reflection coefficient at the high/low interface will be constant, independent of the incident

angle θa, as in Eq. (8.10.16). However, some dependence on θa is introduced through the

cosine factors cH, cL of Eq. (8.13.2).

The left graph of Fig. 8.13.1 shows the reflectance |ΓT(λ)|2 as a function of λ for an

angle of incidence θa = 60o. The TM and TE bandedge wavelengths were calculated from

omniband2 to be: [λ1, λ2]= [540.24,606.71] and [λ1, λ2]= [548.55,644.37] nm.

The typical MATLAB code used to generate the left graph and the bandedge wavelengths

was as follows:

LH = 0.25; LL = 0.25;

na = [1; 1; 1];

nH = [1.8; 1.8; 1.5];

nL = [1.5; 1.5; 1.5];

nb = [1; 1; 1];

la0 = 700;

la = linspace(400,1000,601);

th = 60; % angle of incidence

N = 50; % number of bilayers
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Fig. 8.13.1 Reflectance of birefringent mirror.

n = [na, repmat([nH,nL], 1, N), nb]; % 3×(2N + 2) matrix

L = [repmat([LH,LL], 1, N)];

Ge = 100*abs(multidiel(n, L, la/la0, th, ’te’)).^2;

Gm = 100*abs(multidiel(n, L, la/la0, th, ’tm’)).^2;

G0 = 100*abs(multidiel(n, L, la/la0)).^2;

plot(la,Gm,’-’, la,Ge,’--’, la,G0,’:’);

[F1,F2]=omniband2(na,nH,nL,LH,LL,th,’tm’,3);

la1 = la0/F2; la2 = la0/F1; % TM bandedge wavelengths

The right graph shows the reflectance with a 25% thickness gradient (the layer thicknesses

LH, LL decrease linearly from quarter-wavelength to 25% less than that at the end.) This

can be implemented in MATLAB by defining the thickness vector L by:

L = [repmat([LH,LL], 1, N)];

L = L .* (1 - linspace(0, 0.25, 2*N)); % 25% thickness gradient

The thickness gradient increases the effective bandwidth of the reflecting bands [692].

However, the bandwidth calculation can no longer be done with omniband2. The band

centers can be shifted to higher wavelengths by choosing λ0 higher. The reflecting bands

can be made flatter by increasing the number of bilayers. ⊓⊔

Example 8.13.2: In this example, we design a 30-bilayer GBO mirror with nH = [1.8,1.8,1.5]
and nL = [1.5,1.5,1.8], so that nH1 = nH2 = nL3 and nH3 = nL1 = nL2. As we discussed

in Sec. 8.10, it follows from Eq. (8.10.14) that ρTM = ρTE for all angles of incidence.

As in Ref. [694], the media a,b are taken to be isotropic with na = nb = 1.4. The

normalization wavelength at which the high and low index layers are quarter-wavelength

is λ0 = 700 nm.

The left graph of Fig. 8.13.2 shows the reflectance for a 45o angle of incidence. Because

ρTM = ρTE, the reflection bands for the TM and TE cases are essentially the same.

The right graph depicts the asymptotic (for large number of bilayers) bandedges of the

reflecting band versus incident angle. They were computed with omniband2. Unlike the
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Fig. 8.13.2 Birefringent mirror with identical TM and TE reflection bands.

isotropic case, the TM and TE bands are exactly identical. This is a consequence of the

following relationships between the cosine factors in this example: cH,TM = cL,TE and

cH,TE = cL,TM. Then, because we assume quarter-wave layers in both the TE and TM cases,

LH = LL = 1/4, we will have:

L+,TM = LH,TMcH,TM + LL,TMcL,TM == 1

4
(cH,TM + cL,TM)= 1

4
(cL,TE + cH,TE)= L+,TE

L−,TM = LH,TMcH,TM − LL,TMcL,TM == 1

4
(cH,TM − cL,TM)= 1

4
(cL,TE − cH,TE)= −L+,TE

Because the computational algorithm (8.8.17) for the bandwidth does not depend on the

sign of L−, it follows that Eq. (8.8.17) will have the same solution for the TM and TE cases.

The typical MATLAB code for this example was:

LH = 0.25; LL = 0.25;

na = [1.4; 1.4; 1.4];

nb = [1.4; 1.4; 1.4];

nH = [1.8; 1.8; 1.5];

nL = [1.5; 1.5; 1.8];

la0 = 700;

la = linspace(400,1000,601);

tha = 45;

N = 30;

n = [na, repmat([nH,nL], 1, N), nb];

L = [repmat([LH,LL], 1, N)];

Ge = 100*abs(multidiel(n, L, la/la0, tha, ’te’)).^2;

Gm = 100*abs(multidiel(n, L, la/la0, tha, ’tm’)).^2;

G0 = 100*abs(multidiel(n, L, la/la0)).^2;

plot(la,Gm,’-’, la,Ge,’--’, la,G0,’:’);
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In Fig. 8.13.3, the low-index material is changed slightly to nL = [1.5,1.5,1.9]. The main

behavior of the structure remains the same, except now the TM and TE bands are slightly

different.
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Fig. 8.13.3 Birefringent mirror with slightly different TM and TE reflection bands.

The MATLAB code used to compute the right graph was:

theta = linspace(0,90,361); % incident angles

F1e = []; F2e = [];

F1m = []; F2m = [];

Ni = 3; % refinement iterations

for i=1:length(theta),

[f1e,f2e] = omniband2(na,nH,nL,LH,LL,theta(i),’te’,Ni);

[f1m,f2m] = omniband2(na,nH,nL,LH,LL,theta(i),’tm’,Ni);

F1e = [F1e,f1e]; F2e = [F2e,f2e];

F1m = [F1m,f1m]; F2m = [F2m,f2m]; % frequency bandedges

end

la1e = la0 ./ F2e; la2e = la0 ./ F1e; % wavelength bandedges

la1m = la0 ./ F2m; la2m = la0 ./ F1m;

plot(theta,la1m,’-’, theta,la2m,’-’, theta,la1e,’--’, theta,la2e,’--’);

As the incident angle increases, not only does the TM band widen but it also becomes wider

than the TE band—exactly the opposite behavior from the isotropic case. ⊓⊔

Example 8.13.3: GBO Reflective Polarizer. By choosing biaxial high/low layers whose refractive

indices are mismatched only in the x or the y direction, one can design a mirror structure

that reflects only the TM or only the TE polarization.

Fig. 8.13.4 shows the reflectance of an 80-bilayer mirror with nH = [1.86,1.57,1.57] for

the left graph, and nH = [1.57,1.86,1.57] for the right one. In both graphs, the low index

material is the same, with nL = [1.57,1.57,1.57].

The angle of incidence was θa = 0o. The typical MATLAB code was:
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Fig. 8.13.4 TM and TE mirror polarizers.

LH = 0.25; LL = 0.25;

na = [1; 1; 1];

nb = [1; 1; 1];

nH = [1.86; 1.57; 1.57];

nL = [1.57; 1.57; 1.57];

la0 = 700;

la = linspace(400,1000,601);

N = 80;

n = [na, repmat([nH,nL], 1, N), nb];

L = [repmat([LH,LL], 1, N)];

L = L .* linspace(1,0.75,2*N); % 25% thickness gradient

Ge = 100*abs(multidiel(n, L, la/la0, 0, ’te’)).^2;

Gm = 100*abs(multidiel(n, L, la/la0, 0, ’tm’)).^2;

plot(la,Gm,’-’, la,Ge,’--’);

A 25% thickness gradient was assumed in both cases. In the first case, the x-direction

indices are different and the structure will act as a mirror for the TM polarization. The TE

polarization will be reflected only by the air-high interface.

In the second case, the materials are matched in their y-direction indices and therefore,

the structure becomes a mirror for the TE polarization, assuming as always that the plane

of incidence is still the xz plane. ⊓⊔

Giant birefringent optics is a new paradigm in the design of multilayer mirrors and

polarizers [694], offering increased flexibility in the control of reflected light. The re-

cently manufactured multilayer optical film by 3M Corp. [1512] consists of hundreds to

thousands of birefringent polymer layers with individual thicknesses of the order of a

wavelength and total thickness of a sheet of paper. The optical working range of such

films are between 400–2500 nm.

Applications include the design of efficient waveguides for transporting visible light

over long distances and piping sunlight into interior rooms, reflective polarizers for
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improving liquid crystal displays, and other products, such as various optoelectronic

components, cosmetics, and ”hot” and ”cold” mirrors for architectural and automotive

windows.

8.14 Problems

8.1 Prove the reflectance and transmittance formulas (8.4.6) in FTIR.

8.2 Computer Experiment—FTIR. Reproduce the results and graphs of Figures 8.4.3–8.4.5.

8.3 Computer Experiment—Surface Plasmon Resonance. Reproduce the results and graphs of

Figures 8.5.3–8.5.7.

8.4 Working with the electric and magnetic fields across an negative-index slab given by Eqs. (8.6.1)

and (8.6.2), derive the reflection and transmission responses of the slab given in (8.6.8).

8.5 Computer Experiment—Perfect Lens. Study the sensitivity of the perfect lens property to the

deviations from the ideal values of ǫ = −ǫ0 and μ = −μ0, and to the presence of losses by

reproducing the results and graphs of Figures 8.6.3 and 8.6.4. You will need to implement

the computational algorithm listed on page 329.

8.6 Computer Experiment—Antireflection Coatings. Reproduce the results and graphs of Figures

8.7.1–8.7.3.

8.7 Computer Experiment—Omnidirectional Dielectric Mirrors. Reproduce the results and graphs

of Figures 8.8.2–8.8.10.

8.8 Derive the generalized Snel’s laws given in Eq. (8.10.10). Moreover, derive the Brewster angle

expressions given in Eqs. (8.11.4) and (8.11.5).

8.9 Computer Experiment—Brewster angles. Study the variety of possible Brewster angles and

reproduce the results and graphs of Example 8.11.1.

8.10 Computer Experiment—Multilayer Birefringent Structures. Reproduce the results and graphs

of Figures 8.13.1–8.13.2.

9

Waveguides

Waveguides are used to transfer electromagnetic power efficiently from one point in

space to another. Some common guiding structures are shown in the figure below.

These include the typical coaxial cable, the two-wire and mictrostrip transmission lines,

hollow conducting waveguides, and optical fibers.

In practice, the choice of structure is dictated by: (a) the desired operating frequency

band, (b) the amount of power to be transferred, and (c) the amount of transmission

losses that can be tolerated.

Fig. 9.0.1 Typical waveguiding structures.

Coaxial cables are widely used to connect RF components. Their operation is practi-

cal for frequencies below 3 GHz. Above that the losses are too excessive. For example,

the attenuation might be 3 dB per 100 m at 100 MHz, but 10 dB/100 m at 1 GHz, and

50 dB/100 m at 10 GHz. Their power rating is typically of the order of one kilowatt at

100 MHz, but only 200 W at 2 GHz, being limited primarily because of the heating of

the coaxial conductors and of the dielectric between the conductors (dielectric voltage

breakdown is usually a secondary factor.) However, special short-length coaxial cables

do exist that operate in the 40 GHz range.

Another issue is the single-mode operation of the line. At higher frequencies, in order

to prevent higher modes from being launched, the diameters of the coaxial conductors

must be reduced, diminishing the amount of power that can be transmitted.

Two-wire lines are not used at microwave frequencies because they are not shielded

and can radiate. One typical use is for connecting indoor antennas to TV sets. Microstrip

lines are used widely in microwave integrated circuits.
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Rectangular waveguides are used routinely to transfer large amounts of microwave

power at frequencies greater than 3 GHz. For example at 5 GHz, the transmitted power

might be one megawatt and the attenuation only 4 dB/100 m.

Optical fibers operate at optical and infrared frequencies, allowing a very wide band-

width. Their losses are very low, typically, 0.2 dB/km. The transmitted power is of the

order of milliwatts.

9.1 Longitudinal-Transverse Decompositions

In a waveguiding system, we are looking for solutions of Maxwell’s equations that are

propagating along the guiding direction (the z direction) and are confined in the near

vicinity of the guiding structure. Thus, the electric and magnetic fields are assumed to

have the form:

E(x, y, z, t)= E(x, y)ejωt−jβz

H(x, y, z, t)= H(x, y)ejωt−jβz
(9.1.1)

where β is the propagation wavenumber along the guide direction. The corresponding

wavelength, called the guide wavelength, is denoted by λg = 2π/β.

The precise relationship betweenω and β depends on the type of waveguiding struc-

ture and the particular propagating mode. Because the fields are confined in the trans-

verse directions (the x, y directions,) they cannot be uniform (except in very simple

structures) and will have a non-trivial dependence on the transverse coordinates x and

y. Next, we derive the equations for the phasor amplitudes E(x, y) and H(x, y).

Because of the preferential role played by the guiding direction z, it proves con-

venient to decompose Maxwell’s equations into components that are longitudinal, that

is, along the z-direction, and components that are transverse, along the x, y directions.

Thus, we decompose:

E(x, y)= x̂Ex(x, y)+ŷEy(x, y)
︸ ︷︷ ︸

transverse

+ ẑEz(x, y)
︸ ︷︷ ︸

longitudinal

≡ ET(x, y)+ẑEz(x, y) (9.1.2)

In a similar fashion we may decompose the gradient operator:

∇∇∇ = x̂∂x + ŷ∂y
︸ ︷︷ ︸

transverse

+ ẑ∂z =∇∇∇T + ẑ∂z =∇∇∇T − jβ ẑ (9.1.3)

where we made the replacement ∂z → −jβ because of the assumed z-dependence. In-

troducing these decompositions into the source-free Maxwell’s equations we have:

∇∇∇× E = −jωμH

∇∇∇×H = jωǫE
∇∇∇ · E = 0

∇∇∇ ·H = 0

⇒

(∇∇∇T − jβẑ)×(ET + ẑEz)= −jωμ(HT + ẑHz)

(∇∇∇T − jβẑ)×(HT + ẑHz)= jωǫ(ET + ẑEz)

(∇∇∇T − jβẑ)·(ET + ẑEz)= 0

(∇∇∇T − jβẑ)·(HT + ẑHz)= 0

(9.1.4)
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where ǫ, μ denote the permittivities of the medium in which the fields propagate, for

example, the medium between the coaxial conductors in a coaxial cable, or the medium

within the hollow rectangular waveguide. This medium is assumed to be lossless for

now.

We note that ẑ · ẑ = 1, ẑ × ẑ = 0, ẑ · ET = 0, ẑ · ∇∇∇TEz = 0 and that ẑ × ET and

ẑ×∇∇∇TEz are transverse while∇∇∇T × ET is longitudinal. Indeed, we have:

ẑ× ET = ẑ× (x̂Ex + ŷEy)= ŷEx − x̂Ey
∇∇∇T × ET = (x̂∂x + ŷ∂y)×(x̂Ex + ŷEy)= ẑ(∂xEy − ∂yEx)

Using these properties and equating longitudinal and transverse parts in the two

sides of Eq. (9.1.4), we obtain the equivalent set of Maxwell equations:

∇∇∇TEz × ẑ− jβ ẑ× ET = −jωμHT

∇∇∇THz × ẑ− jβ ẑ×HT = jωǫET
∇∇∇T × ET + jωμ ẑHz = 0

∇∇∇T ×HT − jωǫ ẑEz = 0

∇∇∇T · ET − jβEz = 0

∇∇∇T ·HT − jβHz = 0

(9.1.5)

Depending on whether both, one, or none of the longitudinal components are zero,

we may classify the solutions as transverse electric and magnetic (TEM), transverse elec-

tric (TE), transverse magnetic (TM), or hybrid:

Ez = 0, Hz = 0, TEM modes

Ez = 0, Hz �= 0, TE or H modes

Ez �= 0, Hz = 0, TM or E modes

Ez �= 0, Hz �= 0, hybrid or HE or EH modes

In the case of TEM modes, which are the dominant modes in two-conductor trans-

mission lines such as the coaxial cable, the fields are purely transverse and the solution

of Eq. (9.1.5) reduces to an equivalent two-dimensional electrostatic problem. We will

discuss this case later on.

In all other cases, at least one of the longitudinal fields Ez,Hz is non-zero. It is then

possible to express the transverse field components ET, HT in terms of the longitudinal

ones, Ez, Hz.

Forming the cross-product of the second of equations (9.1.5) with ẑ and using the

BAC-CAB vector identity, ẑ × (ẑ × HT)= ẑ(ẑ · HT)−HT(ẑ · ẑ)= −HT, and similarly,

ẑ× (∇∇∇THz × ẑ)=∇∇∇THz, we obtain:

∇∇∇THz + jβHT = jωǫ ẑ× ET

Thus, the first two of (9.1.5) may be thought of as a linear system of two equations

in the two unknowns ẑ× ET and HT, that is,

β ẑ× ET −ωμHT = jẑ×∇∇∇TEz
ωǫ ẑ× ET − βHT = −j∇∇∇THz

(9.1.6)
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The solution of this system is:

ẑ× ET = − jβ
k2
c

ẑ×∇∇∇TEz − jωμ
k2
c
∇∇∇THz

HT = − jωǫ
k2
c

ẑ×∇∇∇TEz − jβ
k2
c
∇∇∇THz

(9.1.7)

where we defined the so-called cutoff wavenumber kc by:

k2
c =ω2ǫμ− β2 = ω2

c2
− β2 = k2 − β2 (cutoff wavenumber) (9.1.8)

The quantity k = ω/c = ω
√
ǫμ is the wavenumber a uniform plane wave would

have in the propagation medium ǫ, μ.

Although k2
c stands for the difference ω2ǫμ − β2, it turns out that the boundary

conditions for each waveguide type force k2
c to take on certain values, which can be

positive, negative, or zero, and characterize the propagating modes. For example, in a

dielectric waveguide k2
c is positive inside the guide and negative outside it; in a hollow

conducting waveguide k2
c takes on certain quantized positive values; in a TEM line, k2

c

is zero. Some related definitions are the cutoff frequency and the cutoff wavelength

defined as follows:

ωc = ckc , λc = 2π

kc
(cutoff frequency and wavelength) (9.1.9)

We can then express β in terms of ω and ωc, or ω in terms of β and ωc. Taking

the positive square roots of Eq. (9.1.8), we have:

β = 1

c

√

ω2 −ω2
c = ω

c

√

1− ω
2
c

ω2
and ω =

√

ω2
c + β2c2 (9.1.10)

Often, Eq. (9.1.10) is expressed in terms of the wavelengths λ = 2π/k = 2πc/ω,

λc = 2π/kc, and λg = 2π/β. It follows from k2 = k2
c + β2 that

1

λ2
= 1

λ2
c
+ 1

λ2
g

⇒ λg = λ
√

1− λ
2

λ2
c

(9.1.11)

Note that λ is related to the free-space wavelength λ0 = 2πc0/ω = c0/f by the

refractive index of the dielectric material λ = λ0/n.

It is convenient at this point to introduce the transverse impedances for the TE and

TM modes by the definitions:

ηTE = ωμ

β
= η ω

βc
, ηTM = β

ωǫ
= η βc

ω
(TE and TM impedances) (9.1.12)
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where the medium impedance is η = √

μ/ǫ, so that η/c = μ and ηc = 1/ǫ. We note the

properties:

ηTEηTM = η2 ,
ηTE

ηTM

= ω2

β2c2
(9.1.13)

Because βc/ω =
√

1−ω2
c/ω2, we can write also:

ηTE = η
√

1− ω
2
c

ω2

, ηTM = η
√

1− ω
2
c

ω2
(9.1.14)

With these definitions, we may rewrite Eq. (9.1.7) as follows:

ẑ× ET = − jβ
k2
c

(

ẑ×∇∇∇TEz + ηTE∇∇∇THz
)

HT = − jβ
k2
c

( 1

ηTM

ẑ×∇∇∇TEz +∇∇∇THz
)

(9.1.15)

Using the result ẑ× (ẑ× ET)= −ET, we solve for ET and HT:

ET = − jβ
k2
c

(∇∇∇TEz − ηTE ẑ×∇∇∇THz
)

HT = − jβ
k2
c

(∇∇∇THz + 1

ηTM

ẑ×∇∇∇TEz
)

(transverse fields) (9.1.16)

An alternative and useful way of writing these equations is to form the following

linear combinations, which are equivalent to Eq. (9.1.6):

HT − 1

ηTM

ẑ× ET = j

β
∇∇∇THz

ET − ηTE HT × ẑ = j

β
∇∇∇TEz

(9.1.17)

So far we only used the first two of Maxwell’s equations (9.1.5) and expressed ET,HT
in terms of Ez,Hz. Using (9.1.16), it is easily shown that the left-hand sides of the

remaining four of Eqs. (9.1.5) take the forms:

∇∇∇T × ET + jωμ ẑHz = jωμ

k2
c

ẑ
(∇2

THz + k2
cHz

)

∇∇∇T ×HT − jωǫ ẑEz = − jωǫ
k2
c

ẑ
(∇2

TEz + k2
cEz

)

∇∇∇T · ET − jβEz = − jβ
k2
c

(∇2
TEz + k2

cEz
)

∇∇∇T ·HT − jβHz = − jβ
k2
c

(∇2
THz + k2

cHz
)



9.1. Longitudinal-Transverse Decompositions 367

where ∇2
T is the two-dimensional Laplacian operator:

∇2
T =∇∇∇T ·∇∇∇T = ∂2

x + ∂2
y (9.1.18)

and we used the vectorial identities∇∇∇T ×∇∇∇TEz = 0,∇∇∇T × (ẑ×∇∇∇THz)= ẑ∇2
THz, and

∇∇∇T · (ẑ×∇∇∇THz)= 0.

It follows that in order to satisfy all of the last four of Maxwell’s equations (9.1.5), it

is necessary that the longitudinal fields Ez(x, y),Hz(x, y) satisfy the two-dimensional

Helmholtz equations:

∇2
TEz + k2

cEz = 0

∇2
THz + k2

cHz = 0
(Helmholtz equations) (9.1.19)

These equations are to be solved subject to the appropriate boundary conditions for

each waveguide type. Once, the fields Ez,Hz are known, the transverse fields ET,HT are

computed from Eq. (9.1.16), resulting in a complete solution of Maxwell’s equations for

the guiding structure. To get the full x, y, z, t dependence of the propagating fields, the

above solutions must be multiplied by the factor ejωt−jβz.
The cross-sections of practical waveguiding systems have either cartesian or cylin-

drical symmetry, such as the rectangular waveguide or the coaxial cable. Below, we

summarize the form of the above solutions in the two types of coordinate systems.

Cartesian Coordinates

The cartesian component version of Eqs. (9.1.16) and (9.1.19) is straightforward. Using

the identity ẑ×∇∇∇THz = ŷ∂xHz − x̂∂yHz, we obtain for the longitudinal components:

(∂2
x + ∂2

y)Ez + k2
cEz = 0

(∂2
x + ∂2

y)Hz + k2
cHz = 0

(9.1.20)

Eq. (9.1.16) becomes for the transverse components:

Ex = − jβ
k2
c

(

∂xEz + ηTE ∂yHz
)

Ey = − jβ
k2
c

(

∂yEz − ηTE ∂xHz
)

,

Hx = − jβ
k2
c

(

∂xHz − 1

ηTM

∂yEz
)

Hy = − jβ
k2
c

(

∂yHz + 1

ηTM

∂xEz
)

(9.1.21)

Cylindrical Coordinates

The relationship between cartesian and cylindrical coordinates is shown in Fig. 9.1.1.

From the triangle in the figure, we have x = ρ cosφ and y = ρ sinφ. The transverse

gradient and Laplace operator are in cylindrical coordinates:

∇∇∇T = ρ̂ρρ ∂

∂ρ
+ φ̂φφ 1

ρ

∂

∂φ
, ∇∇∇2

T =
1

ρ

∂

∂ρ

(

ρ
∂

∂ρ

)

+ 1

ρ2

∂2

∂φ2
(9.1.22)
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Fig. 9.1.1 Cylindrical coordinates.

The Helmholtz equations (9.1.19) now read:

1

ρ

∂

∂ρ

(

ρ
∂Ez
∂ρ

)

+ 1

ρ2

∂2Ez
∂φ2

+ k2
cEz = 0

1

ρ

∂

∂ρ

(

ρ
∂Hz
∂ρ

)

+ 1

ρ2

∂2Hz
∂φ2

+ k2
cHz = 0

(9.1.23)

Noting that ẑ× ρ̂ρρ = φ̂φφ and ẑ× φ̂φφ = −ρ̂ρρ, we obtain:

ẑ×∇∇∇THz = φ̂φφ(∂ρHz)−ρ̂ρρ 1

ρ
(∂φHz)

The decomposition of a transverse vector is ET = ρ̂ρρEρ + φ̂φφEφ. The cylindrical

coordinates version of (9.1.16) are:

Eρ = − jβ
k2
c

(

∂ρEz − ηTE
1

ρ
∂φHz

)

Eφ = − jβ
k2
c

( 1

ρ
∂φEz + ηTE∂ρHz

)

,

Hρ = − jβ
k2
c

(

∂ρHz + 1

ηTMρ
∂φEz

)

Hφ = − jβ
k2
c

( 1

ρ
∂φHz − 1

ηTM

∂ρEz
)

(9.1.24)

For either coordinate system, the equations for HT may be obtained from those of

ET by a so-called duality transformation, that is, making the substitutions:

E → H , H → −E , ǫ→ μ , μ→ ǫ (duality transformation) (9.1.25)

These imply that η → η−1 and ηTE → η−1
TM. Duality is discussed in greater detail in

Sec. 18.2.

9.2 Power Transfer and Attenuation

With the field solutions at hand, one can determine the amount of power transmitted

along the guide, as well as the transmission losses. The total power carried by the fields

along the guide direction is obtained by integrating the z-component of the Poynting

vector over the cross-sectional area of the guide:
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PT =
∫

S
Pz dS , where Pz = 1

2
Re(E×H∗)·ẑ (9.2.1)

It is easily verified that only the transverse components of the fields contribute to

the power flow, that is, Pz can be written in the form:

Pz = 1

2
Re(ET ×H∗T)·ẑ (9.2.2)

For waveguides with conducting walls, the transmission losses are due primarily to

ohmic losses in (a) the conductors and (b) the dielectric medium filling the space between

the conductors and in which the fields propagate. In dielectric waveguides, the losses

are due to absorption and scattering by imperfections.

The transmission losses can be quantified by replacing the propagation wavenumber

β by its complex-valued version βc = β− jα, where α is the attenuation constant. The

z-dependence of all the field components is replaced by:

e−jβz → e−jβcz = e−(α+jβ)z = e−αze−jβz (9.2.3)

The quantityα is the sum of the attenuation constants arising from the various loss

mechanisms. For example, if αd and αc are the attenuations due to the ohmic losses in

the dielectric and in the conducting walls, then

α = αd +αc (9.2.4)

The ohmic losses in the dielectric can be characterized either by its loss tangent,

say tanδ, or by its conductivity σd—the two being related by σd = ωǫ tanδ. More

generally, the effective dielectric constant of the medium may have a negative imaginary

part ǫI that includes both conductive and polarization losses, ǫ(ω)= ǫ − jǫI, with

ǫI = ǫ tanδ. Then, the corresponding complex-valued wavenumber βc is obtained by

the replacement:

β =
√

ω2μǫ− k2
c → βc =

√

ω2μǫ(ω)−k2
c

For weakly lossy dielectrics (ǫI ≪ ǫ), we may make the approximation:

βc =
√

ω2μ(ǫ− jǫI)−k2
c =

√

β2 − jω2μǫI = β
√

1− jω
2μǫI
β2

≃ β− j ω
2μǫI
2β

Resulting in the attenuation constant, after settingμǫ = 1/c2 andβc/ω =
√

1−ω2
c/ω2,

αd = ω2μǫI
2β

= 1

2

ω2μǫ

β
tanδ = ω tanδ

2c
√

1−ω2
c/ω2

(dielectric losses) (9.2.5)

The conductor losses are more complicated to calculate. In practice, the following

approximate procedure is adequate. First, the fields are determined on the assumption

that the conductors are perfect.
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Second, the magnetic fields on the conductor surfaces are determined and the corre-

sponding induced surface currents are calculated by Js = n̂×H, where n̂ is the outward

normal to the conductor.

Third, the ohmic losses per unit conductor area are calculated by Eq. (2.8.7). Figure

9.2.1 shows such an infinitesimal conductor area dA = dldz, where dl is along the

cross-sectional periphery of the conductor. Applying Eq. (2.8.7) to this area, we have:

dPloss

dA
= dPloss

dldz
= 1

2
Rs|Js|2 (9.2.6)

where Rs is the surface resistance of the conductor given by Eq. (2.8.4),

Rs =
√
ωμ

2σ
= η

√
ωǫ

2σ
= 1

σδ
, δ =

√

2

ωμσ
= skin depth (9.2.7)

Integrating Eq. (9.2.6) around the periphery of the conductor gives the power loss per

unit z-length due to that conductor. Adding similar terms for all the other conductors

gives the total power loss per unit z-length:

P′loss =
dPloss

dz
=
∮

Ca

1

2
Rs|Js|2 dl+

∮

Cb

1

2
Rs|Js|2 dl (9.2.8)

Fig. 9.2.1 Conductor surface absorbs power from the propagating fields.

where Ca and Cb indicate the peripheries of the conductors. Finally, the corresponding

attenuation coefficient is calculated from Eq. (2.6.22):

αc =
P′loss

2PT
(conductor losses) (9.2.9)

Equations (9.2.1)–(9.2.9) provide a systematic methodology by which to calculate the

transmitted power and attenuation losses in waveguides. We will apply it to several

examples later on. Eq. (9.2.9) applies also to the dielectric losses so that in general P′loss

arises from two parts, one due to the dielectric and one due to the conducting walls,

α = P′loss

2PT
= P′diel + P′cond

2PT
= αd +αc (attenuation constant) (9.2.10)
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Eq. (9.2.5) for αd can also be derived directly from Eq. (9.2.10) by applying it sepa-

rately to the TE and TM modes. We recall from Eq. (1.9.6) that the losses per unit vol-

ume in a dielectric medium, arising from both a conduction and polarization current,

Jtot = J+ jωD, are given by,

dPloss

dV
= 1

2
Re
[

Jtot · E∗
] = 1

2
ωǫI

∣
∣E · E∗

∣
∣

Integrating over the cross-sectional area of the guide gives the dielectric loss per unit

waveguide length (i.e., z-length),

P′diel =
1

2
ωǫI

∫

S
|E|2 dS

Applying this to the TE case, we find,

P′diel =
1

2
ωǫI

∫

S
|E|2 dS = 1

2
ωǫI

∫

S
|ET|2 dS

PT =
∫

S

1

2
Re(ET ×H∗T)·ẑdS =

1

2ηTE

∫

S
|ET|2 dS = β

2ωμ

∫

S
|ET|2 dS

αd =
P′diel

2PT
= ω2μǫI

2β

The TM case is a bit more involved. Using Eq. (9.13.1) from Problem 9.11, we find,

after using the result, β2 + k2
c =ω2μǫ,

P′diel =
1

2
ωǫI

∫

S
|E|2 dS = 1

2
ωǫI

∫

S

[|Ez|2 + |ET|2
]

dS

= 1

2
ωǫI

∫

S

[

|Ez|2 + β
2

k4
c
|∇∇∇TEz|2

]

dS = 1

2
ωǫI

(

1+ β
2

k2
c

)∫

S
|Ez|2 dS

PT = 1

2ηTM

∫

S
|ET|2 dS = ωǫ

2β

∫

S

β2

k4
c
|∇∇∇TEz|2 dS = ωǫβ

2k2
c

∫

S
|Ez|2 dS

αd =
P′diel

2PT
=

1

2
ωǫI

(

1+ β
2

k2
c

)

ωǫβ

2k2
c

= ω2μǫI
β

9.3 TEM, TE, and TM modes

The general solution described by Eqs. (9.1.16) and (9.1.19) is a hybrid solution with non-

zero Ez and Hz components. Here, we look at the specialized forms of these equations

in the cases of TEM, TE, and TM modes.

One common property of all three types of modes is that the transverse fields ET,HT
are related to each other in the same way as in the case of uniform plane waves propagat-

ing in the z-direction, that is, they are perpendicular to each other, their cross-product

points in the z-direction, and they satisfy:
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HT = 1

ηT
ẑ× ET (9.3.1)

where ηT is the transverse impedance of the particular mode type, that is, η,ηTE, ηTM

in the TEM, TE, and TM cases.

Because of Eq. (9.3.1), the power flow per unit cross-sectional area described by the

Poynting vector Pz of Eq. (9.2.2) takes the simple form in all three cases:

Pz = 1

2
Re(ET ×H∗T)·ẑ =

1

2ηT
|ET|2 = 1

2
ηT|HT|2 (9.3.2)

TEM modes

In TEM modes, both Ez and Hz vanish, and the fields are fully transverse. One can set

Ez = Hz = 0 in Maxwell equations (9.1.5), or equivalently in (9.1.16), or in (9.1.17).

From any point view, one obtains the condition k2
c = 0, or ω = βc. For example, if

the right-hand sides of Eq. (9.1.17) vanish, the consistency of the system requires that

ηTE = ηTM, which by virtue of Eq. (9.1.13) implies ω = βc. It also implies that ηTE, ηTM

must both be equal to the medium impedance η. Thus, the electric and magnetic fields

satisfy:

HT = 1

η
ẑ× ET (9.3.3)

These are the same as in the case of a uniform plane wave, except here the fields

are not uniform and may have a non-trivial x, y dependence. The electric field ET is

determined from the rest of Maxwell’s equations (9.1.5), which read:

∇∇∇T × ET = 0

∇∇∇T · ET = 0
(9.3.4)

These are recognized as the field equations of an equivalent two-dimensional elec-

trostatic problem. Once this electrostatic solution is found, ET(x, y), the magnetic field

is constructed from Eq. (9.3.3). The time-varying propagating fields will be given by

Eq. (9.1.1), with ω = βc. (For backward moving fields, replace β by −β.)

We explore this electrostatic point of view further in Sec. 11.1 and discuss the cases

of the coaxial, two-wire, and strip lines. Because of the relationship between ET and HT,

the Poynting vector Pz of Eq. (9.2.2) will be:

Pz = 1

2
Re(ET ×H∗T)·ẑ =

1

2η
|ET|2 = 1

2
η|HT|2 (9.3.5)
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TE modes

TE modes are characterized by the conditions Ez = 0 and Hz �= 0. It follows from the

second of Eqs. (9.1.17) that ET is completely determined from HT, that is, ET = ηTEHT×ẑ.

The field HT is determined from the second of (9.1.16). Thus, all field components

for TE modes are obtained from the equations:

∇2
THz + k2

cHz = 0

HT = − jβ
k2
c
∇∇∇THz

ET = ηTE HT × ẑ

(TE modes) (9.3.6)

The relationship of ET and HT is identical to that of uniform plane waves propagating

in the z-direction, except the wave impedance is replaced by ηTE. The Poynting vector

of Eq. (9.2.2) then takes the form:

Pz = 1

2
Re(ET ×H∗T)·ẑ =

1

2ηTE

|ET|2 = 1

2
ηTE|HT|2 = 1

2
ηTE

β2

k4
c
|∇∇∇THz|2 (9.3.7)

The cartesian coordinate version of Eq. (9.3.6) is:

(∂2
x + ∂2

y)Hz + k2
cHz = 0

Hx = − jβ
k2
c
∂xHz , Hy = − jβ

k2
c
∂yHz

Ex = ηTEHy , Ey = −ηTEHx

(9.3.8)

And, the cylindrical coordinate version:

1

ρ

∂

∂ρ

(

ρ
∂Hz
∂ρ

)

+ 1

ρ2

∂2Hz
∂φ2

+ k2
cHz = 0

Hρ = − jβ
k2
c

∂Hz
∂ρ

, Hφ = − jβ
k2
c

1

ρ

∂Hz
∂φ

Eρ = ηTEHφ , Eφ = −ηTEHρ

(9.3.9)

where we used HT × ẑ = (ρ̂ρρHρ + φ̂φφHφ)×ẑ = −φ̂φφHρ + ρ̂ρρHφ.

TM modes

TM modes have Hz = 0 and Ez �= 0. It follows from the first of Eqs. (9.1.17) that HT is

completely determined from ET, that is, HT = η−1
TMẑ × ET. The field ET is determined

from the first of (9.1.16), so that all field components for TM modes are obtained from

the following equations, which are dual to the TE equations (9.3.6):
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∇2
TEz + k2

cEz = 0

ET = − jβ
k2
c
∇∇∇TEz

HT = 1

ηTM

ẑ× ET

(TM modes) (9.3.10)

Again, the relationship of ET and HT is identical to that of uniform plane waves

propagating in the z-direction, but the wave impedance is now ηTM. The Poynting vector

takes the form:

Pz = 1

2
Re(ET ×H∗T)·ẑ =

1

2ηTM

|ET|2 = 1

2ηTM

β2

k4
c
|∇∇∇TEz|2 (9.3.11)

9.4 Rectangular Waveguides

Next, we discuss in detail the case of a rectangular hollow waveguide with conducting

walls, as shown in Fig. 9.4.1. Without loss of generality, we may assume that the lengths

a,b of the inner sides satisfy b ≤ a. The guide is typically filled with air, but any other

dielectric material ǫ, μ may be assumed.

Fig. 9.4.1 Rectangular waveguide.

The simplest and dominant propagation mode is the so-called TE10 mode and de-

pends only on the x-coordinate (of the longest side.) Therefore, we begin by looking

for solutions of Eq. (9.3.8) that depend only on x. In this case, the Helmholtz equation

reduces to:

∂2
xHz(x)+k2

cHz(x)= 0

The most general solution is a linear combination of coskcx and sinkcx. However,

only the former will satisfy the boundary conditions. Therefore, the solution is:

Hz(x)= H0 coskcx (9.4.1)

where H0 is a (complex-valued) constant. Because there is no y-dependence, it follows

from Eq. (9.3.8) that ∂yHz = 0, and hence Hy = 0 and Ex = 0. It also follows that:

Hx(x)= − jβ
k2
c
∂xHz = − jβ

k2
c
(−kc)H0 sinkcx = jβ

kc
H0 sinkcx ≡ H1 sinkcx
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Then, the corresponding electric field will be:

Ey(x)= −ηTEHx(x)= −ηTE
jβ

kc
H0 sinkcx ≡ E0 sinkcx

where we defined the constants:

H1 = jβ

kc
H0

E0 = −ηTEH1 = −ηTE
jβ

kc
H0 = −jη ω

ωc
H0

(9.4.2)

where we used ηTE = ηω/βc. In summary, the non-zero field components are:

Hz(x)= H0 coskcx

Hx(x)= H1 sinkcx

Ey(x)= E0 sinkcx

⇒
Hz(x, y, z, t)= H0 coskcxe

jωt−jβz

Hx(x, y, z, t)= H1 sinkcxe
jωt−jβz

Ey(x, y, z, t)= E0 sinkcxe
jωt−jβz

(9.4.3)

Assuming perfectly conducting walls, the boundary conditions require that there be

no tangential electric field at any of the wall sides. Because the electric field is in the

y-direction, it is normal to the top and bottom sides. But, it is parallel to the left and

right sides. On the left side, x = 0, Ey(x) vanishes because sinkcx does. On the right

side, x = a, the boundary condition requires:

Ey(a)= E0 sinkca = 0 ⇒ sinkca = 0

This requires that kca be an integral multiple of π:

kca = nπ ⇒ kc = nπ

a
(9.4.4)

These are the so-called TEn0 modes. The corresponding cutoff frequency ωc = ckc,
fc =ωc/2π, and wavelength λc = 2π/kc = c/fc are:

ωc = cnπ

a
, fc = cn

2a
, λc = 2a

n
(TEn0 modes) (9.4.5)

The dominant mode is the one with the lowest cutoff frequency or the longest cutoff

wavelength, that is, the mode TE10 having n = 1. It has:

kc = π

a
, ωc = cπ

a
, fc = c

2a
, λc = 2a (TE10 mode) (9.4.6)

Fig. 9.4.2 depicts the electric field Ey(x)= E0 sinkcx = E0 sin(πx/a) of this mode

as a function of x.
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Fig. 9.4.2 Electric field inside a rectangular waveguide.

9.5 Higher TE and TM modes

To construct higher modes, we look for solutions of the Helmholtz equation that are

factorable in their x and y dependence:

Hz(x, y)= F(x)G(y)

Then, Eq. (9.3.8) becomes:

F′′(x)G(y)+F(x)G′′(y)+k2
cF(x)G(y)= 0 ⇒ F′′(x)

F(x)
+ G

′′(y)
G(y)

+ k2
c = 0 (9.5.1)

Because these must be valid for all x, y (inside the guide), the F- and G-terms must

be constants, independent of x and y. Thus, we write:

F′′(x)
F(x)

= −k2
x ,

G′′(y)
G(y)

= −k2
y or

F′′(x)+k2
xF(x)= 0 , G′′(y)+k2

yG(y)= 0 (9.5.2)

where the constants k2
x and k2

y are constrained from Eq. (9.5.1) to satisfy:

k2
c = k2

x + k2
y (9.5.3)

The most general solutions of (9.5.2) that will satisfy the TE boundary conditions are

coskxx and coskyy. Thus, the longitudinal magnetic field will be:

Hz(x, y)= H0 coskxx coskyy (TEnm modes) (9.5.4)

It then follows from the rest of the equations (9.3.8) that:

Hx(x, y) = H1 sinkxx coskyy

Hy(x, y) = H2 coskxx sinkyy

Ex(x, y) = E1 coskxx sinkyy

Ey(x, y) = E2 sinkxx coskyy
(9.5.5)

where we defined the constants:

H1 = jβkx

k2
c
H0 , H2 =

jβky

k2
c
H0

E1 = ηTEH2 = jη
ωky

ωckc
H0 , E2 = −ηTEH1 = −jη ωkx

ωckc
H0
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The boundary conditions are that Ey vanish on the right wall, x = a, and that Ex
vanish on the top wall, y = b, that is,

Ey(a, y)= E0y sinkxa coskyy = 0 , Ex(x, b)= E0x coskxx sinkyb = 0

The conditions require that kxa and kyb be integral multiples of π:

kxa = nπ , kyb =mπ ⇒ kx = nπ

a
, ky = mπ

b
(9.5.6)

These correspond to the TEnm modes. Thus, the cutoff wavenumbers of these modes

kc =
√

k2
x + k2

y take on the quantized values:

kc =
√
(
nπ

a

)2

+
(
mπ

b

)2

(TEnm modes) (9.5.7)

The cutoff frequencies fnm =ωc/2π = ckc/2π and wavelengths λnm = c/fnm are:

fnm = c
√
(
n

2a

)2

+
(
m

2b

)2

, λnm = 1
√
(
n

2a

)2

+
(
m

2b

)2
(9.5.8)

The TE0m modes are similar to the TEn0 modes, but with x and a replaced by y and

b. The family of TM modes can also be constructed in a similar fashion from Eq. (9.3.10).

Assuming Ez(x, y)= F(x)G(y), we obtain the same equations (9.5.2). Because Ez
is parallel to all walls, we must now choose the solutions sinkx and sinkyy. Thus, the

longitudinal electric fields is:

Ez(x, y)= E0 sinkxx sinkyy (TMnm modes) (9.5.9)

The rest of the field components can be worked out from Eq. (9.3.10) and one finds

that they are given by the same expressions as (9.5.5), except now the constants are

determined in terms of E0:

E1 = − jβkx
k2
c
E0 , E2 = −

jβky

k2
c
E0

H1 = − 1

ηTM

E2 =
jωky

ωckc

1

η
E0 , H2 = 1

ηTM

E1 = − jωkx
ωckc

1

η
H0

where we used ηTM = ηβc/ω. The boundary conditions on Ex, Ey are the same as

before, and in addition, we must require that Ez vanish on all walls.

These conditions imply that kx, ky will be given by Eq. (9.5.6), except both n and m

must be non-zero (otherwise Ez would vanish identically.) Thus, the cutoff frequencies

and wavelengths are the same as in Eq. (9.5.8).

Waveguide modes can be excited by inserting small probes at the beginning of the

waveguide. The probes are chosen to generate an electric field that resembles the field

of the desired mode.
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9.6 Operating Bandwidth

All waveguiding systems are operated in a frequency range that ensures that only the

lowest mode can propagate. If several modes can propagate simultaneously,† one has

no control over which modes will actually be carrying the transmitted signal. This may

cause undue amounts of dispersion, distortion, and erratic operation.

A mode with cutoff frequency ωc will propagate only if its frequency is ω ≥ ωc,

or λ < λc. If ω < ωc, the wave will attenuate exponentially along the guide direction.

This follows from the ω,β relationship (9.1.10):

ω2 =ω2
c + β2c2 ⇒ β2 = ω2 −ω2

c

c2

If ω ≥ ωc, the wavenumber β is real-valued and the wave will propagate. But if

ω < ωc, β becomes imaginary, say, β = −jα, and the wave will attenuate in the z-

direction, with a penetration depth δ = 1/α:

e−jβz = e−αz

If the frequency ω is greater than the cutoff frequencies of several modes, then all

of these modes can propagate. Conversely, if ω is less than all cutoff frequencies, then

none of the modes can propagate.

If we arrange the cutoff frequencies in increasing order, ωc1 < ωc2 < ωc3 < · · · ,

then, to ensure single-mode operation, the frequency must be restricted to the interval

ωc1 < ω < ωc2, so that only the lowest mode will propagate. This interval defines the

operating bandwidth of the guide.

These remarks apply to all waveguiding systems, not just hollow conducting wave-

guides. For example, in coaxial cables the lowest mode is the TEM mode having no cutoff

frequency, ωc1 = 0. However, TE and TM modes with non-zero cutoff frequencies do

exist and place an upper limit on the usable bandwidth of the TEM mode. Similarly, in

optical fibers, the lowest mode has no cutoff, and the single-mode bandwidth is deter-

mined by the next cutoff frequency.

In rectangular waveguides, the smallest cutoff frequencies are f10 = c/2a, f20 =
c/a = 2f10, and f01 = c/2b. Because we assumed that b ≤ a, it follows that always

f10 ≤ f01. If b ≤ a/2, then 1/a ≤ 1/2b and therefore, f20 ≤ f01, so that the two lowest

cutoff frequencies are f10 and f20.

On the other hand, if a/2 ≤ b ≤ a, then f01 ≤ f20 and the two smallest frequencies

are f10 and f01 (except when b = a, in which case f01 = f10 and the smallest frequencies

are f10 and f20.) The two cases b ≤ a/2 and b ≥ a/2 are depicted in Fig. 9.6.1.

It is evident from this figure that in order to achieve the widest possible usable

bandwidth for the TE10 mode, the guide dimensions must satisfy b ≤ a/2 so that the

bandwidth is the interval [fc,2fc], where fc = f10 = c/2a. In terms of the wavelength

λ = c/f , the operating bandwidth becomes: 0.5 ≤ a/λ ≤ 1, or, a ≤ λ ≤ 2a.

We will see later that the total amount of transmitted power in this mode is propor-

tional to the cross-sectional area of the guide, ab. Thus, if in addition to having the

†Murphy’s law for waveguides states that “if a mode can propagate, it will.”
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Fig. 9.6.1 Operating bandwidth in rectangular waveguides.

widest bandwidth, we also require to have the maximum power transmitted, the dimen-

sion bmust be chosen to be as large as possible, that is, b = a/2. Most practical guides

follow these side proportions.

If there is a “canonical” guide, it will have b = a/2 and be operated at a frequency

that lies in the middle of the operating band [fc,2fc], that is,

f = 1.5fc = 0.75
c

a
(9.6.1)

Table 9.6.1 lists some standard air-filled rectangular waveguides with their naming

designations, inner side dimensions a,b in inches, cutoff frequencies in GHz, minimum

and maximum recommended operating frequencies in GHz, power ratings, and attenua-

tions in dB/m (the power ratings and attenuations are representative over each operating

band.) We have chosen one example from each microwave band.

name a b fc fmin fmax band P α

WR-510 5.10 2.55 1.16 1.45 2.20 L 9 MW 0.007

WR-284 2.84 1.34 2.08 2.60 3.95 S 2.7 MW 0.019

WR-159 1.59 0.795 3.71 4.64 7.05 C 0.9 MW 0.043

WR-90 0.90 0.40 6.56 8.20 12.50 X 250 kW 0.110

WR-62 0.622 0.311 9.49 11.90 18.00 Ku 140 kW 0.176

WR-42 0.42 0.17 14.05 17.60 26.70 K 50 kW 0.370

WR-28 0.28 0.14 21.08 26.40 40.00 Ka 27 kW 0.583

WR-15 0.148 0.074 39.87 49.80 75.80 V 7.5 kW 1.52

WR-10 0.10 0.05 59.01 73.80 112.00 W 3.5 kW 2.74

Table 9.6.1 Characteristics of some standard air-filled rectangular waveguides.

9.7 Power Transfer, Energy Density, and Group Velocity

Next, we calculate the time-averaged power transmitted in the TE10 mode. We also calcu-

late the energy density of the fields and determine the velocity by which electromagnetic

energy flows down the guide and show that it is equal to the group velocity. We recall

that the non-zero field components are:

Hz(x)= H0 coskcx , Hx(x)= H1 sinkcx , Ey(x)= E0 sinkcx (9.7.1)
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where

H1 = jβ

kc
H0 , E0 = −ηTEH1 = −jη ω

ωc
H0 (9.7.2)

The Poynting vector is obtained from the general result of Eq. (9.3.7):

Pz = 1

2ηTE

|ET|2 = 1

2ηTE

|Ey(x)|2 = 1

2ηTE

|E0|2 sin2 kcx

The transmitted power is obtained by integrating Pz over the cross-sectional area

of the guide:

PT =
∫ a

0

∫ b

0

1

2ηTE

|E0|2 sin2 kcxdxdy

Noting the definite integral,

∫ a

0
sin2 kcxdx =

∫ a

0
sin2

(πx

a

)

dx = a

2
(9.7.3)

and using ηTE = ηω/βc = η/
√

1−ω2
c/ω2, we obtain:

PT = 1

4ηTE

|E0|2ab = 1

4η
|E0|2ab

√

1− ω
2
c

ω2
(transmitted power) (9.7.4)

We may also calculate the distribution of electromagnetic energy along the guide, as

measured by the time-averaged energy density. The energy densities of the electric and

magnetic fields are:

we = 1

2
Re
(1

2
ǫE · E∗

) = 1

4
ǫ|Ey|2

wm = 1

2
Re
(1

2
μH ·H∗

) = 1

4
μ
(|Hx|2 + |Hz|2

)

Inserting the expressions for the fields, we find:

we = 1

4
ǫ|E0|2 sin2 kcx , wm = 1

4
μ
(|H1|2 sin2 kcx+ |H0|2 cos2 kcx

)

Because these quantities represent the energy per unit volume, if we integrate them

over the cross-sectional area of the guide, we will obtain the energy distributions per

unit z-length. Using the integral (9.7.3) and an identical one for the cosine case, we find:

W′
e =

∫ a

0

∫ b

0
we(x, y)dxdy =

∫ a

0

∫ b

0

1

4
ǫ|E0|2 sin2 kcxdxdy = 1

8
ǫ|E0|2ab

W′
m =

∫ a

0

∫ b

0

1

4
μ
(|H1|2 sin2 kcx+ |H0|2 cos2 kcx

)

dxdy = 1

8
μ
(|H1|2 + |H0|2

)

ab
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Although these expressions look different, they are actually equal, W′
e = W′

m. In-

deed, using the property β2/k2
c +1 = (β2+k2

c)/k
2
c = k2/k2

c =ω2/ω2
c and the relation-

ships between the constants in (9.7.1), we find:

μ
(|H1|2 + |H0|2

) = μ(|H0|2β
2

k2
c
+ |H0|2

) = μ|H0|2ω
2

ω2
c
= μ

η2
|E0|2 = ǫ|E0|2

The equality of the electric and magnetic energies is a general property of wavegui-

ding systems. We also encountered it in Sec. 2.3 for uniform plane waves. The total

energy density per unit length will be:

W′ =W′
e +W′

m = 2W′
e =

1

4
ǫ|E0|2ab (9.7.5)

According to the general relationship between flux, density, and transport velocity

given in Eq. (1.6.2), the energy transport velocity will be the ratio ven = PT/W′. Using

Eqs. (9.7.4) and (9.7.5) and noting that 1/ηǫ = 1/
√
μǫ = c, we find:

ven = PT
W′ = c

√

1− ω
2
c

ω2
(energy transport velocity) (9.7.6)

This is equal to the group velocity of the propagating mode. For any dispersion

relationship between ω and β, the group and phase velocities are defined by

vgr = dω

dβ
, vph = ω

β
(group and phase velocities) (9.7.7)

For uniform plane waves and TEM transmission lines, we haveω = βc, so that vgr =
vph = c. For a rectangular waveguide, we have ω2 =ω2

c +β2c2. Taking differentials of

both sides, we find 2ωdω = 2c2βdβ, which gives:

vgr = dω

dβ
= βc2

ω
= c

√

1− ω
2
c

ω2
(9.7.8)

where we used Eq. (9.1.10). Thus, the energy transport velocity is equal to the group

velocity, ven = vgr. We note that vgr = βc2/ω = c2/vph, or

vgrvph = c2 (9.7.9)

The energy or group velocity satisfies vgr ≤ c, whereas vph ≥ c. Information trans-

mission down the guide is by the group velocity and, consistent with the theory of

relativity, it is less than c.

9.8 Power Attenuation

In this section, we calculate the attenuation coefficient due to the ohmic losses of the

conducting walls following the procedure outlined in Sec. 9.2. The losses due to the

filling dielectric can be determined from Eq. (9.2.5).
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The field expressions (9.4.3) were derived assuming the boundary conditions for

perfectly conducting wall surfaces. The induced surface currents on the inner walls of

the waveguide are given by Js = n̂ × H, where the unit vector n̂ is ±x̂ and ±ŷ on the

left/right and bottom/top walls, respectively.

The surface currents and tangential magnetic fields are shown in Fig. 9.8.1. In par-

ticular, on the bottom and top walls, we have:

Fig. 9.8.1 Currents on waveguide walls.

Js = ±ŷ×H = ±ŷ×(x̂Hx+ ẑHz)= ±(−ẑHx+ x̂Hz)= ±(−ẑH1 sinkcx+ x̂H0 coskcx)

Similarly, on the left and right walls:

Js = ±x̂×H = ±x̂× (x̂Hx + ẑHz)= ∓ŷHz = ∓ŷH0 coskcx

At x = 0 and x = a, this gives Js = ∓ŷ(±H0)= ŷH0. Thus, the magnitudes of the

surface currents are on the four walls:

|Js|2 =
{

|H0|2 , (left and right walls)

|H0|2 cos2 kcx+ |H1|2 sin2 kcx , (top and bottom walls)

The power loss per unit z-length is obtained from Eq. (9.2.8) by integrating |Js|2
around the four walls, that is,

P′loss = 2
1

2
Rs

∫ a

0
|Js|2 dx+ 2

1

2
Rs

∫ b

0
|Js|2 dy

= Rs
∫ a

0

(|H0|2 cos2 kcx+ |H1|2 sin2 kcx
)

dx+Rs
∫ b

0
|H0|2 dy

= Rsa
2

(|H0|2 + |H1|2
)+Rsb|H0|2 = Rsa

2

(|H0|2 + |H1|2 + 2b

a
|H0|2

)

Using |H0|2+|H1|2 = |E0|2/η2 from Sec. 9.7, and |H0|2 = (|E0|2/η2)ω2
c/ω

2, which

follows from Eq. (9.4.2), we obtain:

P′loss =
Rsa|E0|2

2η2

(

1+ 2b

a

ω2
c

ω2

)

The attenuation constant is computed from Eqs. (9.2.9) and (9.7.4):
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αc =
P′loss

2PT
=

Rsa|E0|2
2η2

(

1+ 2b

a

ω2
c

ω2

)

2
1

4η
|E0|2ab

√

1− ω
2
c

ω2

which gives:

αc = Rs
ηb

(

1+ 2b

a

ω2
c

ω2

)

√

1− ω
2
c

ω2

(attenuation of TE10 mode) (9.8.1)

This is in units of nepers/m. Its value in dB/m is obtained by αdB = 8.686αc. For a

given ratio a/b, αc increases with decreasing b, thus the smaller the guide dimensions,

the larger the attenuation. This trend is noted in Table 9.6.1.

The main tradeoffs in a waveguiding system are that as the operating frequency f

increases, the dimensions of the guide must decrease in order to maintain the operat-

ing band fc ≤ f ≤ 2fc, but then the attenuation increases and the transmitted power

decreases as it is proportional to the guide’s area.

Example 9.8.1: Design a rectangular air-filled waveguide to be operated at 5 GHz, then, re-

design it to be operated at 10 GHz. The operating frequency must lie in the middle of the

operating band. Calculate the guide dimensions, the attenuation constant in dB/m, and

the maximum transmitted power assuming the maximum electric field is one-half of the

dielectric strength of air. Assume copper walls with conductivity σ = 5.8×107 S/m.

Solution: If f is in the middle of the operating band, fc ≤ f ≤ 2fc, where fc = c/2a, then

f = 1.5fc = 0.75c/a. Solving for a, we find

a = 0.75c

f
= 0.75×30 GHz cm

5
= 4.5 cm

For maximum power transfer, we require b = a/2 = 2.25 cm. Because ω = 1.5ωc, we

have ωc/ω = 2/3. Then, Eq. (9.8.1) gives αc = 0.037 dB/m. The dielectric strength of air

is 3 MV/m. Thus, the maximum allowed electric field in the guide is E0 = 1.5 MV/m. Then,

Eq. (9.7.4) gives PT = 1.12 MW.

At 10 GHz, because f is doubled, the guide dimensions are halved, a = 2.25 and b = 1.125

cm. Because Rs depends on f like f1/2, it will increase by a factor of
√

2. Then, the factor

Rs/b will increase by a factor of 2
√

2. Thus, the attenuation will increase to the value

αc = 0.037 · 2
√

2 = 0.104 dB/m. Because the area ab is reduced by a factor of four, so

will the power, PT = 1.12/4 = 0.28 MW = 280 kW.

The results of these two cases are consistent with the values quoted in Table 9.6.1 for the

C-band and X-band waveguides, WR-159 and WR-90. ⊓⊔

Example 9.8.2: WR-159 Waveguide. Consider the C-band WR-159 air-filled waveguide whose

characteristics were listed in Table 9.6.1. Its inner dimensions are a = 1.59 and b = a/2 =
0.795 inches, or, equivalently, a = 4.0386 and b = 2.0193 cm.
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The cutoff frequency of the TE10 mode is fc = c/2a = 3.71 GHz. The maximum operating

bandwidth is the interval [fc,2fc]= [3.71,7.42] GHz, and the recommended interval is

[4.64,7.05] GHz.

Assuming copper walls with conductivity σ = 5.8×107 S/m, the calculated attenuation

constant αc from Eq. (9.8.1) is plotted in dB/m versus frequency in Fig. 9.8.2.
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Fig. 9.8.2 Attenuation constant and transmitted power in a WR-159 waveguide.

The power transmitted PT is calculated from Eq. (9.7.4) assuming a maximum breakdown

voltage of E0 = 1.5 MV/m, which gives a safety factor of two over the dielectric breakdown

of air of 3 MV/m. The power in megawatt scales is plotted in Fig. 9.8.2.

Because of the factor

√

1−ω2
c/ω2 in the denominator of αc and the numerator of PT ,

the attenuation constant becomes very large near the cutoff frequency, while the power is

almost zero. A physical explanation of this behavior is given in the next section. ⊓⊔

9.9 Reflection Model of Waveguide Propagation

An intuitive model for the TE10 mode can be derived by considering a TE-polarized

uniform plane wave propagating in the z-direction by obliquely bouncing back and forth

between the left and right walls of the waveguide, as shown in Fig. 9.9.1.

If θ is the angle of incidence, then the incident and reflected (from the right wall)

wavevectors will be:

k = x̂kx + ẑkz = x̂k cosθ+ ẑk sinθ

k′ = −x̂kx + ẑkz = −x̂k cosθ+ ẑk sinθ

The electric and magnetic fields will be the sum of an incident and a reflected com-

ponent of the form:

E = ŷE1e
−jk·r + ŷE′1e

−jk′·r = ŷE1e
−jkxxe−jkzz + ŷE′1e

jkxxe−jkzz = E1 + E′1

H = 1

η
k̂× E1 + 1

η
k̂
′ × E′1
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Fig. 9.9.1 Reflection model of TE10 mode.

where the electric field was taken to be polarized in the y direction. These field expres-

sions become component-wise:

Ey =
(

E1e
−jkxx + E′1ejkxx

)

e−jkzz

Hx = − 1

η
sinθ

(

E1e
−jkxx + E′1ejkxx

)

e−jkzz

Hz = 1

η
cosθ

(

E1e
−jkxx − E′1ejkxx

)

e−jkzz

(9.9.1)

The boundary condition on the left wall, x = 0, requires that E1+E′1 = 0. We may write

therefore, E1 = −E′1 = jE0/2. Then, the above expressions simplify into:

Ey = E0 sinkxxe
−jkzz

Hx = − 1

η
sinθE0 sinkxxe

−jkzz

Hz = j

η
cosθE0 coskxxe

−jkzz

(9.9.2)

These are identical to Eq. (9.4.3) provided we identify β with kz and kc with kx, as

shown in Fig. 9.9.1. It follows from the wavevector triangle in the figure that the angle

of incidence θ will be given by cosθ = kx/k = kc/k, or,

cosθ = ωc

ω
, sinθ =

√

1− ω
2
c

ω2
(9.9.3)

The ratio of the transverse components,−Ey/Hx, is the transverse impedance, which

is recognized to be ηTE. Indeed, we have:

ηTE = −
Ey

Hx
= η

sinθ
= η
√

1− ω
2
c

ω2

(9.9.4)
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The boundary condition on the right wall requires sinkxa = 0, which gives rise to

the same condition as (9.4.4), that is, kca = nπ.

This model clarifies also the meaning of the group velocity. The plane wave is bounc-

ing left and right with the speed of light c. However, the component of this velocity in

the z-direction will be vz = c sinθ. This is equal to the group velocity. Indeed, it follows

from Eq. (9.9.3) that:

vz = c sinθ = c
√

1− ω
2
c

ω2
= vgr (9.9.5)

Eq. (9.9.3) implies also that atω =ωc, we have sinθ = 0, or θ = 0, that is, the wave

is bouncing left and right at normal incidence, creating a standing wave, and does not

propagate towards the z-direction. Thus, the transmitted power is zero and this also

implies, through Eq. (9.2.9), that αc will be infinite.

On the other hand, for very large frequencies,ω≫ωc, the angle θ will tend to 90o,

causing the wave to zoom through guide almost at the speed of light.

The phase velocity can also be understood geometrically. Indeed, we observe in the

rightmost illustration of the above figure that the planes of constant phase are moving

obliquely with the speed of light c. From the indicated triangle at points 1,2,3, we see that

the effective speed in the z-direction of the common-phase points will be vph = c/ sinθ

so that vphvgr = c2.

Higher TE and TM modes can also be given similar geometric interpretations in terms

of plane waves propagating by bouncing off the waveguide walls [886].

9.10 Resonant Cavities

Cavity resonators are metallic enclosures that can trap electromagnetic fields. The

boundary conditions on the cavity walls force the fields to exist only at certain quantized

resonant frequencies. For highly conducting walls, the resonances are extremely sharp,

having a very high Q of the order of 10,000.

Because of their high Q, cavities can be used not only to efficiently store electro-

magnetic energy at microwave frequencies, but also to act as precise oscillators and to

perform precise frequency measurements.

Fig. 9.10.1 shows a rectangular cavity with z-length equal to l formed by replacing

the sending and receiving ends of a waveguide by metallic walls. A forward-moving wave

will bounce back and forth from these walls, resulting in a standing-wave pattern along

the z-direction.

Fig. 9.10.1 Rectangular cavity resonator (and induced wall currents for the TEn0p mode.)
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Because the tangential components of the electric field must vanish at the end-walls,

these walls must coincide with zero crossings of the standing wave, or put differently, an

integral multiple of half-wavelengths must fit along the z-direction, that is, l = pλg/2 =
pπ/β, or β = pπ/l, where p is a non-zero integer. For the same reason, the standing-

wave patterns along the transverse directions require a = nλx/2 and b = mλy/2, or

kx = nπ/a and ky = mπ/b. Thus, all three cartesian components of the wave vector

are quantized, and therefore, so is the frequency of the wave ω = c
√

k2
x + k2

y + β2 :

ωnmp = c
√
(
nπ

a

)2

+
(
mπ

b

)2

+
(
pπ

l

)2

(resonant frequencies) (9.10.1)

Such modes are designated as TEnmp or TMnmp. For simplicity, we consider the case

TEn0p. Eqs. (9.3.6) also describe backward-moving waves if one replaces β by −β, which

also changes the sign of ηTE = ηω/βc. Starting with a linear combination of forward

and backward waves in the TEn0 mode, we obtain the field components:

Hz(x, z) = H0 coskcx
(

Ae−jβz + Bejβz),

Hx(x, z) = jH1 sinkcx
(

Ae−jβz − Bejβz), H1 = β

kc
H0

Ey(x, z) = −jE0 sinkcx
(

Ae−jβz + Bejβz), E0 = ω

ωc
ηH0

(9.10.2)

where ωc = ckc. By requiring that Ey(x, z) have z-dependence of the form sinβz, the

coefficients A,B must be chosen as A = −B = j/2. Then, Eq. (9.10.2) specializes into:

Hz(x, z) = H0 coskcx sinβz ,

Hx(x, z) = −H1 sinkcx cosβz , H1 = β

kc
H0

Ey(x, z) = −jE0 sinkcx sinβz , E0 = ω

ωc
ηH0

(9.10.3)

As expected, the vanishing of Ey(x, z) on the front/back walls, z = 0 and z = l, and

on the left/right walls, x = 0 and x = a, requires the quantization conditions: β = pπ/l
and kc = nπ/a. The Q of the resonator can be calculated from its definition:

Q =ω W

Ploss

(9.10.4)

where W is the total time-averaged energy stored within the cavity volume and Ploss is

the total power loss due to the wall ohmic losses (plus other losses, such as dielectric

losses, if present.) The ratio Δω = Ploss/W is usually identified as the 3-dB width of the

resonance centered at frequency ω. Therefore, we may write Q =ω/Δω.

It is easily verified that the electric and magnetic energies are equal, therefore, W

may be calculated by integrating the electric energy density over the cavity volume:

W = 2We = 2
1

4

∫

vol
ǫ|Ey(x, z)|2 dxdydz = 1

2
ǫ|E0|2

∫ a

0

∫ b

0

∫ l

0
sin2 kcx cos2 βzdxdydz

= 1

8
ǫ|E0|2(abl)= 1

8
μ|H0|2ω

2

ω2
c
(abl)= 1

8
μ |H0|2

[

k2
c + β2

k2
c

]

(abl)

388 9. Waveguides

where we used the following definite integrals (valid because kc = nπ/a, β = pπ/l) :

∫ a

0
sin2 kcxdx =

∫ a

0
cos2 kcxdx = a

2
,

∫ l

0
sin2 βzdz =

∫ l

0
cos2 βzdz = l

2
(9.10.5)

The ohmic losses are calculated from Eq. (9.2.6), integrated over all six cavity sides.

The surface currents induced on the walls are related to the tangential magnetic fields

by J s = n̂×Htan. The directions of these currents are shown in Fig. 9.10.1. Specifically,

we find for the currents on the six sides:

|J s|2 =

⎧

⎪⎪⎨

⎪⎪⎩

H2
0 sin2 βz (left & right)

H2
0 cos2 kcx sin2 βz+H2

1 sin2 kcx cos2 βz (top & bottom)

H2
1 sin2 kcx (front & back)

The power loss can be computed by integrating the loss per unit conductor area,

Eq. (9.2.6), over the six wall sides, or doubling the answer for the left, top, and front

sides. Using the integrals (9.10.5), we find:

Ploss = 1

2
Rs

∫

walls
|J s|2 dA = Rs

[

H2
0

bl

2
+ (H2

0 +H2
1)
al

4
+H2

1

ab

2

]

= 1

4
RsH

2
0

[

l(2b+ a)+β
2

k2
c
a(2b+ l)

] (9.10.6)

where we substituted H2
1 = H2

0β
2/k2

c . It follows that the Q-factor will be:

Q =ω W

Ploss

= ωμ

2Rs

(k2
c + β2)(abl)

k2
cl(2b+ a)+β2a(2b+ l)

For the TEn0p mode we have β = pπ/l and kc = nπ/a. Using Eq. (9.2.7) to replace

Rs in terms of the skin depth δ, we find:

Q = 1

δ

n2

a2
+ p

2

l2

n2

a2

(
2

a
+ 1

b

)

+ p
2

l2

(
2

l
+ 1

b

) (9.10.7)

The lowest resonant frequency corresponds to n = p = 1. For a cubic cavity, a =
b = l, the Q and the lowest resonant frequency are:

Q = a

3δ
, ω101 = cπ

√
2

a
, f101 = ω

2π
= c

a
√

2
(9.10.8)

For an air-filled cubic cavity with a = 3 cm, we find f101 = 7.07 GHz, δ = 7.86×10−5

cm, andQ = 12724. As in waveguides, cavities can be excited by inserting small probes

that generate fields resembling a particular mode.

9.11 Dielectric Slab Waveguides

A dielectric slab waveguide is a planar dielectric sheet or thin film of some thickness,

say 2a, as shown in Fig. 9.11.1. Wave propagation in the z-direction is by total internal



9.11. Dielectric Slab Waveguides 389

Fig. 9.11.1 Dielectric slab waveguide.

reflection from the left and right walls of the slab. Such waveguides provide simple

models for the confining mechanism of waves propagating in optical fibers.

The propagating fields are confined primarily inside the slab, however, they also

exist as evanescent waves outside it, decaying exponentially with distance from the slab.

Fig. 9.11.1 shows a typical electric field pattern as a function of x.

For simplicity, we assume that the media to the left and right of the slab are the

same. To guarantee total internal reflection, the dielectric constants inside and outside

the slab must satisfy ǫ1 > ǫ2, and similarly for the refractive indices, n1 > n2.

We only consider TE modes and look for solutions that depend only on the x co-

ordinate. The cutoff wavenumber kc appearing in the Helmholtz equation for Hz(x)

depends on the dielectric constant of the propagation medium, k2
c =ω2ǫμ−β2. There-

fore, k2
c takes different values inside and outside the guide:

k2
c1 =ω2ǫ1μ0 − β2 =ω2ǫ0μ0n

2
1 − β2 = k2

0n
2
1 − β2 (inside)

k2
c2 =ω2ǫ2μ0 − β2 =ω2ǫ0μ0n

2
2 − β2 = k2

0n
2
2 − β2 (outside)

(9.11.1)

where k0 =ω/c0 is the free-space wavenumber. We note that ω,β are the same inside

and outside the guide. This follows from matching the tangential fields at all times t

and all points z along the slab walls. The corresponding Helmholtz equations in the

regions inside and outside the guide are:

∂2
xHz(x)+k2

c1Hz(x)= 0 for |x| ≤ a

∂2
xHz(x)+k2

c2Hz(x)= 0 for |x| ≥ a
(9.11.2)

Inside the slab, the solutions are sinkc1x and coskc1x, and outside, sinkc2x and

coskc2x, or equivalently, e±jkc2x. In order for the waves to remain confined in the near

vicinity of the slab, the quantity kc2 must be imaginary, for if it is real, the fields would

propagate at large x distances from the slab (they would correspond to the rays refracted

from the inside into the outside.)

If we set kc2 = −jαc, the solutions outside will be e±αcx. If αc is positive, then only

the solution e−αcx is physically acceptable to the right of the slab, x ≥ a, and only eαcx

to the left, x ≤ −a. Thus, the fields attenuate exponentially with the transverse distance
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x, and exist effectively within a skin depth distance 1/αc from the slab. Setting kc1 = kc
and kc2 = −jαc, Eqs. (9.11.1) become in this new notation:

k2
c = k2

0n
2
1 − β2

−α2
c = k2

0n
2
2 − β2

⇒
k2
c = k2

0n
2
1 − β2

α2
c = β2 − k2

0n
2
2

(9.11.3)

Similarly, Eqs. (9.11.2) read:

∂2
xHz(x)+k2

cHz(x)= 0 for |x| ≤ a
∂2
xHz(x)−α2

cHz(x)= 0 for |x| ≥ a
(9.11.4)

The two solutions sinkcx and coskcx inside the guide give rise to the so-called even

and odd TE modes (referring to the evenness or oddness of the resulting electric field.)

For the even modes, the solutions of Eqs. (9.11.4) have the form:

Hz(x)=

⎧

⎪⎪⎨

⎪⎪⎩

H1 sinkcx , if −a ≤ x ≤ a
H2e

−αcx , if x ≥ a
H3e

αcx , if x ≤ −a
(9.11.5)

The corresponding x-components Hx are obtained by applying Eq. (9.3.8) using the

appropriate value for k2
c , that is, k2

c2 = −α2
c outside and k2

c1 = k2
c inside:

Hx(x)=

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

− jβ
k2
c
∂xHz(x)= − jβ

kc
H1 coskcx , if −a ≤ x ≤ a

− jβ

−α2
c
∂xHz(x)= − jβ

αc
H2e

−αcx , if x ≥ a

− jβ

−α2
c
∂xHz(x)= jβ

αc
H3e

αcx , if x ≤ −a

(9.11.6)

The electric fields are Ey(x)= −ηTEHx(x), where ηTE = ωμ0/β is the same inside

and outside the slab. Thus, the electric field has the form:

Ey(x)=

⎧

⎪⎪⎨

⎪⎪⎩

E1 coskcx , if −a ≤ x ≤ a
E2e

−αcx , if x ≥ a
E3e

αcx , if x ≤ −a
(even TE modes) (9.11.7)

where we defined the constants:

E1 = jβ

kc
ηTEH1 , E2 = jβ

αc
ηTEH2 , E3 = − jβ

αc
ηTEH3 (9.11.8)

The boundary conditions state that the tangential components of the magnetic and

electric fields, that is, Hz, Ey, are continuous across the dielectric interfaces at x = −a
and x = a. Similarly, the normal components of the magnetic field Bx = μ0Hx and

therefore also Hx must be continuous. Because Ey = −ηTEHx and ηTE is the same in

both media, the continuity of Ey follows from the continuity of Hx. The continuity of

Hz at x = a and x = −a implies that:
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H1 sinkca = H2e
−αca and −H1 sinkca = H3e

−αca (9.11.9)

Similarly, the continuity of Hx implies (after canceling a factor of −jβ):

1

kc
H1 coskca = 1

αc
H2e

−αca and
1

kc
H1 coskca = − 1

αc
H3e

−αca (9.11.10)

Eqs. (9.11.9) and (9.11.10) imply:

H2 = −H3 = H1e
αca sinkca = H1e

αca
αc
kc

coskca (9.11.11)

Similarly, we find for the electric field constants:

E2 = E3 = E1e
αca coskca = E1e

αca
kc
αc

sinkca (9.11.12)

The consistency of the last equations in (9.11.11) or (9.11.12) requires that:

coskca = kc
αc

sinkca ⇒ αc = kc tankca (9.11.13)

For the odd TE modes, we have for the solutions of Eq. (9.11.4):

Hz(x)=

⎧

⎪⎪⎨

⎪⎪⎩

H1 coskcx , if −a ≤ x ≤ a
H2e

−αcx , if x ≥ a
H3e

αcx , if x ≤ −a
(9.11.14)

The resulting electric field is:

Ey(x)=

⎧

⎪⎪⎨

⎪⎪⎩

E1 sinkcx , if −a ≤ x ≤ a
E2e

−αcx , if x ≥ a
E3e

αcx , if x ≤ −a
(odd TE modes) (9.11.15)

The boundary conditions imply in this case:

H2 = H3 = H1e
αca coskca = −H1e

αca
αc
kc

sinkca (9.11.16)

and, for the electric field constants:

E2 = −E3 = E1e
αca sinkca = −E1e

αca
kc
αc

coskca (9.11.17)

The consistency of the last equation requires:

αc = −kc cotkca (9.11.18)

392 9. Waveguides

We note that the electric fields Ey(x) given by Eqs. (9.11.7) and (9.11.15) are even or

odd functions of x for the two families of modes. Expressing E2 and E3 in terms of E1,

we summarize the forms of the electric fields in the two cases:

Ey(x)=

⎧

⎪⎪⎨

⎪⎪⎩

E1 coskcx , if −a ≤ x ≤ a
E1 coskcae

−αc(x−a) , if x ≥ a
E1 coskcae

αc(x+a) , if x ≤ −a
(even TE modes) (9.11.19)

Ey(x)=

⎧

⎪⎪⎨

⎪⎪⎩

E1 sinkcx , if −a ≤ x ≤ a
E1 sinkcae

−αc(x−a) , if x ≥ a
−E1 sinkcae

αc(x+a) , if x ≤ −a
(odd TE modes) (9.11.20)

Given the operating frequencyω, Eqs. (9.11.3) and (9.11.13) or (9.11.18) provide three

equations in the three unknowns kc,αc, β. To solve them, we add the two equations

(9.11.3) to eliminate β:

α2
c + k2

c = k2
0(n

2
1 − n2

2)=
ω2

c2
0

(n2
1 − n2

2) (9.11.21)

Next, we discuss the numerical solutions of these equations. Defining the dimen-

sionless quantities u = kca and v = αca, we may rewrite Eqs. (9.11.13), (9.11.18), and

(9.11.21) in the equivalent forms:

v = u tanu

v2 + u2 = R2
(even modes) ,

v = −u cotu

v2 + u2 = R2
(odd modes) (9.11.22)

where R is the normalized frequency variable:

R = k0aNA = ωa

c0

NA = 2πfa

c0

NA = 2πa

λ
NA (9.11.23)

whereNA =
√

n2
1 − n2

2 is the numerical aperture of the slab and λ = c0/f , the free-space

wavelength.

Because the functions tanu and cotu have many branches, there may be several

possible solution pairs u, v for each value of R. These solutions are obtained at the

intersections of the curves v = u tanu and v = −u cotu with the circle of radius R,

that is, v2 + u2 = R2. Fig. 9.11.2 shows the solutions for various values of the radius R

corresponding to various values of ω.

It is evident from the figure that for small enough R, that is, 0 ≤ R < π/2, there is

only one solution and it is even.† For π/2 ≤ R < π, there are two solutions, one even

and one odd. For π ≤ R < 3π/2, there are three solutions, two even and one odd, and

†for an optical fiber, the single-mode condition reads 2πaNA/λ < 2.405, where a is the core radius.
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Fig. 9.11.2 Even and odd TE modes at different frequencies.

so on. In general, there will be M + 1 solutions, alternating between even and odd, if R

falls in the interval:

Mπ

2
≤ R < (M + 1)π

2
(9.11.24)

Given a value of R, we determine M as that integer satisfying Eq. (9.11.24), or, M ≤
2R/π < M + 1, that is, the largest integer less than 2R/π:

M = floor

(
2R

π

)

(maximum mode number) (9.11.25)

Then, there will beM+1 solutions indexed bym = 0,1, . . . ,M, which will correspond

to even modes if m is even and to odd modes if m is odd. The M+ 1 branches of tanu

and cotu being intersected by the R-circle are those contained in the u-ranges:

Rm ≤ u < Rm+1 , m = 0,1, . . . ,M (9.11.26)

where

Rm = mπ

2
, m = 0,1, . . . ,M (9.11.27)

Ifm is even, the u-range (9.11.26) defines a branch of tanu, and ifm is odd, a branch

of cotu. We can combine the even and odd cases of Eq. (9.11.22) into a single case by

noting the identity:

tan(u−Rm)=
⎧

⎨

⎩

tanu , if m is even

− cotu , if m is odd
(9.11.28)

This follows from the trigonometric identity:
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tan(u−mπ/2)= sinu cos(mπ/2)− cosu sin(mπ/2)

cosu cos(mπ/2)+ sinu sin(mπ/2)

Therefore, to find the mth mode, whether even or odd, we must find the unique

solution of the following system in the u-range Rm ≤ u < Rm+1:

v = u tan(u−Rm)
v2 + u2 = R2

(mth mode) (9.11.29)

If one had an approximate solutionu, v for themth mode, one could refine it by using

Newton’s method, which converges very fast provided it is close to the true solution. Just

such an approximate solution, accurate to within one percent of the true solution, was

given by Lotspeich [926]. Without going into the detailed justification of this method,

the approximation is as follows:

u = Rm +w1(m)u1(m)+w2(m)u2(m) , m = 0,1, . . . ,M (9.11.30)

where u1(m), u2(m) are approximate solutions near and far from the cutoff Rm, and

w1(m), w2(m) are weighting factors:

u1(m)=
√

1+ 2R(R−Rm)− 1

R
, u2(m)= π

2

R−m
R+ 1

w1(m)= exp
(−(R−Rm)2/V2

m

)

, w2(m)= 1−w1(m)

Vm = 1√
ln 1.25

(
π/4+Rm
cos(π/4)

−Rm
)

(9.11.31)

This solution serves as the starting point to Newton’s iteration for solving the equa-

tion F(u)= 0, where F(u) is defined by

F(u)= u tan(u−Rm)−v = u tan(u−Rm)−
√

R2 − u2 (9.11.32)

Newton’s iteration is:

for i = 1,2 . . . ,Nit do:

u = u− F(u)

G(u)

(9.11.33)

where G(u) is the derivative F′(u), correct to order O(F):

G(u)= v

u
+ u
v
+ R

2

u
(9.11.34)

The solution steps defined in Eqs. (9.11.29)–(9.11.34) have been implemented in the

MATLAB function dslab.m, with usage:

[u,v,err] = dslab(R,Nit); % TE-mode cutoff wavenumbers in a dielectric slab
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whereNit is the desired number of Newton iterations (9.11.33), err is the value of F(u)

at the end of the iterations, and u, v are the (M + 1)-dimensional vectors of solutions.

The number of iterations is typically very small, Nit = 2–3.

The related MATLAB function dguide.m uses dslab to calculate the solution param-

eters β, kc,αc, given the frequency f , the half-length a, and the refractive indices n1, n2

of the slab. It has usage:

[be,kc,ac,fc,err] = dguide(f,a,n1,n2,Nit); % dielectric slab guide

where f is in GHz, a in cm, and β, kc,αc in cm−1. The quantity fc is the vector of

the M + 1 cutoff frequencies defined by the branch edges Rm = mπ/2, that is, Rm =
ωmaNA/c0 = 2πfmaNA/c0 =mπ/2, or,

fm = mc0

4aNA
, m = 0,1, . . . ,M (9.11.35)

The meaning of fm is that there are m + 1 propagating modes for each f in the

interval fm ≤ f < fm+1.

Example 9.11.1: Dielectric Slab Waveguide. Determine the propagating TE modes of a dielectric

slab of half-length a = 0.5 cm at frequency f = 30 GHz. The refractive indices of the slab

and the surrounding dielectric are n1 = 2 and n2 = 1.

Solution: The solution is obtained by the MATLAB call:

f = 30; a = 0.5; n1 = 2; n2 = 1; Nit = 3;

[be,kc,ac,fc,err] = dguide(f,a,n1,n2,Nit)

The frequency radius is R = 5.4414, which gives 2R/π = 3.4641, and therefore, M = 3.

The resulting solutions, depicted in Fig. 9.11.3, are as follows:

0 1 2 3 4 5 6 7
0
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6

7

v

u

TE Modes for R = 5.44

0
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2

3
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−1

0

1

E
y
(x

)/
E

1

x/a

Electric Fields

0 1

2

3

Fig. 9.11.3 TE modes and corresponding E-field patterns.

m u v β kc αc fm

0 1.3248 5.2777 12.2838 2.6497 10.5553 0.0000

1 2.6359 4.7603 11.4071 5.2718 9.5207 8.6603

2 3.9105 3.7837 9.8359 7.8210 7.5675 17.3205

3 5.0793 1.9519 7.3971 10.1585 3.9037 25.9808
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The cutoff frequencies fm are in GHz. We note that as the mode number m increases,

the quantity αc decreases and the effective skin depth 1/αc increases, causing the fields

outside the slab to be less confined. The electric field patterns are also shown in the figure

as functions of x.

The approximation error, err, is found to be 4.885×10−15 using only three Newton itera-

tions. Using two, one, and no (the Lotspeich approximation) iterations would result in the

errors 2.381×10−8, 4.029×10−4, and 0.058.

The lowest non-zero cutoff frequency is f1 = 8.6603 GHz, implying that there will be a

single solution if f is in the interval 0 ≤ f < f1. For example, if f = 5 GHz, the solution is

β = 1.5649 rad/cm, kc = 1.3920 rad/cm, and αc = 1.1629 nepers/cm.

The frequency range over which there are only four solutions is [25.9808,34.6410] GHz,

where the upper limit is 4f1.

We note that the function dguide assumes internally that c0 = 30 GHz cm, and therefore,

the calculated values for kc,αc would be slightly different if a more precise value of c0

is used, such as 29.9792458 of Appendix A. Problem 9.13 studies the sensitivity of the

solutions to small changes of the parameters f , a, c0, n1, n2. ⊓⊔

In terms of the ray picture of the propagating wave, the angles of total internal

reflection are quantized according to the values of the propagation wavenumber β for

the various modes.

If we denote by k1 = k0n1 the wavenumber within the slab, then the wavenumbers

β, kc are the z- and x-components kz, kx of k1 with an angle of incidenceθ. (The vectorial

relationships are the same as those in Fig. 9.9.1.) Thus, we have:

β = k1 sinθ = k0n1 sinθ

kc = k1 cosθ = k0n1 cosθ
(9.11.36)

The value of β for each mode will generate a corresponding value for θ. The at-

tenuation wavenumber αc outside the slab can also be expressed in terms of the total

internal reflection angles:

αc =
√

β2 − k2
0n

2
2 = k0

√

n2
1 sin2 θ− n2

2

Since the critical angle is sinθc = n2/n1, we may also express αc as:

αc = k0n1

√

sin2 θ− sinθ2
c (9.11.37)

Example 9.11.2: For the Example 9.11.1, we calculate k0 = 6.2832 and k1 = 12.5664 rad/cm.

The critical and total internal reflection angles of the four modes are found to be:

θc = asin

(
n2

n1

)

= 30o

θ = asin

(
β

k1

)

= {77.8275o, 65.1960o, 51.5100o, 36.0609o}

As required, all θs are greater than θc. ⊓⊔
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9.12 Asymmetric Dielectric Slab

The three-layer asymmetric dielectric slab waveguide shown in Fig. 9.12.1 is a typical

component in integrated optics applications [908–929].

A thin dielectric film nf of thickness 2a is deposited on a dielectric substrate ns.

Above the film is a dielectric cover or cladding nc, such as air. To achieve propagation

by total internal reflection within the film, we assume that the refractive indices satisfy

nf > ns ≥ nc. The case of the symmetric dielectric slab of the previous section is

obtained when nc = ns.

Fig. 9.12.1 Three-layer asymmetric dielectric slab waveguide.

In this section, we briefly discuss the properties of the TE and TM propagation modes.

Let k0 = ω
√
μ0c0 = ω/c0 = 2πf/c0 = 2π/λ0 be the free-space wavenumber at the

operating frequency ω or f in Hz. The t, z dependence of the fields is assumed to be

the usual ejωt−jβt. If we orient the coordinate axes as shown in the above figure, then

the decay constants αs and αc within the substrate and cladding must be positive so

that the fields attenuate exponentially with x within both the substrate and cladding,

hence, the corresponding transverse wavenumbers will be jαs and −jαc. On the other

hand, the transverse wavenumber kf within the film will be real-valued. These quantities

satisfy the relations (we assume μ = μ0 in all three media):

k2
f = k2

0n
2
f − β2

α2
s = β2 − k2

0n
2
s

α2
c = β2 − k2

0n
2
c

⇒

k2
f +α2

s = k2
0(n

2
f − n2

s)

k2
f +α2

c = k2
0(n

2
f − n2

s)(1+ δ)= k2
0(n

2
f − n2

c)

α2
c −α2

s = k2
0(n

2
f − n2

s)δ = k2
0(n

2
s − n2

c)

(9.12.1)

where we defined the asymmetry parameter δ:

δ = n2
s − n2

c

n2
f − n2

s
(9.12.2)

Note that δ ≥ 0 since we assumed nf > ns ≥ nc. Because kf ,αs,αc are assumed to

be real, it follows that βmust satisfy the inequalities, β ≤ k0nf , β ≥ k0ns, and β ≥ k0nc,
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which combine to define the allowed range of β for the guided modes:

nc ≤ ns ≤ β

k0

≤ nf (9.12.3)

where the lower limit β = k0ns defines the cutoff frequencies, see Eq. (9.12.13).

TE modes

We consider the TE modes first. Assuming only x-dependence for the Hz component, it

must satisfy the Helmholtz equations in the three regions:

(∂2
x + k2

f )Hz(x)= 0, |x| ≤ a
(∂2

x −α2
c)Hz(x)= 0, x ≥ a

(∂2
x −α2

s)Hz(x)= 0, x ≤ −a

The solutions, decaying exponentially in the substrate and cover, can be written in

the following form, which automatically satisfies the continuity conditions at the two

boundaries x = ±a:

Hz(x)=

⎧

⎪⎪⎨

⎪⎪⎩

H1 sin(kfx+φ) , |x| ≤ a
H1 sin(kfa+φ)e−αc(x−a) , x ≥ a

−H1 sin(kfa−φ)eαs(x+a) , x ≤ −a
(9.12.4)

where φ is a parameter to be determined. The remaining two components, Hx and Ey,

are obtained by applying Eq. (9.3.8), that is,

Hx = − jβ
k2
f

∂xHz , Ey = −ηTEHx ηTE = ωμ

β

This gives in the three regions:

Hx(x)=

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−j β
kf
H1 cos(kfx+φ) , |x| ≤ a

−j β
αc
H1 sin(kfa+φ)e−αc(x−a) , x ≥ a

−j β
αs
H1 sin(kfa−φ)eαs(x+a) , x ≤ −a

(9.12.5)

Since we assumed that μ = μ0 in all three regions, the continuity of Ey across the

boundaries x = ±a implies the same for the Hx components, resulting in the two con-

ditions:

1

kf
cos(kfa+φ) = 1

αc
sin(kfa+φ)

1

kf
cos(kfa−φ) = 1

αs
sin(kfa−φ)

⇒
tan(kfa+φ) = αc

kf

tan(kfa−φ) = αs
kf

(9.12.6)
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Since the argument of the tangent is unique up to an integral multiple of π, we may

invert the two tangents as follows without loss of generality:

kfa+φ = arctan

(

αc
kf

)

+mπ

kfa−φ = arctan

(

αs
kf

)

which result in the characteristic equation of the slab and the solution for φ:

kfa = 1

2
mπ+ 1

2
arctan

(

αs
kf

)

+ 1

2
arctan

(

αc
kf

)

(9.12.7)

φ = 1

2
mπ+ 1

2
arctan

(

αc
kf

)

− 1

2
arctan

(

αs
kf

)

(9.12.8)

where the integer m = 0,1,2, . . . , corresponds to the mth mode. Eq. (9.12.7) and the

three equations (9.12.1) provide four equations in the four unknowns {β, kf ,αs,αc}.
Using the trig identities tan(θ1+θ2)= (tanθ1+tanθ2)/(1−tanθ1 tanθ2) and tan(θ)=
tan(θ+mπ), Eqs. (9.12.7) and (9.12.8) may also be written in the following forms:

tan(2kfa)=
kf(αc +αs)
k2
f −αcαs

, tan(2φ)= kf(αc −αs)
k2
f +αcαs

(9.12.9)

The form of Eq. (9.12.7) is preferred for the numerical solution. To this end, we introduce

the dimensionless variables:

R = k0a
√

n2
f − n2

s = 2πfa

c0

√

n2
f − n2

s = 2π
a

λ0

√

n2
f − n2

s

u = kfa , v = αsa , w = αca
(9.12.10)

Then, Eqs. (9.12.7) and (9.12.1) can be written in the normalized forms:

u = 1

2
mπ+ 1

2
arctan

(
v

u

)

+ 1

2
arctan

(
w

u

)

u2 + v2 = R2

w2 − v2 = R2δ

(9.12.11)

Once these are solved for the three unknowns u, v,w, or kf ,αs,αc, the propagation

constant β, or equivalently, the effective index nβ = β/k0 can be obtained from:

β =
√

k2
0n

2
f − k2

f ⇒ nβ = β

k0

=
√
√
√
√n2

f −
k2
f

k2
0

=
√
√
√
√n2

f −
u2

k2
0a

2
(9.12.12)

To determine the number of propagating modes and the range of the mode index

m, we set v = 0 in the characteristic equation (9.12.11) to find the radius Rm of themth

mode. Then, u = Rm and w = Rm
√
δ, and we obtain:

Rm = 1

2
mπ+ 1

2
arctan

(√

δ
)

, m = 0,1,2, . . . (9.12.13)
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For a given operating frequency f , the value of R is fixed. All allowed propagating

modes must satisfy Rm ≤ R, or,

1

2
mπ+ 1

2
arctan

(√

δ
) ≤ R ⇒ m ≤ 2R− arctan

(√
δ
)

π

This fixes the maximum mode index M to be:

M = floor

(

2R− arctan
(√
δ
)

π

)

(maximum TE mode index) (9.12.14)

Thus, there are (M + 1) modes labeled by m = 0,1, . . . ,M. In the symmetric case,

δ = 0, and (9.12.14) reduces to Eq. (9.11.25) of the previous section. The corresponding

cutoff frequencies are obtained by setting:

Rm = 2πfma

c0

√

n2
f − n2

s ⇒ fm =
1

2
mπ+ 1

2
arctan

(√

δ
)

2πa

c0

√

n2
f − n2

s

(9.12.15)

which can be written more simply as fm = fRm/R, m = 0,1, . . . ,M, where f = c0/λ0.

For each of theM+1 propagating modes one can calculate the corresponding angle of

total internal reflection of the equivalent ray model by identifying kf with the transverse

propagation wavenumber, that is, kf = k0nf cosθ, as shown in Fig. 9.12.2.

Fig. 9.12.2 Ray propagation model.

The characteristic equation (9.12.7) can be given a nice interpretation in terms of the

ray model [921]. The field of the upgoing ray at a point A at (x, z) is proportional, up

to a constant amplitude, to

e−jkfxe−jβz

Similarly, the field of the upgoing ray at the point B at (x, z+ l) should be

e−jkfxe−jβ(z+l) (9.12.16)

But if we follow the ray starting at A along the zig-zag path AC→ CS → SB, the ray

will have traveled a total vertical roundtrip distance of 4a and will have suffered two

total internal reflection phase shifts at points C and S, denoted by 2ψc and 2ψs. We
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recall that the reflection coefficients have the form ρ = e2jψ for total internal reflection,

as given for example by Eq. (7.8.3). Thus, the field at point B would be

e−jkf (x+4a)e2jψse2jψce−jβ(z+l)

This must match (9.12.16) and therefore the extra accumulated phase 4kfa−2ψs−2ψc
must be equal to a multiple of 2π, that is,

4kfa− 2ψs − 2ψc = 2mπ ⇒ kfa = 1

2
mπ+ 1

2
ψs + 1

2
ψc

As seen from Eq. (7.8.3), the phase terms are exactly those appearing in Eq. (9.12.7):

tanψc = αc
kf
, tanψs = αs

kf
⇒ ψc = arctan

(

αc
kf

)

, ψs = arctan

(

αs
kf

)

A similar interpretation can be given for the TM modes.

It is common in the literature to represent the characteristic equation (9.12.11) by

means of a universal mode curve [923] defined in terms of the following scaled variable:

b = v2

R2
= β2 − k2

0n
2
s

k2
0(n

2
f − n2

s)
(9.12.17)

which ranges over the standardized interval 0 ≤ b ≤ 1, so that

u = R
√

1− b , v = R
√

b , w = R
√

b+ δ (9.12.18)

Then, Eq. (9.12.11) takes the universal form in terms of the variables b,R:†

2R
√

1− b =mπ+ arctan

⎛

⎝

√

b

1− b

⎞

⎠+ arctan

⎛

⎝

√

b+ δ
1− b

⎞

⎠ (9.12.19)

It is depicted in Fig. 9.12.3 with one branch for each value ofm = 0,1,2, . . . , and for

the three asymmetry parameter values δ = 0,1,10.

A vertical line drawn at each value ofR determines the values ofb for the propagating

modes. Similar curves can be developed for TM modes. See Example 9.12.1 for a concrete

example that includes both TE and TM modes.

TM modes

The TM modes are obtained by solving Eqs. (9.3.10) in each region and applying the

boundary conditions. Assuming x-dependence only, we must solve in each region:

(∂2
x + k2

f )Ez = 0 , Ex = − jβ
k2
f

∂xEz , Hy = 1

ηTM

Ex , ηTM = β

ωǫ

The solution for Ez(x) is given by a similar expression as Eq. (9.12.4):

Ez(x)=

⎧

⎪⎪⎨

⎪⎪⎩

E1 sin(kfx+φ) , |x| ≤ a
E1 sin(kfa+φ)e−αc(x−a) , x ≥ a
−E1 sin(kfa−φ)eαs(x+a) , x ≤ −a

(9.12.20)

†R is usually denoted by the variable V.
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Fig. 9.12.3 Universal mode curves.

where φ is a parameter to be determined. Then, the Ex component is:

Ex(x)=

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−j β
kf
E1 cos(kfx+φ) , |x| ≤ a

−j β
αc
E1 sin(kfa+φ)e−αc(x−a) , x ≥ a

−j β
αs
E1 sin(kfa−φ)eαs(x+a) , x ≤ −a

(9.12.21)

The boundary conditions require the continuity of the normal component of dis-

placement field Dx = ǫEx across the interfaces at x = ±a, which is equivalent to the

continuity of the tangential fieldHy becauseHy = Ex/ηTM = ǫExω/β = Dxω/β. Thus,

the boundary conditions at x = ±a require:

ǫf

kf
cos(kfa+φ) = ǫc

αc
sin(kfa+φ)

ǫf

kf
cos(kfa−φ) = ǫs

αs
sin(kfa−φ)

⇒
tan(kfa+φ) = pc αc

kf

tan(kfa−φ) = ps αs
kf

(9.12.22)

where we defined the ratios:

pc =
ǫf

ǫc
=
n2
f

n2
c
, ps =

ǫf

ǫs
=
n2
f

n2
s

(9.12.23)
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Inverting the tangents we obtain:

kfa+φ = arctan

(

pc
αc
kf

)

+mπ

kfa−φ = arctan

(

ps
αs
kf

)

These give the characteristic equation of the slab and φ:

kfa = 1

2
mπ+ 1

2
arctan

(

ps
αs
kf

)

+ 1

2
arctan

(

pc
αc
kf

)

(9.12.24)

φ = 1

2
mπ+ 1

2
arctan

(

pc
αc
kf

)

− 1

2
arctan

(

ps
αs
kf

)

(9.12.25)

and, as in Eq. (9.12.9), we can write:

tan(2kfa)=
kf(psαs + pcαs)
k2
f − pspcαsαc

, tan(2φ)= kf(pcαc − psαs)
k2
f + pspcαsαc

(9.12.26)

In terms of the normalized variables u, v,w,R, we have:

u = 1

2
mπ+ 1

2
arctan

(

ps
v

u

)

+ 1

2
arctan

(

pc
w

u

)

u2 + v2 = R2

w2 − v2 = R2δ

(9.12.27)

The number of propagating modes and the range of the mode index m, are again

determined by setting v = 0, u = Rm, and w = Rm
√
δ:

Rm = 1

2
mπ+ 1

2
arctan

(

pc
√

δ
)

, m = 0,1,2, . . .

The allowed propagating modes must satisfy Rm ≤ R, or,

1

2
mπ+ 1

2
arctan

(

pc
√

δ
) ≤ R ⇒ m ≤ 2R− arctan

(

pc
√
δ
)

π

which fixes the maximum mode index M to be:

M = floor

(

2R− arctan
(

pc
√
δ
)

π

)

(maximum TM mode index) (9.12.28)

The (M+ 1) modes are again labeled by m = 0,1, . . . ,M. The corresponding cutoff

frequencies are obtained by setting:

Rm = 2πfma

c0

√

n2
f − n2

s ⇒ fm =
1

2
mπ+ 1

2
arctan

(

pc
√

δ
)

2πa

c0

√

n2
f − n2

s

(9.12.29)
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which can be written more simply as fm = fRm/R, m = 0,1, . . . ,M, where f = c0/λ0.

The corresponding angles of total internal reflection in the equivalent ray model are

obtained by solving kf = k0nf cosθ.

Because pc > 1, we observe that the maximum mode index M and the cutoff fre-

quencies fm will satisfy the following inequalities for the TE and TM cases:

MTM ≤MTE , fm,TE ≤ fm,TM (9.12.30)

Numerical Solutions

Next we look at the numerical solutions of Eqs. (9.12.27). The TE case is also included

by setting ps = pc = 1. A simple and effective iterative method for solving such char-

acteristic equations was given in Ref. [959]. By replacing v,w in terms of u, let F(u)

denote the right-hand side of Eq. (9.12.27):

F(u)= 1

2
mπ+ 1

2
arctan

(

ps
v

u

)

+ 1

2
arctan

(

pc
w

u

)

The problem then becomes that of finding the fixed-point solutions u = F(u). The

method suggested in Ref. [959] is to use the iteration:

un+1 = F(un) , n = 0,1,2, . . .

initialized at u0 = R. This simple iteration does converges in many cases, but fails in

others. We have found that a simple modification that involves the introduction of a

“relaxation” parameter r such that 0 ≤ r ≤ 1, enables the convergence of even the most

difficult cases. The modified iteration has the form:

un+1 = rF(un)+(1− r)un

Explicitly, the iteration starts with the initial values:

u0 = R , v0 = 0 , w0 = R
√

δ (9.12.31)

and proceeds iteratively, forn = 0,1,2, . . . , until two successiveun values become closer

to each other than some specified error tolerance, say tol, such as tol = 10−10:

un+1 = r
[

1

2
mπ+ 1

2
arctan

(

ps
vn
un

)

+ 1

2
arctan

(

pc
wn
un

)]

+ (1− r)un

if |un+1 − un| < tol, then exit, else continue

vn+1 =
√

R2 − u2
n+1

wn+1 =
√

R2δ− v2
n+1

(9.12.32)

The MATLAB function dguide3.m implements the method and has usage:

[be,kf,as,ac,fm,Nit] = dguide3(a,ns,nf,nc,mode,r,tol);
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where the inputs and outputs have the following meanings:

a = half-width of slab in units of the free-space wavelength λ0

ns, nf , nc = refractive indices of substrate, film, and cladding (nf > ns >= nc)
mode = ’TE’ or ’TM’

r = relaxation parameter (default r = 0.5)

tol = error tolerance (default tol = 10−10)

β = propagation wavenumbers in units of k0 = 2π/λ0

kf = transverse wavenumbers inside slab in units of k0

αs,αc = decay wavenumbers in substrate and cladding in units of k0

fm = cutoff frequencies in units of f = c0/λ0

Nit = number of iterations it takes to converge to within tol

Internally, the function determines M from Eq. (9.12.14) or (9.12.28) and calculates

β, kf ,αs,αc, fm as (M+1)-dimensional column vectors representing theM+1 modes.

To clarify the computations, the essential part of the code is listed below:

k0 = 2*pi; % la0 = 2*pi/k0 = 1 in the assumed units

R = k0*a * sqrt(nf^2-ns^2); % (u,v) circle radius, note k0*a = 2*pi*(a/la0)

d = (ns^2-nc^2)/(nf^2-ns^2); % asymmetry parameter

if strcmpi(mode,’TE’) % mode can also be entered in lower case

ps = 1; pc = 1;

else

ps = nf^2/ns^2; pc = nf^2/nc^2;

end

M = floor((2*R - atan(pc*sqrt(d)))/pi); % highest mode index

m = (0:M)’; % vector of mode indices

u = R*ones(M+1,1); % initialize iteration variables u,v,w

v = zeros(M+1,1); % u,v,w are (M+1)x1 vectors

w = R*sqrt(d)*ones(M+1,1);

Nit = 1; % number of iterations

% while loop repeats till convergence

while 1

unew = r*(m*pi/2 + atan(ps*v./u)/2 + atan(pc*w./u)/2) + (1-r)*u;

if norm(unew-u) <= tol, break; end

Nit = Nit + 1;

u = unew;

v = sqrt(R^2 - u.^2);

w = sqrt(R^2*d + v.^2);

if Nit>1000, break; end % safeguard against possible divergence

end

kf = u/(k0*a); % kf in units of k0, i.e., kf/k0 = u/(k0*a)

as = v/(k0*a);

ac = w/(k0*a);

be = sqrt(nf^2 - kf.*kf); % beta in units of k0, i.e., beta/k0

Rm = m*pi/2 + atan(pc*sqrt(d))/2; % cutoff radius for m-th mode

fm = Rm/R; % cutoff frequencies in units of f = c0/la0

thm = acos(kf/nf); % angles of total internal reflection
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Example 9.12.1: For comparison purposes, we consider the same benchmark example dis-

cussed in [959] consisting of a silicon film of thickness of 1 μm with nf = 3.5, an oxide

substrate with ns = 1.45, and air cover, with operating wavelength λ0 = 1.55 μm. The

following MATLAB code generates both the TE and TM modes, with the numerical outputs

listed in the tables below.

nf=3.5; ns=1.45; nc=1; % oxide substrate | silicon film | air cover

la0 = 1.55; a = 0.5; % units of microns

a = a/la0; % half-thickness in units of la0

r=0.3; % default value r=0.5 fails to converge for the TE modes

tol=1e-10;

[be,kf,as,ac,fm,Nit] = dguide3(a,ns,nf,nc,’te’,r,tol); % TE modes

[be,kf,as,ac,fm,Nit] = dguide3(a,ns,nf,nc,’tm’,r,tol); % TM modes

m β/k0 kf/k0 αs/k0 αc/k0 fm/f θo
m

0 3.434746 0.6727 3.1137 3.2860 0.0247 78.92

1 3.232789 1.3413 2.8894 3.0742 0.2679 67.47

2 2.872310 2.0000 2.4794 2.6926 0.5112 55.15

3 2.302025 2.6364 1.7880 2.0735 0.7545 41.13

4 1.451972 3.1846 0.0756 1.0527 0.9978 24.51

(TE modes)

m β/k0 kf/k0 αs/k0 αc/k0 fm/f θo
m

0 3.416507 0.7599 3.0935 3.2669 0.1028 77.46

1 3.154191 1.5169 2.8011 2.9915 0.3461 64.32

2 2.668932 2.2642 2.2407 2.4745 0.5894 49.69

3 1.865244 2.9616 1.1733 1.5745 0.8327 32.20

4 – – – – 1.0760 –

(TM modes)

The β/k0 column is the effective phase index of the modes. The default value of the
relaxation parameter r = 0.5 did not work in this case and caused the TE iteration to
diverge and the smaller value r = 0.3 was chosen. The number of iterations wereNit = 57
for TE and Nit = 66 for TM. The TIR angles were computed by the following command:

thm = acos(kf/nf)*180/pi; % degrees

We note that all TIR angles are greater than the critical angles computed by:

θs = arcsin

(

ns
nf

)

= 24.47o , θc = arcsin

(

nc
nf

)

= 16.60o

There are five TE modes and four TM ones. The fifth TE mode is very weakly bound to the

substrate side because its decay parameter αs is very small, its cutoff frequency is very

near the operating frequency f = c0/λ0, and its TIR angle, very close to the critical angle.

With reference to the inequality (9.12.30), it so happened that in this example f falls in the

range f4,TE < f < f4,TM, and therefore, the fifth TM mode f4,TM is not excited, but f4,TE is.

The convergence can be verified for all modes at once by computing the vector error norm

of the characteristic equations, that is,
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M = length(be)-1; m = (0:M)’;

Err = norm(kf*2*pi*a - m*pi/2 - atan(ps*as./kf)/2 - atan(pc*ac./kf)/2);

This error is of the order of the assumed tolerance, indeed, we have Err = 2.94 ·10−10 for

TE, and Err = 2.53 · 10−10 for TM. We note that the quantity kf*2*pi*a represents the

variable u in our units, indeed, u = kfa = (kf/k0)k0a = (kf/k0)2π(a/λ0).

Finally, Fig. 9.12.4 displays the TE and TM solutions on the universal mode curves, see e.g.

Eq. (9.12.19). ⊓⊔
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Fig. 9.12.4 Universal mode curves. TE (solid lines/filled circles), TM (dashed lines/open circles).

Example 9.12.2: A second, more difficult, example from [959] has the parametersλ0 = 1.55μm,

a = 0.5 μm, nf = 3.3, ns = 3.256, nc = 1.

The same MATLAB code applies here, but we used the default value r = 0.5, which con-

verges in 8 and 10 iterations respectively for the TE and TM modes. Only one (M = 0) TE

and one TM mode are supported with parameters given in the table below. The critical TIR

angles are in this example:

θs = arcsin

(

ns
nf

)

= 80.63o , θc = arcsin

(

nc
nf

)

= 17.64o

mode β/k0 kf/k0 αs/k0 αc/k0 fm/f θo
m

TE 3.265996 0.4725 0.2553 3.1091 0.6427 81.77

TM 3.263384 0.4902 0.2194 3.1064 0.7142 81.46

The computational errors in the characteristic equations were Err = 1.63 · 10−11 for TE,

and Err = 1.52 · 10−11 for TM. ⊓⊔
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9.13 Problems

9.1 An air-filled 1.5 cm×3 cm waveguide is operated at a frequency that lies in the middle of its

TE10 mode band. Determine this operating frequency in GHz and calculate the maximum

power in Watts that can be transmitted without causing dielectric breakdown of air. The

dielectric strength of air is 3 MV/m.

9.2 It is desired to design an air-filled rectangular waveguide such that (a) it operates only in the

TE10 mode with the widest possible bandwidth, (b) it can transmit the maximum possible

power, and (c) the operating frequency is 12 GHz and it lies in the middle of the operating

band. What are the dimensions of the guide in cm?

9.3 An air-filled rectangular waveguide is used to transfer power to a radar antenna. The guide

must meet the following specifications: The two lowest modes are TE10 and TE20. The op-

erating frequency is 3 GHz and must lie exactly halfway between the cutoff frequencies of

these two modes. The maximum electric field within the guide may not exceed, by a safety

margin of 3, the breakdown field of air 3 MV/m.

a. Determine the smallest dimensions a,b for such a waveguide, if the transmitted power

is required to be 1 MW.

b. What are the dimensions a,b if the transmitted power is required to be maximum?

What is that maximum power in MW?

9.4 It is desired to design an air-filled rectangular waveguide operating at 5 GHz, whose group

velocity is 0.8c. What are the dimensions a,b of the guide (in cm) if it is also required to carry

maximum power and have the widest possible bandwidth? What is the cutoff frequency of

the guide in GHz and the operating bandwidth?

9.5 Show the following relationship between guide wavelength and group velocity in an arbitrary

air-filled waveguide: vgλg = cλ , where λg = 2π/β and λ is the free-space wavelength.

Moreover, show that the λ and λg are related to the cutoff wavelength λc by:

1

λ2
= 1

λ2
g
+ 1

λ2
c

9.6 Determine the four lowest modes that can propagate in a WR-159 and a WR-90 waveguide.

Calculate the cutoff frequencies (in GHz) and cutoff wavelengths (in cm) of these modes.

9.7 An air-filled WR-90 waveguide is operated at 9 GHz. Calculate the maximum power that

can be transmitted without causing dielectric breakdown of air. Calculate the attenuation

constant in dB/m due to wall ohmic losses. Assume copper walls.

9.8 A rectangular waveguide has sides a,b such that b ≤ a/2. Determine the cutoff wavelength

λc of this guide. Show that the operating wavelength band of the lowest mode is 0.5λc ≤
λ ≤ λc. Moreover, show that the allowed range of the guide wavelength is λg ≥ λc/

√
3.

9.9 The TE10 mode operating bandwidth of an air-filled waveguide is required to be 4–7 GHz.

What are the dimensions of the guide?

9.10 Computer Experiment: WR-159 Waveguide. Reproduce the two graphs of Fig. 9.8.2.

9.11 A TM mode is propagated along a hollow metallic waveguide of arbitrary but uniform cross

section. Assume perfectly conducting walls.

a. Show that the Ez(x, y) component satisfies:

∫

S
|∇∇∇TEz|2 dS = k2

c

∫

S
|Ez|2 dS , (kc = cutoff wavenumber) (9.13.1)
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b. Using the above result, show that the energy velocity is equal to the group velocity.

Hint: Use the identity: ∇∇∇T · (A∇∇∇TB)=∇∇∇TA ·∇∇∇TB+A∇∇∇2
TB, for scalar A,B.

9.12 Computer Experiment: Dielectric Slab Waveguide. Using the MATLAB functions dslab and

dguide, write a program that reproduces all the results and graphs of Examples 9.11.1 and

9.11.2.

9.13 Show that if the speed of light c0 is slightly changed to c = c0 + Δc0 (e.g. representing a

more exact value), then the solutions of Eq. (9.11.29) for kc,αc change into:

kc +Δkc = kc −
(

kc
1+αca

)(
Δc0

c0

)

αc +Δαc = αc −
(

αc +
k2
ca

1+αca

)(
Δc0

c0

)

For Example 9.11.1, calculate the corrected values when c0 = 30 and c = 29.9792458

GHz cm. Compare with the values obtained if c0 is replaced by c inside the function dguide.

More generally, consider the sensitivity of the solutions of Eq. (9.11.29) to any of the param-

etersω0, a, c0, n1, n2, which affect the solution through the value of R = aω0c
−1
0

√

n2
1 − n2

2.

A small change in one or all of the parameters will induce a small change R→ R+ΔR. Show

that the solutions are changed to

u+Δu = u+
(

u

1+ v
)(

ΔR

R

)

v+Δv = v+
(

v+ u2

1+ v

)(
ΔR

R

)

In particular, for simultaneous changes in all of the parameters, show that

ΔR

R
= Δa

a
+ Δω0

ω0

− Δc0

c0

+ 2n1Δn1 − 2n2Δn2

n2
1 − n2

2

From these results, show that the changes due to a change a→ a+Δa of the slab thickness

are given by,

kc +Δkc = kc − kcαc
1+αca

Δa

αc +Δαc = αc +
k2
c

1+αca
Δa

9.14 For the dielectric slab waveguide shown in Fig. 9.11.1, demonstrate that the energy transport

velocity is equal to the group velocity. Specifically, consider the case of even TE modes

defined by Eqs. (9.11.3)–(9.11.13), and show that ven = vgr, where

ven = PT
W′ , vgr = dω

dβ
(9.13.2)

where PT is the time-averaged power transmitted in the z-direction through the cross-

sectional area defined by 0 ≤ y ≤ 1 and −∞ < x < ∞, and W′ is the energy contained

in the volume defined by the above area and unit-z-length, i.e.,

PT = 1

2ηTE

∫∞

−∞
|Ey(x)|2 dx , W′ = 1

4

∫∞

−∞

[

ǫ|Ey(x)|2 + |Hx(x)|2 + μ|Hz(x)|2
]

dx

Because of the substantial amount of algebra involved, break the calculation as follows:
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a. Show that PT is given as the sum of the following two terms, where the first one

represents the power flowing within the slab, and the second, the power flowing outside

the slab:

PT = |H1|2 βωμ0

[

akc + sin(akc)cos(akc)
]

2k3
c

+ |H1|2 βωμ0 sin2(akc)

2α3
c

whereH1 is the amplitude defined in Eq. (9.11.5). Without loss of generality, from now

on set, H1 = 1.

b. Show that the electric and magnetic energy densities are given as follows, where again,

the first terms represent the energy contained within the slab, and the second, the

energy outside the slab:

W′
e =

μ0(β
2 + k2

c)
[

akc + sin(akc)cos(akc)
]

4k3
c

+ μ0(β
2 −α2

c)sin2(akc)

4α3
c

W′
m =

μ0(β
2 + k2

c)akc + μ0(β
2 − k2

c)sin(akc)cos(akc)

4k3
c

+ μ0(β
2 +α2)sin2(akc)

4α3
c

c. Using the above expressions and Eq. (9.11.13), show the equality

W′
e =W′

m

Thus, the total energy density is W′ =W′
e +W′

m = 2W′
e.

d. From parts (a,b,c), show that

PT = ωβμ0(1+ aαc)
2αck

2
c

W′ = μ0

[

(β2 + k2
c)aαc + β2

]

2αck
2
c

e. By differentiating Eqs. (9.11.3) and (9.11.13) with respect to ω, show that

ωβ
dβ

dω
= (β2 + k2

c)aαc + β2

1+ aαc

f. Combining the results of parts (e,f), show finally that

ven = vgr = ωβ(1+ aαc)
(β2 + k2

c)aαc + β2
= ωβ(1+ aαc)
ω2ǫ0μ0n

2
1aαc + β2

9.15 Computer Experiment. Asymmetric Slab Waveguide. Reproduce all the results and Fig. 9.12.4

of Example 9.12.1. Moreover, make a separate graph of Fig. 9.12.4 that zooms into the

neighborhood of the fifth TE mode to make sure that it is indeed below cutoff.
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Surface Waveguides

In this chapter we discuss a variety of surface waveguides, such as plasmonic wavegui-

des, which have the ability to confine light at sub-wavelength scales, and the Sommerfeld

wire and Goubau lines, in which there is renewed interest for THz applications. We also

use the Sommerfeld wire as the ideal example to explain the skin effect in conductors.

10.1 Plasmonic Waveguides

Surface plasmons have a large number of applications in the field of nanophotonic de-

vices, waveguides, and nanocircuits, and in the area of biological and chemical sensors,

and other applications [589–627]. Their distinguishing feature is their ability to confine

light at sub-wavelength scales and guide it at long (relative to nanoscale) distances.

In this section, we consider plasmonic waveguides [930–977] from the point of view

the longitudinal-transverse waveguide decompositions that we developed in this chap-

ter. The asymmetric dielectric waveguide problem of Sec. 9.12 is very similar—a very

significant difference being that in the plasmonic case at least one the layers is metal-

lic with a dielectric constant having negative real-part in the operating frequency range

(typically, infrared to optical).

Fig. 10.1.1 depicts a typical plasmonic waveguide consisting of a thin film εf , sand-

wiched between a cladding cover εc and a substrate εs. We discuss three cases: (a)

single interface between a dielectric εc and a metal εf , (b) metal-dielectric-metal (MDM)

configuration in which εf is a lossless dielectric and εc, εs are metals, (c) dielectric-metal-

dielectric (DMD) configuration in which εf is a metal and εc, εs are lossless dielectrics.†

Here, the quantities εc, εf , εs denote that relative permittivities of the media, that

is, εi = ǫi/ǫ0, i = c, f , s, where ǫi is the permittivities of the ith medium and ǫ0, the

permittivity of vacuum.

In the geometry of Fig. 10.1.1, propagation is in the z-direction, the transverse con-

finement is along the x-direction, the layers have infinite extent along the y-direction,

and the film thickness is 2a. We look for field solutions that have t, z propagation

dependence of ejωt−jβz, and decay exponentially away from the interfaces so that the

†Also known as metal-insulator-metal (MIM) and insulator-metal-insulator (IMI) configurations.
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Fig. 10.1.1 Plasmonic waveguide depicting TM modes in either a DMD or MDM configuration.

transverse attenuation coefficients αs,αc in the substrate and cladding have positive

real parts, thus, the x-dependence of the fields is as follows for x < −a and x > a:

e−αs|x| for x < −a (substrate) and e−αcx for x > a (cladding)

As in the asymmetric dielectric guide of the previous section,

α2
s = β2 − k2

0εs

α2
c = β2 − k2

0εc
(10.1.1)

where k0 = 2π/λ0 is the vacuum wavenumber and λ0 the vacuum wavelength, with

operating frequency f = c0/λ0 in Hz. Acceptable solutions must have z-propagation

wavenumber β with negative imaginary part, β = βR − jβI, βI ≥ 0, so that the wave

attenuates exponentially as it propagates in the positive z-direction:

e−jβz = e−j(βR−jβI)z = e−jβRze−βIz

A measure of the effective propagation distance is L = β−1
I , or L = (2βI)−1 if it is

referred to power, and the attenuation is 20 log10(e)βI = 8.686βI in units of dB/m.

Within the film εf , the transverse cutoff wavenumber satisfies k2
f = k2

0εf − β2. If

the film is a metal with a dielectric constant εf with negative real part, then k2
f will be

essentially negative or kf imaginary, and therefore, it makes sense to work with the

“attenuation” coefficient defined by γ = jkf , so that γ2 = −k2
f ,

γ2 = β2 − k2
0εf (10.1.2)

Thus, within the film, instead of assuming an x-dependence that is a linear combina-

tion of oscillatory cos(kfx) and sin(kfx) terms, we may work with a linear combination

of hyperbolic terms sinh(γx) and cosh(γx)—referred to as plasmonic solutions.

Another way to justify the change in notation to γ = jkf , is to note that because

the metals are lossy, the fields cannot penetrate too deeply into the metal and will be

essentially surface waves that are concentrated primarily at the metal-dielectric inter-

faces (i.e., at x = ±a) and attenuating away from them. By contrast, in the dielectric
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waveguide of the previous sections, the fields typically peak in the center of the film. In

other words, in plasmonic waveguides most of the field energy is carried at or near the

metal-dielectric interfaces instead of at the center of the film.

We will consider only TM plasmonic modes, although in more complicated media,

such as magnetic materials and metamaterials, TE modes are also possible. The recent

book [930] includes examples of all possible types of media and modes.

The TM modes are obtained by solving Eqs. (9.3.10) in each region and applying the

boundary conditions. Thus, we must solve in each region:

(∂2
x−γ2)Ez = 0 , Ex = − jβ

−γ2
∂xEz , Hy = 1

ηTM

Ex , ηTM = β

ωǫ0ε
, γ2 = β2−k2

0ε

or, more specifically,

for |x| ≤ a , (∂2
x − γ2)Ez = 0 , γ2 = β2 − k2

0εf , ηTM = β/(ωǫ0εf)

for x ≥ a , (∂2
x −α2

c)Ez = 0 , α2
c = β2 − k2

0εc , ηTM = β/(ωǫ0εc)

for x ≤ −a , (∂2
x −α2

s)Ez = 0 , α2
s = β2 − k2

0εs , ηTM = β/(ωǫ0εs)

The solutions for Ez(x) that automatically satisfy the tangential E-field boundary

conditions at x = ±a can be expressed as follows, where E0 is a constant and ψ, a

parameter to be determined:

Ez(x)=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E0 sinh(γx+ψ) , |x| ≤ a
E0 sinh(γa+ψ)e−αc(x−a) , x ≥ a

−E0 sinh(γa−ψ)eαs(x+a) , x ≤ −a
(10.1.3)

The complete space-time dependence is Ez(x)e
jωt−jβz. Eq. (10.1.3) results in the

following transverse E-field:

Ex(x)=

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− jβ

−γ2
∂xEz = E0

jβ

γ
cosh(γx+ψ) , |x| ≤ a

− jβ

−α2
c
∂xEz = −E0

jβ

αc
sinh(γa+ψ)e−αc(x−a) , x ≥ a

− jβ

−α2
s
∂xEz = −E0

jβ

αs
sinh(γa−ψ)eαs(x+a) , x ≤ −a

(10.1.4)

The corresponding transverse magnetic fields are then obtained from Hy = Ex/ηTM.

Hy(x)=

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

jωǫ0E0

εf

γ
cosh(γx+ψ) , |x| ≤ a

−jωǫ0E0
εc
αc

sinh(γa+ψ)e−αc(x−a) , x ≥ a

−jωǫ0E0
εs
αs

sinh(γa−ψ)eαs(x+a) , x ≤ −a

(10.1.5)
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which, using the continuity conditions (10.1.7), can also be written as,

Hy(x)=

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

H0 cosh(γx+ψ) , |x| ≤ a

H0 cosh(γa+ψ)e−αc(x−a) , x ≥ a

H0 cosh(γa−ψ)eαs(x+a) , x ≤ −a

(10.1.6)

where H0 = jωǫ0E0εf/γ. The continuity of the tangential H-field of Eq. (10.1.5) at the

interfaces is equivalent to the continuity of the normal D-field, that is, εEx, resulting

into the two conditions:

εf

γ
cosh(γa+ψ)= − εc

αc
sinh(γa+ψ)

εf

γ
cosh(γa−ψ)= − εs

αs
sinh(γa−ψ)

⇒
tanh(γa+ψ)= −pcαc

γ

tanh(γa−ψ)= −psαs
γ

(10.1.7)

where we defined as in Eq. (9.12.23):

pc =
εf

εc
, ps =

εf

εs
(10.1.8)

The two conditions (10.1.7), together with,

γ2 = β2 − k2
0εf

α2
c = β2 − k2

0εc

α2
s = β2 − k2

0εs

(10.1.9)

allow the determination of the parameters β,γ,αc,αs, and ψ. Eqs. (10.1.7) can also be

written in the forms:

e2(γa+ψ) = γ− pcαc
γ+ pcαc

, e2(γa−ψ) = γ− psαs
γ+ psαs

(10.1.10)

which immediately decouple into,

e4γa = (γ− pcαc)(γ− psαs)
(γ+ pcαc)(γ+ psαs)

(10.1.11)

e4ψ = (γ− pcαc)(γ+ psαs)
(γ+ pcαc)(γ− psαs)

(10.1.12)

and can also be written in the equivalent forms:

tanh(2γa)= −γ(pcαc + psαs)
γ2 + pcαcpsαs

(10.1.13)

tanh(2ψ)= −γ(pcαc − psαs)
γ2 − pcαcpsαs

(10.1.14)
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The quantities β,γ,αc.αs may be determined from Eqs. (10.1.9) and (10.1.11), or

(10.1.13). Then, the parameter ψ can be calculated from Eq. (10.1.14). The quantity ψ

is defined up to an integer multiple of jπ/2 because of the identity tanh(2ψ± jmπ)=
tanh(2ψ), and the integer m serves to label particular modes. For example, a possible

way of introducing the integer m in the inverse of Eqs. (10.1.7) is:

γa+ψ = atanh

(

−pcαc
γ

)

γa−ψ = atanh

(

−psαs
γ

)

− jmπ

which result into:

γa = 1

2
atanh

(

−pcαc
γ

)

+ 1

2
atanh

(

−psαs
γ

)

− 1

2
jmπ

ψ = 1

2
atanh

(

−pcαc
γ

)

− 1

2
atanh

(

−psαs
γ

)

+ 1

2
jmπ

(10.1.15)

Eq. (10.1.13) has a very rich solution structure because, in general, the quantities

β,γ,αc,αs are complex-valued when the media are lossy. See, for example, Refs. [937–

940,950,951] for a discussion of the variety of possible solutions.

The above choice of the m-terms was made so that the cases m = 0 and m = 1 will

correspond to the TM0 and TM1 modes, respectively. Additional jπ/2 terms may arise

depending on the values of the parameters. For example, if ǫc, ǫs are real and negative

and ǫf is positive as in an MDM case, and if |pc|αc/γ > 1 and |ps|αs/γ > 1, then using

the identity,

atanh

(
1

x

)

= atanh(x)+sign(x)
jπ

2
, x real, |x| < 1

we may rewrite Eq. (10.1.15) in the form:

γa = 1

2
atanh

(

− γ

pcαc

)

+ 1

2
atanh

(

− γ

psαs

)

− 1

2
j(m− 1)π

ψ = 1

2
atanh

(

− γ

pcαc

)

− 1

2
atanh

(

− γ

psαs

)

+ 1

2
jmπ

(10.1.16)

Oscillatory Modes

In addition to the plasmonic waveguide modes, there may also be oscillatory modes. The

plasmonic solutions have a value for γ that is predominantly real-valued, with the fields

peaking at the metal-dielectric interfaces, whereas the oscillatory modes have a γ that is

dominantly imaginary. In fact, replacing, γ = jkf , in Eq. (10.1.13) and using the identity,

tanh(jx)= j tan(x), we obtain the characteristic equation for the oscillatory modes:

tan(2kfa)=
kf(pcαc + psαs)
k2
f − pcαcpsαs

(oscillatory modes) (10.1.17)
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where kf =
√

k2
0εf − β2. In an MDM configuration, kf is predominantly real, whereas in

an DMD configuration that has Re(εf)< 0, kf will be predominantly imaginary, i.e., of

the plasmonic type. Thus, Eq. (10.1.17) applies to the MDM case and admits both TE

and TM type of solutions, with the TE ones obtained by replacing, pc = ps = 1, as in

Sec. 9.12. Setting ψ = jφ, the two matching conditions (10.1.7) read now

tan(kfa+φ)= pcαc
kf

tan(kfa−φ)= psαs
kf

(10.1.18)

which can be inverted and solved in terms of the mode number m:

kfa = 1

2
atan

(

pcαc
kf

)

+ 1

2
atan

(

psαs
kf

)

+ 1

2
mπ

φ = 1

2
atan

(

pcαc
kf

)

− 1

2
atan

(

psαs
kf

)

+ 1

2
mπ

(10.1.19)

These apply to both the TE and TM cases. For the TM case of the MDM configuration,

because pc, ps are dominantly negative-real, we may use the identity,

atan(x)= π

2
+ atan

(

−1

x

)

, x > 0

applied, for example, with x = −kf/pcαc, to rewrite Eq. (10.1.19) in the form:

kfa = 1

2
atan

(

− kf

pcαc

)

+ 1

2
atan

(

− kf

psαs

)

+ 1

2
(m− 1)π

φ = 1

2
atan

(

− kf

pcαc

)

− 1

2
atan

(

− kf

psαs

)

+ 1

2
mπ

(10.1.20)

We will use this form to determine the cutoff waveguide thicknesses of certain

modes. Replacing γ = jkf and ψ = jφ in Eq. (10.1.6), we also obtain the transverse

magnetic field of the oscillatory TM modes:

Hy(x)=

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

H0 cos(kfx+φ) , |x| ≤ a

H0 cos(kfa+φ)e−αc(x−a) , x ≥ a

H0 cos(kfa−φ)eαs(x+a) , x ≤ −a

(10.1.21)

where H0 = ωǫ0E0εf/kf . In the examples below, we look at the special roles played

by the TM0 plasmonic mode (m = 0), and the TM1 plasmonic and oscillatory modes

(m = 1).
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Relationship to Surface Plasmon Resonance

We note also that Eq. (10.1.11) is equivalent to the surface plasmon resonance condition

discussed in Sec. 8.5. The reflection coefficient Γ of the Kretschmann-Raether configu-

ration of Fig. 8.5.2 is given by Eq. (8.5.7),

Γ = ρa + ρbe−2jkzd

1+ ρaρbe−2jkzd
, ρa = kzεa − kzaε

kzεa + kzaε
, ρb = kzbε− kzεb

kzbε+ kzεb
The surface plasmon resonance condition [604] corresponds to a pole of Γ, that is,

the vanishing of the denominator, 1 + ρaρbe−2jkzd = 0, which is indeed the same as

Eq. (10.1.11). To see this, we map the notation of Sec. 8.5 to that of the present section:

x→ z , z→ x , kz → −jγ , kza → −jαs , kzb → −jαc , ε→ εf , εa → εs , εb → εc

which imply,

ρa → γ− psαs
γ+ psαs

, ρb → −γ− pcαc
γ+ pcαc

1+ ρaρbe−2jkzd = 0 → 1−
(

γ− psαs
γ+ psαs

)(

γ− pcαc
γ+ pcαc

)

e−4γa = 0

Symmetric Configuration

When the cladding and substrate media are the same, i.e., εc = εs, then αc = αs and

pc = ps, and the characteristic equations (10.1.7) simplify further. Indeed, we note

from Eq. (10.1.14) that e4ψ = 1, which implies the two basic casesψ = 0 andψ = jπ/2.

Noting the identity tanh(x± jπ/2)= coth(x), the two characteristic equations (10.1.7)

become a single one, given as follows for the two cases of ψ:

(even) ψ = 0 , e2γa = +γ− pcαc
γ+ pcαc

, tanh(γa)= −pcαc
γ

(odd) ψ = jπ

2
, e2γa = −γ− pcαc

γ+ pcαc
, coth(γa)= −pcαc

γ

(10.1.22)

The labeling as even or odd (symmetric or antisymmetric) refers to the symmetry or

antisymmetry of the transverse electric and magnetic fields Ex(x) and Hy(x) as func-

tions of x within the film region.† Indeed, it is evident from Eq. (10.1.4) that if ψ = 0,

then Ex(x) is proportional to cosh(γx), an even function of x, and if ψ = jπ/2, then

because of the identity cosh(x+ jπ/2)= j sinh(x), the field Ex(x) will be proportional

to sinh(γx), an odd function of x.

The nomenclature carries over loosely to the asymmetric waveguide that has ǫc �= ǫs,
with the “symmetric/even” case corresponding to a value ofψ that is predominantly real,

and the “antisymmetric/odd” one corresponding to a ψ whose imaginary part is near

jπ/2. Examples of these are given below.

†In the literature, sometimes the labeling is reversed, referring instead to the symmetry or antisymmetry

of the longitudinal field Ez(x) which is the opposite of that of Ex(x).

418 10. Surface Waveguides

Power Transfer

The z-component of the Poynting vector gives the power flow in the z-direction per unit

xy area. Since Ex = ηTMHy, ηTM = β/(ωǫ), we obtain from Eq. (10.1.6),

Pz(x)= 1

2
Re
[

Ex(x)H
∗
y (x)

] = 1

2
Re(ηTM)|Hy(x)|2

and since k0 =ω/c0, we may write ηTM in the form,

ηTM = β

ωǫ
= β

k0c0ǫ0ε
= η0

β

k0ε
, η0 =

√

μ0

ǫ0

The Poynting vector is then in the three regions,

Pz(x)= 1

2
η0 |H0|2

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Re

(

β

k0εf

)

∣
∣cosh(γx+ψ)

∣
∣2
, |x| ≤ a

Re

(
β

k0εc

)
∣
∣cosh(γa+ψ)

∣
∣2
e−2αcR(x−a) , x ≥ a

Re

(
β

k0εs

)
∣
∣cosh(γa−ψ)

∣
∣2
e2αsR(x+a) , x ≤ −a

(10.1.23)

where αcR,αsR denote the real parts of αc,αs. Integrating (10.3.2) over an xy area,

dS = dx · (1 m along y), we obtain the powers transmitted (per unit y-length) along

the z-direction within each region. Dropping the overall unimportant factor η0 |H0|2/2,

and denoting the real and imaginary parts of γ,ψ by γR,ψR and γI,ψI, we have,

Pf = Re

(

β

k0εf

)[

sinh(2γRa) cosh(2ψR)

2γR
+ sin(2γIa)cos(2ψI)

2γI

]

Pc = Re

(
β

k0εc

) ∣
∣cosh(γa+ψ)

∣
∣2

2αcR

Ps = Re

(
β

k0εs

) ∣
∣cosh(γa−ψ)

∣
∣2

2αsR

(10.1.24)

and the net power is,

P = Pf + Pc + Ps (10.1.25)

These expressions must be multiplied by e−2βIz, where β = βR− jβI, for the attenu-

ation of power with propagation distance z. These also apply to the lossless case, where

we must replace sin(2γIa)/(2γI)
∣
∣
γI=0 = a. Note that we may also write,

∣
∣cosh(γa±ψ)

∣
∣2 = 1

2

[

cosh(2γRa± 2ψR)+ cos(2γIa± 2ψI)
]

The MATLAB function, pwgpower, implements Eqs. (10.1.24) and (10.1.25):

[P, Pf, Pc, Ps] = pwgpower(a,ef,ec,es,be,m); % transmitted power in plasmonic waveguide

where a and β are in units of k−1
0 and k0, respectively, and m = 0,1, for TM0 or TM1

modes, where ψ is calculated from Eq. (10.1.15).
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10.2 Single Metal-Dielectric Interface

The case of a single metal-dielectric interface can be thought of as the limit of a DMD con-

figuration when the film thickness tends to infinity, a→∞. It is depicted in Fig. 10.2.1.

Fig. 10.2.1 Surface plasmon wave propagating along metal-dielectric interface.

Because γ has positive real part, the left-hand side of Eq. (10.1.11) tends to infinity

as a → ∞, and this requires the vanishing of the denominator of the right-hand side,

that is, one of the conditions:

γ = −pcαc , or, γ = −psαs (10.2.1)

Let us consider the first one. Because εf is a metal with a negative real part, the

condition γ = −pcαc = −εfαc/εc is consistent with the requirement that both γ and

αc have positive real parts. Assuming that the interface is positioned at x = 0, the

longitudinal electric field will be for TM modes:

Ez(x)=
⎧

⎨

⎩

E0e
−αcx , x ≥ 0

E0e
γx = E0e

−γ|x| , x ≤ 0
(10.2.2)

with complete space-time dependence Ez(x)e
jωt−jβz. The Ex component will be:

Ex(x)=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− jβ

−α2
c
∂xEz = −E0

jβ

αc
e−αcx , x ≥ 0

− jβ

−γ2
∂xEz = E0

jβ

γ
eγx , x ≤ 0

(10.2.3)

The corresponding magnetic field is obtained fromHy = Ex/ηTM, where ηTM = β/(ωǫ),

Hy(x)=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

−jωǫ0E0
εc
αc
e−αcx , x ≥ 0

jωǫ0E0

εf

γ
eγx , x ≤ 0

(10.2.4)
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The continuity of either Dx = ǫEx, or Hy at x = 0 gives the first condition in

Eq. (10.2.1). These results are equivalent to those of Sec. 7.11. Indeed, the propaga-

tion wavenumber β, as well as γ,αc, are obtained from:

γ = −εfαc
εc

⇒ β2 − k2
0εf =

ε2
f

ε2
c
(β2 − k2

0εc) (10.2.5)

or, solving for β,γ,αc,

β = k0

√

εfεc

εf + εc
, γ = −k0εf

√−εf − εc
, αc = k0εc

√−εf − εc
(10.2.6)

where the square root signs have been selected to satisfy the requirements that β have

negative imaginary part and β,γ,αc, positive real parts. To see this in more detail, set

εf = −εR − jεI, with εR > 0, and assume εR > εc, as in Sec. 7.11. Then, a first-order

calculation in εI yields the expressions:

β = k0

√

εRεc
εR − εc

[

1− j εcεI
2εR(εR − εc)

]

γ = k0εR√
εR − εc

[

1+ j (εR − 2εc)εI
2εR(εR − εc)

]

αc = k0εc√
εR − εc

[

1− j εI
2(εR − εc)

]

(10.2.7)

Eq. (10.2.7) shows explicitly how the condition εR > εc guarantees the existence of

plasmonic waves with Re(β)> 0 and Im(β)< 0. We note also that Re(γ)/Re(αc)=
εR/εc, which is typically much greater than unity, εR/εc ≫ 1. Therefore, the attenu-

ation length within the metal is typically much shorter than that in the dielectric, i.e.,

1/Re(γ)≪ 1/Re(αc). This is depicted in Figs. 10.2.1 and 10.2.2.

Example 10.2.1: Following Example 7.11.1, we use the value εf = −16 − 0.5j for silver at

λ0 = 0.632 μm, and air εc = 1. Then, k0 = 2π/λ0 = 9.94 rad/μm and Eqs. (10.2.6)

give the following values for the parameters β,γ,αc and corresponding propagation and

penetration distances:

β = 10.2674− 0.0107j rad/μm , Lz = − 1

Im(β)
= 93.5969 μm

γ = 41.0755+ 0.5989j rad/μm , Lf = 1

Re(γ)
= 0.0243 μm

αc = 2.5659− 0.0428j rad/μm , Lc = 1

Re(αc)
= 0.3897 μm

Thus, the fields extend more into the dielectric than the metal, but at either side they
are confined to distances that are less than their free-space wavelength. The transverse
magnetic field Hy(x), which is continuous at the interface, is shown in Fig. 10.2.2. It was
plotted with the MATLAB code:

ec = 1; ef = -16-0.5*j; la0 = 0.632; k0 = 2*pi/la0;

b = k0*sqrt(ef*ec/(ef+ec));
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ga = -k0*ef/sqrt(-ef-ec); % or, ga = sqrt(b^2 - k0^2*ef);

ac = k0*ec/sqrt(-ef-ec); % or, ac = sqrt(b^2 - k0^2*ec);

x = linspace(-0.4, 1, 141);

Hy = abs(exp(ga*x).*(x<0) + exp(-ac*x).*(x>=0));

plot(x,Hy);
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Fig. 10.2.2 Surface plasmon magnetic field profile.

10.3 Power Transfer, Energy & Group Velocities

Replacingβ = βR−jβI, εf = −εR−jεI, andαc = αR−jαI, γ = γR+jγI into Eq. (10.2.7),

we note also the following relationships, with the second following by equating real parts

in Eq. (10.2.5):

2βRβI = 2αRαI =
k2

0 ε
2
c εI

(εR − εc)2+ε2
I

, εcγR = εRαR + εIαI (10.3.1)

and since εI ≥ 0, Eq. (10.3.1) implies that βR ≥ 0 and αI ≥ 0 since βI ≥ 0 and αR ≥ 0.

The power flow along the propagation direction is described by the z-component of

the Poynting vector. From Eqs. (10.2.3) and (10.2.4), we obtain,

Pz(x)= 1

2
Re
[

Ex(x)H
∗
y (x)

] = 1

2
ωǫ0|E0|2

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Re[βε∗c ]
|αc|2

e−2αRx , x ≥ 0

Re[βε∗f ]

|γ|2 e2γRx , x ≤ 0

(10.3.2)

Integrating (10.3.2) over an xy area, dS = dx·(1 m along y), we obtain the net power

transmitted (per unit y-length) along the z-direction:

PT =
∫∞

−∞
Pzdx = 1

4
ωǫ0|E0|2

[

βRεc
αR|αc|2

− βRεR − βIεI
γR|γ|2

]

(10.3.3)
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where the first term represents the power flow within the dielectric, and the second, the

power flow within the metal. Since typically, βRεR≫ βIεI, the second term is negative,

representing power flow along the negative z direction within the metal. However, the

sum of the two terms is positive, so that the net power flow is along the positive z-

direction. In fact, since also, |γ| ≫ |αc|, the second term will be much smaller than

the first one, which is to be expected since the fields tend to be attenuate more quickly

within the metal than in the dielectric. Indeed, for the values given in Example 10.2.1,

we find the terms in the brackets to be:

[

βRεc
αR|αc|2

− βRεR − βIεI
γR|γ|2

]

= 0.6076− 0.0024 = 0.6053

Using the second of Eqs. (10.3.1), one can show that the term in brackets in (10.3.3)

becomes

[

βRεc
αR|αc|2

− βRεR − βIεI
γR|γ|2

]

= βRαRεR(ε
2
R − ε2

c + ε2
I )+βRαIεI(ε2

R + ε2
I )+βIαRεIε2

c

αRγRε
2
c|γ|2

which is positive since we assumed εR > εc, and all other terms are non-negative. The

power, of course, attenuates exponentially with distance z, and the expression (10.3.3)

for PT must be multiplied by the factor e−2βIz.

The positivity of PT implies also the positivity of the energy velocity, ven = PT/W′,
where W′ is the energy density per unit z-length (see Sec. 9.7), which is always positive.

In the lossless case, we show below that the group velocity, vg = dω/dβ, is equal to the

energy velocity, and hence vg will also be positive. This can also be seen from Fig. 7.11.2

depicting the ω–β dispersion relationship, which has a positive slope dω/dβ.

However, when losses are taken into account, it can be shown [969], using for exam-

ple the Drude model for the metal permittivity, that there are frequency regions in which

the group velocity is negative. Similar situations arise in MDM and DMD configurations

in which, depending on the media permittivities and layer thicknesses, there can exist

modes that have negative group velocities—see, for example, Refs. [939] and [961–977].

Next, we determine the x-component of the Poynting vector, which describes power

flow from the dielectric into the metal, and we show that the power entering the metal

and the power flowing in the z-direction in the metal are completely dissipated into heat

as ohmic and dielectric losses. We have,

Px(x)= −1

2
Re
[

Ez(x)H
∗
y (x)

] = 1

2
ωǫ0|E0|2

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− Im

(
εc
αc

)

e−2αRx , x ≥ 0

Im

(

εf

γ

)

e2γRx , x ≤ 0

(10.3.4)

The power flow Px is continuous across the interface at x = 0 because of the condi-

tion εc/αc = −εf/γ. The negative sign on the dielectric side simply means that power

flows towards the negative x direction into the metal. The z-dependence of Px is ob-

tained by multiplying Eq. (10.3.4) by e−2βIz.

To account for the power dissipation within the metal, we consider a rectangular

volume of sides L,d, b along the z, x, y directions lying within the metal below the yz

interface plane, as shown below.
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The net power entering and leaving the top and bottom sides is obtained by restoring

the factor e−2βIz and integrating (10.3.4) over the L× b area and subtracting the values

at x = 0 and x = −d,

Px,net = 1

2
ωǫ0|E0|2 Im

(
εc
αc

)
(1− e−2βIL)

2βI
(1− e−2γR d)b (10.3.5)

Similarly, the net power entering and leaving the left and right sides is obtained by

integrating (10.3.2) over the area d× b and subtracting the values at z = 0 and z = L,

Pz,net = −1

2
ωǫ0|E0|2

Re[βε∗f ]

|γ|2
(1− e−2γR d)

2γR
(1− e−2βIL)b (10.3.6)

The sum of these two powers must equal the power loss within the volume L× d× b,

Ploss = 1

2
Re(jωǫf)

∫

V
E · E∗ dV = 1

2
ǫ0ωεI

∫

V

(|Ex|2 + |Ez|2
)

dV

Restoring the factor e−jβz in Ex, Ez, we obtain from Eqs. (10.2.2) and (10.2.3):

Ploss = 1

2
ωǫ0|E0|2 εI

(

1+ |β|
2

|γ|2
)

(1− e−2γR d)(1− e−2βIL)

2γR · 2βI
b (10.3.7)

Energy conservation requires that, Px,net + Pz,net = Ploss. Canceling some common

factors, this condition is equivalent to,

2γR Im

(
εc
αc

)

− 2βI
Re[βε∗f ]

|γ|2 = εI
(

1+ |β|
2

|γ|2
)

(10.3.8)

The proof of this result is left for Problem 10.1, however, we note that this calculation

is an example of the more general result stated in Problem 1.5. We note also that (10.3.8)

is trivially satisfied in the lossless case that has βI = αI = εI = 0.

We conclude this section by showing the equality vg = ven in the lossless case and

assuming an arbitrary frequency dependence of the (real-valued) metal permittivity.

We assume that εf = −εR is a real negative function of frequency ω, εc is positive

constant such that εR > εc, and both media are non-magnetic, μ = μ0. Then, the
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quantities β,αc, γ are given by the real parts of Eqs. (10.2.7). Inserting these expressions

into PT, we find:

PT = 1

4
ǫ0|E0|2

c2
0(εR + εc)(εR − εc)2

ωε3/2
R ε3/2

c

(10.3.9)

For lossless non-magnetic media, the time-averaged energy density is given by

wen = 1

4
(ωǫ)′|E|2 + 1

4
μ0|H |2 , (ωǫ)′≡ d(ωǫ)

dω

or,

wen = 1

4
(ωǫ)′

(|Ex|2 + |Ez|2
)+ 1

4
μ0|Hy|2

Using Eqs. (10.2.2)-(10.2.4), we obtain,

wen = 1

4
ǫ0|E0|2

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[

εc

(

1+ β2

α2
c

)

+ k
2
0ε

2
c

α2
c

]

e−αcx , x ≥ 0

⎡

⎣(ωεf)
′
(

1+ β
2

γ2

)

+
k2

0ε
2
f

γ2

⎤

⎦eγx , x ≤ 0

Integrating over x, we find the energy density per unit z-length and unit y-length:

W′ =
∫∞

−∞
wendx =

= 1

4
ǫ0|E0|2

⎧

⎨

⎩

[

εc

(

1+ β2

α2
c

)

+ k
2
0ε

2
c

α2
c

]

1

2αc
+
⎡

⎣(ωεf)
′
(

1+ β
2

γ2

)

+
k2

0ε
2
f

γ2

⎤

⎦
1

2γ

⎫

⎬

⎭

The derivative term (ωεf)
′ can be replaced by

(ωεf)
′= −(ωεR)′= −εR −ωε′R , ε′R ≡

dεR
dω

By differentiating with respect to ω both sides of the equation,

β2 = ω2

c2
0

εRεc
εR − εc

we may relate the derivative ε′R to the derivative β′ = dβ/dω, as follows:

ε′R = 2

(
β

ω
− β′

)
ε2
Rω

2

β3c2
0

(10.3.10)

Substituting this into W′, we find after some algebra,

W′ = 1

4
ǫ0|E0|2

β′ c2
0(εR + εc)(εR − εc)2

ωε3/2
R ε3/2

c

(10.3.11)

This implies that the energy velocity will be equal to the group velocity:

ven = PT
W′ =

1

β′
= dω

dβ
= vg
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10.4 MDM Configuration – Lossless Case

An MDM waveguide is depicted in Fig. 10.4.1. To gain an understanding of the properties

of the propagating modes, we will assume initially that all three media are lossless, with

εf real positive, and εc, εs real negative, so that we can set εc = −|εc| and εs = −|εs|.
Without loss of generality, we will also assume that |εc| ≥ |εs|. Following [939], we

distinguish three cases:

1. |εs| ≤ εf ≤ |εc| ⇒ |pc| ≤ 1 ≤ |ps|
2. |εs| ≤ |εc| ≤ εf ⇒ 1 ≤ |pc| ≤ |ps|
3. εf ≤ |εs| ≤ |εc| ⇒ |pc| ≤ |ps| ≤ 1

(10.4.1)

where pc = εf/εc and ps = εf/εs. These cases define three regions labeled 1,2,3, on

the pc, ps parameter plane, as shown in Fig. 10.4.2. Regions 1′,2′,3′ are obtained by

interchanging the roles of εc and εs. For typical metals like silver and gold at optical

frequencies, the relevant region is 3. For example, the permittivity of silver at λ = 650

nm is εs = −15.48− 1.15j, while typically, εf is less than 5.

Fig. 10.4.1 MDM plasmonic waveguide.

Fig. 10.4.2 Possible regions in MDM lossless case.

The characteristic equations (10.1.7), (10.1.11) and (10.1.13) can be written in the forms,

tanh(γa+ψ) = −pcαc
γ

= |pc|αc
γ

tanh(γa−ψ) = −psαs
γ

= |ps|αs
γ

(10.4.2)

e4γa = (γ− pcαc)(γ− psαs)
(γ+ pcαc)(γ+ psαs)

= |pc|αc + γ
|pc|αc − γ

· |ps|αs + γ|ps|αs − γ
(10.4.3)
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tanh(2γa)= −γ(pcαc + psαs)
γ2 + pcαcpsαs

= γ(|pc|αc + |ps|αs)
γ2 + |pc|αc |ps|αs

(10.4.4)

We note also that Eqs. (10.1.9) can be written as,

γ =
√

β2 − k2
0εf

αc =
√

β2 − k2
0εc =

√

γ2 + k2
0(εf + |εc|)

αs =
√

β2 − k2
0εs =

√

γ2 + k2
0(εf + |εs|)

(10.4.5)

Because we are looking for plasmonic solutions that have real and positiveβ,γ,αc,αs,

it follows that β and γ must be restricted to the ranges β ≥ k0
√
εf and γ ≥ 0. Taking

the limit of (10.4.4) as γ → 0, and using the Taylor series approximation tanh(x)≃ x,
valid for small x, we obtain the cutoff thickness of the dielectric layer,

tanh(2γa)≃ 2γa = γ(|pc|αc + |ps|αs)
γ2 + |pc|αc |ps|αs

⇒ 2a = 1

|pc|αc
+ 1

|ps|αs

∣
∣
∣
∣
∣
γ=0

, or,

2k0acutoff = |εc|
εf
√

εf + |εc|
+ |εs|
εf
√

εf + |εs|
(10.4.6)

But the upper limit of β, and whether acutoff is an upper or a lower cutoff, will depend

on which region in Fig. 10.4.2 we are. A plot of β versus the film thickness a can be made

by solving Eq. (10.4.4) and varying β over its allowed range,

a = 1

2γ
atanh

(

−γ(pcαc + psαs)
γ2 + pcαcpsαs

)

(10.4.7)

Depending on the mode and region, amay be an increasing or a decreasing function

of β. This can be determined from the derivative of a with respect to β, given by,

da

dβ
= β

γ

da

dγ
= β|pc|(εf + |εc|)

2γ2αc(p
2
cα

2
c − γ2)

+ β|ps|(εf + |εs|)
2γ2αs(p

2
sα

2
s − γ2)

− βa
γ2

(10.4.8)

Region 1

Region-1 is defined by the conditions, |εs| ≤ εf ≤ |εc|, or, |pc| ≤ 1 ≤ |ps|. Because

|ps| ≥ 1 and αs > γ, it follows that |ps|αs/γ ≥ 1. But this means that the equation,

tanh(γa−ψ)= |ps|αs/γ ≥ 1, can be satisfied only ifψ has a jπ/2 imaginary part, that

is, ψ = χ+ jπ/2, with real χ, so that

tanh(γa−ψ)= tanh

(

γa− χ− jπ
2

)

= coth(γa− χ)= |ps|αs
γ

≥ 1

But then |pc|αc/γ is also forced to be greater than one because,

tanh(γa+ψ)= tanh

(

γa+ χ+ jπ
2

)

= coth(γa+ χ)= |pc|αc
γ
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Thus, with γ,χ real, we have | coth(γa + χ)| ≥ 1 so that |pc|αc/γ ≥ 1. The same

conclusion is reached by inspecting Eq. (10.4.3), which requires both denominator fac-

tors to have the same sign since e4γa is real and positive. The condition |pc|αc/γ ≥ 1

imposes an upper limit on β, indeed, we have γ2 ≤ p2
cα

2
c , or,

β2 − k2
0εf ≤ p2

c(β
2 + k2

0|εc|) ⇒ β2 ≤ k2
0

p2
c|εc| + εf
1− p2

c
= k2

0

|εc|εf
|εc| − εf

, or,

β ≤ βc,∞ ≡ k0

√

|εc|εf
|εc| − εf

= k0

√

εcεf

εc + εf
(10.4.9)

The limit βc,∞ is recognized as the wavenumber of a surface plasmon at the εf–εc
dielectric-metal interface obtained in the limit of infinite thickness for εf , in fact, the

interface condition γ = |pc|αc = −pcαc is realized exactly at β = βc,∞. Thus, the

allowed range of β is,

k0

√
εf ≤ β ≤ βc,∞ (region 1) (10.4.10)

Moreover, for this range of β, the film thickness a is an increasing function of β,

so that its range will be acutoff ≤ a < ∞, therefore, acutoff will be a lower cutoff. Next,

we show that the corresponding field solution will be an antisymmetric-like TM1 mode.

The characteristic equations,

coth(γa+ χ)= |pc|αc
γ

, coth(γa− χ)= |ps|αs
γ

can be inverted,

tanh(γa+ χ) = γ

|pc|αc
≤ 1

tanh(γa− χ) = γ

|ps|αs
≤ 1

⇒
γa+ χ = atanh

(

γ

|pc|αc

)

γa− χ = atanh

(

γ

|ps|αs

)

and separated,

γa = 1

2
atanh

(

γ

|pc|αc

)

+ 1

2
atanh

(

γ

|ps|αs

)

ψ = χ+ jπ
2
= 1

2
atanh

(

γ

|pc|αc

)

− 1

2
atanh

(

γ

|ps|αs

)

+ jπ
2

(10.4.11)

These have exactly the form of Eqs. (10.1.16) with m = 1, so that we have a TM1

mode. The magnetic field is given by Eq. (10.1.6),

Hy(x)=

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

H0 cosh(γx+ψ) , |x| ≤ a

H0 cosh(γa+ψ)e−αc(x−a) , x ≥ a

H0 cosh(γa−ψ)eαs(x+a) , x ≤ −a

(10.4.12)

428 10. Surface Waveguides

where H0 = jωǫ0E0εf/γ. Using the identity cosh(x + jπ/2)= j sinh(x), we see that

within the dielectric film,Hy resembles an antisymmetric solution (provided χ is small),

Hy(z)= H0 cosh(γx+ψ)= H0 cosh(γx+ χ+ jπ/2)= jH0 sinh(γx+ χ)

Given a film thickness a, the characteristic equation (10.4.4) can be solved by writing

it in the following form,

γ = −γ
2 + pcαcpsαs
pcαc + psαs

tanh(2γa)

and replacing it by the iteration,

γn+1 = −γ
2
n + pcαcnpsαsn
pcαcn + psαsn

tanh(2γna) , n = 0,1,2, . . . (10.4.13)

and initialized at a value of β that lies somewhere in the interval k0
√
εf < β ≤ βc,∞ (the

value β = k0
√
εf should be not be used to initialize because it corresponds to γ = 0 and

the iteration will remain stuck at γ = 0.)

The iteration can be stopped when a desired level of accuracy is reached, that is, when

|γn+1 − γn| ≤ tol, for some desired error tolerance, such as tol = 10−12. Alternative

iterative methods for this type of problem can be found in [959].

Example 10.4.1: We choose a region-1 example from Ref. [939] to verify our approach. Consider

the permittivity values:

εc = −2.22 = −4, εf = 1.52 = 2.25, εs = −1.32 = −1.69

and the two normalized film thickness k0a = 0.6 and k0a = 0.8. The following MATLAB

code illustrates the iteration (10.4.13), randomly initialized within the interval k0
√
εf <

β ≤ βc,∞, and demonstrates the calculation and plotting of the magnetic field profile.

ec = -2^2; ef = 1.5^2; es = -1.3^2; % region-1 has |ec|>ef>|es|

k0 = 1; % use normalized units k0=1

a = 0.6; % half-thickness of dielectric film

% a = 0.8; % uncomment for the case k0*a = 0.8

pc = ef/ec; ps = ef/es; % |pc|=0.5625, |ps|=1.3314, |pc|<1<|ps|

b0 = sqrt(ef); % b0 = 1.5, lower limit of beta

bcinf = sqrt(ef*ec/(ef+ec)); % bcinf = 2.2678, upper limit of beta

rng(101); % initialize random number generator

binit = (bcinf-b0)*rand(1) + b0; % binit = 1.8965, random initial value

ac = sqrt(binit^2 - ec); % initialize ac,as,ga

as = sqrt(binit^2 - es);

ga = sqrt(binit^2 - ef);

tol = 1e-12; n = 0; % tolerance and starting iteration index

while 1 % forever loop

ga_new = -(ga^2 + pc*ac*ps*as)/(pc*ac+ps*as)*tanh(2*ga*a*k0);

if abs(ga_new-ga) < tol, break; end
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ga = ga_new;

be = sqrt(ga^2 + ef);

as = sqrt(be^2 - es);

ac = sqrt(be^2 - ec);

n = n+1;

end

% upon exit from loop, print the number of iterations and the effective index beta

n % n = 203 when k0*a = 0.6, and n = 113 when k0*a = 0.8

be % be = 1.9394 when k0*a = 0.6, and be = 2.2127 when k0*a = 0.8

psi = atanh(-ga/pc/ac)/2 - atanh(-ga/ps/as)/2 + j*pi/2; % psi = 0.3193 + j*pi/2

% computational error of characteristic equation

E = abs(tanh(2*k0*a*ga) + ga*(pc*ac+ps*as)/(ga^2+pc*ac*ps*as)) % 6.95e-13

% be = pwga(2*pi,ef,ec,es,a,binit,1,tol); % alternative calculation using PWGA

% magnetic field profile

x = linspace(-3,3,601)*a; % x in units of a

Hy = j*cosh(ga*k0*a - psi).*exp(k0*as*(x+a)).*(x<-a) + ...

j*cosh(ga*k0*a + psi).*exp(-k0*ac*(x-a)).*(x>a) + ...

j*cosh(k0*ga*x + psi).*(abs(x)<=a); % up to an overall constant

fill([-3, -1, -1, -3], [-4 -4, 1, 1], [0.9 0.9 0.9]); hold on

fill([1, 3, 3, 1], [-4 -4, 1, 1], [0.9 0.9 0.9]);

plot(x/a,real(Hy), ’linewidth’,2);

axis([-3,3,-4,1]);

xlabel(’{\itx/a}’); ylabel(’{\itH_y}({\itx})’);

title([’magnetic field profile, {\itk}_0{\ita} = ’,num2str(a)]);

line([-3,3],[0,0],’linestyle’,’--’,’linewidth’,0.5);

line([0,0],[-4,1],’linestyle’,’--’,’linewidth’,0.5);

text(-2.1,-2,’\epsilon_{s}’);

text(-0.6,-2,’\epsilon_{f}’);

text(1.9,-2, ’\epsilon_{c}’);

where the quantity, E, measures the computational error of the characteristic equation

(10.4.4), and the final n is the number of iterations to converge. The computed values are

shown in the comments of the above code segment and printed below.

k0a β/k0 γ/k0 αc/k0 αs/k0 ψ n E

0.6 1.9394 1.2294 2.7859 2.3348 0.3193+ jπ/2 203 6.95×10−13

0.8 2.2127 1.6266 2.9826 2.5663 0.7834+ jπ/2 113 5.64×10−13

The quantities β,γ,αc,αs are in units of k0. The magnetic field is shown in Fig. 10.4.3

for the cases k0a = 0.6 and k0a = 0.8. Because H0 = jωǫ0E0εf/γ, we have chosen the

(completely arbitrary) constant H0 = j for the magnetic field. Note that as the thickness

increases, the magnetic field tends to be more concentrated on the εf–εc dielectric-metal

interface, because as we saw, the solution tends to the single-interface solution as a →
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Fig. 10.4.3 Magnetic field profiles, Hy(x) versus x for antisymmetric-like TM1 mode.

∞. The εf–εs interface cannot support a surface plasmon because it does not meet the

necessary condition |εs| > εf , but the εf–εc interface does because |εc| > εf .
Fig. 10.4.4 shows a plot of the effective index β/k0 versus the normalized thickness k0a.

The computed values of β for the two cases k0 = 0.6 and k0a = 0.8 are shown on the

graph, as is the lower cutoff thickness k0acutoff = 0.5448 computed from Eq. (10.4.6). It is

evident from this graph that the thickness a is an increasing function of β.
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Fig. 10.4.4 Effective index, β/k0, versus normalized thickness, k0a. Region 1.

The following MATLAB code was used to produce the graph.

ac = sqrt(ef-ec);

as = sqrt(ef-es);

k0a_min = -1/2*(1/pc/ac + 1/ps/as) % 0.5448 - lower cutoff

be = linspace(b0, 0.9985*bcinf, 401); % plot almost up to bcinf

ga = sqrt(be.^2 - ef);
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ac = sqrt(be.^2 - ec);

as = sqrt(be.^2 - es);

% solve tanh(2*k0*a*ga) = -ga.*(pc*ac+ps*as)./(ga.^2 + pc*ps*ac.*as) for k0*a

k0a = atanh(-ga.*(pc*ac+ps*as)./(ga.^2 + pc*ps*ac.*as))/2./ga;

plot(k0a,be); hold on % be vs. k0a

plot(k0*a1,be1,’.’); % k0*a1 = 0.6, be1 = 1.9394, found above

plot(k0*a2,be2,’.’); % k0*a2 = 0.8, be2 = 2.2127, found above

plot(k0a_min,b0,’o’); % a_cutoff corresponds to b0

plot(k0a(end),bcinf,’s’); % add bcinf to the last value of k0a

axis([0,1.2,1.5,3]);

xlabel(’normalized width, {\itk}_0{\ita}’);

ylabel(’effective index, \beta / {\itk}_0’);

Also, shown is the asymptotic value βc,∞, which was added to the last value of the k0a

array as a reference, although it is actually realized at k0a = ∞. ⊓⊔

Region 2

Region-2 is defined by the conditions, |εs| ≤ |εc| ≤ εf , or, 1 ≤ |pc| ≤ |ps|. Therefore,

both |pc|αc/γ ≥ 1 and |ps|αs/γ ≥ 1 are automatically satisfied, and hence, there is no

restriction on β other than β ≥ k0
√
εf . Thus its range is,

k0

√
εf ≤ β <∞ (region 2) (10.4.14)

Moreover, for this range of β, the thickness a is a decreasing function of β, so that it

varies over, 0 ≤ a ≤ acutoff, and therefore, acutoff is an upper cutoff. The characteristic

equations and magnetic field, Eqs. (10.4.11) and (10.4.12), remain the same as in the

region-1 case, so that again, we have an antisymmetric-like TM1 mode.

As a → 0, we may derive a simplified approximation of the characteristic equation.

Since β is large in that limit, it follows that γ,αc,αs are all approximately equal to β,

and we obtain, after canceling some common factors of β in the right-hand side,

e4γa = |pc|αc + γ
|pc|αc − γ

· |ps|αs + γ|ps|αs − γ
⇒ e4βa = |pc| + 1

|pc| − 1
· |ps| + 1

|ps| − 1
, or,

β ≈ 1

4a
ln

[

|pc| + 1

|pc| − 1
· |ps| + 1

|ps| − 1

]

, a→ 0 (10.4.15)

For region 2, the characteristic equation (10.4.4) can be solved for any given value of

a < acutoff by rearranging it in the form,

γ =
√

−γ(pcαc + psαs)coth(2γa)−pcαcpsαs

and replacing it by the iteration, for n = 0,1,2, . . . , initialized just above β = k0
√
εf ,

γn+1 =
√

−γn(pcαcn + psαsn)coth(2γna)−pcαcnpsαsn (10.4.16)
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Example 10.4.2: Consider the following permittivity values from Ref. [939],

εc = −1.42 = −1.96, εf = 1.52 = 2.25, εs = −1.32 = −1.69

and the two normalized film thickness k0a = 0.3 and k0a = 0.1. The cutoff thickness

is k0acutoff = 0.4015, calculated from Eq. (10.4.6). Fig. 10.4.5 shows the magnetic field

profiles. Fig. 10.4.6 plots the effective index β/k0 versus film thickness a over the range

0 ≤ a ≤ acutoff, and demonstrates that β is a decreasing function of a. Superimposed on

that graph is the approximation of Eq. (10.4.15).
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Fig. 10.4.5 Magnetic field profiles, Hy(x) versus x for region 2.

The following MATLAB code illustrates the iteration (10.4.16). The code for generating

Fig. 10.4.5 is not given—it is the same as that in Example 10.4.1.

ef = 1.5^2; ec = -1.4^2; es = -1.3^2;

k0 = 1;

a = 0.3;

% a = 0.1;

pc = ef/ec; ps = ef/es;

b0 = 1.01*sqrt(ef); % could choose any b0 above b_min, e.g., b0 = 10*sqrt(ef)

ga = sqrt(b0^2 - ef); % initialize ga, ac, as

as = sqrt(b0^2 - es);

ac = sqrt(b0^2 - ec);

tol = 1e-12; n = 1;

while 1

ga_new = sqrt(-pc*ac.*as*ps - ga.*(pc*ac+ps*as).*coth(2*ga*a*k0));

if abs(ga_new-ga) < tol, break; end

ga = ga_new;

be = sqrt(ga^2 + ef);

as = sqrt(be^2 - es);

ac = sqrt(be^2 - ec);

n=n+1;

end
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psi = atanh(-ga*(pc*ac-ps*as)/(ga^2 - pc*ac*ps*as))/2 + j*pi/2;

% computational error of characteristic equation

E = abs(tanh(2*k0*a*ga) + ga*(pc*ac+ps*as)/(ga^2+pc*ac*ps*as));

% be = pwga(2*pi,ef,ec,es,a,b0,1,tol); % alternative calculation using PWGA

where the quantity, E, measures the computational error of the characteristic equation,

and the final n is the number of iterations to converge. The calculated values for the two

thicknesses are as follows,

k0a β/k0 γ/k0 αc/k0 αs/k0 ψ n E

0.3 2.8886 2.4686 3.2100 3.1677 0.0700+ jπ/2 99 1.78×10−13

0.1 11.2518 11.1513 11.3385 11.3266 0.1658+ jπ/2 205 6.01×10−14

The following MATLAB code generates Fig. 10.4.6.

be0 = sqrt(ef);

as = sqrt(ef-es);

ac = sqrt(ef-ec);

k0a_c = -1/2*(1/pc/ac + 1/ps/as); % upper cutoff

be = linspace(be0, 30, 1001);

ga = sqrt(be.^2 - ef);

ac = sqrt(be.^2 - ec);

as = sqrt(be.^2 - es);

k0a = atanh(-ga.*(pc*ac+ps*as)./(ga.^2 + pc*ps*ac.*as))/2./ga;

bapp = log((1-pc)/(1+pc)*(1-ps)/(1+ps))/4./k0a; % approximate solution

figure; plot(k0a,be,’-’, k0a,bapp,’--’) % graph annotations are omitted

Even though both surface plasmon conditions |εc| > εf and |εs| > εf are violated in

region 2, and therefore, separate surface plasmons cannot exist at those interfaces, yet,

the solution for finite thickness still exhibits peaks at the two interfaces. ⊓⊔

Region 3

In region-3, we have the conditions, εf ≤ |εs| ≤ |εc|, or, |pc| ≤ |ps| ≤ 1. We will see that

in this region, there are two types of plasmonic modes, a symmetric-like TM0 mode that

has no cutoffs, and an antisymmetric-like TM1 mode with a lower cutoff. In addition,

there are TE and TM oscillatory modes with certain lower cutoffs. In particular, the TM1

mode is special in the sense that its oscillatory version also has an upper cutoff beyond

which the mode becomes plasmonic.

In the limit of infinite thickness, both the εf–εc and εf–εs interfaces can support

surface plasmons with corresponding wavenumbers,

βc,∞ = k0

√

εcεf

εc + εf
, βs,∞ = k0

√

εsεf

εs + εf
(10.4.17)
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Fig. 10.4.6 Effective index, β/k0, versus normalized thickness, k0a. Region 2.

Because of the assumption, εf ≤ |εs| ≤ |εc|, it follows that k0
√
εf < βc,∞ ≤ βs,∞.

We note also the relationships,

p2
cα

2
c − γ2 = (1− p2

c)(β
2
c,∞ − β2)

p2
sα

2
s − γ2 = (1− p2

s)(β
2
s,∞ − β2)

(10.4.18)

Because |pc| ≤ |ps| ≤ 1, it is possible for the ratios |pc|αc/γ and |ps|αs/γ to

be either both greater than one, or both less than one, with the former case leading

to the TM1 plasmonic mode, and the latter, to the TM0 mode. That both ratios must

be simultaneously greater or less than one follows from Eq. (10.4.3), which requires

that the denominator be a positive quantity. The corresponding ranges of β are easily

determined from Eq. (10.4.18). If |pc|αc ≥ γ, then, β ≤ βc,∞ ≤ βs,∞, and if, |ps|αs ≤ γ,

then, β ≥ βs,∞ ≥ βc,∞. Thus, the possible β ranges for the two plasmonic modes are,

|pc,s|αc,s ≤ γ
|pc,s|αc,s ≥ γ

⇒
βs,∞ ≤ β <∞ (TM0 plasmonic mode)

k0
√
εf ≤ β ≤ βc,∞ (TM1 plasmonic mode)

(10.4.19)

For the TM0 mode, the film width a is a decreasing function of β, and varies over

0 ≤ a ≤ ∞, where a = ∞ at β = βs,∞. For the TM1 mode, the width a is an increasing

function of β varying over the range, acutoff ≤ a ≤ ∞, with acutoff realized at β = k0
√
εf

and given by Eq. (10.4.6), with a = ∞ realized at β = βc,∞.

For the TM1 case, the characteristic equations are the same as in Eq. (10.4.11), while

those for the TM0 mode can be obtained by inverting,

tanh(γa+ψ)= |pc|αc
γ

≤ 1 , tanh(γa−ψ)= |ps|αs
γ

≤ 1



10.4. MDM Configuration – Lossless Case 435

These imply that ψ must be real, thus, inverting and separating, we have,

γa = 1

2
atanh

(

−pcαc
γ

)

+ 1

2
atanh

(

−psαs
γ

)

ψ = 1

2
atanh

(

−pcαc
γ

)

− 1

2
atanh

(

−psαs
γ

) (10.4.20)

which are recognized to have the form of Eqs. (10.1.15) withm = 0, that is, a TM0 mode.

The characteristic equation can be solved using the iteration (10.4.13) for the TM1 mode,

and (10.4.16), for the TM0 mode.

Example 10.4.3: Fig. 10.4.7 shows the dependence of β on the width a for the two modes, for

the following permittivity and width parameters from [939],

εf = 1.52 = 2.25 , εs = −1.82 = −3.24 , εc = −22 = −4 , k0a = 0.8
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Fig. 10.4.7 Effective index, β/k0, versus normalized thickness, k0a.

The lower cutoff, k0acutoff = 0.6628, was computed from Eq. (10.4.6). Fig. 10.4.8 shows

the magnetic field profiles of the two modes, with the TM0 one being symmetric-like,and

the TM1, antisymmetric-like. The computed values of β,γ,αc,αs,ψ are in the two cases,

mode β/k0 γ/k0 αc/k0 αs/k0 ψ n E

TM0 2.7612 2.3182 3.4094 3.2961 −0.6751 427 4.68×10−13

TM1 2.0301 1.3680 2.8498 2.7132 0.1741+ jπ/2 339 6.78×10−13

Also shown are, n,E, the number of iterations to converge with a tolerance of tol = 10−12,

and the computational error of the characteristic equation defined as

E =
∣
∣
∣
∣
∣

tanh(2γa)+γ(pcαc + psαs)
γ2 + pcαcpsαs

∣
∣
∣
∣
∣

The MATLAB code for this example is given below, where one should comment/uncomment

the appropriate lines to generate the TM0 and TM1 solutions.
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ef = 1.5^2; ec = -2^2; es = -1.8^2;

k0 = 1; a = 0.80;

pc = ef/ec; ps = ef/es;

ac = sqrt(ef-ec); as = sqrt(ef-es);

acutoff = -(1/ac/pc + 1/as/ps)/2; % units of k0=1

binit = 1.1*sqrt(ef);

ga = sqrt(binit^2-ef); as = sqrt(binit^2-es); ac = sqrt(binit^2-ec);

tol = 1e-12; n = 1;

while 1

ga_new = sqrt(-pc*ac*as*ps - ga*(pc*ac+ps*as)*coth(2*ga*a*k0)); % TM0

% ga_new = -(ga^2 + pc*ac*as*ps)/(pc*ac+ps*as) * tanh(2*ga*a*k0); % TM1

if abs(ga_new-ga) < tol, break; end

ga = ga_new;

be = sqrt(ga^2 + ef);

as = sqrt(be^2 - es);

ac = sqrt(be^2 - ec);

n=n+1;

end

E = abs(tanh(2*k0*a*ga) + ga*(pc*ac+ps*as)/(ga^2+pc*ac*ps*as));

m=0; % set m=0 for TM0, m=1 for TM1

psi = atanh(-pc*ac/ga)/2 - atanh(-ps*as/ga)/2 + j*m*pi/2;

% be = pwga(2*pi,ef,ec,es,a,binit,0,tol); % alternative calculation using PWGA

% be = pwga(2*pi,ef,ec,es,a,binit,1,tol);

And, for the magnetic field profiles, using the calculated values of γ,αc,αs,ψ from above,

x = linspace(-3,3,601)*a;

Hy = j*cosh(ga*k0*a - psi).*exp(k0*as*(x+a)).*(x<-a) + ...

j*cosh(ga*k0*a + psi).*exp(-k0*ac*(x-a)).*(x>a) + ...

j*cosh(k0*ga*x + psi).*(abs(x)<=a);

plot(x/a, imag(Hy)); % TM0

% plot(x/a, real(Hy)); % TM1

The H-field constant was arbitrarily set to H0 = j. But then, in the TM0 case because ψ is

real,Hy is effectively imaginary, whereas in the TM1 case, becauseψ has a jπ/2 imaginary

part, Hy becomes real. This explains the above plotting choices for Hy.

The calculation and plotting of the β–a dispersion curves was done by the MATLAB code,

be0 = sqrt(ef);

bcinf = sqrt(ef*ec/(ef+ec));

bsinf = sqrt(ef*es/(ef+es));

be = linspace(1.001*bsinf, 40, 2001); % TM0 mode

ga = sqrt(be.^2 - ef); ac = sqrt(be.^2 - ec); as = sqrt(be.^2 - es);

k0a = atanh(-ga.*(pc*ac+ps*as)./(ga.^2 + pc*ps*ac.*as))/2./ga;



10.5. Oscillatory Modes 437

−3 −2 −1 0 1 2 3
−2

0

2

4

6

8

x/a

m
a

g
n

e
ti

c 
fi

e
ld

, 
 H

y
(x

)

TM
0
 plasmonic mode,  k

0
a = 0.8

ε
s

ε
f

ε
c

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

x/a

m
a

g
n

e
ti

c 
fi

e
ld

, 
 H

y
(x

)

TM
1
 plasmonic mode,  k

0
a = 0.8

ε
s

ε
f

ε
c

Fig. 10.4.8 Magnetic field profiles of TM0 and TM1 modes for k0a = 0.80. Region 3.

figure; plot(k0a,be); hold on

be = linspace(1.00001*be0, 0.995*bcinf, 2001); % TM1 mode

ga = sqrt(be.^2 - ef); ac = sqrt(be.^2 - ec); as = sqrt(be.^2 - es);

k0a = atanh(-ga.*(pc*ac+ps*as)./(ga.^2 + pc*ps*ac.*as))/2./ga;

plot(k0a,be, ’--’); axis([0,1,0,4.5]);

For the TM0 mode, a range of values over βs,∞ ≤ β < ∞ was used to evaluate the corre-

sponding thickness a, and a range over k0
√
εf ≤ β ≤ βc,∞ was used for the TM1 mode. ⊓⊔

10.5 Oscillatory Modes

In addition to the plasmonic modes, there are also oscillatory TE and TM modes char-

acterized by an imaginary γ = jkf , with kf =
√

k2
0εf − β2. Because kf is real, the wave-

number β is restricted to the values β ≤ k0
√
εf .

In the lossless asymmetric waveguide case of Sec. 9.12, the positivity of the decay

parameters αc,αs, imposed also a lower limit on β, see Eq. (9.12.3). However here,

αc,s =
√

β2 − k2
0εc,s =

√

β2 + k2
0|εc,s|, and αc,αs remain positive even at β = 0. Thus,

the range of βs for all oscillatory modes is

0 ≤ β ≤ k0

√
εf (oscillatory modes) (10.5.1)

The TEm modes are obtained by setting pc = ps = 1 in the characteristic equations

(10.1.19), for m = 0,1,2, . . . ,

kfa = 1

2
atan

(

αc
kf

)

+ 1

2
atan

(

αs
kf

)

+ 1

2
mπ

φ = 1

2
atan

(

αc
kf

)

− 1

2
atan

(

αs
kf

)

+ 1

2
mπ

(TEm) (10.5.2)
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The TMm modes are indexed by m = 1,2,3, . . . , and Eqs. (10.1.20) are more appro-

priate because pc, ps are negative,

kfa = 1

2
atan

(

− kf

pcαc

)

+ 1

2
atan

(

− kf

psαs

)

+ 1

2
(m− 1)π

φ = 1

2
atan

(

− kf

pcαc

)

− 1

2
atan

(

− kf

psαs

)

+ 1

2
mπ

(TMm) (10.5.3)

All modes have a lower cutoff found by setting β = 0, kf = k0
√
εf , αc,s = k0

√−εc,s,
in the characteristic equations (10.5.2) and (10.5.3), resulting basically in the same ex-

pression,

2k0amin = 1√
εf

[

atan

(√

−εc
εf

)

+ atan

(√

−εs
εf

)

+mπ
]

(TEm)

2k0amin = 1√
εf

[

atan

(√

−εc
εf

)

+ atan

(√

−εs
εf

)

+ (m− 1)π

]

(TMm)

(10.5.4)

For all, but the TM1 oscillatory mode, there is no upper cutoff thickness, that is, the

upper limit β = k0
√
εf is reached at infinite width, a → ∞. Indeed, using the property

that atan(x)→ ±π/2 − 1/x as x → ±∞, we find from (10.1.19) that as β → k0
√
εf and

a→∞, then kf → 0 and αc,s → k0
√
εf − εc,s, and

kfa→ ±π
4
± π

4
− 1

2
kf

[

1

k0pc
√
εf − εc

+ 1

k0ps
√
εf − εs

]

+ mπ
2
, or,

kf ≈ (m± 1)π

2(a− ac)
, ac = − 1

2k0

[

1

pc
√
εf − εc

+ 1

ps
√
εf − εs

]

(10.5.5)

where ’+’ corresponds to TEm and ’−’ to TMm. This leads to the approximation for β,

β =
√

k2
0εf − k2

f ≈ k0

√
εf −

k2
f

2k0
√
εf
= k0

√
εf − (m± 1)2π2

8(a− ac)2k0
√
εf
, a→∞ (10.5.6)

The quantity ac is recognized as acutoff of Eq. (10.4.6) in the TM case, but in the TE

case, ac is negative and has no special meaning. For large a, one could simply replace

(a− ac)2 by a2 in (10.5.6).

The TM1 oscillatory case is special because it also has an upper cutoff, which is the

same as the lower cutoff of the TM1 plasmonic mode, that is, acutoff of Eq. (10.4.6). In-

deed, whenm = 1, a common factor of kf can be canceled from both sides of Eq. (10.5.3)

in the limit kf → 0, leading to the expression (10.4.6). Thus, the TM1 oscillatory mode

exists only for thicknesses amin ≤ a ≤ acutoff and for 0 ≤ β ≤ k0
√
εf , and then it

becomes plasmonic for acutoff ≤ a <∞ and k0
√
εf ≤ β ≤ βc,∞.

Example 10.5.1: Fig. 10.5.1 shows the dependence of β on the width a for the oscillatory modes

TM1, TM2, TM3, TE0, TE1, TE2 for the same permittivity values as in Example 10.5.1.

The graphs were generated by calculating the values of a from Eqs. (10.5.2) and (10.5.3)

over the range of values 0 ≤ β ≤ k0
√
εf . For example, the MATLAB code for calculating

the TM1, TE0, TM2, and TE1 curves was,



10.5. Oscillatory Modes 439

ef = 1.5^2; ec = -2^2; es = -1.8^2;

pc = ef/ec; ps = ef/es;

be = linspace(0, 0.995*sqrt(ef), 201);

kf = sqrt(ef - be.^2); ac = sqrt(be.^2 - ec); as = sqrt(be.^2 - es);

a_tm1 = (atan(-kf./ac/pc) + atan(-kf./as/ps))./kf/2;

a_tm2 = (atan(-kf./ac/pc) + atan(-kf./as/ps) + pi)./kf/2;

a_te0 = (atan(ac./kf) + atan(as./kf))./kf/2;

a_te1 = (atan(ac./kf) + atan(as./kf) + pi)./kf/2;

plot(a_tm1, be, ’-’, a_te0, be, ’--’, a_tm2, be, ’-’, a_te1, be, ’--’); xlim([0,5]);
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Fig. 10.5.1 Oscillatory TE and TM modes, and the approximation of Eq. (10.5.6).

The lower cutoffs and the upper cutoff of the TM1 mode were,

k0acutoff = 0.6628 , upper cutoff, TM1 mode

k0amin = 0.6011 , lower cutoff, TM1, TE0 modes

k0amin = 1.6483 , lower cutoff, TM2, TE1 modes

k0amin = 2.6955 , lower cutoff, TM3, TE2 modes

The graph on the right compares the large-a approximation of Eq. (10.5.6) with the exact

solutions. The approximation is applicable to all but the TM1 mode. ⊓⊔

Example 10.5.2: In this example we look at the TM0 plasmonic, and TM1 oscillatory and plas-

monic modes. The permittivity parameters are as in Example 10.4.3. In that example, we

determined the field profiles for k0a = 0.8, which lies in the plasmonic range for TM1 since

k0a > k0acutoff. The allowed thickness range of the TM1 oscillatory mode was found in the

previous example to be rather narrow, k0[amin, acutoff]= [0.6011,0.6628]. Here, we de-

termine β and the field profiles for an intermediate value of a, such as, k0a = 0.63, which

lies in the oscillatory range for TM1, while TM0 remains plasmonic. Fig. 10.5.2 displays the

β–a relationships.

We observe how the oscillatory TM1 mode switches to its plasmonic version at a = acutoff.

The TM0 effective index andψ parameter were β/k0 = 2.8685 andψ = −0.4292, and were
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Fig. 10.5.2 Effective index of oscillatory and plasmonic modes.

computed by the same code as that in Example 10.4.3 with k0a = 0.63. The oscillatory

TM1 index and phase factor were β/k0 = 1.1434 and φ = 1.6021, and were computed by

the following MATLAB code, including its magnetic field profile,

ef = 1.5^2; ec = -2^2; es = -1.8^2; % a = 0.63

k0 = 1; a = 0.63;

pc = ef/ec; ps = ef/es;

binit = 0.5*sqrt(ef);

kf = sqrt(ef-binit^2); as = sqrt(binit^2-es); ac = sqrt(binit^2-ec);

tol = 1e-12; n = 1;

while 1

kf_new = (atan(-kf/ac/pc)+atan(-kf/as/ps))/2/a;

if abs(kf_new-kf) < tol, break; end

kf = kf_new;

be = sqrt(ef - kf^2);

as = sqrt(be^2 - es);

ac = sqrt(be^2 - ec);

n=n+1;

end

E = abs(tan(2*k0*a*kf) - kf*(pc*ac+ps*as)/(kf^2 - pc*ac*ps*as))

phi = (atan(pc*ac/kf) - atan(ps*as/kf) + pi)/2

% be = pwga(2*pi,ef,ec,es,a,binit,0,tol); % alternative calculation using PWGA

% be = pwga(2*pi,ef,ec,es,a,binit,1,tol);

x = linspace(-3,3,601)*a;

Hy = cos(kf*k0*a - phi).*exp(k0*as*(x+a)).*(x<-a) + ...

cos(kf*k0*a + phi).*exp(-k0*ac*(x-a)).*(x>a) + ...

cos(kf*k0*x + phi).*(abs(x)<=a);

plot(x/a, real(Hy));
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Fig. 10.5.3 Magnetic field profiles of TM0 and oscillatory TM1 modes for k0a = 0.63.

The iterative method was the same as that discussed in Sec. 9.12 for the asymmetric di-

electric waveguides. The number of iterations to converge and the computational error of

the characteristic equation (10.1.17) were n = 267 and E = 1.01×10−11.

The MATLAB code for calculating the β–a dispersion curves for the TM1 oscillatory and

plasmonic portions is the same as in Examples 10.4.3 and 10.5.1.

Figures 10.5.4, 10.5.5, and 10.5.6 show the dispersion curves and magnetic field profiles for

the cases k0a = 0.8 and k0a = 0.63 for a symmetric MDM configuration with permittivities

εf = 1.52 and εs = εc = −2.22. The magnetic field profiles are now either completely

symmetric or antisymmetric. The dispersion curves have the same asymptotic limit for

large a, that is, βc,∞ = βs,∞ = 2.2678k0. The calculated (normalized by k0) propagation

wavenumbers were β = 2.4586 and β = 1.8197 for the TM0 and TM1 modes at k0a = 0.80,

and β = 2.5951 and β = 0.6448 for the case k0a = 0.63. ⊓⊔
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Fig. 10.5.4 Effective index of oscillatory and plasmonic modes. Symmetric guide.
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Fig. 10.5.5 Magnetic field profiles of TM0 and TM1 modes for k0a = 0.80. Symmetric guide.
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Fig. 10.5.6 Magnetic field profiles of TM0 and TM1 modes for k0a = 0.63. Symmetric guide.

Complex Modes

It should be noted that complex-valued solutions for β (with negative imaginary part)

also exist (and there is an infinity of them), even though we have assumed lossless media

[948]. For example, for the symmetric configuration of Example 10.5.2 at k0a = 0.8, the

following are all solutions of the TM0 characteristic equation, γ tanh(γa)+pcαc = 0,

q β/k0 γ/k0 αc/k0 E

0 2.4586 1.9480 3.1694 0.022×10−14

1 0.6391− 3.5638j 0.5902− 3.8589j 0.7645− 2.9794j 0.076×10−14

2 0.7585− 7.7008j 0.7446− 7.8442j 0.7851− 7.4393j 0.562×10−14

3 0.7790− 11.6825j 0.7727− 11.7780j 0.7906− 11.5108j 0.289×10−14

4 0.7862− 15.6351j 0.7827− 15.7067j 0.7927− 15.5069j 6.671×10−14

5 0.7896− 19.5770j 0.7873− 19.6343j 0.7938− 19.4747j 1.212×10−14
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where E = |γ tanh(γa)+pcαc| is the computational error. They were computed with

the help of the MATLAB function, pwg, discussed in the next section. The MATLAB code

was as follows,

la0 = 2*pi; k0 = 1; ef = 2.25; ec = -4; es = ec; a = 0.8; % units of k0=1

pc = ef/ec; ps = ef/es;

bcinf = sqrt(ec*ef/(ec+ef));

M = 5; q = (0:M)’;

ga0 = 1/k0/a*atanh(-pc) - j*pi*q/a/k0; % justified in next section

be0 = sqrt(ga0.^2 + ef); % vector of initial search points

be = pwg(la0,ef,ec,a,be0); % uses built-in FSOLVE to find the solutions

ga = sqrt(be.^2-ef);

ac = sqrt(be.^2 -ec);

E = abs(ga.*tanh(ga*a) + pc*ac);

The first one is the real-valued solution of Example 10.5.2. All of the complex ones

do have positive real parts for γ,αc. However, the imaginary parts of β, albeit negative,

are very large and therefore, these modes are highly damped and cannot be considered

as propagating. In fact, for the lossless case, such modes carry no net power in the

propagation direction [948]—see Problem 10.4. For such modes, the power flowing

forward in the dielectric film cancels the power flowing backward in the metal sides.

Indeed, using the MATLAB function, pwgpower, or the results of Problem 10.4, the net

power and the powers in each medium are as follows for the above example,

q P Pf Pc Ps

0 2.8401 4.0337 −0.59682 −0.59682

1 0 0.2586 −0.12928 −0.12928

2 0 0.3378 −0.16891 −0.16891

3 0 0.3531 −0.17654 −0.17654

4 0 0.3585 −0.17927 −0.17927

5 0 0.3611 −0.18055 −0.18055

where P = Pf + Pc + Ps. The units of P are arbitrary. The MATLAB code was,

[P,Pf,Pc,Ps] = pwgpower(k0*a,ef,ec,es,be,0);

where the input be is the vector of β/k0 calculated above. We discuss such anomalous

modes further in Sec. 10.9.

10.6 MDM Configuration – Lossy Case

In the previous section, we ignored losses in the metal cladding and substrate of an

MDM guide in order to simplify the problem and gain some insight into the possible

types of propagating plasmonic modes—their essential feature being the subwavelength

confinement of the fields in the transverse direction.

Here, we assume that the metals are lossy with permittivities that have both negative

real and imaginary parts, εc = εcR − jεcI, where εcR < 0 and εcI ≥ 0, and similarly,
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εs = εsR− jεsI, where εsR < 0 and εsI ≥ 0. The dielectric film will still be assumed to be

lossless, εf > 0. Moreover, as is typically the case in practice, we will assume that the

real parts satisfy the region-3 conditions, εf ≤ |εsR| ≤ |εcR|, which imply the existence

of single-interface surface plasmons at both interfaces in the case of infinite thickness.

The propagation parameters, β,γ,αc,αs, become complex-valued, and in particular,

we require that αc,αs have positive real parts, and β, negative imaginary part, β =
βR − jβI, with βI ≥ 0, so that the wave attenuates as it propagates along the positive

z-direction, that is, e−jβz = e−jβRz e−βIz, while it remains confined in the transverse

direction, e.g., e−αcx = e−αcRxe−jαcIx, for x ≥ a. The field expressions and characteristic

equations (10.1.3)–(10.1.16) remain valid.

Let us consider the symmetric case, εc = εs, whose characteristic equations for the

symmetric TM0 mode and antisymmetric TM1 mode are ,

tanh(γa+ψ)= −pcαc
γ

, ψ = jmπ

2
, m = 0,1 (10.6.1)

where pc = εf/εc, and γ =
√

β2 − k2
0εf , αc =

√

β2 − k2
0εc. Equivalently,

e2γa+2ψ = γ− pcαc
γ+ pcαc

, ψ = jmπ

2
, m = 0,1 (10.6.2)

In the limit of large separation, a → ∞, both the TM0 and TM1 modes, tend to the

single-interface surface plasmon solution. Indeed, because γ has a positive real part,

we have tanh(γa+ψ)→ 1, and thus, −pcαc = γ, which corresponds to,

βc,∞ = k0

√

εfεc

εf + εc
(10.6.3)

A variety of approaches can be taken to solving the characteristic equation (10.6.1).

We discuss three.

First, if the losses are small, εcI ≪ |εcR|, the solutions for the TM0 and TM1 modes

evolve smoothly from the corresponding ones of the lossless case, as we verify in the

example below. The results of Problem 10.5 can be used to construct the lossy solutions

from the lossless ones by a first-order approximation in the parameter εcI.

Second, Eq. (10.6.1) can be solved iteratively by turning it into the following iteration

[959], initialized at β = βc,∞,

γn+1 = −pcαc,n coth(γna+ψ) , n = 0,1,2, . . . (10.6.4)

and stopping when two successive iterates get closer to each other than some specified

error tolerance, |γn+1 − γn| ≤ tol, such as tol = 10−12.

Third, we have written a MATLAB function, pwg, which uses the built-in function,

fsolve, to solve the system of two equations consisting of the real and imaginary parts

of the characteristic equation,

E = γ tanh(γa+ψ)+pcαc = 0 (10.6.5)

in the two unknowns, the real and imaginary parts of β. It has usage:
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[be,E] = pwg(la0,ef,ec,a,be0,mode,tol) % plasmonic modes for symmetric guides

la0 = operating wavelength, k0 = 2*pi/la0 = free-space wavenumber

ef,ec = permittivities of film and cladding/substrate

a = half-width of film in same units as la0

be0 = starting search point in units of k0 - can be a vector of choices

mode = 0,1 for TM0 or TM1 mode, default mode=0

tol = computational error tolerance, default tol=1e-12

be = propagation wavenumber in units of k0 - same size as be0

E = value of the characteristic equation (10.6.5) - same size as be0

There is also a version, pwga, for asymmetric guides, with similar usage:

[be,E] = pwga(la0,ef,ec,es,a,be0,mode,tol) % plasmonic modes for asymmetric guides

The iterative method generally works well for the primary TM0 and TM1 modes.

However, it is not capable of finding the anomalous complex-mode solutions that are

highly damped. Those can be found using pwg with properly choosing the initial search

points, as we discuss later.

Example 10.6.1: This example, with parameters taken from [949], illustrates the three numeri-

cal approaches. Consider a symmetric silver-air-silver waveguide at an operating free-space

wavelength of λ0 = 650 nm and permittivity of silver† εc = εs = −19.6224− 0.443j, and

εf = 1 for an air gap of width 2a = 100 nm.

The following MATLAB code computes the propagation parameters β,γ,αc for the sym-

metric TM0 mode (ψ = 0) using the pwg function and the 1st-order approximation using

Eq. (10.21.3) of Problem 10.5.

la0 = 650; k0 = 2*pi/la0; a = 100/2; % la0,a in nm

ef = 1; ec = -19.6224-0.443*j; es = ec;

pc = ef/ec; ps = ef/es;

bcinf = sqrt(ec*ef/(ec+ef)); % bcinf = 1.0265 - 0.0006i

tol = 1e-12;

mode=0;

be = pwg(la0,ef,ec,a,bcinf,mode,tol); % be = 1.2261 - 0.0026i

ac = sqrt(be^2 - ec); as = ac; % ac = as = 4.5965 + 0.0475i

ga = sqrt(be^2 - ef); % ga = 0.7095 - 0.0045i

E = abs(pc*ac + ga*tanh(ga*k0*a)); % E = 5.5518e-17

[P,Pf,Pc,Ps] = pwgpower(k0*a,ef,ec,es,be,0); % power flow in the three media

Powers = [P,Pf,Pc,Ps]; % Powers = [1.2175, 1.2328, -0.0076, -0.0076]

% ---- 1st order calculation --------------

ecr = real(ec); % lossless case, ecr = -19.6224

bcinr = sqrt(ecr*ef/(ecr+ef)); % bcinr = 1.0265

†Our MATLAB function DRUDE, from Sec. 1.12, based on [163], gives εc = −15.4758− 1.1513j.
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pcr = ef/ecr;

ber = pwg(la0,ef,ecr,a,bcinr,0,tol); % lossless solution

gr = sqrt(ber^2-ef); acr = sqrt(ber^2-ecr);

Dec = imag(ec)*j; % correction to ec

Dg = pcr*gr*(acr^2/ecr+1/2)*dec/(k0*a*(gr^2*acr)*(1-pcr^2*acr^2/gr^2)-pcr*(ef-ecr));

Db = gr/ber*Dg;

be1 = ber + Db; % approximate lossy solution

num2str([be;be1],’%2.7f’) % be = 1.2261233 - 0.0026097i % exact from PWG

% be1 = 1.2261699 - 0.0026106i % 1st order

The numerical values are given in the comments. As expected, energy flow is negative in

the metals and positive in the dielectric. We note that the 1st-order approximation is very

good because εcI ≪ |εcR|. The iterative version is implemented by the following code

segment and results into the same solution to within the error tolerance tol.

binit = bcinf; % initialize iteration

ga = sqrt(binit^2 - ef);

ac = sqrt(binit^2 - ec);

N = 1; % number of iterations to converge

while 1 % forever while loop

ga_new = -pc*ac*coth(ga*a*k0);

if abs(ga_new-ga) < tol, break; end

ga = ga_new;

be = sqrt(ga^2 + ef);

ac = sqrt(be^2 - ec);

N=N+1;

end

N, be % N = 270, be = 1.2261233 - 0.0026097i

The iteration was initialized at β = βc,∞, but the algorithm is very insensitive to the initial

choice, for example, it converges equally fast with β = 0 or β = 10βc,∞.

The corresponding magnetic field profile Hy(x) is plotted in Fig. 10.6.1. The following

MATLAB code generates the graph (annotations are omitted.)

x = linspace(-200,200,401); % units of nm

Hy = cosh(ga*k0*a)*exp(-k0*ac*(abs(x)-a)).*(abs(x)>a) + cosh(k0*ga*x).*(abs(x)<=a);

fill([-200, -50, -50, -200],[0, 0, 1.5, 1.5], [0.9 0.9 0.9]); hold on

fill([50, 200, 200, 50],[0, 0, 1.5, 1.5], [0.9 0.9 0.9]);

plot(x,real(Hy), ’linewidth’,2);

Next, we calculate and plot the β-a dispersion relationship by solving for β over the range

of thicknesses, 5 ≤ 2a ≤ 3500 nm. Fig. 10.6.2 plots the effective phase index Re(β)/k0

and propagation length L = −[2 Im(β)]−1 versus a, where L is plotted in units of μm. The

previously computed solution for 2a = 100 nm is also added to the graph. It is interesting
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Fig. 10.6.1 Magnetic field profile of silver-air-silver guide (λ0 = 650 nm, 2a = 100 nm).
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Fig. 10.6.2 Effective index and propagation distance (λ0 = 650 nm).

to note that L exhibits a maximum before settling towards its asymptotic limit, with the

maximum occurring approximately at [953],

2amaxk0 = π
√
∣
∣1+ Re(εc)

∣
∣

The maximum was added in the graph. The following MATLAB code illustrates the com-

putation using the pwg function as well as the iterative method (again, graph annotation

details are omitted.)

w1 = 2*a; be1 = be; % save previous results for 2a=100

L1 = -1/2/imag(be1)/k0/1000; % propagation length in microns

wmax = pi/k0*sqrt(abs(real(ec)+1)) % max L at wmax = 1402.49 nm

bemax = pwg(la0,ef,ec,wmax/2,bcinf,0,tol); % bemax = 1.030361 - 0.000577i

Lmax = -1/2./imag(bemax)/k0/1000; % Lmax = 89.5901 microns
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w = (5:10:3500); a = w/2; % vector of gap thicknesses w in nm

for i=1:length(w) % PWG method

be(i) = pwg(la0,ef,ec,a(i),bcinf,0,tol); % la0,ef,ec,bcinf,tol, as above

end

L = -1/2./imag(be)/k0/1000; % propagation length in micrometers

ac = sqrt(be.^2 - ec); ga = sqrt(be.^2 - ef);

E = abs(pc*ac + ga.*tanh(ga.*a*k0)); % vector of computational errors

figure; plot(w,real(be),’-’, w1,real(be1),’.’); % plot effective index

figure; plot(w,L,’-’, w1,L1,’.’, wmax,Lmax,’ro’); % plot propagation length

% ---------- iterative version ----------

for i=1:length(w)

binit = bcinf; % initialize iteration

ga = sqrt(binit^2 - ef);

ac = sqrt(binit^2 - ec);

N(i) = 1; % number of iterations for i-th thickness

while 1

ga_new = -pc*ac*coth(ga*a(i)*k0);

if abs(ga_new-ga) < tol, break; end

ga = ga_new;

beit(i) = sqrt(ga^2 + ef); % beta for i-th thickness

ac = sqrt(beit(i)^2 - es);

N(i) = N(i)+1;

end % end while-loop

end % end for-loop

ac = sqrt(beit.^2 -ec); ga = sqrt(beit.^2 - ef);

Eit = abs(pc*ac + ga.*tanh(ga.*a*k0)); % vector of errors

norm(be-beit) % compare PWG and iterative methods, ans = 2.5818e-12

Fig. 10.6.3 plots the computational errorE = |γ tanh(γa)+pcαc| versus thicknessw = 2a,

for both the PWG and the iterative methods, showing that it remains below the specified

error tolerance of 10−12. The figure also shows a plot versusw of the number of iterations

N required for convergence of the iterative method, where N is saved during the iteration

for each thickness. ⊓⊔

10.7 Gap Surface Plasmons

The TM0 symmetric mode illustrated by the above example is the only mode that exists

for the symmetric MDM guide for all values of the gap thickness 2a, and is known as a

gap surface plasmon polariton (G-SPP) mode [977]. For small values of a, the propagation

wavenumber β becomes very large. Indeed, assuming that |γa| ≪ 1 and using the

approximation tanh(x)≈ x, the characteristic equation (10.6.1) (with ψ = 0) becomes,

γa = −pcαc
γ

⇒ γ2a = −pc
√

γ2 + (εf − εc)k2
0 (10.7.1)
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Fig. 10.6.3 Computational error and number of iterations (λ0 = 0.650 nm, tol = 10−12).

This is a second-order algebraic equation in the variable γ2 with solution for γ2 and β,

γ2 = p2
c

2a2
+
√

p4
c

4a4
+ p

2
ck

2
0

a2
(εf − εc)

β =
√

k2
0εf + γ2 =

√
√
√
√
k2

0εf +
p2
c

2a2
+
√

p4
c

4a4
+ p

2
ck

2
0

a2
(εf − εc)

(10.7.2)

For very small a, the quartic term p4
c/a

4 wins inside the above square roots, so

that γ2 ≈ p2
c/a

2. Its square root is taken with negative sign, γ = −pc/a, in order to

guarantee a positive real part for γ. This results in the simpler expression for β ≈ γ,

β = −pc
a
, for k0a≪ 1 (10.7.3)

The same can also be derived from the characteristic equation (10.7.1) when γ is large,

γ2a = −pc
√

γ2 + (εf − εc)k2
0 ≈ −pcγ ⇒ γ = −pc

a

On the other hand, if a is small but not too small so that the quartic term p4
c/a

4

can be ignored inside the square roots of Eq. (10.7.2), then we obtain another simple

expression which works well [977] over a substantial range of a,

γ2 ≈
√

p2
ck

2
0

a2
(εf − εc) = −pck0

a

√
εf − εc

β = k0

√

εf − pc
k0a

√
εf − εc

(10.7.4)

TM1 modes

We saw in Sec. 10.4 that, in the lossless case, region-3 supported antisymmetric TM1

plasmonic modes for k0
√
εf ≤ β ≤ βc,∞, corresponding to the film’s half-width range

450 10. Surface Waveguides

acutoff ≤ a < ∞, where for symmetric guides (εc = εs), the cutoff thickness is given by

Eq. (10.4.6) and is obtained by setting, β = k0
√
εf , or γ = 0, in the TM1 characteristic

equation,

tanh(γa)= − γ

pcαc

∣
∣
∣
∣
∣
γ=0

⇒ k0acutoff = − 1

pc
√
εf − εc

− εc
εf
√
εf − εc

In the lossy case, because εc and β are complex-valued, an approximate value for

the cutoff with may be obtained by taking the real part of the above expression,

k0acutoff = −Re

[

1

pc
√
εf − εc

]

(10.7.5)

Example 10.7.1: Here, we look at the TM1 modes of Example 10.6.1 that had operating free-

space wavelength of λ0 = 650 nm and permittivity of silver εc = εs = −19.6224− 0.443j,

and εf = 1 for air. The cutoff width calculated from Eq. (10.7.5) is found to be

wcutoff = 2acutoff = 894.0795 nm

The TM1 modes were calculated over the thickness range,wcutoff ≤ 2a ≤ 3500 nm, and the

TM0 modes over, 5 ≤ 2a ≤ 3500 nm. Fig. 10.7.1 shows the effective index Re(β)/k0 and

propagation distance L = −[2 Im(β)
]−1

in units of nm. The solutions for the specific value,

2a = 1000m, that lies above the cutoff, were also placed on the graphs. The following

MATLAB code segment illustrates the computations.

la0 = 650; k0 = 2*pi/la0; ef = 1; ec = -19.6224-0.443*j; es=ec;

pc = ef/ec; ps = ef/es;

bcinf = sqrt(ec*ef/(ec+ef));

tol = 1e-12;

acut = -real(1/pc/sqrt(ef-ec))/k0;

wc = 2*acut;

nc = sqrt(ef);

w = 5:10:3500; % thickness range for TM0

w1 = 1.001*wc:10:3500; % thickness range for TM1

for i=1:length(w)

be0(i) = pwg(la0,ef,ec,w(i)/2,bcinf,0,tol); % TM0

end

for i=1:length(w1)

be1(i) = pwg(la0,ef,ec,w1(i)/2,bcinf,1,tol); % TM1

end

neff0 = real(be0); L0 = -1/2./imag(be0)/k0/1000; % TM0 index & distance

neff1 = real(be1); L1 = -1/2./imag(be1)/k0/1000; % TM1 index & distance

w2=1000; a = w2/2; % specific solutions

be02 = pwg(la0,ef,ec,a2,bcinf,0,tol); % TM0

be12 = pwg(la0,ef,ec,a2,bcinf,1,tol); % TM1

neff02 = real(be02); L02 = -1/2/imag(be02)/k0/1000;

neff12 = real(be12); L12 = -1/2/imag(be12)/k0/1000;
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figure; plot(w,neff0,’-’, w1,neff1,’r--’, ...

[w2,w2],[neff02,neff12],’o’, wc,nc,’s’, ’markersize’,9);

yaxis(1, 1.15, 1:0.05:1.15);

xaxis(0,3500, 0:500:3500);

figure; plot(w,L0,’-’, w1,L1,’r--’, [w2,w2],[L02,L12],’o’, ’markersize’,9);

yaxis(0,100,0:20:100);

xaxis(0,3500, 0:500:3500);
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Fig. 10.7.1 Effective index and propagation distance for TM0 and TM1 plasmonic modes.

The symmetric TM0 and antisymmetric TM1 magnetic field profiles Hy(x) for the case

2a = 1000 nm are shown in Fig. 10.7.2. They were computed and plotted by the following

MATLAB code segment (annotations are omitted.)
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Fig. 10.7.2 Transverse magnetic field profiles for TM0 and TM1 plasmonic modes.

x = linspace(-1500,1500,601);
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ga = sqrt(be02^2 - ef); % transverse wavenumbers for TM0

ac = sqrt(be02^2 - ec); % ga = 0.2690-0.0023i; ac = 4.5494+0.0486i

psi = 0;

Hy = cosh(ga*k0*a+psi)*exp(-k0*ac*(x-a)).*(x > a) +... % TM0 field

cosh(ga*k0*a-psi)*exp(k0*ac*(x+a)).*(x <-a) +... % here, a=1000/2

cosh(k0*ga*x+psi).*(abs(x)<=a);

figure; fill([-1500, -500, -500, -1500],[0, 0, 2, 2], [0.9 0.9 0.9]); hold on

fill([500, 1500, 1500, 500],[0, 0, 2, 2], [0.9 0.9 0.9]);

plot(x,real(Hy), ’linewidth’,2); % plot TM0

xaxis(-1500, 1500, -1500:500:1500); yaxis(0,2, 0:0.5:2);

ga = sqrt(be12^2 - ef); % transverse wavenumbers for TM1

ac = sqrt(be12^2 - ec); % ga = 0.1251-0.0072i; ac = 4.5432+0.0486i

psi = j*pi/2;

Hy = cosh(ga*k0*a+psi)*exp(-k0*ac*(x-a)).*(x > a) +... % TM1 field

cosh(ga*k0*a-psi)*exp(k0*ac*(x+a)).*(x <-a) +...

cosh(k0*ga*x+psi).*(abs(x)<=a);

figure; fill([-1500, -500, -500, -1500],[-1, -1, 1, 1], [0.9 0.9 0.9]); hold on

fill([500, 1500, 1500, 500],[-1, -1, 1, 1], [0.9 0.9 0.9]);

plot(x,imag(Hy), ’linewidth’,2); % plot TM1

xaxis(-1500, 1500, -1500:500:1500); yaxis(-1,1, -1:0.5:1);

We note that because of the rather large thickness of 1000 nm, the TM0 field resembles

two separate single-interface surface plasmons at the two silver-air interfaces. ⊓⊔

10.8 PEC Limit

Plasmonic waveguides operate near the visible and infrared spectrum and excel at guid-

ing light at decent propagation distances, while being laterally confined at subwave-

length distances.

At the microwave regime, MDM waveguides behave very much like ordinary parallel-

plate TEM transmission lines, or like parallel-plate waveguides supporting TM and TE

modes. The connection to the plasmonic case can be seen in the perfect-electric con-

ductor (PEC) limit [957]. We recall from Chapter 1 that the effective dielectric constant

of a conductor is related to its conductivity σ(ω) by

εc = 1− j σ(ω)
ǫ0ω

(10.8.1)

The PEC limit assumes that the metals are perfect conductors (σ → ∞), so that

εc →∞, and therefore, pc = εf/εc → 0. In this limit, the characteristic equation (10.6.1)

of a symmetric MDM guide becomes for the even and odd TM modes,

tanh(γa+ψ)= −pcαc
γ

→ εfk0
√−εc
εcγ

→ 0 , ψ = jmπ

2
, m = 0,1
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where we replaced αc =
√

β2 − k2
0εc → k0

√−εc. This condition then requires that

γa+ψ = jπq, with integer q, resulting in the quantized values of γ,

γ = jkc , kc = π(2q+m)
2a

, q = 0,1,2, . . . , m = 0,1 (10.8.2)

The quantities kc are recognized as the cutoff wavenumbers of the TM modes of a

parallel-plate waveguide with perfectly conducting walls. The corresponding dispersion

relationship is obtained from β =
√

γ2 + k2
0εf =

√

k2
0εf − k2

c , and requires that the guide

be operated above cutoff, k0
√
εf ≥ kc.

The case q = m = 0, or, γ = 0, is special and corresponds to the parallel-plate

TEM transmission line discussed in the next chapter. The TEM property follows from

Eq. (10.1.3), which shows that Ez = 0 in this case. Moreover, Ex,Hy become constants,

independent of x, and Ex/Hy = η0.

TE modes, which generally do not exist in the plasmonic case, correspond to setting

pc = 1 in the characteristic equation (10.6.1), which would have the PEC limit,

tanh(γa±ψ)= −αc
γ
→ k0

√−εc
γ

→∞ , ψ = jmπ

2
, m = 0,1

This condition gives the quantized values for γ and TE cutoff wavenumbers:

γ = jkc , kc = π(2q+m+ 1)

2a
, q = 0,1,2, . . . , m = 0,1 (10.8.3)

We note that γ = 0 is not possible for TE modes.

Example 10.8.1: The following graphs show the magnetic field profiles for a fictitious symmet-

ric MDM guide with λ0 = 650 nm, εf = 1, with film width of 100 nm, and the successive

values of εc having increasingly larger imaginary parts:

εc = −20− 10j

εc = −20− 100j

εc = −20− 1000j
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The MATLAB code is the same as in Example 10.6.1. We observe how the magnetic field

tends to the TEM limit, becoming progressively constant, and more quickly decaying in the

metal. The computed values for β,γ,αc were,

β/k0 γ/k0 αc/k0

1.20520− 0.04899j 0.67656− 0.08727j 4.74695+ 1.04087j

1.07807− 0.06220j 0.42772− 0.15677j 7.84987+ 6.36099j

1.02333− 0.02255j 0.23702− 0.09736j 22.59670+ 22.12610j
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10.9 Anomalous Complex Modes

As we mentioned at the end of Sec. 10.5, there exist complex-modes even in the lossless

case, that are anomalous in the sense that they are stable and laterally confined, having

propagation wavenumber, β = βR − jβI, with βI > 0, but with βI so large that they

cannot be considered as propagating, nor are they necessarily evanescent, which would

have βR = 0 and βI > 0, although such evanescent modes do exist.

The mode spectrum of MDM guides for the lossless and lossy cases has been studied

in various references such as [948–951,961].

Consider a symmetric configuration (εc = εs), whose even and odd TM modes must

satisfy the characteristic equation (10.6.1),

tanh(γa±ψ)= −pcαc
γ

, ψ = jmπ

2
, m = 0,1 (10.9.1)

Because we are looking for anomalous modes that have large values of β, or, γ =
√

β2 + k2
0εf , we have, αc =

√

γ2 + k2
0(εf − εc) ≈ γ. It follows that the right-hand-side

of Eq. (10.9.1) tends to a constant,

tanh(γa±ψ)≈ −pc , for |β| ≫ k0

But this equation does not uniquely define γ, since,

tanh(γa±ψ)= tanh(γa±ψ± jπq)= −pc

for any integer q. Replacing ψ = jmπ/2, for m = 0,1, and inverting, we obtain an

infinite family of possible solutions, which will have large |γ| for large values of q,

γ = 1

a
atanh(−pc)± jπ(2q+m)

2a
, m = 0,1, q = 0,1,2, . . . (10.9.2)

This is similar to Eq. (10.8.2). By using these approximate γs as the initial search

points of the function, pwg, we may derive the exact values of the anomalous modes.

To clarify the role of the ± sign choices, we note that in the lossless case (real εc, εf ),

because the characteristic equation has real parameters then if β is a solution, so will

be the complex conjugate, β∗. Moreover, since the dependence on β comes through β2,

it follows that given a solution β, all four choices, ±β,±β∗, would also be solutions.

However, if β = βR − jβI with βI ≥ 0, then the only other physically acceptable choice

would be, −β∗ = −βR− jβI, that also has negative imaginary part. Thus, in the lossless

case the anomalous complex modes come in pairs, {β,−β∗}, or, ±βR−jβI [948]. The±
signs in Eq. (10.9.2) typically correspond to such pair β,−β∗. In the lossy case, however,

this conjugate symmetry is broken, making the two values in the pair β,−β∗ slightly

different.

Example 10.9.1: Consider again the silver-air-silver guide of Example 10.6.1 with free-space

wavelength of λ0 = 650 nm, silver permittivity, εc = εs = −19.6224− 0.443j, and εf = 1

for an air gap of width 2a = 100 nm.

The following table shows the solutions for the even modes (m = 0), for q = 0,1,2,3 and

the two ± sign choices. The computational error vector, E = γ tanh(γa+ψ)+pcαc, has
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norm ‖E‖ = 4.3687×10−14. The second table shows the odd solutions (m = 1). Its error

norm was ‖E‖ = 9.1312×10−14.

The q = 0 even solution is the fundamental G-SPP mode that we considered in Example

10.6.1. For the rest of the even cases and all the odd ones, we observe that all solutions

are acceptable, in the sense that they have βI = − Im(β)> 0, and Re(αc)> 0, however,

they cannot be considered as propagating because of their large value of βI . We note also

that they have a γ that is predominantly imaginary, so that those modes may be viewed as

oscillatory as opposed to plasmonic.

q β/k0 (even modes) γ/k0 αc/k0

0 1.226123− 0.002610j 0.709501− 0.004510j 4.596523+ 0.047492j

1 − 0.076360− 6.424289j 0.075451− 6.501643j 0.057829− 4.652592j

1 + −0.076321− 6.419272j 0.075411+ 6.496685j 0.153066+ 4.647824j

2 − 0.099118− 12.963768j 0.098824− 13.002278j 0.087286− 12.183377j

2 + −0.099113− 12.958989j 0.098819+ 12.997513j 0.123651+ 12.178607j

3 − 0.102709− 19.476698j 0.102573− 19.502352j 0.093794− 18.966223j

3 + −0.102707− 19.471926j 0.102572+ 19.497586j 0.117154+ 18.961452j

q β/k0 (odd modes) γ/k0 αc/k0

0 0.000249− 2.976418j 0.000236− 3.139915j 3.281442+ 0.067275j

1 − 0.093819− 9.700739j 0.093325− 9.752140j 0.079792− 8.630150j

1 + −0.093808− 9.695937j 0.093313+ 9.747364j 0.131131+ 8.625381j

2 − 0.101461− 16.221536j 0.101269− 16.252329j 0.091276− 15.604931j

2 + −0.101459− 16.216762j 0.101267+ 16.247564j 0.119668+ 15.600160j

3 − 0.103452− 22.730378j 0.103352− 22.752364j 0.095539− 22.294531j

3 + −0.103451− 22.725607j 0.103351+ 22.747597j 0.115411+ 22.289760j

The tables were produced by the following MATLAB code:

la0 = 650; k0 = 2*pi/la0; a = 100/2; % la0,a in nm

ef = 1; ec = -19.6224 - 0.443*j; % set ec = -16.6224 for lossless case

pc = ef/ec; tol = 1e-12;

q = (0:3)’; m=0; % set m=0,1 for even or odd modes

ga1 = 1/k0/a*atanh(-pc) - j*pi/2/a/k0*(m+2*q);

ga2 = 1/k0/a*atanh(-pc) + j*pi/2/a/k0*(m+2*q);

gin = [ga1.’; ga2.’]; gin = gin(:); % list them as -/+ pairs

q = [q’;q’]; q = q(:);

gin(1)=[]; q(1)=[]; % eliminate duplicate q=0 case

bin = sqrt(gin.^2 + ef); % initial search vector

be = pwg(la0,ef,ec,a,bin,m,tol); % solution vector for beta

ga = sqrt(be.^2 - ef); ac = sqrt(be.^2 - ec); % gamma and alpha_c vectors

E = norm(pc*ac + ga.*tanh(ga*k0*a + j*m*pi/2)) % computational error norm

num2str([be,ga,ac],’%12.6f’) % table
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We note also that the ± pairs for the same value of q are very close to each other. If we

execute the same code for the lossless case (εc = −19.6224), we will find that the pairs

are numerically equal, that is, ±βR − jβI . ⊓⊔

Example 10.9.2: This example is from [951], and we have also added the odd modes. A sym-

metric silver-air-silver MDM waveguide at free-space wavelength λ0 = 1550 nm, has film

width 2a = λ0/4, film permittivity εf = 1, and silver permittivity εc = −143.497−9.517j,

or, εc = −143.417 in the lossless limit.†

la0 = 1550; k0=2*pi/la0; a = la0/8;

ef=1; ec=-143.497 - j*9.517*0; % ec=-143.497 - j*9.517 in lossy case

pc = ef/ec;

tol = 1e-12;

q = (0:4)’; m=0; % even modes TM0, TM2, TM4, TM6, TM8

gin = 1/k0/a*atanh(-pc) - j*pi/2/a/k0*(m+2*q);

bin = sqrt(gin.^2 + ef);

be_even = pwg(la0,ef,ec,a,bin,m,tol); % even mode solutions

m=1; % odd modes TM1, TM3, TM5, TM7, TM9

gin = 1/k0/a*atanh(-pc) - j*pi/2/a/k0*(m+2*q);

bin = sqrt(gin.^2 + ef);

be_odd = pwg(la0,ef,ec,a,bin,m,tol); % odd mode solutions

be = [be_even, be_odd].’; be = be(:); % list modes sequentially

ga = sqrt(be.^2-ef); ac = sqrt(be.^2 - ec);

num2str([be,ga,ac],’%11.5f’) % table

M = repmat([0;1], length(q),1);

E = norm(pc*ac + ga.*tanh(ga*a*k0 + j*M*pi/2)) % error norm of all modes

The calculated error norms for the lossless and lossy cases were ‖E‖ = 5.3579×10−14 and

2.6947×10−14, respectively. The following two tables list the solutions for the two cases.

mode β/k0 (lossless case) γ/k0 αc/k0

0 1.05313 0.33027 12.02523

1 −1.66934j −1.94594j 11.86214

2 −3.84683j −3.97468j 11.34456

3 −5.90040j 5.98454j 10.42508

4 −7.92720j 7.99003j 8.98089

5 −9.94391j 9.99407j 6.67949

6 −11.95773j −11.99947j 0.71391

7 0.00456− 13.96424j 0.00455− 14.00000j 0.00887− 7.17656j

8 0.00587− 15.96872j 0.00586− 16.00000j 0.00887− 10.55950j

9 0.00661− 17.97220j 0.00660− 18.00000j 0.00887− 13.39787j

†Note that our DRUDE function gives here εc = −103.332− 8.130j.
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mode β/k0 (lossy case) γ/k0 αc/k0

0 1.05304− 0.00176j 0.33004− 0.00563j 12.03172+ 0.39534j

1 0.00210− 1.66945j 0.00180− 1.94603j 11.86889+ 0.40063j

2 0.00077− 3.84686j 0.00075− 3.97471j 11.35228+ 0.41891j

3 0.00035− 5.90041j 0.00035− 5.98455j 10.43503+ 0.45581j

4 0.00008− 7.92719j 0.00008− 7.99001j 8.99646+ 0.52886j

5 −0.00023− 9.94387j 0.00023+ 9.99402j 6.71706+ 0.70877j

6 −0.00146− 11.95650j 0.00145+ 11.99824j 2.24792+ 2.12461j

7 −0.00453− 13.96352j 0.00452+ 13.99928j 0.66911+ 7.20628j

8 −0.00583− 15.96808j 0.00582+ 15.99936j 0.45906+ 10.56850j

9 −0.00658− 17.97159j 0.00657+ 17.99939j 0.36388+ 13.40199j

The listed mode numbers were the quantities, 2q + m, for q = 0,1,2,3,4, m = 0,1.

The q = 0 mode is the fundamental G-SPP mode. For the lossless case, modes 1–6 are

evanescent in the sense that they have βR = 0 and βI = − Im(β)> 0, but they are laterally

confined because αc is positive-real. These modes carry no power in any of the three

media, because the media were assumed to be lossless, so that the factors that appear in

the expressions Eq. (10.1.24) for the transmitted powers are, Re(β/ε)= Re(β)/ε = 0. The

numerical values for the even modes given in [951] differ slightly from ours, but that is

probably due to using different calculation procedures. ⊓⊔

In this section, we have discussed only the modes of the discrete spectrum. Modes

belonging to the continuous spectrum are not laterally confined. If β = βR − jβI, then,

the lateral decay parameter is,

αc =
√

β2 − k2
0εc =

√

β2
R − β2

I − 2jβRβI − k2
0εc

Continuous modes would have an imaginary αc, or, α2
c < 0. For the lossless case

(εc = −|εc|), this would require that

α2
c = β2

R − β2
I + k2

0|εc| − 2jβRβI < 0 ⇒
⎧

⎨

⎩

βRβI = 0

β2
R − β2

I + k2
0|εc| < 0

The two conditions can only be satisfied with βR = 0 and β2
I > k2

0|εc|, or, βI >

k0

√

|εc|. Such modes have been discussed in [948,951]. and are unbounded laterally,

but decay along the propagation direction as e−βIz.

10.10 DMD Configuration – Lossless Case

A DMD plasmonic waveguide consists of a metal film εf , surrounded by two possibly

different dielectrics εc, εs, as shown in Fig. 10.10.1 . It is operated at optical or infrared

frequencies where the metal has permittivity with negative real part, εf = −εR − jεI,
εR > 0 and εI ≥ 0. The dielectrics may be assumed to be lossless. Moreover, without

loss of generality, we will assume that εc ≥ εs > 0.

The field and characteristic equations were given by Eqs. (10.1.4)–(10.1.16). The var-

ious solution modes have been discussed extensively in the literature, see for example,

[935–941] and the reviews [958,977].
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Fig. 10.10.1 DMD plasmonic waveguide.

As in the MDM case, we begin our discussion by first considering the lossless case,

εI = 0, so that we may write, εf = −|εf |. Since εc ≥ εs, the quantities, pc = εf/εc,

ps = εf/εs, satisfy the inequality |pc| ≤ |ps|. We note the following relationships,

γ =
√

β2 − k2
0εf =

√

β2 + k2
0|εf |

αc =
√

β2 − k2
0εc

αs =
√

β2 − k2
0εs

⇒
γ =

√

α2
c + k2

0

(

εc + |εf |
)

γ =
√

α2
s + k2

0

(

εs + |εf |
)

(10.10.1)

which imply that, αc ≤ αs < γ.† Note also,

p2
cα

2
c − γ2 = (p2

c − 1)(β2 − β2
c,∞)

p2
sα

2
s − γ2 = (p2

s − 1)(β2 − β2
s,∞)

(10.10.2)

β2
s,∞ − k2

0εc = k2
0|εf |

[

1

|ps| − 1
− 1

|pc|

]

(10.10.3)

where βc,∞, βs,∞ are the would-be plasmonic wavenumbers of the single f−c and f−s
metal-dielectric interfaces,

β2
c,∞ =

k2
0 εcεf

εc + εf
= k2

0|εf |
|pc| − 1

, β2
s,∞ =

k2
0 εsεf

εs + εf
= k2

0|εf |
|ps| − 1

(10.10.4)

Clearly, for the single interfaces to support surface plasmons, we must have |pc| > 1

and |ps| > 1. The characteristic equations (10.1.10) can be written in the forms:

e2γa+2ψ = γ+ |pc|αc
γ− |pc|αc

, e2γa−2ψ = γ+ |ps|αs
γ− |ps|αs

(10.10.5)

e4γa = γ+ |pc|αc
γ− |pc|αc

· γ+ |ps|αs
γ− |ps|αs

⇒ tanh(2γa)= γ
(|pc|αc + |ps|αs

)

γ2 + |pc|αc|ps|αs
(10.10.6)

We are looking for plasmonic solutions that have real and positive β,αc,αs, γ pa-

rameters. There exist, of course, complex-mode solutions as in the MDM case, which

can be derived by taking the large-γ limit of Eq. (10.10.6), that is, up to any integer q,

e4γa = e4γa−2πjq = 1+ |pc|
1− |pc|

· 1+ |ps|
1− |ps|

⇒ γ = 1

4a
ln

[

1+ |pc|
1− |pc|

· 1+ |ps|
1− |ps|

]

+ jπq
2a

†In the MDM lossless case, we had the complementary inequality, αc ≥ αs > γ.
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For all plasmonic solutions with positive real β, it is evident from (10.10.1) that

the lateral confinement conditions αc ≥ 0 and αs ≥ 0 require that β ≥ k0
√
εc and

β ≥ k0
√
εs, which, because εc ≥ εs, reduce into one,

β ≥ k0

√
εc (10.10.7)

For such solutions, because γ is real, it follows from (10.10.6) that in order for

the quantity e4γa to be positive, the quantities, (γ − |pc|αc) and (γ − |ps|αc), must

either be both positive or both negative. If they are both positive, then, it follows from

Eq. (10.10.5) that ψ must be real, so the solution is a TM0 even-like mode, and when

they are both negative, then,ψmust have a jπ/2 imaginary part, so that the solution is

a TM1 odd-like mode. We summarize,

γ− |pc,s|αc,s > 0 , Im[ψ]= 0 , (TM0 mode)

γ− |pc,s|αc,s < 0 , Im[ψ]= jπ

2
, (TM1 mode)

(10.10.8)

Thus, ψ is calculated from Eq. (10.1.7), with m = 0,1, for TM0 or TM1,

ψ = 1

2
atanh

(

−pcαc
γ

)

− 1

2
atanh

(

−psαs
γ

)

+ 1

2
jmπ (10.10.9)

Finally, we recall that the magnetic field is given by,

Hy(x)=

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

H0 cosh(γx+ψ) , |x| ≤ a

H0 cosh(γa+ψ)e−αc(x−a) , x ≥ a

H0 cosh(γa−ψ)eαs(x+a) , x ≤ −a

(10.10.10)

The possible plasmonic solutions can be understood with the aid of the following

diagram that divides the pc−ps plane into five regions [939], as defined below,†

0. |pc| ≤ 1 ≤ |ps| , |ps| > |pc| + 1

1. |pc| ≤ 1 ≤ |ps| , |ps| ≤ |pc| + 1

2. 1 ≤ |pc| ≤ |ps| , |ps| > |pc| + 1

3. 1 ≤ |pc| ≤ |ps| , |ps| ≤ |pc| + 1

4. |pc| ≤ |ps| ≤ 1

The regions below the diagonal are obtained by switching the roles of εc, εs. The one

of most practical interest is region-3, because most metals (like gold and silver) have

†Because we are working with the variables pc, ps, our geometry of the regions differs from that of [939],

but the results are equivalent.
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|εf | > εc ≥ εs, at optical frequencies and using typical dielectrics with a small difference,

εc − εs Next, we determine the nature of solutions in each region, but summarize the

results here,

0. no solution exists

1. TM0 mode with lower cutoff, k0
√
εc ≤ β < βs,∞, acutoff ≤ a <∞

2. TM1 mode with no cutoff, β > βc,∞, 0 < a <∞
3. TM0 mode with lower cutoff, k0

√
εc ≤ β < βs,∞, acutoff ≤ a <∞

TM1 mode with no cutoff, β > βc,∞, 0 < a <∞
4. TM0 mode with upper cutoff, βmax ≤ β <∞, amax ≥ a > 0

TM0 mode with lower cutoff, k0
√
εc ≤ β ≤ βmax, acutoff ≤ a ≤ amax

Region – 0

Because |pc| ≤ 1 and αc < γ, we have (|pc|αc − γ)< 0, so necessarily we must also

have, (|ps|αs−γ)< 0. It follows that the first of Eqs. (10.10.2) is automatically satisfied

because β2
c,∞ < 0 and p2

c < 1. But, because β2
s,∞ > 0, the second constraint in (10.10.2)

requires that β < βs,∞. On the other hand, in region-0, Eq. (10.10.3) implies that βs,∞ <
k0
√
εf , and combining the two inequalities, β < βs,∞ < k0

√
εf . Thus, it is not possible

to fulfill condition (10.10.7) and, therefore, no solutions exist in this region.

Region – 1

The only difference with region-0 is that now Eq. (10.10.3) implies that βs,∞ > k0
√
εc,

and therefore, there can exist a solution with β spanning the range,

k0

√
εc ≤ β ≤ βs,∞ (10.10.11)

The upper limit, β = βs,∞, is reached in the limit of infinite thickness a → ∞.

The lower limit implies a lower cutoff thickness obtained from Eq. (10.10.6) by setting

β = k0
√
εc, and hence, αc = 0, γ = k0

√

εc + |εf |, and αs = k0
√
εc − εs, resulting in,

tanh
(

2k0acutoff

√

εc + |εf |
) = |ps|√εc − εs

√

εc + |εf |
= |εf |√εc − εs
εs
√

εc + |εf |

2k0acutoff = 1
√

εc + |εf |
atanh

⎡

⎣
|εf |√εc − εs
εs
√

εc + |εf |

⎤

⎦ , βcutoff = k0

√
εc (10.10.12)

The argument of the arc-tanh function must be less than unity, but this follows from

the condition βs,∞ > k0
√
εc, which implies the allowed range for εc, or for εs, [937,938],

εs ≤ εc ≤
|εf |εs
|εf | − εs

⇔
|εf |εc
|εf | + εc

≤ εs ≤ εc (10.10.13)

To decide whether this solution is even-like or odd-like, we look at Eqs. (10.10.5).

Because both denominators are positive, then e2γa±2ψ will be positive and greater than
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unity, so that ψ must be real. Therefore, this mode is TM0 even-like. As the film thick-

ness increases, it resembles more and more a single surface plasmon at the f−s interface,

while the f−c interface does not support a surface plasmon because β2
c,∞ < 0.

Example 10.10.1: We consider an example from [939] in order to compare our results. It has

parameters, εc = 2.22, εs = 1.72, εf = −22, and half-width, k0a = 0.3. It belongs to region-

1 because |pc| = 0.8264, |ps| = 0.3841, and |ps| − |pc| = 0.5576 < 1. The left graph in

Fig. 10.10.2 shows the transverse magnetic field Hy(x). The calculated mode parameters

were,

k0a β/k0 γ/k0 αc/k0 αs/k0 ψ E

0.3 2.9165 3.5364 1.9147 2.3699 −0.5794 1.1102×10−16

where E is the computational error for the characteristic equation (10.10.6),†

E =
∣
∣
∣
∣
∣

tanh(2γa)−γ
(|pc|αc + |ps|αs

)

γ2 + |pc|αc|ps|αs

∣
∣
∣
∣
∣

The solution was obtained with the help of the MATLAB function, pwga,

k0 = 1; la0 = 2*pi/k0; a = 0.3;

ec = 2.2^2; es = 1.7^2; ef = -4;

pc = ef/ec; ps = ef/es;

tol = 1e-12;

bsinf = sqrt(ef*es/(ef+es));

[be,E] = pwga(la0,ef,ec,es, a, bsinf, 0, tol); % TM0 mode

ga = sqrt(be^2-ef); as = sqrt(be^2-es); ac = sqrt(be^2-ec);
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Fig. 10.10.2 DMD region-1, TM0 mode.

It can also be computed recursively by transforming the characteristic equation into the

iteration:

γ = −γ
2 + pcαc psαs
pcαc + psαs

tanh(2γa) ⇒ γn+1 = −γ
2
n + pcαcn psαsn
pcαcn + psαsn

tanh(2γna)

†The achieved E is actually half of MATLAB’s machine epsilon, eps = 2.2204e-16.

462 10. Surface Waveguides

The magnetic field was computed and plotted by the code,

psi = atanh(-pc*ac/ga)/2- atanh(-ps*as/ga)/2

x = linspace(-3,3,601)*a;

Hy = cosh(ga*a - psi).*exp(as*(x+a)).*(x<-a) + ...

cosh(ga*a + psi).*exp(-ac*(x-a)).*(x>a) + ...

cosh(ga*x + psi).*(abs(x)<=a);

fill([-1, 1, 1, -1], [-2 -2, 4, 4], [0.9, 0.9, 0.9]);

hold on

plot(x/a, real(Hy), ’linewidth’,2);

The right graph in Fig. 10.10.1 shows the β−a dispersion relationship, with the half-width

varying over acutoff ≤ a < ∞, as β varies over k0
√
εc ≤ β < βs,∞. The calculated values

were,

k0acutoff = 0.1304 ,
√
εc = 2.2 , βs,∞ = 3.2271

and the graph was generated by the following code, where for plotting convenience, we

evaluated the solution only up to k0amax = 0.5 where β has effectively converged to βs,∞,

acut = 1/2/sqrt(ec-ef) * atanh(-ef*sqrt(ec-es)/es/sqrt(ec-ef));

amax = 0.5;

a = linspace(1.01*acut,amax, 101); % span interval a_cut < a < amax

for i=1:length(a)

be(i) = pwga(la0,ef,ec,es, a(i), bsinf, 0, tol);

end

be = abs(real(be)); % make sure beta is positive real

plot(a,be, acut,sqrt(ec),’s’, amax,bsinf,’o’);

hold on

plot(a1,be1,’.’); % here, a1 = 0.3, be1 = 2.9165

xlim([0,0.5]); ylim([1,9])

Region – 2

Here, it follows from Eqs. (10.10.3) and (10.10.4) that, 0 < βs,∞ < k0
√
εc < βc,∞. This

excludes a solution that would have, |ps|αs − γ < 0, because it would require from

Eqs. (10.10.2) that β < βs,∞ and therefore, it could not satisfy (10.10.7). On the other

hand, a solution exists that satisfies, |pc,s|αc,s − γ > 0, which requires from (10.10.2)

that β ≥ βc,∞ and β ≥ βs,∞, the latter being satisfied a fortiori from the former.

Thus, such solution will have range β ≥ βc,∞, with β = βc,∞ achieved at infinite

thickness a → ∞, and at the other end, β → ∞ as the thickness tends to zero, a → 0.

Interestingly, although the s−f interface can support a surface plasmon, it is not the

limit of one of the modes.

Because |pc,s|αc,s − γ > 0, it follows from Eqs. (10.10.5) that the left-hand sides

e2γa±2ψ will be negative, and that can only happen if ψ has a jπ/2 imaginary part.
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Therefore, this solution is a TM1 odd-like mode, with ψ given by (10.1.16),

ψ = 1

2
atanh

(

−pcαc
γ

)

− 1

2
atanh

(

−psαs
γ

)

+ 1

2
jπ (10.10.14)

Example 10.10.2: This example is from [939]. It has parameters, εc = 1.92, εs = 1.32, εf = −22,

and half-width, k0a = 0.15. It belongs to region-2 because |pc| = 1.1080, |ps| = 2.3669,

and |ps|−|pc| = 1.2588 > 1. The left graph in Fig. 10.10.3 shows the transverse magnetic

field Hy(x). The calculated mode parameters were,

k0a β/k0 γ/k0 αc/k0 αs/k0 ψ E

0.15 7.8273 8.0788 7.5932 7.7186 0.7368+ jπ/2 1.1102×10−16

where E is the computational error for the characteristic equation (10.10.6),

E =
∣
∣
∣
∣
∣

tanh(2γa)−γ
(|pc|αc + |ps|αs

)

γ2 + |pc|αc|ps|αs

∣
∣
∣
∣
∣

The solution was obtained with the help of the MATLAB function, pwga,

k0 = 1; la0 = 2*pi/k0; a = 0.15;

ec = 1.9^2; es = 1.3^2; ef = -2^2;

pc = ef/ec; ps = ef/es;

tol = 1e-12;

bcinf = sqrt(ef*ec/(ef+ec));

[be,E] = pwga(la0,ef,ec,es, a, bcinf, 1, tol); % run with mode=1

ga = sqrt(be^2-ef); as = sqrt(be^2-es); ac = sqrt(be^2-ec);

It can also be computed recursively by transforming the characteristic equation into the

iteration:

γ =
√

−pcαc psαs − γ(pcαc + psαs)coth(2γa)

γn+1 =
√

−pcαcn psαsn − γ(pcαcn + psαsn)coth(2γna)

The magnetic field was computed and plotted by the code,

psi = atanh(-pc*ac/ga)/2- atanh(-ps*as/ga)/2 + j*pi/2

x = linspace(-3,3,601)*a;

Hy = cosh(ga*a - psi).*exp(as*(x+a)).*(x<-a) + ...

cosh(ga*a + psi).*exp(-ac*(x-a)).*(x>a) + ...

cosh(ga*x + psi).*(abs(x)<=a);

fill([-1, 1, 1, -1], [-2 -2, 4, 4], [0.9, 0.9, 0.9]);

hold on

plot(x/a, imag(Hy), ’linewidth’,2); % because cosh(ga*x+psi) = imaginary

The right graph in Fig. 10.10.2 shows the β−a dispersion relationship, with the half-width

varying over 0 < a < ∞, as β varies over ∞ > β > βc,∞, with βc,∞/k0 = 6.0849. The

graph was generated by the following code, where for plotting convenience, the solution

was evaluated only over the interval amin ≤ a ≤ amax, with k0amin = 0.1 and k0amax = 0.5.
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Fig. 10.10.3 DMD region-2, TM1 mode.

amin = 0.1; amax = 0.5;

a = linspace(amin, amax, 101);

for i=1:length(a),

[be(i),Err(i)]= pwga(la0,ef,ec,es, a(i), bcinf, 1, tol);

end

be = abs(real(be)); % make sure beta is positive real

plot(a,be, amax,bcinf, ’o’, ’markersize’,8);

hold on

plot(a1,be1,’.’, ’markersize’,20); % here a1 = 0.15, be1 = 7.8273

xlim([0,0.5]); ylim([1,9])

Region – 3

In this case, it follows from Eqs. (10.10.3) and (10.10.4) that, k0
√
εc < βs,∞ < βc,∞.

Therefore, the solution that had been excluded in region-2, that would have, |ps|αs −
γ < 0, is now allowed and will have a range, k0

√
εc ≤ β < βs,∞. Moreover, because

|pc,s|αc,s − γ < 0, then Eq. (10.10.5) implies that ψ must be real-valued, and hence,

this is a TM0 even-like mode. Setting β = k0
√
εc, defines a lower cutoff thickness, given

exactly by Eq. (10.10.12).

Similarly, the solution that satisfies, |pc,s|αc,s−γ > 0, also exists, and as in region-2,

it will have range, βc,∞ < β <∞, and will be a TM1 odd-like mode. To summarize, there

are two types of solutions:

TM1 with no cutoff, 0 < a <∞, βc,∞ < β <∞
TM0 with lower cutoff, acutoff < a <∞, k0

√
εc < β < βs,∞

Example 10.10.3: This example is also from [939] and has parameters, εc = 1.92, εs = 1.82,

εf = −22, k0a = 0.3. It belongs to region-3 because |pc| = 1.1080, |ps| = 1.2346,

|ps| − |pc| = 0.1265 < 1. The calculated asymptotic values for the TM0 and TM1 modes
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are, βs,∞/k0 = 4.1295, βc,∞/k0 = 6.0849, and the lower cutoff, k0acutoff = 0.0506. The

calculated wavenumbers are,

mode β/k0 γ/k0 αc/k0 αs/k0 ψ E

TM0 3.1487 3.7302 2.5109 2.5835 −0.1556 1.1102×10−16

TM1 6.4132 6.7178 6.1253 6.1554 0.6215+ jπ/2 1.1102×10−16

The MATLAB code is identical to that of Example 10.10.1 for the TM0 mode, and to that

of Example 10.10.2 for the TM1 mode. The following recursions can also be used for the

calculation,

TM0 : γn+1 = −γ
2
n + pcαcn psαsn
pcαcn + psαsn

tanh(2γna)

TM1 : γn+1 =
√

−pcαcn psαsn − γ(pcαcn + psαsn)coth(2γna)
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Fig. 10.10.4 DMD region-3, TM0 and TM1 modes.

Fig. 10.10.4 shows the magnetic field profiles and the β−a relationships, displaying also

the cutoff point, the specific solutions for k0a = 0.3, and the asymptotic values. ⊓⊔

Region-3 is the most relevant case in practice, and in fact, as we shall see in Sec. 10.11,

the TM0 mode becomes in the lossy case the so-called long-range surface plasmon po-

lariton (LR-SPP) mode that has received a lot of attention in the literature [958,977].

Region – 4

In region-4, because |pc| ≤ |ps| ≤ 1, neither metal-dielectric interface can support a

separate surface plasmon because both β2
s,∞, β2

c,∞ are negative. Nevertheless, for suf-

ficiently narrow widths, there is a solution. Because αc ≤ αs ≤ γ, it follows that

|pc,s|αc,s − γ < 0, and therefore from Eq. (10.10.8), the solution will be a TM0 mode.

Eqs. (10.10.2) and (10.10.3) are automatically satisfied and impose no further restric-

tions on the range of β. Thus, β ranges over, k0
√
εc ≤ β < ∞. Over this range, we may

think of Eq. (10.10.6) as defining the width a as a function of β, indeed,

a = 1

4γ
ln

[(

γ+ |pc|αc
)(

γ+ |ps|αs
)

(

γ− |pc|αc
)(

γ− |ps|αs
)

]

≡ F(β) (10.10.15)
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This function has the property that, starting at β = k0
√
εc with a = acutoff of

Eq. (10.10.12), it first increases up to a maximum value, say, amax at some β = βmax,

and then decreases to zero for β > βmax. Therefore, we may distinguish two solution

branches:

(lower branch) , k0
√
εc ≤ β ≤ βmax , acutoff ≤ a ≤ amax

(upper branch) , βmax ≤ β <∞ , amax ≥ a > 0
(10.10.16)

The maximum point, βmax, amax, can easily be determined using MATLAB’s built-

in function, fminbnd. Once βmax is known, the two solutions can be found using the

function, pwga, by initializing it above and below βmax.

Example 10.10.4: This example, from [939], is defined by the parameters, εc = 2.22, εs = 2.12,

εf = −22, k0a = 0.15, and has |pc| = 0.8264, |ps| = 0.9070, and k0acutoff = 0.0341, and

imaginary βs,∞/k0 = 6.5593j, βc,∞/k0 = 4.8008j.

The maximum point is, βmax/k0 = 4.2090 and k0amax = 0.1759, and was calculated by

the following MATLAB code, which defines the function F(β) and passes its negative into

the fminbnd function, with a search interval [
√
εc,∞), where ∞ is numerically replaced

by the inverse of the machine epsilon,

k0 = 1; la0 = 2*pi/k0; a = 0.15;

ec = 2.2^2; es = 2.1^2; ef = -2^2;

pc = ef/ec; ps = ef/es;

ga = @(b) sqrt(b.^2 - ef); % auxiliary functions

ac = @(b) sqrt(b.^2 - ec);

as = @(b) sqrt(b.^2 - es);

F = @(b) 1/4./ga(b) .* log((ga(b)-pc*ac(b)).*(ga(b)-ps*as(b))./...

(ga(b)+pc*ac(b))./(ga(b)+ps*as(b)));

bmax = fminbnd(@(b) -F(b), sqrt(ec), 1/eps);

amax = F(bmax);

With βmax at hand, we search above and below it for the TM0 solutions corresponding to

the value k0a = 0.15. This is implemented by the code segment,

tol = 1e-12;

[be1,E1] = pwga(la0,ef,ec,es, a, bmax/2, 0, tol); % lower

be1 = abs(real(be1));

ga1 = sqrt(be1^2-ef); as1 = sqrt(be1^2-es); ac1 = sqrt(be1^2-ec);

[be2,E2] = pwga(la0,ef,ec,es, a, bmax*2, 0, tol); % upper

be2 = abs(real(be2));

ga2 = sqrt(be2^2-ef); as2 = sqrt(be2^2-es); ac2 = sqrt(be2^2-ec);

[Ptot,Pf,Pc,Ps] = pwgpower(a,ef,ec,es,[be1; be2], 0); % transmitted powers

The computed values were,

mode β/k0 γ/k0 αc/k0 αs/k0 ψ E

lower 2.9271 3.5452 1.9309 2.5835 −0.0469 1.1102×10−16

upper 6.9626 7.2441 6.6059 6.6383 −0.1053 7.6494×10−14



10.11. DMD Configuration – Lossy Case 467

Using the function, pwgpower, the above code segment also calculates the transmitted

powers within each medium, as well as the total power for the two solutions,

mode Ptot Pf Pc Ps

lower 0.1780 −0.2420 0.1964 0.2236

upper −0.1570 −0.7937 0.2520 0.3847

As noted in [939], the total power is negative for the upper mode, implying that it has

negative group velocity. See Refs. [961–976] for more on the issue of backward waves and

negative group velocity in plasmonic waveguides.

Fig. 10.10.5 shows the corresponding magnetic field profiles computed from Eq. (10.10.10),

as well as the β−a dispersion relationship, with the above computed points included.
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Fig. 10.10.5 DMD region-4, upper and lower TM0 modes.

10.11 DMD Configuration – Lossy Case

We assume now that the metal film is lossy, εf = −εR − jεI, with εR > 0 and εI > 0.

The dielectric claddings will be assumed to be lossless with εc ≥ εs > 0. We will also

assume that εR > εc ≥ εs, which is satisfied by typical metals and typical dielectrics in

the optical and infrared regimes.

The presence of losses causes β to develop a negative imaginary part, β = βR − jβI,
with the wave attenuating like, e−jβz = e−jβRze−βIz, as it propagates in the positive z-

direction. The effective index, propagation length, and propagation loss in dB/m are

defined by (βI is in units of nepers/m),

neff = Re(β)

k0

= βR
k0

, L = − 1

2 Im(β)
= 1

2βI
, dB = 20 log10(e)βI (10.11.1)

We will discuss the impact of losses, as well as the impact of asymmetry (εc �= εs),
on the two basic plasmonic modes, the even-like TM0 and the odd-like TM1 modes.

These modes have drastically different behavior as the film thickness is varied, with

the TM0 mode having an increasing propagation length as the film width decreases, while
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the TM1 mode has a decreasing propagation length. Because of this property, the TM0

and TM1 modes are called the long-range (LRSP) and short-range (SRSP) surface plasmon

modes. Equivalently, the propagation losses, quantified by the value of βI, tend to zero

for the LRSP mode, and to infinity for SRSP, as the film width tends to zero for symmetric

guides (for asymmetric ones, there is a lower cutoff width).

A tradeoff to the LRSP property, however, is that as the film width becomes smaller

and the propagation length longer, the guided wave becomes less confined laterally,

penetrating more deeply into the dielectric claddings. We discuss this below.

The properties of long-range surface plasmons in DMD waveguides have been re-

viewed by Berini [958] with an extensive bibliography, including the impact of asym-

metry. Another review is [977] and earlier [953]. Some of the earliest references on

long-range surface plasmons are [933–938], on which we have based some of our com-

putational examples.

10.12 Symmetric DMD Waveguides

We begin with the symmetric case (εc = εs) for which the TM0 and TM1 modes are ex-

actly even or odd. The characteristic equations (10.1.22) can be written in the equivalent

forms:

γ− pcαc
γ+ pcαc

= e2γa+2ψ =

⎧

⎪⎨

⎪⎩

e2γa , ψ = 0 , TM0 mode, even , (LRSP)

−e2γa , ψ = jπ

2
, TM1 mode, odd , (SRSP)

(10.12.1)

pcαc
γ

= − tanh(γa+ψ)=

⎧

⎪⎨

⎪⎩

− tanh(γa) , ψ = 0 , (LRSP)

− coth(γa) , ψ = jπ

2
, (SRSP)

(10.12.2)

The even or odd labeling refers to the transverse magnetic field,

Hy(x)=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H0 cosh(γx+ψ) , |x| ≤ a
H0 cosh(γa+ψ)e−αc(x−a) , x ≥ a
H0 cosh(γa−ψ)eαc(x+a) , x ≤ −a

(10.12.3)

The reduced losses for the LRSP case can be intuitively understood by noting that

the ohmic losses are due to the longitudinal electric field Ez(x), which has the opposite

symmetry than Hy(x), and it is odd for the LRSP mode, thus, having a zero crossing

within the metal film reducing its strength.

A very efficient way of solving the characteristic equations (10.12.2) is by turning

them into the following iterative algorithm, which converges extremely fast, requiring

very few iterations, like 5–6,

αc = − 1

pc
γ tanh(γa+ψ) ⇒

⎧

⎪⎪⎨

⎪⎪⎩

γn =
√

α2
c,n + k2

0(εc − εf)

αc,n+1 = − 1

pc
γn tanh(γna+ψ)

(10.12.4)
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The iteration can be initialized atαc,0 = 0. In fact, just one step of the iteration pro-

vides an excellent approximation [977] and results in a simple closed-form expression.

Indeed, from αc,0 = 0, we have, γ0 =
√

α2
c,0 + k2

0(εc − εf) = k0
√
εc − εf , and the next

αc and corresponding β are,

αc1 = − 1

pc
γ0 tanh(γ0a+ψ)

β =
√

k2
0εc +α2

c1 = k0

√
√
√
√εc +

ε2
c

ε2
f

(εc − εf) tanh2
(

k0a
√
εc − εf +ψ

)

or, specifically, in the LRSP and SRSP cases, (ψ = 0 , ψ = jπ/2),

β = k0

√
√
√
√εc +

ε2
c

ε2
f

(εc − εf) tanh2
(

k0a
√
εc − εf

)

(LRSP)

β = k0

√
√
√
√εc +

ε2
c

ε2
f

(εc − εf) coth2
(

k0a
√
εc − εf

)

(SRSP)

(10.12.5)

The following MATLAB function, dmds, implements the iteration (10.12.4), with the

iteration stopping when two successive values of αc become closer to each other than

a specified error tolerance, such as, tol = 10−12. It has usage,

[be,E,N] = dmds(la0,ef,ec,a,mode,tol,be0); % symmetric DMD guide – iterative solution

la0 = operating wavelength, k0 = 2*pi/la0 = free-space wavenumber

ef,ec = permittivities of film and cladding/substrate

a = vector of half-widths of film, in same units as la0

mode = 0,1 for TM0 or TM1 mode

tol = computational error tolerance, default tol = 1e-12

be0 = starting search point in units of k0 - default be0 = sqrt(ec)

be = vector of propagation wavenumbers in units of k0 - size(a)

E = vector of computational errors of characteristic equation - size(a)

N = number of iterations to converge to within tol

In the limit of small thickness a, Eqs. (10.12.5) simplify further by making the small-x

approximation, tanh(x)≈ x,

β = k0

√
√
√
√εc +

ε2
c

ε2
f

(εc − εf)2 (k0a)
2 (LRSP)

β = k0

√
√
√
√εc +

ε2
c

ε2
f (k0a)2

(SRSP)

(10.12.6)

These can also be obtained by applying the same approximation, directly to the

characteristic equations (10.12.2), that is,

γa ≈ −pcαc
γ

(LRSP) and
1

γa
≈ −pcαc

γ
(SRSP) , or,
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γ2a = −pcαc (LRSP) and αc = − 1

pca
(SRSP)

For the SRSP case, substituting αc into β =
√

k2
0εc +α2

c leads to Eq. (10.12.6). For

the LRSP case, an additional step is required by writing,

−pcαc = γ2a = [

α2
c + k2

0(εc − εf)
]

a

and noting that this implies that αc is already small and order-a, and therefore, the

second-order term α2
c can be ignored on the right side, so that, −pcαc = k2

0(εc − εf)a,

αc = − 1

pc
k2

0(εc − εf)a = k0

εc(εf − εc)
εf

(k0a) (10.12.7)

resulting in Eq. (10.12.6). Making the further approximation,
√

1+ x ≈ 1+x/2, we obtain

the more explicit relationships for the real and imaginary parts of β in the LRSP case,

β = k0

√
√
√
√εc +

ε2
c

ε2
f

(εc − εf)2 (k0a)
2) ≈ k0

√
εc

⎡

⎣1+ εc(εc − εf)
2

2ε2
f

(k0a)
2

⎤

⎦ (10.12.8)

Setting β = βR − jβI and εf = −εR − jεI, and noting that,

(εc − εf)2

ε2
f

=
ε∗2
f (εc − εf)2

|εf |4
=
(|εf |2 − εcε∗f

)2

|εf |4
=
(|εf |2 + εcεR − jεcεI

)2

|εf |4

=
(|εf |2 + εcεR

)2 − ε2
cε

2
I − 2jεcεI

(|εf |2 + εcεR
)

|εf |4

where |εf |2 = ε2
R + ε2

I , we obtain the real and imaginary parts of β [938],

βR = k0

√
εc

[

1+
(|εf |2 + εcεR

)2 − ε2
cε

2
I

2|εf |4
εc(k0a)

2

]

βI = k0

√
εc
ε2
cεI

(|εf |2 + εcεR
)

|εf |4
(k0a)

2

(LRSP) (10.12.9)

The long-range property follows from the fact that βI tends to zero for small a.

This remarkable property comes with the tradeoff that as a decreases and the range

increases, the wave becomes less confined laterally. This follows from Eq. (10.12.7)

which shows that the lateral decay constant αc also goes to zero with a. Its real and

imaginary parts can be given explicitly by,

αc = k0

εc
(|εf |2 − εcε∗f

)

|εf |2
(k0a)= k0

εc
(|εf |2 + εcεR − jεcεI

)

|εf |2
(k0a) (10.12.10)

The factor, |εf |2+ εcεR, is positive since we assumed εR > 0, therefore, both βI and

the real-part of αc are non-negative, as required for stability and lateral confinement.
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For the short-range mode, both βI and the real part of αc increase like 1/a, result-

ing in shorter propagation distances, but more confinement. These follow from the

approximation (10.12.6), as a→ 0,

β ≈ αc = − εc
εfa

= k0
εc(εR − jεI)
|εf |2(k0a)

(SRSP) (10.12.11)

Example 10.12.1: This example is from [977] and demonstrates the primary features of the

LRSP and SRSP modes. The operating wavelength is 775 nm, the metal film is gold with

εf = −23.5 − 1.69j,† surrounded by air, εc = εs = 1, and the film thickness 2a is varied

over the range 1 ≤ 2a ≤ 210 nm. Fig. 10.12.1 shows the effective index neff = βR/k0 as a

function of a for both the LR and SP modes, as well as the propagation length L = 1/(2βI)

in units of μm.
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Fig. 10.12.1 Effective index and propagation length of long and short-range modes.

The graphs were generated with the help of the function, dmds, by the MATLAB code,

la0 = 775; k0 = 2*pi/la0; ec = 1; ef = -23.6 - 1.69*j;

pc = ef/ec;

bcinf = sqrt(ef*ec/(ef+ec)); % asymptotic value

ninf = real(bcinf);

Linf = -1/2/k0./imag(bcinf)/1000; % units of microns

w = 1:210; a = w/2; % film thicknesses

tol = 1e-12; % error tolerance

for i = 1:length(w)

[be0(i), E0(i), N0(i)] = dmds(la0,ef,ec,a(i),0,tol); % LRSP

[be1(i), E1(i), N1(i)] = dmds(la0,ef,ec,a(i),1,tol); % SRSP

end

% [be0, E0, N0] = dmds(la0,ef,ec,a,0,tol); % vectorized computation

neff0 = real(be0); L0 = -1/2/k0./imag(be0)/1000; % LRPP

neff1 = real(be1); L1 = -1/2/k0./imag(be1)/1000; % SRSP

†at 775 nm, the DRUDE function produces, εf = −18.57− 2.008j.
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figure; plot(w,neff0,’-’, w,neff1,’--’, w(end),ninf,’s’); % eff. index

figure; semilogy(w,L0,’-’, w,L1,’--’, w(end),Linf,’s’); % propag. length

g0 = sqrt(ec-ef);

be0a = sqrt(ec + g0^2/pc^2 * tanh(g0*k0*a).^2); % approximation

be1a = sqrt(ec + g0^2/pc^2 * coth(g0*k0*a).^2);

diff0 = norm(be0 - be0a); % diff0 = 4.7377e-04

diff1 = norm(be1 - be1a); % diff1 = 0.0076

Because of the symmetric geometry, LRSP and SRSP both converge to the same asymptotic

value for large a,

βc,∞
k0

=
√

εcεf

εc + εf
= 1.0218− 0.0016j , neff = βR

k0

= 1.0218 , L = 1

2βI
= 38.3023 μm

The code also computes the approximate solutions using Eq. (10.12.5), but does not plot

them, because they are visually indistinguishable from the exact ones. As a measure of

the approximation accuracy, the norms of the difference between the vector of the exact

βs and the approximate ones, ‖β− βapprox‖, was computed for the two cases – the values

are shown in the comments. Fig. 10.12.2 shows the computational errors as defined in the

function dmds,

E =
∣
∣pcαc + γ tanh(γa)

∣
∣ (LRSP)

E =
∣
∣pcαc + γ coth(γa)

∣
∣ (SRSP)
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Fig. 10.12.2 Computational error.

The error values are small but not quite as small as the specified tolerance, tol = 10−12, be-

cause tol measures the closeness of two successive iterates ofαc, not the value of the error

E. The norms of the error vectors were ‖E‖ = 8.0235×10−11 and ‖E‖ = 2.0993×10−10.

The function dmds also calculates the number of iterations required to converge to within

the specified error tolerance. The number of iterations for each thickness are plotted in

Fig. 10.12.3. One observes how quick the iterative method is. ⊓⊔

Example 10.12.2: This example, also from [977], illustrates the more realistic case of a gold

film at the operating wavelength of 1550 nm, with permittivity, εf = −131.9475−12.65j,†

†εf is from Palik [162], but the DRUDE function gives, εf = −103.3325− 8.1301j.
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surrounded by the often-used benzocyclobutene (BCB) polymer dielectric, with εc = εs =
1.5352. The film thickness is varied over the range 10 ≤ 2a ≤ 110 nm. The MATLAB code

is identical to that of the previous example, with the change in first two lines,

la0 = 1550; k0 = 2*pi/la0;

ec = 1.535^2; ef = -131.9475 - 12.65j;

Fig. 10.12.4 shows the effective index and the propagation loss measured in dB/mm, and

computed by the formula, dB = 20 log10(e)βI = 8.68589βI . The approximations (10.12.5)

are still visually indistinguishable from the exact values, and are not plotted, nor are the

number of iterations which are of the order of 4–5.
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Fig. 10.12.4 Effective index and propagation length of long and short-range modes.

Fig. 10.12.5 shows the computational error for the LRSP and SRSP modes, and on the right,

the lateral penetration depth into the two dielectric sides defined by Lc = 1/Re(αc). We

observe the basic tradeoff of DMD guides that even though the gold film has thickness of

nanometers, and the propagation loss is fairly small, the fields are not very well confined

laterally, penetrating at hundreds of micro-meters into the dielectrics. In this regard, MDM

guides provide perhaps a better solution that results in much better lateral confinement,

at the expense of shorter propagation distances. ⊓⊔
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Fig. 10.12.5 Computational error.

Example 10.12.3: To illustrate the basic tradeoff between propagation distance and lateral

confinement, we compare three waveguides, all operating at 1550 nm wavelength: (a) the

LRSP mode of the DMD guide of the previous example with a 20 nm gold film embedded

in BCB polymer, (b) the complementary MDM waveguide with a 50 nm BCB film and gold

claddings, and (c) a surface plasmon on a single BCB-gold interface. For each case, we

calculateβ,αc, and the propagation attenuation in dB/mm, dB = 8.686βI , the propagation

distance, L = (2βI)
−1, and the lateral penetration depth into the dielectric side, Lc =

1/Re(αc). The following table shows the results.

guide β/k0 αc/k0 dB/mm L (μm) Lc (μm)

DMD 1.537673− 0.000042j 0.090632− 0.000721j 1.50 2904.47 2.72

single 1.548762− 0.001337j 0.206246− 0.010042j 47.09 92.23 1.20

MDM 2.102705− 0.024595j 11.690006+ 0.536637j 865.97 5.02 0.02

They were computed by the following MATLAB code,

la0 = 1550; k0 = 2*pi/la0;

a1 = 20/2; a3 = 50/2; % DMD and MDM half-widths

ec = 1.535^2; ef = -131.9475-12.65j; % BCB and gold

Ec = [ec; ec; ef]; % interchange ec,ef for MDM

deb = 20*log10(exp(1)); % conversion factor to dB

tol = 1e-12; % error tolerance

be1 = dmds(la0,ef,ec,a1,0,tol); % DMD, 20 nm

be2 = sqrt(ef*ec/(ef+ec)); % single interface

be3 = pwg(la0,ec,ef,a3,be2,0,tol); % MDM, 50 nm, interchange ec,ef

be = [be1; be2; be3]; % propagation wavenumbers

ac = sqrt(be.^2 - Ec); % lateral wavenumbers

dBmm = - imag(be) * k0 * deb * 1e6; % propagation loss in dB/mm

L = -1/2/k0./imag(be)/1000; % propagation length in microns

Lc = 1/k0./real(ac)/1000; % lateral depth in microns
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num2str([be,ac],’%10.6f’)

num2str([dBmm,L,Lc], ’%10.2f’) % table

They are listed in order increasing propagation loss or decreasing propagation distance,

and decreasing lateral confinement or increasing lateral penetration. ⊓⊔

Example 10.12.4: One of the earliest investigations of LRSP and SRSP modes in symmetric DMD

guides was Kovacs [933]. The metal film was indium (In) at λ0 = 450 nm wavelength, with

permittivity εf = −20.358 − 6.019j, symmetrically surrounded by magnesium fluoride

(MgF2) dielectric with εc = εs = 1.3822 = 1.9099.

Kovacs computed the propagation parameters for both the LRSP and SRSP modes at three

film thicknesses, w = [10, 30, 50] nm, and noted their basic trends, namely, that the

propagation length increases (decreases) for the LRSP (SRSP) mode as w gets smaller, and

that both LRSP and SRSP tend to the same value (i.e., βc,∞) as w increases. The following

MATLAB code reproduces the results of [933],

la0 = 450; k0=2*pi/la0; ef=-20.358-6.019j; es=1.382^2;

tol = 1e-12;

w = [10; 30; 50];

[be0,E0,N0] = dmds(la0,ef,ec,w/2,0,tol); % LRSP

ga0 = sqrt(be0.^2 - ef); % E0 = computational error

ac0 = sqrt(be0.^2 - ec); % N0 = number of iterations

L0 = -1/2/k0./imag(be0)/1000; % units of microns

Lc0 = 1./real(ac0)/k0; % units of nm

num2str([w, real(be0), imag(be0), L0, Lc0],’%11.5f’) % make table

[be1,E1,N1] = dmds(la0,ef,ec,w/2,1,tol); % SRSP

ga1 = sqrt(be1.^2 - ef);

ac1 = sqrt(be1.^2 - ec);

L1 = -1/2/k0./imag(be1)/1000;

Lc1 = 1./real(ac1)/k0;

num2str([w, real(be1), imag(be1), L1, Lc1],’%11.5f’)

bcinf = sqrt(ec*ef/(ec+ef)); % w = inf

gcinf = sqrt(bcinf^2 - ef);

acinf = sqrt(bcinf^2 - ec);

Linf = -1/2/k0./imag(bcinf)/1000;

Lcinf = 1./real(acinf)/k0;

num2str([real(bcinf), imag(bcinf), Linf, Lcinf],’%11.5f’)

The computed values of β = βR − jβI , propagation length, L = 1/(2βI), and lateral

penetration depth into the dielectric, Lc = 1/Re(αc), are given below.
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LRSP

w (nm) β/k0 L (μm) Lc (nm)

10 1.38905− 0.00047j 76.88 512.00

20 1.42100− 0.00658j 5.44 215.87

50 1.43873− 0.01443j 2.48 177.69

∞ 1.44535− 0.02017j 1.76 167.26

SRSP

w (nm) β/k0 L (μm) Lc (nm)

10 1.86878− 0.25421j 0.14 55.68

20 1.48238− 0.04757j 0.75 130.38

50 1.45247− 0.02707j 1.32 157.60

∞ 1.44535− 0.02017j 1.76 167.26

where β = βc,∞ =
√

εcεf/(εc + εf) atw = ∞. The norm of the computational error (for the

three thicknesses) and the number of iterations to converge were ‖E0‖ = 1.5035×10−14,

N0 = 7 for the LRSP case, and ‖E1‖ = 4.9127×10−15, N1 = 7 for SRSP. ⊓⊔

10.13 Asymmetric DMD Waveguides

The main result for asymmetric guides is that, just like the lossless case, the asymmetry

introduces a lower cutoff thickness for the TM0, LRSP, mode, and that the propagation

length increases dramatically as the thickness approaches the cutoff from above, but

at the expense of becoming less confined laterally. For a given film thickness, there is

a critical value of the permittivity εc that achieves much larger propagation lengths as

compared to the symmetric case (εc = εs) of the same thickness. Of course, one could

also lower the thickness of the symmetric case to increase the propagation length, as

we saw in the previous section.

To simplify the discussion, we will assume that the metal, εf = −εR − jεI, where

εR > 0, εI ≥ 0, and lossless dielectrics, εc, εs > 0, satisfy the condition εR > εc ≥ εs, as

well as the region-3 condition of the lossless case, that is,

εR
εs
≤ εR
εc
+ 1 (10.13.1)

which implies the following range restrictions on εs, εc, also given in Eq. (10.10.13),

εs ≤ εc ≤ εRεs
εR − εs

⇔
εRεc
εR + εc

≤ εs ≤ εc (10.13.2)

We recall from the region-3 discussion that in the lossless case (εf = −εR), the

quantity βs,∞ is equal to εRεs/(εR − εs), and that Eq. (10.13.2) implies the existence of

two modes: a TM0 mode with range, k0
√
εc ≤ β < βs,∞, with a lower thickness cutoff,

acutoff ≤ a <∞, and a TM1 mode with range, β ≥ βc,∞, and no cutoff. The cutoff width
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is realized at β = k0
√
εc and is given by Eq. (10.10.12),

2k0acutoff = 1
√

εc + |εf |
atanh

⎡

⎣
|εf |√εc − εs
εs
√

εc + |εf |

⎤

⎦ , βcutoff = k0

√
εc (10.13.3)

For a small difference, 0 ≤ (εc − εs)≪ εc, εs, we obtain a simpler expression, using

the approximation atanh(x)≈ x,

2k0acutoff =
|εf |√εc − εs
εs |εf − εc|

(10.13.4)

We will see below that this approximation is also valid in the lossy case with εf being

replaced by its complex-valued version, εf = −εR − jεI.
In the lossy case, because β is complex, β = βR − jβI, one can no longer set β =

k0
√
εc in the characteristic equation to find the cutoff width. Instead, because the cutoff

corresponds to infinite propagation length, one sets βI = 0, or, β = βR, to obtain a

system of two equations (the real and imaginary parts of the characteristic equation) in

the two unknowns, acutoff, βR,

tanh(2γacutoff)= −γ(pcαc + psαs)
γ2 + pcαcpsαs

,

γ =
√

β2
R + k2

0(εR + jεI)

αc =
√

β2
R − k2

0εc

αs =
√

β2
R − k2

0εs

(10.13.5)

These can be solved numerically. However, a simple estimate can be obtained by

simply setting βR = k0
√
εc and taking the complex absolute value of the solution,†

wcut = 2acutoff ≈ 1

k0

∣
∣
∣
∣
∣

1
√
εc − εf

atanh

(

−εf√εc − εs
εs
√
εc − εf

)∣
∣
∣
∣
∣

(10.13.6)

This provides a better estimate than Eq. (10.13.4), which is valid for thin films. The

MATLAB function, dmdcut, implements Eq. (10.13.6),

wcut = dmdcut(la0,ef,ec,es); % cutoff film width (vectorized in ec) – same units as λ0

Next, we discuss the numerical solution of the characteristic equation (10.1.13) for

an asymmetric DMD guide of a given film width 2a,

tanh(2γa)= −γ(pcαc + psαs)
γ2 + pcαcpsαs

(10.13.7)

Once this is solved, one can calculate theψ parameter from Eq. (10.1.15), by setting

m = 0, or m = 1, for the LRSP or SRSP modes,

ψ = 1

2
atanh

(

−pcαc
γ

)

− 1

2
atanh

(

−psαs
γ

)

+ 1

2
jmπ (10.13.8)

†Alternatively, one can simply set εf = −εR in Eq. (10.13.6), which would lead back to (10.13.3), see for

example [936].
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and determine the transverse magnetic field,

Hy(x)=

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

H0 cosh(γx+ψ) , |x| ≤ a

H0 cosh(γa+ψ)e−αc(x−a) , x ≥ a

H0 cosh(γa−ψ)eαs(x+a) , x ≤ −a

(10.13.9)

Eq. (10.13.7) can be solved efficiently using the following iteration proposed in [959],

for n = 0,1,2, . . . , do:

Â = −γn coth(2γna)±
√

B2
n + γ2

n

(

coth2(2γna)−1
)

B̂ =
√

γ2
n + 2γnÂ coth(2γna)+Â2

αc = 1

pc
(Â+ B̂)

γn+1 =
√

α2
c + k2

0(εc − εf)

αs =
√

γ2
n+1 + k2

0(εf − εs)

Bn+1 = 1

2
(pcαc − psαs)

(10.13.10)

where ± correspond to the TM0 and TM1 modes, respectively. The iteration may be

initialized at β = k0
√
εc. For a symmetric guide, we have B = 0 and the iteration

reduces to that of Eq. (10.12.4). This follows from the hyperbolic trigonometric identity,

− cosh(2x)±
√

coth2(2x)−1 = − coth(2x)± 1

sinh(2x)
=
⎧

⎨

⎩

− tanh(x) , + sign

− coth(x) , − sign

The iteration (10.13.10) can be justified by defining the following quantities A,B,

A = 1

2
(pcαc + psαs)

B = 1

2
(pcαc − psαs)

⇒
αc = 1

pc
(A+ B)

pcαc psαs = A2 − B2

and rewriting the characteristic equation in the form,

tanh(2γa)= −γ(pcαc + psαs)
γ2 + pcαcpsαs

= − 2γA

γ2 +A2 − B2

and then, solving it for A in terms of B, or, for B in terms of A,

A = −γ coth(2γa)±
√

B2 + γ2
(

coth2(2γa)−1
)

B =
√

γ2 + 2γA coth(2γa)+A2

(10.13.11)
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The following MATLAB function, dmda, implements the iteration (10.13.10), with the

iteration stopping when two successive values of γn become closer to each other than

a specified error tolerance, such as, tol = 10−12, that is, |γn+1 −γn| < tol. The function

accepts a vector of widths a, and calculates the corresponding vector of wavenumbers

β. It has usage,

[be,E,N] = dmda(la0,ef,ec,es,a,mode,tol,be0); % asymmetric DMD guide – iterative solution

la0 = operating wavelength, k0 = 2*pi/la0 = free-space wavenumber

ef,ec,es = permittivities of metal film, dielectric cladding and substrate

a = vector of half-widths of film in the same units as la0

mode = 0,1 for TM0 or TM1 mode

tol = computational error tolerance, default tol=1e-12

be0 = starting search point in units of k0 - default be0 = sqrt(ec)

be = vector of propagation constants in units of k0 - size(a)

E = vector of computational errors of the characteristic equation - size(a)

N = number of iterations to convergence, until norm(ga_new - ga) < tol

with the computational error defined as,

E =
∣
∣
∣
∣
∣

tanh(2γa)+γ(pcαc + psαs)
γ2 + pcαcpsαs

∣
∣
∣
∣
∣

(10.13.12)

As discussed in [607], the existence of the cutoff for the LRSP mode, and the proper-

ties of the solutions near it, can be demonstrated by deriving an approximate analytical

solution of the characteristic equation in the case of thin films and small permittivity

difference (εc − εs). To simplify the algebra, we will work with units of k0 = 1, and

restore k0 at the end. Denoting the normalized width by w = 2k0a, the characteristic

equation reads

tanh(γw)= −γ(pcαc + psαs)
γ2 + pcαcpsαs

,

γ =
√

β2 − εf =
√

β2 + εR + jεI
αc =

√

β2 − εc
αs =

√

β2 − εs

(10.13.13)

Because we are interested in the LRSP mode near cutoff, we will study the solution

near β ≈ √εc, or, equivalently, when αc is small. Because, αs =
√

α2
c + εc − εs, if we

assume that (εc−εs)≪ 1, then, αs will also be small. On the other hand, γ is not small

because γ =
√

α2
c + εc − εf , and |εf | is typically much larger than εc. If we now assume

that the normalized width w = 2k0a is small, w ≪ 1, or, more accurately, |γw| ≪ 1,

we may use the approximation, tanh(x)≈ x, to simplify the characteristic equation,

tanh(γw)≈ γw = −γ(pcαc + psαs)
γ2 + pcαcpsαs

⇒ w = − pcαc + psαs
γ2 + pcαcpsαs

Under our assumptions, γ2 is much larger than the product αcαs, and we obtain

the further simplification,
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w = −pcαc + psαs
γ2

pcαc + psαs = −γ2w

αs
εs
+ αc
εc
= −γ

2w

εf

or,

αs
εs
= −αc

εc
− γ

2w

εf
= −αc

εc
− (α

2
c + εc − εf)w

εf

α2
s

ε2
s
=
(

αc
εc
+ γ

2w

εf

)2

= α2
c

ε2
c
+ 2αcγ

2w

εcεf
+ γ

4w2

ε2
f

α2
c + εc − εs
ε2
s

= α2
c

ε2
c
+ 2αc(α

2
c + εc − εf)w
εcεf

+ (α
2
c + εc − εf)2w2

ε2
f

Ignoring all terms that involve α2
c , these reduce further to,

αs
εs
= −αc

εc
+ (εf − εc)w

εf

εc − εs
ε2
s

= −2αc(εf − εc)w
εcεf

+ (εf − εc)
2w2

ε2
f

(10.13.14)

Let us define the quantities,

A = εf − εc
εf

=
(εf − εc)ε∗f

|εf |2
=
|εf |2 − εcε∗f

|εf |2
= |εf |2 + εcεR − jεcεI

|εf |2
(10.13.15)

w2
c =

εc − εs
ε2
s |A|2

= (εc − εs)|εf |2
ε2
s |εf − εc|2

⇒ wc =
√
εc − εs |εf |
εs |εf − εc|

(10.13.16)

Setting wc = 2k0acutoff, we see that Eq. (10.13.16) is the same as (10.13.4). Noting

that, (εc − εs)/ε2
s = |A|2w2

c = AA∗w2
c , and canceling a common factor of A from the

second of Eqs. (10.13.14), we may rewrite them in the form,

αs
εs
= −αc

εc
+Aw

A∗w2
c = −

2αcw

εc
+Aw2

(10.13.17)

and solve them for αc,αs,

αc
εc
= 1

2w
(Aw2 −A∗w2

c)

αs
εs
= 1

2w
(Aw2 +A∗w2

c)

(10.13.18)
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and after separating their real and imaginary parts, αc = αcR − jαcI, αs = αsR − jαsI,

αcR
εc

= AR
2w
(w2 −w2

c) ,
αcI
εc

= AI
2w
(w2 +w2

c)

αsR
εs

= AR
2w
(w2 +w2

c) ,
αsI
εc

= AI
2w
(w2 −w2

c)

(10.13.19)

where AR and AI are the real and imaginary parts of A, defined from Eq. (10.13.15) by,

A = AR − jAI , AR =
|εf |2 + εcεR

|εf |2
= 1+ εcεR

|εf |2
, AI = εcεI

|εf |2
(10.13.20)

Using these results, we can now obtain an approximation to the propagation wave

number β = βR − jβI,

β =
√

εc +α2
c =

√
εc

√

1+ α
2
c

εc
≈ √εc

(

1+ α2
c

2εc

)

= √εc
(

1+ εc
2

α2
cR −α2

cI − 2jαcRαcI

ε2
c

)

Using Eqs. (10.13.19), the real and imaginary parts are, after restoring the factor k0,

βR = k0

√
εc

[

1+ εc
2

A2
R(w

2 −w2
c)

2−A2
I (w

2 +w2
c)

2

4w2

]

βI = k0

√
εc εc

ARAI(w
4 −w4

c)

4w2

(10.13.21)

where, w = 2k0a, and, wc = 2k0acutoff. For a symmetric guide (εc = εs), we have

wc = 0, and Eqs. (10.13.21) reduce to (10.12.9).

Although the approximations (10.13.19) and (10.13.21) are valid for small w and

small wc, they capture the essential properties near cutoff. Above cutoff, both βI and

αcR are positive as they should be for a proper solution (αsR is positive, too). As cutoff

is approached from above, βI tends to zero resulting in infinite propagation length,

but at the same time the lateral confinement decreases since αcR also tends to zero.

Below cutoff, bothαcR and βI become negative, resulting in unbounded waves. We note

also that at cutoff, w = wc, the real part βR is somewhat less than k0
√
εc, as has been

observed in [937].

Example 10.13.1: The nomenclature “long-range mode” originates with Sarid [935]. Here, we

reproduce the results of that reference. The DMD guide, operated at λ0 = 632.8 nm,

consists of a 20-nm silver film of permittivity, εf = (0.0657− 4j)2= −15.9957− 0.5256j,

surrounded by dielectrics εs = 1.52 = 2.25 and εc = 1.552 = 2.4025.

The cutoff thickness calculated from Eq. (10.13.6) is wcutoff = 2acutoff = 18.0929 nm.

Therefore, the chosen thickness of 20 nm, lies close to the cutoff, and we expect long

propagation lengths for the LRSP mode, and poor lateral confinement. Indeed, the calcu-
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lated propagation parameters are given below and agree closely with those of [935],

LRSP SRSP

β/k0 1.550707− 0.000164j 2.184165− 0.035423j

γ/k0 4.290002+ 0.061199j 4.557045+ 0.040691j

αc/k0 0.047132− 0.005394j 1.539269− 0.050264j

αs/k0 0.393310− 0.000646j 1.587985− 0.048722j

ψ −0.3525− 0.0131j 0.0249+ 1.5716j

error, E 1.0745×10−10 1.2194×10−14

iterations, N 34 5

L = 1/(2βI) 307.15 μm 1.42 μm

Lc = 1/αcR 2136.82 nm 65.43 nm

Ls = 1/αsR 256.07 nm 63.42 nm

We note the large value of L for the LRSP case, but also its large lateral penetration depth

Lc (relative to the film width). By contrast, the propagation lengths of the single-interface

plasmons at the s−f and c−f interfaces are much shorter:

βc,∞
k0

=
√

εcεf

εc + εf
= 1.681224− 0.004876j , L = − 1

Im(βc,∞)
= 10.33 μm

βs,∞
k0

=
√

εsεf

εs + εf
= 1.617955− 0.004346j , L = − 1

Im(βs,∞)
= 11.59 μm
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Fig. 10.13.1 Magnetic field profiles, 2a = 20 nm film.

The corresponding magnetic field profiles, shown in Fig. 10.13.1, demonstrate the asym-

metry as well as the poor lateral binding of the LRSP mode. The above were generated by

the following MATLAB code.

la0 = 632.8; k0 = 2*pi/la0; a = 20/2; % la0,a in units of nm

es = 1.5^2; ec = 1.55^2; ef = (0.0657-4*j)^2;

tol = 1e-12; % error tolerance

[be0,E0,N0] = dmda(la0,ef,ec,es,a,0,tol); % LRSP
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ga0 = sqrt(be0^2 - ef); % E0 = computational error

ac0 = sqrt(be0^2 - ec); % N0 = number of iterations

as0 = sqrt(be0^2 - es);

[be1,E1,N1] = dmda(la0,ef,ec,es,a,1,tol); % SRSP

ga1 = sqrt(be1^2 - ef);

ac1 = sqrt(be1^2 - ec);

as1 = sqrt(be1^2 - es);

num2str([[be0;ga0;ac0;as0], [be1;ga1;ac1;as1]],’%12.6f’) % make table

L0 = -1/2/k0/imag(be0)/1000; % units of microns

L1 = -1/2/k0/imag(be1)/1000;

Lc0 = 1/real(ac0)/k0; Ls0 = 1/real(as0)/k0; % units of nm

Lc1 = 1/real(ac1)/k0; Ls1 = 1/real(as1)/k0

pc = ef/ec; ps = ef/es;

psi0 = atanh(-pc*ac0/ga0)/2 - atanh(-ps*as0/ga0)/2;

psi1 = atanh(-pc*ac1/ga1)/2 - atanh(-ps*as1/ga1)/2 + j*pi/2;

x = linspace(-8,8,1601)*a; % units of half-width a

Hy0 = cosh(ga0*a*k0 - psi0).*exp(as0*(x+a)*k0).*(x<-a) + ...

cosh(ga0*a*k0 + psi0).*exp(-ac0*(x-a)*k0).*(x>a) + ...

cosh(ga0*x*k0 + psi0).*(abs(x)<=a);

Hy1 = cosh(ga1*a*k0 - psi1).*exp(as1*(x+a)*k0).*(x<-a) + ...

cosh(ga1*a*k0 + psi1).*exp(-ac1*(x-a)*k0).*(x>a) + ...

cosh(ga1*x*k0 + psi1).*(abs(x)<=a);

figure;

fill([-1 1 1 -1],[0.6 0.6, 1.6, 1.6], [0.9 0.9 0.9]); hold on

plot(x/a, abs(Hy0)); % LRSP

figure;

fill([-1 1 1 -1],[0 0, 0.6, 0.6], [0.9 0.9 0.9]); hold on

plot(x/a, abs(Hy1)); % SRSP

The effect of asymmetry can also be seen by the distribution of power within the media,

P Pf Pc Ps

LRSP 360.81 −1 296.26 65.55

SRSP 66.87 −1 37.34 30.53

They were computed with the pwgpower MATLAB function and normalized to unity within

the metal,

[P,Pf,Pc,Ps] = pwgpower(a*k0,ef,ec,es,be0,0); P0 = [P,Pf,Pc,Ps]/-Pf;

[P,Pf,Pc,Ps] = pwgpower(a*k0,ef,ec,es,be1,1); P1 = [P,Pf,Pc,Ps]/-Pf;

For the LRSP case, most of the power is pushed into the εc dielectric and out of the metal,

thus, having lower power losses, and longer propagation distances.
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The estimated cutoff widths calculated from Eqs. (10.13.4) and (10.13.6) arewc = 15.1993

and wc = 18.0929 nm, respectively. If we use the latter value, wc = 18.0929, we can

compare the approximation (10.13.21) to the exact solution,

exact LRSP approximate

β/k0 1.550707− 0.000164j 1.550799− 0.000069j

γ/k0 4.290002+ 0.061199j 4.290036+ 0.061233j

αc/k0 0.047132− 0.005394j 0.049831− 0.002139j

αs/k0 0.393310− 0.000646j 0.393673− 0.000271j

The approximation is fairly good even though εc − εs is not that small. The following

MATLAB code was used for this calculation,

A = (ef-ec)/ef; AR = real(A); AI = -imag(A);

wc_app = sqrt(ec-es) / es / abs(A);

wc = abs(1/sqrt(ec-ef)*atanh(-ef*sqrt(ec-es)/es/sqrt(ec-ef)));

w = 2*a*k0;

wc_app_nm = wc_app/k0 % cutoff in units of nm

wc_nm = wc/k0

beR = sqrt(ec)*(1 + ec/2 * (AR^2*(w^2 - wc^2)^2 - ...

AI^2*(w^2 + wc^2)^2)/4/w^2);

beI = sqrt(ec)*ec * AR*AI * (w^4 - wc^4)/4/w^2;

be = beR-j*beI;

ga = sqrt(be^2 - ef); ac = sqrt(be^2 - ec); as = sqrt(be^2 - es);

num2str([[be0;ga0;ac0;as0], [be;ga;ac;as]],’%12.6f’) % make table

Finally, Fig. 10.13.2 shows the LRSP and SRSP propagation wavenumbers as functions of

the film width 2a, starting at cutoff, 2acutoff = 18.0929 nm. For large a, the LRSP β tends to

the single-interface βs,∞ of the s−f interface, while the SRSP tends to βc,∞. Superimposed

on the graph of the imaginary part, is the approximation (10.13.21) evaluated from just

below cutoff for plotting purposes.

The graphs were generated by the following MATLAB code,

w = linspace(1.01*wcut,100, 1000); % start just above wcut

[be0,E0,N0] = dmda(la0,ef,ec,es, w/2, 0,tol); % LRSP

[be1,E1,N1] = dmda(la0,ef,ec,es, w/2, 1,tol); % SRSP

wa = linspace(0.8*wcut,100,1001); % start a bit below wcut

beR = sqrt(ec) * (1 + ec/2 * (AR^2*(wa.^2 - wcut^2).^2 - ...

AI^2*(wa.^2 + wcut^2).^2)/4./wa.^2 * k0^2);

beI = sqrt(ec) * ec * AR*AI * (wa.^4 - wcut^4)/4./wa.^2 * k0^2;

figure; plot(w,real(be0),’-’, w,real(be1),’--’);

figure; semilogy(w,-imag(be0),’-’, w,-imag(be1),’-.’, wa,abs(beI),’r--’)
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Fig. 10.13.2 Real and imaginary parts of wavenumber β.

The computational errors, as measured by the norms of the error vectors E0 and E1, were

‖E0‖ = 3.1757×10−10 and ‖E1‖ = 2.0696×10−14, while the number of iterations to con-

verge (for the entire vector of widths) were N0 = 38 and N1 = 10. ⊓⊔

Example 10.13.2: To see how the approximation (10.13.21) improves for smaller permittivity

difference (εc − εs), we consider the same example, but change the permittivity εc to

the hypothetical value, εc = 1.512 = 2.2801, with all other parameters kept the same.

Figs. 10.13.3 and 10.13.4 show the magnetic field profiles of the LRSP and SRSP modes,

and the dependence of β on the film width.

The estimated cutoff width calculated from Eqs. (10.13.4) and (10.13.6) iswc = 6.7978 nm

and wc = 6.9964 nm, respectively. Using the latter value, we can compare the approxima-

tion (10.13.21) to the exact solution,

exact LRSP approximate

β/k0 1.524661− 0.000226j 1.527059− 0.000179j

γ/k0 4.280658+ 0.061312j 4.281513+ 0.061316j

αc/k0 0.210935− 0.001635j 0.227622− 0.001199j

αs/k0 0.273116− 0.001263j 0.286201− 0.000954j

Example 10.13.3: Another early reference on LRSP modes in asymmetric DMD guides is Wendler

& Haupt [936], who considered the dependence of the propagation length as a function of

the permittivity difference (εc − εs). Here, we reproduce their results. The DMD guide

consists of a silver film with permittivity εf = −18 − 0.47j at λ0 = 632.8 nm.† The sub-

strate is fused silica with εs = 2.1211, and the cover’s permittivity will be varied over the

range 1.9 ≤ εc ≤ 2.35.

The function dmdcut determines the cutoff width given the values of εc, εs. It can also

be used to find the value of εc that would make a given width w = 2a equal to the cutoff

width. This can be done by solving for εc the equation,

dmdcut(λ0, εf , εc, εs)= w (10.13.22)

†In the previous example, we used, εf = −15.9957−0.5256j, our DRUDE function gives, εf = −14.4824−
1.0946j, and the value interpolated from Palik [162] at λ0 = 632.8 nm is, εf = −15.8742− 1.0728j.
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Fig. 10.13.3 Magnetic field profiles, 2a = 20 nm film.
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Fig. 10.13.4 Real and imaginary parts of wavenumber β.

It can be implemented easily in MATLAB, for example, using the fzero function, with εs as

the initial search point,

ec = fzero(@(e) dmdcut(la0,ef,e,es)-w, es)

Fig. 10.13.5 shows the propagation lengths (in cm) for the LRSP mode, for three different

film thicknesses, w = 2a = [10,17,30] nm, as a function of the variable εc. For each

case, as εc comes close to its critical value calculated from Eq. (10.13.22) that renders w

equal to the cutoff width, the propagation length tends to infinity. To prevent clutter, the

graph has been plotted twice, with the one on the right showing the vertical lines at the

calculated critical values of εc,

εc,cut = [1.9432, 2.0177, 2.0744, 2.1702, 2.2364, 2.3362 ]

where the left three values correspond to the part of the graph to the left of the dividing

line εc = εs. The functions dmda and dmdcut assume that εc ≥ εs. The cases εc < εs
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Fig. 10.13.5 Propagation length L vs. permittivity εc.

can be handled by interchanging the roles of εc, εs. The following MATLAB code segment

generates the right graph,

la0 = 632.8; k0 = 2*pi/la0; % la0 in nm

ef = -18-0.47j; es = 2.1211;

tol = 1e-12;

ec = linspace(1.9, 2.35, 2000); % 1.9 <= ec <= 2.35

w = [10, 17, 30];

for i=1:length(ec),

eci = max(ec(i),es); esi = min(ec(i),es); % interchange es,ec when ec<es

be = dmda(la0,ef,eci,esi, w/2, 0, tol);

L(i,:) = -1/2/k0./imag(be)/1e7; % units of cm

end

L(L<0) = NaN; % ignore all negative L’s that lie beyond the ec-cutoffs

semilogy(ec, L(:,1), ’-’, ec, L(:,2), ’--’, ec,L(:,3),’-.’);

line([es,es],[10^-3, 10^3],’linestyle’,’:’); % es=ec dividing line

for i=1:length(w) % ec cutoff lines

eccut(i) = fzero(@(e) dmdcut(la0,ef,e,es) - w(i), es);

escut(i) = fzero(@(e) dmdcut(la0,ef,es,e) - w(i), es);

line([eccut(i),eccut(i)],[10^-3,10^3],’linestyle’,’:’,’color’,’r’)

line([escut(i),escut(i)],[10^-3,10^3],’linestyle’,’:’,’color’,’r’)

end

Fig. 10.13.6 shows the propagation lengths as functions of film thickness, with εs = 2.1121

and five values of εc,

εc = [2.1211, 2.1256, 2.1700, 2.2200, 2.3000]

The graphs were generated by the MATLAB code,
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Fig. 10.13.6 Propagation length L vs. film width.

es = 2.1211;

ec = [2.1211, 2.1256, 2.1700, 2.2200, 2.3000];

tol = 1e-12;

wcut = dmdcut(la0,ef,ec,es); % dmdcut is vectorized in ec

style = {’-’, ’r--’, ’:’, ’-.’, ’b--’};

for i=1:length(ec),

w = linspace(wcut(i), 50, 2001); % compute for w >= wcut only

if i==1

be = dmds(la0,ef,es, w/2, 0, tol); % use dmds when ec=es

else

be = dmda(la0,ef,ec(i),es, w/2, 0, tol);

end

L = 1/2/k0./abs(imag(be)) * 1e-7; % units of cm

semilogy(w,L,style{i});

line([wcut(i),wcut(i)],[10^-3,10^3],’linestyle’,’:’, ’color’,’r’);

end

The cutoff widths corresponding to the five εc values, calculated from Eq. (10.13.6), are,

wcut = 2acut = [0, 2.8644, 9.9815, 15.2990, 24.3452] (nm)

and have been placed on the right graph, which is the same as the left one. As the width

comes close to one of the cutoff widths, the propagation length becomes very large. ⊓⊔

10.14 Note on Computations

The characteristic equations of plasmonic waveguides are generally difficult to solve

accurately because of the complex-valued nature of the permittivity parameters. We
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have been unable to come up with a single algorithm that works robustly for both MDM

and DMD waveguides over a wide range of material parameters. Instead, we have pre-

sented a variety of solution approaches, which could be viewed as tools to be tried.

Our PWG and PWGA functions may work, but one must choose a starting point that

is near the true solution. The iterative methods that we discussed work under many

circumstances, but not always. We tried to give sufficient code examples to clarify

these methods. The plasmonic waveguide literature is somewhat lacking of published

numerical examples that could be used as benchmarks, with some notable exceptions

[933,935,936,949,951,952,959].

10.15 Sommerfeld Wire

The problem of a TM surface wave propagating along a cylindrical conductor was solved

by Sommerfeld in 1899. He showed that the finite conductivity of the conductor was

essential in localizing the wave near the surface of the conductor, while exhibiting very

low attenuation along its length [978,979,1291]. The planar version of this problem is

the Zenneck surface wave that we discussed in Sec. 7.10.

The lateral localization is not particularly good but can be improved by adding a

dielectric coating on the surface of the conductor as considered first by Harms and

studied later in detail by Goubau [980–995]—a configuration generally referred to as a

Goubau line, or a Harms-Goubau line. We discuss this further in Sec. 10.19.

Even though the attenuation along the conductor is very low, these early waveguiding

systems, envisioning propagation at long distances of tens of meters or even kilometers,

did not catch on for use at RF, primarily because of the poor lateral localization, which

could be disturbed by nearby objects, imperfections or bends along the line.

With the rapid development of terahertz applications in the past two decades, inter-

est in the Sommerfeld and Goubau lines has been revived for use at THz frequencies,

providing a viable means of waveguiding at relatively short distances (e.g., centimeters),

with low attenuation and high degree of confinement. We discuss the interplay of fre-

quency, conductor radius, and dielectric coating in Sec. 10.19.

The THz band typically spans the range of [0.1, 10] THz, or, [0.03, 3] millimeter,

and lies between the microwave and infrared/optical bands. There are a large number of

THz applications in astrophysics, remote sensing, plasma diagnostics, spectroscopy in

chemistry and biology, gas identification, complex molecular dynamics, DNA signature

detection, communications, medical imaging, and imaging for homeland security, drug

enforcement, pharmaceuticals, biosensing, and non-destructive testing in manufactur-

ing for quality and process control.

For example, Wien’s radiation law relating black body temperature and the frequency

of the maximum of the Planck spectrum is, f = 58.7891T, where f is in GHz and T in

degrees Kelvin. Thus, the Big Bang cosmic microwave background at 2.725 K peaks at

f = 160.2 GHz, which lies at the low end of the THz band; similarly, interstellar gas

clouds at temperatures of 30 K correspond to f = 1.76 THz.†

Interest in THz imaging for homeland security arises because several everyday ma-

terials, such as clothing, paper, plastics, wood, and ceramics are transparent to THz

†Some historical references on the CMB, and its data fitting, may be found in [129–137].
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waves. Medical imaging at THz is also a very promising area because THz radiation

does not have the same harmful effects as X-rays.

Several reviews and applications of THz technology may be found in the following

(very incomplete list of) references [1013–1049].

The Sommerfeld wire is an infinitely long cylindrical conductor of radius a and finite

conductivity σ, immersed in air, as shown in Fig. 10.15.1. The permittivities of air and

conductor are taken to be ǫa = ǫ0 and

jωǫc = jωǫ0 +σ ⇒ ǫc = ǫ0 − j σ
ω

(10.15.1)

with relative permittivities,

εc = ǫc
ǫ0

= 1− j σ
ωǫ0

, εa = ǫa
ǫ0

= 1 (10.15.2)

The conductivityσ is assumed to be a constant in frequency, but it can also be taken

to be frequency-dependent, as given for example by Drude’s law (see Sec. 1.12),

σ = σdc

1+ jωτ , τ = collisional time , σdc = conductivity at DC (10.15.3)

Fig. 10.15.1 Sommerfeld wire, shown in cylindrical coordinates.

Using cylindrical coordinates and assuming, with Sommerfeld, a TM wave with cylin-

drical symmetry, it follows from Eqs. (9.1.23) and (9.1.24) by setting ∂φ = 0 andHz = 0

that only the field components Ez, Eρ,Hφ will be non-zero and will be functions only of

the radial distance ρ, satisfying the equations:

1

ρ

∂

∂ρ

(

ρ
∂Ez
∂ρ

)

+ γ2Ez = 0 , γ2 =ω2μǫ− β2

Eρ = − jβ
γ2

∂Ez
∂ρ

, Hφ = 1

ηTM

Eρ = − jωǫ
γ2

∂Ez
∂ρ

(10.15.4)

where we assumed the usual t, z dependence, ejωt−jβz, and replaced ηTM = β/ωǫ.

Eqs. (10.15.4) must be solved in each region (inside and outside the conductor) using

the appropriate values of ǫ, and hence γ. The E andH tangential fields must be matched

at the surface of the conductor (i.e., at ρ = a).

The most general solution of the above cylindrical Helmholtz equation for Ez is a

linear combination of the 0th order Bessel functions of first and second kinds, J0(γρ)
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andY0(γρ), or of the Hankel functions,H
(1,2)
0 (γρ)= J0(γρ)±jY0(γρ).

† Let us denote

any of these functions, or linear combinations thereof, by C0(γρ), and note that they

satisfy the property ∂C0(γρ)/∂ρ = −γC1(γρ), that is, the corresponding 1st order

Bessel function. Then, the solutions of Eq. (10.15.4) can be written in general as,

Ez = C0(γρ) , Eρ = jβ

γ
C1(γρ) , Hφ = jk0ε

η0γ
C1(γρ) (10.15.5)

where γ2 = ω2μ0ǫ− β2 = k2
0ε− β2, and k0 = ω√μ0ǫ0, η0 =

√

μ0/ǫ0 are the vacuum

wavenumber and impedance, and ε = ǫ/ǫ0, and we assumed non-magnetic media. Note

the equivalent expression for k0ε/η0 =ω√μǫ0ε/
√

μ0/ǫ0 =ωǫ0ε =ωǫ.
Within the conductor (ρ ≤ a), only the function J0 is acceptable because Y0(u)

diverges for u = 0. Outside the conductor (ρ ≥ a), because the fields must decay to

zero for large radial distances (ρ→∞), the Hankel functions are the appropriate choice.

In particular, we have the following asymptotic expansions for large u = uR + juI,

H
(1,2)
0 (u) ≃

√

2

πu
e±j(u−π/4) =

√

2

π(uR + juI)
e±j(uR−π/4)e∓uI

H
(1,2)
1 (u) ≃

√

2

πu
e±j(u−3π/4) =

√

2

π(uR + juI)
e±j(uR−3π/4)e∓uI

(10.15.6)

thus, H
(1)
0 (u), (resp. H

(2)
0 (u)), is decaying somewhat faster than exponentially in uI,

provided uI > 0, (resp. uI < 0). With these choices, the fields inside and outside the

conductor are as follows, with A,B to be determined:

0 ≤ ρ ≤ a

Ez = AJ0(γcρ)

Eρ = A jβ
γc
J1(γcρ)

Hφ = A jk0εc
η0γc

J1(γcρ)

γc =
√

k2
0εc − β2

a ≤ ρ <∞

Ez = BH(1)0 (γρ)

Eρ = B jβ
γ
H
(1)
1 (γρ)

Hφ = B jk0εa
η0γ

H
(1)
1 (γρ)

γ =
√

k2
0εa − β2

(10.15.7)

These expressions must be multiplied by the common factor ejωt−jβz. It will turn

out that γ has positive imaginary part, thus, justifying the choice of H
(1)
1 (u) instead

of H
(2)
1 (u). The matching of the tangential fields, Ez and Hφ on the surface of the

conductor, at ρ = a, yields the two conditions:

AJ0(γca)= BH(1)0 (γa)

A
jk0εc
η0γc

J1(γca)= B jk0εa
η0γ

H
(1)
1 (γa)

(10.15.8)

†For definitions and properties of Bessel functions, see [1449] or [1481], which are available online.
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We note that the matching of the normal D-field, Dρ = ǫEρ = ǫηTMHφ = Hφβ/ω,

is equivalent to the matching of Hφ. Dividing the two sides of Eqs. (10.15.8) results in

the following characteristic equation from which the wavenumber βmay be determined:

γ =
√

k2
0εa − β2

γc =
√

k2
0εc − β2

γ

εa

H
(1)
0 (γa)

H
(1)
1 (γa)

= γc
εc

J0(γca)

J1(γca)
(10.15.9)

For all good conductors, such as copper, aluminum, and gold, and for frequencies

up to and including the THz band, the permittivity εc can be approximated accurately

by its imaginary part, which is much larger than unity:

εc = 1− j σ

ωǫ0

≈ −j σ

ωǫ0

= e−jπ/2 σ

ωǫ0

(10.15.10)

For example, we have for copper, σ = 5.75×107 siemens/m, and with f in units of THz:

εc = 1− j σ

ωǫ0

= 1− j 1.03×106

f

so for all f up to 10 THz, the imaginary part is at least 5 orders of magnitude greater than

the real part, e.g., at f = 10 THz, we have εc = 1− j 1.03×105. The same approximation

is also valid if one uses the Drude model for σ of Eq. (10.15.3) up to the THz range.

Because the wavenumber β is of the order of k0, it follows that the lateral wavenumber

γc within the conductor will also be very large and can be approximated by

γc =
√

k2
0εc − β2 ≈ k0

√
εc = k0e

−jπ/4
√

σ

ωǫ0

(10.15.11)

for example, for copper at 1 GHz, we find γc = (1 − j)4.7645×105 per meter, and at

10 THz, γc = (1− j)4.7645×107. For typical conductor radii of millimeters, it follows

that the quantity γca will be very large, e.g., for a = 1 mm, we have

γca = (1− j)4.7645×102 , at 1 GHz

γca = (1− j)4.7645×104 , at 10 THz

For such large complex arguments, the ratio J0(γca)/J1(γca) may be replaced by

J0(γca)/J1(γca)≈ j. Indeed, using the asymptotic expansions [1449], valid for large

complex argument u,

J0(u)≈
√

2

πu
cos

(

u− π
4

)

, J1(u)≈
√

2

πu
cos

(

u− 3π

4

)

we find after setting u = uR + juI and using some trigonometric identities:

J0(u)

J1(u)
= cos

(

u− π
4

)

cos
(

u− 3π
4

) = −j cos
(

uR − π
4

)

cosh
(

uI)−j sin(uR − π
4

)

sinh(uI)

cos
(

uR − π
4

)

sinh(uI)−j sin
(

uR − π
4

)

cosh(uI)
→ −js

in the limit |uI| → ∞, where s = sign(uI). Thus, the ratio is +j for large u with neg-

ative imaginary part, like γc. A more accurate approximation, which we employ in our
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numerical solution of the characteristic equation (10.15.9), follows from the asymptotic

expansions in [1449]:
J0(u)

J1(u)
≈ −js P0(u)−jsQ0(u)

P1(u)−jsQ1(u))
(10.15.12)

where again, s = sign
(

Im(u)
)

, and we defined the polynomials in 1/u:

P0(u)= 1− 9

2(8u)2
+ 3675

8(8u)4
, Q0(u)= − 1

8u
+ 75

2(8u)3

P1(u)= 1+ 15

2(8u)2
− 4725

8(8u)4
, Q1(u)= 3

8u
− 105

2(8u)3

(10.15.13)

The approximation (10.15.12) can be used whenever
∣
∣Im(u)

∣
∣ > 700. For

∣
∣Im(u)

∣
∣ ≤

700 , the built-in MATLAB function besselj gives accurate results. The MATLAB func-

tion, J01, in the EWA-toolbox, implements the evaluation of the ratio J0(u)/J1(u) for

any value of u using this improved approximation. It has usage:

y = J01(u); % evaluates the ratio J0(u)/J1(u), vectorized in u

To solve the characteristic equation (10.15.9), Sommerfeld made two approxima-

tions: first, he replaced the Bessel function ratio by J0(γca)/J1(γca)≈ j, and γc by

γc = k0
√
εc, and second, he assumed that the quantity γa is small and used the follow-

ing approximations [1449] for the Hankel functions, valid for small argument u→ 0:

J0(u)≈ 1 , Y0(u)≈ 2

π
ln

(

eCu

2

)

, H
(1)
0 (u)= J0(u)+jY0(u)≈ 2j

π
ln

(

eCu

2j

)

J1(u)≈ u

2
, Y1(u)≈ − 2

πu
, H

(1)
1 (u)= J1(u)+jY1(u)≈ − 2j

πu

and for the ratio:

H
(1)
0 (u)

H
(1)
1 (u)

≈ −u ln

(

eCu

2j

)

(10.15.14)

where C is the Euler-Mascheroni constant, C = 0.577215 . . . , so that eC = 1.78107.

With these simplifications, Eq. (10.15.9) reduces to:

−γ2a ln

(

eCγa

2j

)

= jεak0√
εc

⇒ γ2 = −
jεak0

a
√
εc

ln

(

eCγa

2j

) (10.15.15)

which Sommerfeld then proceeded to solve iteratively, for n = 0,1,2, . . . ,

γ2
n+1 = −

jεak0

a
√
εc

ln

(

eCγna

2j

)

Sommerfeld iteration

initialized at γ2
0 = −

jεak0

a
√
εc

(10.15.16)
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The approximation and iteration works well for frequencies in the GHz range. But,

as discussed by King and Wiltse [990], in the THz range the quantity γa is no longer

small enough to justify the approximation. Our approach to solving Eq. (10.15.9) is to

rewrite it in the following form:

γ = H
(1)
1 (γa)

H
(1)
0 (γa)

εaγc
εc

J0(γca)

J1(γca)
(10.15.17)

Noting that γ2
c − γ2 = k2

0(εc − εa), or, γc =
√

k2
0(εc − εa)+γ2, Eq. (10.15.17) can

then be turned into the following iteration, for n = 0,1,2, . . . ,

γc =
√

k2
0(εc − εa)+γ2

n

γn+1 = H
(1)
1 (γna)

H
(1)
0 (γna)

εaγc
εc

J0(γca)

J1(γca)

(10.15.18)

It can be initialized at β0 = 0.9k0, γ0 =
√

k2
0εa − β2

0, or something similar. The

iteration does not require any approximations beyond the use of our function J01 for

the ratio of the Bessel functions. It uses the built-in MATLAB function besselh for the

evaluation of the Hankel functions. The following MATLAB function, sommer, in the EWA

toolbox, implements the iteration (10.15.18):

[be,ga,gc,E,N] = sommer(a,f,sigma,tol,be0); % Sommerfeld wire

[be,ga,gc,E,N] = sommer(a,f,sigma,tol); % (be0 = 0.9*k0)

[be,ga,gc,E,N] = sommer(a,f,sigma); % (tol = 1e-10)

% a = wire radius in meters

% f = vector of frequencies in Hz

% sigma = wire conductivity in siemens/m, scalar or same size as f

% tol = computational tolerance, default, tol = 1e-10

% be0 = initializing vector, size(f), default, be0 = 0.9*k0

%

% be = vector of propagation wavenumbers, (rads/m), same size as f

% ga = lateral wavenumber in air, (1/m), size(f)

% gc = lateral wavenumber in conductor, (1/m), size(f)

% E = computational error of characteristic equation, size(f)

% N = number of iterations to converge, scalar, represents all f’s

To clarify the construction of the function, we list below the essential part of the code:

% ====================================================================

c0 = 299792458; % speed of light, m/sec

ep0 = 8.854187817e-12; % vacuum permittivity, farad/m

tol=1e-10; % default error tolerance

w = 2*pi*f; k0 = w/c0; % f can be a vector

ec = 1 - j * sigma./w/ep0; % sigma must be scalar or size(f)
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be0 = 0.9*k0; % initialize iteration

ga = sqrt(k0.^2 - be0.^2);

N=1;

while 1 % loop forever

gc = sqrt(ga.^2 + k0.^2.*(ec-1));

gnew = besselh(1,1,ga*a)./besselh(0,1,ga*a).*J01(gc*a).*gc./ec;

if norm(ga-gnew)<tol, break; end

N = N+1;

ga = gnew;

end

ga = gnew; % converged values

gc = sqrt(ga.^2 + k0.^2.*(ec-1));

be = sqrt(k0.^2 - ga.^2);

E = abs(ga.*besselh(0,1,ga*a)./besselh(1,1,ga*a) - gc.*J01(gc*a)./ec);

% ====================================================================

We note that the computational error is defined from the last computed γ as follows.

Setting γc =
√

k2
0(εc − εa)+γ2,

E =
∣
∣
∣
∣
∣

γ

εa

H
(1)
0 (γa)

H
(1)
1 (γa)

− γc
εc

J0(γca)

J1(γca)

∣
∣
∣
∣
∣

(10.15.19)

where E is a vector when f is a vector of frequencies.

Example 10.15.1: We consider the two examples discussed by Sommerfeld in Ref. [979]. The

first one is a copper wire with conductivity σ = 5.75×107 siemens/m, and radius of 1 mm,

at a frequency of 1 GHz. We iterated (10.15.16) five times, with the MATLAB code:

ep0 = 8.854187817e-12; % farad/m,

c0 = 299792458; % m/sec

f = 1e9; % 1 GHz

w = 2*pi*f; % rads/sec

k0 = w/c0; % k0 = 20.958450, rads/m

sigma = 5.75e7; % siemens/m

ec = 1 + sigma/j./w/ep0;

a = 1e-3; % 1 mm

C = 0.577215664901533; % Euler constant

g0 = sqrt(-j*k0/a./sqrt(ec)); % initialize

ga = g0; G=[ga]; % save iterates in G

K=5;

for i=1:K

ga = g0./sqrt(log(exp(C)*ga*a/2/j));

G = [G;ga];

end

num2str(G,’ %1.6f’) % print table of iterates

generating the iterates:
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γ0 = 0.745951− 0.308983j

γ1 = 0.147818+ 0.255109j

γ2 = 0.115696+ 0.255973j

γ3 = 0.113805+ 0.256030j

γ4 = 0.113692+ 0.256039j

γ5 = 0.113685+ 0.256040j

It is evident that after the third iteration, γ has effectively converged. Following Sommer-

feld, we use the third iterate, γ = γ3 = 0.113805+ 0.256030j, to calculate β:

β =
√

k2
0 − γ2 = 20.959705− 0.001390j ⇒ β− k0

k0

= (5.9874− 6.6330j)·10−5

which agrees with Sommerfeld’s rounded result of (β − k0)/k0 = (6.0 − 6.6j)·10−5. We

see also that the phase velocity is essentially that of c0, vph =ω/Re(β)= 0.999940c0.

The attenuation constant βI = − Im(β) can be expressed in dB/m by 8.686βI = 0.0121

dB/m, which is very low and corresponds to an effective propagation length of 1/βI =
719.34 meters along the wire. On the other hand, the lateral attenuation in air is effectively

measured by 1/ Im(γ)= 3.91 meters, which is unacceptably large. The calculation using

our function sommer is implemented by the MATLAB command:

[be,ga,gc,E,N] = sommer(a,f,sigma);

and produces comparable results:

β = βR − jβI = 20.959706− 0.001390j rads/m ⇒ β− k0

k0

= (5.9907− 6.6333j)·10−5

γ = 0.113788+ 0.256080j

γc = (4.7645− 4.7645j)·105 ⇒ γc − k0
√
εc = −(2.3054+ 2.3048j)·10−4

E = 1.94×10−13

N = 186

Sommerfeld’s second example is a platinum wire of radius of a = 2 μm and conductivity

one eighth that of copper,σ = (5.75/8)·107 siemens/m, at a vacuum wavelength ofλ0 = 1

meter, or frequency f = c0/λ0. With these changes in parameters, the results from the

function sommer are:

β = βR − jβI = 8.4603− 6.2561j rads/m

γ = 7.5210+ 7.0374j ⇒ Im(γ)−1= 0.1421 meters

γc = (1− j)·9.2231 · 104 ⇒ γca = (1− j)·0.1845

E = 1.95×10−14 , N = 278

8.686βI = 54.34 dB/m , β−1
I = 0.1598 meters

vph = ω

βR
= 0.7427c0

This solution agrees with Sommerfeld’s, β = 8.5−6.5j, which he obtained using a modified

form of his iteration that does not assume large values ofγca and does not replace the ratio

of Bessel functions by J0(γca)/J1(γca)≈ j, but still using the small-argument expansions

of the Hankel functions. ⊓⊔
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Example 10.15.2: Here, we repeat the calculations of the previous example (for the copper wire)

using the same MATLAB code with f = 10 THz. The results from the function sommer are:

β = βR − jβI = 2.0959 · 105 − 1.9187j rads/m ⇒ β− k0

k0

= (3.2780− 9.1549j)·10−6

γ = (5.3212+ 7.5573j)·102 ⇒ Im(γ)−1= 0.0013 meters

γc = (4.7645− 4.7645j)·107 ⇒ γc − k0

√
εc = −(2.3049+ 2.3048j)·102

E = 1.73×10−11 , N = 26

8.686βI = 16.67 dB/m , β−1
I = 0.5212 meters

where k0 = 2.0958×105 rads/m. The Sommerfeld iteration does converge, but to the

wrong limit, (β − k0)/k0 = (−2.9511 − 6.2879j)·10−6. We note that the lateral decay

length in air is now only, Im(γ)−1= 1.3 millimeters, and although the attenuation of 16.67

dB/m, or, 0.1667 dB/cm, is much larger than in the previous case, it is still acceptable for

propagation lengths of the order of cm.
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Fig. 10.15.2 Longitudinal electric field profiles, outside and inside the conductor.

Fig. 10.15.2 shows the profile of the electric field |Ez(ρ)| outside and inside the conductor,

normalized to unity at the surface. This normalization fixes the values of the coefficients

A,B in Eq. (10.15.8) so that AJ0(γca)= BH(1)
0 (γa)= 1. Thus, the field Ez(ρ) is,

Ez(ρ)=

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

J0(γcρ)

J0(γca)
, ρ ≤ a

H
(1)
0 (γρ)

H
(1)
0 (γa)

, ρ ≥ a
(10.15.20)

The field outside the conductor is easily computed and plotted, in the left graph, with the
help of the MATLAB function:

Ez = @(r) abs(besselh(0,1,ga*r) / besselh(0,1,ga*a));
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The graph also superimposes the asymptotic form of the Hankel function from Eq. (10.15.6),

that is, for ρ≫ a, Ez(ρ) can be approximated by,

Ez(ρ)≈ 1

H
(1)
0 (γa)

√

2

πγρ
ej(γρ−π/4)

Moreover, the 20-dB point is also included on the graph. It can be determined by using the
built-in function fzero to solve the equation |Ez(ρ)|2 = 10−2, which gives ρ = 3.3 mm.
The MATLAB code is as follows and uses the previously constructed function Ez(r):

r_dB = fzero(@(r) Ez(r)-1/10, a);

with initial search point near ρ = a. The calculation of the field inside the conductor

is, on the other hand, very difficult numerically, because the quantity γca = (4.7645 −
4.7645j)·104 is very large, and MATLAB returns the value J0(γca)= ∞. Within a narrow

layer near the surface, ρ � a, we can use the large-argument asymptotic expansion of

J0(u) from [1449] to approximate the ratio J0(γcρ)/J0(γca) in terms of the polynomials

defined in Eq. (10.15.13):

J0(γcρ)

J0(γca)
≈ P0(γcρ)+jQ0(γcρ)

P0(γca)+jQ0(γca)

√

a

ρ
ejγc(ρ−a) , for ρ � a (10.15.21)

Within this narrow layer, the ratio of the polynomials is effectively equal to unity, as is the

ratio
√

a/ρ, thus the entire expression is given by the exponential ejγc(ρ−a). We note the

rapid exponential decay,
∣
∣ejγc(ρ−a)

∣
∣ = e−αc(a−ρ), where αc = − Im(γc) is very large and

positive. The graph on the right was obtained by applying Eq. (10.15.21) over the narrow

range, 0.999a ≤ ρ ≤ a.

The rapid attenuation is essentially a manifestation of the skin effect, indeed,αc is related

to the skin depth of a good conductor αc = 1/δ = √

σωμ0/2, as discussed in Sec. 2.8.

This follows by approximating γc by

γc ≈ k0

√
εc =ω

√
μ0ǫ0

√

1− j σ
ωǫ0

≈ω√μ0ǫ0

√

−j σ
ωǫ0

= (1− j)
√
σωμ0

2
= 1− j

δ

To better visualize the fields inside and outside the conductor on the same plotting scale,

we consider a different example that has, f = 1 THz and a = 1 μm, and the same σ =
5.75×107. In this case, the solution obtained from the function sommer has parameters:

γa = 0.0008+ 0.0016j

γca = 15.0665− 15.0665j

Fig. 10.15.3 shows the field profile |Ez(ρ)| evaluated using Eq. (10.15.20), plotted on a log-

log scale and on an absolute scale. Since J0(0)= 1, the value of the field at the center of

the conductor (ρ = 0) is small but non-zero, |Ez(0)| = 1/
∣
∣J0(γca)

∣
∣ = 3.2979×10−6. ⊓⊔

Example 10.15.3: Here, we compare three cases of a copper wire with conductivity,σ = 5.75×107

siemens/m, and radii, a = 0.01 mm, a = 0.1 mm, and a = 1 mm, and study the depen-
dence of the Sommerfeld wave on frequency over the range 10 GHz ≤ f ≤ 10 THz. The
solutions are obtained in the three cases by the MATLAB code:
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Fig. 10.15.3 Longitudinal electric field profiles.

c0 = 299792458; % m/sec

sigma = 5.75e7; % siemens/m

ff = logspace(-2,1,300); f = 1e12*ff; w = 2*pi*f; % THz

a1 = 1e-5; [be1,ga1,gc1,E1,N1] = sommer(a1,f,sigma); % case 1

a2 = 1e-4; [be2,ga2,gc2,E2,N2] = sommer(a2,f,sigma); % case 2

a3 = 1e-3; [be3,ga3,gc3,E3,N3] = sommer(a3,f,sigma); % case 3

The number of iterations to converge and the norms of the computational errors were:

N1 = 239 , N2 = 198 , N3 = 159

‖E1‖ = 1.1130×10−12 , ‖E2‖ = 0.9234×10−12 , ‖E3‖ = 1.2927×10−12

Fig. 10.15.4 shows on the left the attenuation in dB per cm, given by, dB = 0.08686 · βI ,
defined in terms of the negative imaginary part of β = βR−jβI . The right graph shows the

effective lateral radius of the field outside the conductor, defined as the distance where

the field Ez has dropped to 1/10 its value at the surface, or, 20 dB down. It is obtained as

the solution in ρ of the equation,

∣
∣Ez(ρ)

∣
∣ =

∣
∣
∣
∣
∣

H
(1)
0 (γρ)

H
(1)
0 (γa)

∣
∣
∣
∣
∣
= 1

10
(10.15.22)

which is solved using the built-in function fzero. The attenuations and 20-dB distances
were computed and plotted by the following MATLAB code:

db = 20*log10(exp(1)); % 8.6859 dB/neper

dB1 = -db * imag(be1) / 100; % attenuations in dB/cm

dB2 = -db * imag(be2) / 100;

dB3 = -db * imag(be3) / 100;

figure; loglog(ff,dB1,’b-’, ff,dB2,’r--’, ff,dB3,’k:’)
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for i=1:length(f)

Ez1 = @(r) abs(besselh(0,1,ga1(i)*r) / besselh(0,1,ga1(i)*a1));

Ez2 = @(r) abs(besselh(0,1,ga2(i)*r) / besselh(0,1,ga2(i)*a2));

Ez3 = @(r) abs(besselh(0,1,ga3(i)*r) / besselh(0,1,ga3(i)*a3));

r1(i) = fzero(@(r) Ez1(r)-1/10, a1)*1000; % lateral radius in mm

r2(i) = fzero(@(r) Ez2(r)-1/10, a2)*1000;

r3(i) = fzero(@(r) Ez3(r)-1/10, a3)*1000;

end

figure; loglog(ff,r1,’b-’, ff,r2,’r--’, ff,r3,’k:’)
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Fig. 10.15.4 Attenuations and 20-dB lateral distances vs. frequency.
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Fig. 10.15.5 Phase velocities vs. frequency.

Within the 1–10 THz range, the attenuations remain fairly small for propagating at dis-

tances of cm, while the lateral footprint of the wave is of the order of 1 cm or smaller.

Finally, Fig. 10.15.5 plots the phase velocities vph = ω/βR versus frequency, showing

some dispersion, but not much, in the THz range. ⊓⊔
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10.16 Power Transfer and Power Loss

The power transmitted along the wire in the positive z-direction is attenuating with

the factor
∣
∣e−jβz

∣
∣2 = e−2βIz. The part that flows along the wire on the air side is the

useful amount of power that gets transmitted. The part that flows inside the conductor,

together with the amount of power that flows into the wire across its cylindrical surface,

is entirely dissipated into Ohmic losses, as we verify below. The time-averaged Poynting

vector has two components, one along z, and one along the radial direction inwards:

PPP = 1

2
Re
(

E×H∗
) = 1

2
Re
(

(ẑEz + ρ̂ρρEρ)×(φ̂φφH∗φ)
) = ẑ

1

2
Re
(

EρH
∗
φ

)− ρ̂ρρ 1

2
Re
(

EzH
∗
φ

)

The total power transmitted is obtained by integrating Pz over the cross-sectional

area outside the wire, i.e, over a ≤ ρ <∞:

PT =
∫∞

a
Pz 2πρdρ =

∫∞

a

1

2
Re
(

EρH
∗
φ

)

2πρdρ

Similarly, the amount of power flowing through an annular area, a ≤ ρ ≤ r, is given by,

PT(r)=
∫ r

a

1

2
Re
(

EρH
∗
φ

)

2πρdρ = 1

2
|B|2 βRk0εa

η0|γ|2
∫ r

a

∣
∣H

(1)
1 (γρ)

∣
∣2

2πρdρ

where we used Eq. (10.15.7), and we must multiply this expression by the attenuation

factor e−2βIz. Thus, the total transmitted power is PT = PT(r)
∣
∣
r=∞. Using the indefinite

integral [1449],

∫

H
(1)
1 (γρ)H

(1)
1 (γ∗ρ)2πρdρ = −2πρ

Im
[

γH
(1)
0 (γρ)H

(1)
1 (γ∗ρ)

]

Im[γ2]
(10.16.1)

we obtain,

PT(r)= 1

2
|B|2 βRk0εa2π

η0|γ|2
a Im

[

γH
(1)
0 (γa)H

(1)
1 (γ∗a)

]− r Im
[

γH
(1)
0 (γr)H

(1)
1 (γ∗r)

]

Im[γ2]

Since the Hankel functions attenuate like ρ−1/2e−ρ Im(γ) for large ρ, it follows that

the total transmitted power will be given by,

PT = 1

2
|B|2 βRk0εa

η0|γ|2
[

2πa
Im
[

γH
(1)
0 (γa)H

(1)
1 (γ∗a)

]

Im[γ2]

]

(10.16.2)

Dividing PT(r) by PT, we obtain the fraction of the total power contained in the

annular region, a ≤ ρ ≤ r, see also [981,990]:

PT(r)

PT
= 1− Im

[

γrH
(1)
0 (γr)H

(1)
1 (γ∗r)

]

Im
[

γaH
(1)
0 (γa)H

(1)
1 (γ∗a)

] (10.16.3)

Example 10.16.1: For the copper wire of Example 10.15.2, Fig. 10.16.1 shows a plot ofPT(r)/PT ,

which also includes the radius at which the power ratio is 95%, found to be, r = 2.85 mm,

by solving the equation PT(r)/PT = 0.95 with respect to r. Assuming the same parameter

values as in Example 10.15.2, the following MATLAB code generates the graph,
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P = @(r) 1 - imag(ga*r.*besselh(0,1,ga*r).*conj(besselh(1,1,ga*r))) / ...

imag(ga*a*besselh(0,1,ga*a).*conj(besselh(1,1,ga*a)));

r0 = fzero(@(r) P(r)-0.95, 2*a) % search near 2*a

plot(r/a,100*P(r),’b-’, r0/a,100*P(r0),’r.’); hold on;

fill([0,1,1,0],[0,0,105,105], [0.9 0.9 0.9]);

The 95% power radius and the 20-dB radius discussed earlier are just alternative ways of

defining a measure for the lateral extent of the wave. ⊓⊔
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Fig. 10.16.1 Transmitted power vs. radial distance.

Next, we discuss power losses. In a lossy medium with complex-permittivity ǫc =
ǫR − jǫI, the energy flux into a volume within the medium is dissipated completely into

Ohmic losses. This is justified by the following result, first considered in Problem 1.5,

that follows from Maxwell’s equations:

Pin ≡ −
∮

S

1

2
Re[E×H∗]·dS =

∫

V

1

2
Re[E · J∗tot]dV ≡ Ploss (10.16.4)

where Jtot = J+ jωD is the effective current density in the medium that accounts for a

conduction and a displacement current. For our wire, we may assume J = σE and D =
ǫ0E so that Jtot is given by the effective permittivity defined through, jωǫc = σ+ jωǫ0,

Jtot = J+ jωD = σE+ jωǫ0E = jωǫcE

Noting that Re(jωǫc)= Re
(

jω(ǫR − jǫI)
) =ωǫI, we may rewrite (10.16.4) as follows,

Pin ≡ −1

2

∮

S
Re[E×H∗]·dS = 1

2
ωǫI

∫

V
E · E∗ dV ≡ Ploss (10.16.5)

For our wire, ωǫI = σ, but in general, if the dielectric displacement current term

had a complex permittivity, e.g., D = ǫdE = (ǫdR− jǫdI)E, then it would also contribute

to the effective ǫI, that is, ωǫI = σ +ωǫdI.
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We will verify Eq. (10.16.5) explicitly for a length-L segment of the wire, as shown

in Fig. 10.16.2. Using the solution (10.15.7), the power loss will arise from both com-

ponents Ez, Eρ. Because of the cylindrical symmetry, the volume element will be dV =
2πρdρdz, with the z-dependence given by e−2βIz. Then, we find for Ploss,

Ploss = 1

2
ωǫI

∫

V

[|Ez|2 + |Eρ|2
]

dV

= 1

2
|A|2ωǫI

∫ L

0

∫ a

0

[|J0(γcρ)|2 + |β|2
|γc|2

|J1(γcρ)|2
] · e−2βIz · 2πρdρdz

= 1

2
|A|2ωǫI

(

1− e−2βIL

2βI

)∫ a

0

[|J0(γcρ)|2 + |β|2
|γc|2

|J1(γcρ)|2
]

2πρdρ

Fig. 10.16.2 Length-L section of Sommerfeld wire.

where we performed the z integration to get,

∫ L

0
e−2βIz dz = 1− e−2βIL

2βI

The Bessel function integrals can be done explicitly [1449]:

∫ a

0
|J0(γcρ)|2 2πρdρ = 2πa

Im
[

γ∗c J0(γ
∗
c a)J1(γca)

]

Im[γ2
c]

∫ a

0
|J1(γcρ)|2 2πρdρ = 2πa

Im
[

γcJ1(γca)J0(γ
∗
c a)

]

Im[γ2
c]

(10.16.6)

It follows that Ploss will be,

Ploss = 1

2
|A|2(1− e−2βIL

)ω2πaǫI
2βI

·

·
Im
[

γ∗c J0(γ
∗
c a)J1(γca)

]+ |β|2
|γc|2

Im
[

γcJ1(γca)J0(γ
∗
c a)

]

Im[γ2
c]

(10.16.7)

The power influx into the cylindrical volume of Fig. 10.16.2 consist of the follow-

ing parts: the power entering the volume at the cross-sectional area at z = 0, minus
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the power exiting the cross section at z = L, plus the power entering perpendicularly

through the cylindrical area. Thus, using Eq. (10.15.7), with Hφ = AjωǫcJ1(γcρ)/γc,

Pin = −
∮

S
PPP · dS =

∫ a

0
Pz 2πρdρ

∣
∣
∣
∣

z=L

z=0

−
∫ L

0
Pρ 2πadz

= 1

2

∫ a

0
Re
(

EρH
∗
φ

)

2πρdρ

∣
∣
∣
∣

z=L

z=0

− 1

2

∫ L

0
Re
(

EzH
∗
φ

)

2πadz

= 1

2
|A|2(1− e−2βIL

)
∫ a

0
Re

[

jβ

γc
J1(γcρ)

−jωǫ∗c
γ∗c

J1(γ
∗
cρ)

]

2πρdρ+

+ 1

2
|A|2

∫ L

0
Re

[

J0(γca)
−jωǫ∗c
γ∗c

J1(γ
∗
c a)

]

· e−2βIz · 2πadz =

= 1

2
|A|2(1− e−2βIL

)ωRe
[

βǫ∗c
]

|γc|2
∫ a

0
J1(γcρ)J1(γ

∗
cρ)2πρdρ+

+ 1

2
|A|2(1− e−2βIL

)ω2πa

2βI
Im

[

J0(γca)
ǫ∗c
γ∗c
J1(γ

∗
c a)

]

where in the last term we used the identity Re[−jC]= Im[C]. Finally, using Eq. (10.16.6),

we obtain the net power flowing into the cylindrical volume:

Pin = 1

2
|A|2(1− e−2βIL

)ω2πa Re
[

βǫ∗c
]

|γc|2
Im
[

γcJ1(γca)J0(γ
∗
c a)

]

Im[γ2
c]

+

+ 1

2
|A|2(1− e−2βIL

)ω2πa

2βI
Im

[

J0(γca)
ǫ∗c
γ∗c
J1(γ

∗
c a)

] (10.16.8)

It is left as an exercise in Problem 10.7 to show the equality of the two expressions in

Eqs. (10.16.7) and (10.16.8). Canceling some common factors, this amounts to showing

the equality of the following two sides:

2βI Re
[

βǫ∗c
]

|γc|2
Im
[

γcJ1(γca)J0(γ
∗
c a)

]

Im[γ2
c]

+ Im

[

J0(γca)
ǫ∗c
γ∗c
J1(γ

∗
c a)

]

=

= ǫI
Im
[

γ∗c J0(γ
∗
c a)J1(γca)

]+ |β|2
|γc|2

Im
[

γcJ1(γca)J0(γ
∗
c a)

]

Im[γ2
c]

(10.16.9)

10.17 Connection to Zenneck Surface Wave

We mentioned earlier that the Zenneck surface wave is the planar limit of the Sommerfeld

wave. Indeed, in the limit of large radius, a→∞, the ratios of both the Hankel functions

and the Bessel functions in the characteristic equation (10.15.9) converge to+j, resulting

in the equation:

γ

εa
= γc
εc

(10.17.1)
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which is precisely the characteristic equation of the Zenneck case that we considered in

Sec. 7.10. Solving it for β gives rise to,

β = k0

√

εaεc
εa + εc

, γ = k0

√

ε2
a

εa + εc
, γc = k0

√

ε2
c

εa + εc
(10.17.2)

For completeness, we give the form of the fields above and below the interface at x = 0,

x ≤ 0 x ≥ 0

Ez = E0e
jγcx Ez = E0e

jγx

Ex = E0
β

γc
ejγcx Ex = E0

β

γ
ejγx

Hy = E0
k0εc
η0γc

ejγcx Hy = E0
k0εa
η0γ

ejγx

(10.17.3)

where E0 is a constant. These agree with the results of Sec. 7.10 after remapping the

notation by the replacements, z→ −x, x→ z, kx → β, kz → γ, k′z → γc.

They can be derived more directly by solving the TM propagation problem in carte-

sian coordinates using Eqs. (9.3.10), and applying the boundary conditions at the planar

interface. They can also be derived as the large-radius limit of the wire solutions. To see

this, let us renormalize Eqs. (10.15.7) with respect to their values at the surface of the

conductor, i.e., by replacing A,B from the relationship, AJ0(γca)= BH(1)0 (γa)= E0,

0 ≤ ρ ≤ a a ≤ ρ <∞

Ez = E0
J0(γcρ)

J0(γca)
Ez = E0

H
(1)
0 (γρ)

H
(1)
0 (γa)

Eρ = E0
jβ

γc

J1(γcρ)

J0(γca)
Eρ = E0

jβ

γ

H
(1)
1 (γρ)

H
(1)
0 (γa)

Hφ = E0
jk0εc
η0γc

J1(γcρ)

J0(γca)
Hφ = E0

jk0εa
η0γ

H
(1)
1 (γρ)

H
(1)
0 (γa)

γc =
√

k2
0εc − β2 γ =

√

k2
0εa − β2

(10.17.4)

In this form, the boundary condition for Ez is automatically satisfied, whereas that

for Hφ leads directly to the characteristic equation (10.15.9). Since x is measured with

respect to the planar conductor surface, before we take the limit for large radius, let us

make the replacement, ρ = a+ x. Then, using the asymptotic expressions (10.15.6), we

obtain the following limits, as a→∞ with fixed x,

H
(1)
0 (γρ)

H
(1)
0 (γa)

≈
√

a

ρ
e jγ(ρ−a) =

√
a

a+ x e
jγx → e jγx

H
(1)
1 (γρ)

H
(1)
0 (γa)

≈
√

a

ρ
e jγ(ρ−a) e−jπ/2 = −j

√
a

a+ x e
jγx → −j e jγx
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from which the x > 0 expressions in Eq. (10.17.3) are obtained. The corresponding

asymptotic expressions for J0(u), J1(u) are given as follows [1449], assuming that u

has a large and negative imaginary part,

J0(u) =
√

2

πu
cos

(

u− π
4

) ≈
√

1

2πu
ej(u−π/4) , Im(u)< 0

J1(u) =
√

2

πu
cos

(

u− 3π

4

) ≈
√

1

2πu
ej(u−3π/4) , Im(u)< 0

(10.17.5)

and from these we obtain the limits, which give rise to the x < 0 expressions in (10.17.3),

J0(γcρ)

J0(γca)
≈
√

a

ρ
e jγc(ρ−a) =

√
a

a+ x e
jγcx → e jγcx

J1(γcρ)

J0(γca)
≈
√

a

ρ
e jγc(ρ−a) e−jπ/2 = −j

√
a

a+ x e
jγcx → −j e jγcx

Like the Sommerfeld wave, the Zenneck wave exhibits a strong skin effect within the

conductor, but weak bounding on the air side, and low attenuation in the direction of

propagation. For a good conductor, we have |εc| ≫ εa, and we can approximate εc and

γc as in the wire case,

εc ≈ −j σ
ωǫ0

, γc = k0
√
εc

√

1+ εa
εc

≈ k0

√
εc ≈ 1− j

δ
, δ =

√

2

σμ0ω

Thus, the fields are attenuating rapidly, within a skin depth δ, inside the conductor,

ejγcx ≈ ejx/δex/δ = ejx/δe−|x|/δ, for x < 0, but not so rapidly outside since |γ| ≪ k0.

Indeed, we have in terms of the dimensionless parameter σ/(ωǫ0)≫ 1, setting εa = 1,

γ = γcεa
εc

≈ k0
√
εc

εc
= k0√

εc
= γR + jγI , γR = γI = k0

√

2σ

ωǫ0

≪ k0

similarly, the propagation constant β has a very small imaginary part,

β = βR − jβI = k0

√

εc
1+ εc

= k0

√

1

1+ ε−1
c
≈ k0

(

1− 1

2εc

)

= k0 − jk0
ωǫ0

2σ

10.18 Skin Effect for Round Wire

The Sommerfeld wave provides a nice illustration of the skin effect in a round wire.

Within the wire, the total current density includes both the conduction and displacement

currents,

J = σE+ jωǫ0E = (σ + jωǫ0)E = jωǫcE
For a good conductor, we typically ignore the displacement current, writing, J = σE.

For either J, the current density in the z-direction is proportional to Ez, and therefore,



10.18. Skin Effect for Round Wire 507

we have the same relationship as (10.15.20). Indeed, writing Ez(ρ)= AJ0(γcρ) from

Eq. (10.15.7), and setting, Jz = jωǫcEz, we have,

Jz(ρ)

Jz(a)
= Ez(ρ)

Ez(a)
= J0(γcρ)

J0(γca)
, ρ ≤ a (10.18.1)

If we make the approximation γc ≈ k0
√
εc ≈ (1 − j)

√

σμ0ω/2 = (1 − j)/δ, then

the results are equivalent to those obtained by the standard textbook treatments of the

skin effect that (i) ignore the displacement current, (ii) assume no z-dependence, and

(iii) consider the fields only inside the wire. Here, the z-dependence comes from the

assumed factor e−jβz which could be set to unity for distances that are much less than

a wavelength, z≪ 1/k0 ≈ 1/β.

A typical plot of Eq. (10.18.1) is depicted in Fig. 10.15.3. The numerical issues re-

garding the evaluation of the ratio (10.18.1) were discussed in Example 10.15.2. Within

a very narrow layer of width of a few skin depths δ from the surface, ρ � a, the ratio

decays exponentially with distance,
∣
∣ejγc(ρ−a)

∣
∣ = e−(a−ρ)/δ.

The total current I flowing in the z-direction is obtained by integrating Jz(ρ)=
jωǫcEz(ρ)= jωǫcAJ0(γcρ), over the cross-sectional area of the wire:

I =
∫ a

0
Jz(ρ)2πρdρ = 2πjωǫcA

∫ a

0
ρJ0(γcρ)dρ = 2πaA

jωǫc
γc

J1(γca) (10.18.2)

where we used the indefinite integral,
∫

uJ0(u)du = uJ1(u), and the fact that J1(0)= 0.

From Eq. (10.15.7), we recognize this as, I = 2πaHφ(a), which is a consequence of

Ampère’s law, obtained by integrating Hφ around the contour ρ = a. From the current

I, we may derive the internal impedance of the wire (per unit wire length):

Z = Ez(a)

I
= AJ0(γca)

2πaA
jωǫc
γc

J1(γca)
= γcJ0(γca)

2πajωǫc J1(γca)

and with the approximations, γc ≈ (1 − j)/δ = (1 − j)
√

σμ0ω/2, and, jωǫc ≈ σ, we

obtain the standard textbook formula,

Z = γcJ0(γca)

2πaσ J1(γca)
(impedance of round wire) (10.18.3)

In the low-frequency limit, a/δ = a√σμ0ω/2 → 0, we may use the following second-

order Taylor expansion, valid for small u,

uJ0(u)

2J1(u)
= 1− u

2

8

to obtain,

Z = 1

πa2σ

γcaJ0(γca)

2J1(γca)
≈ 1

πa2σ

[

1− (γca)
2

8

]

or, because, γ2
c = (1− j)2/δ2 = (1− j)2ωμ0σ/2 = −jωμ0σ,

Zlow = 1

πa2σ
+ jω μ0

8π
(low-frequency wire impedance) (10.18.4)
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Comparing with Z = R+ jωL, we obtain the standard low-frequency DC resistance

and the internal self-inductance per unit length of the wire,

R = 1

πa2σ
, L = μ0

8π
(10.18.5)

On the other hand, for high frequencies, a/δ = a√σμ0ω/2 → ∞, we may replace

the Bessel function ratio by J0/J1 = j, and jγc = (1+ j)/δ, to get,

Zhigh = 1+ j
2πaδσ

(high-frequency wire impedance) (10.18.6)

Eq. (10.18.6) is originally due to Rayleigh [1291]. Recalling from Sec. 2.8 that the

surface resistance of a good conductor is Rs = 1/(σδ), we may rewrite (10.18.6) as,

Zhigh = 1+ j
2πaδσ

= (1+ j)Rs
2πa

(10.18.7)

The DC resistance per unit length of a wire of arbitrary cross-sectional area S is given

by R = 1/(Sσ) and is derived by assuming that the current density is uniform over the

area S. For the round wire, we have S = πa2. At high frequencies, the same formula

would imply from (10.18.6) that S = 2πaδ, that is, the current is effectively confined to

flow within a narrow ring of radius a and width δ, as shown in Fig. 10.18.1.

Fig. 10.18.1 Effective areas of current distribution at low and high frequencies.

We note in passing that the low frequency self-inductance L of Eq. (10.18.5) is usually

derived using energy considerations, by considering the magnetic energy enclosed in a

unit-length cylindrical volume of the conductor, and setting,

1

2
L I2 =

∫ a

0

1

2
μ0H

2
φ2πρdρ

Since the current density is assumed to be uniform, the amount of current enclosed

within a radius ρ is given by Jzπρ
2, with total current I = Jzπa2. Then, Ampère’s law

gives Jzπρ
2 = 2πρHφ(ρ), resulting in, Hφ(ρ)= Jzρ/2 = Iρ/(2πa2). Inserting this

into the above energy relation we find,

1

2
L I2 = μ0I

2

4πa4

∫ a

0
ρ3 dρ = 1

2

μ0

8π
I2 ⇒ L = μ0

8π

The same expression forHφ can also be obtained from (10.15.7) in the low-frequency

limit, γc → 0, by using the small argument expansion J1(γca)≈ γca/2.
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Finally, we comment on Ampère’s law applied to the outside of the wire. In Fig. 10.15.3,

the field Ez, outside the wire, is due to the displacement current only. If we apply

Ampère’s law to a contour of radius r, with r > a, the total enclosed current, Ir =
2πrHφ(r), would consist of both the conduction and the displacement currents. The

current density, Jz = jωǫEz, is given as follows inside and outside the conductor, from

(10.15.7),

Jz(ρ)=
⎧

⎨

⎩

jωǫcAJ0(γcρ) , ρ ≤ a
jωǫ0 BH

(1)
0 (γρ) , ρ ≥ a

The total current crossing the area of radius r > a can be split into two parts:

Ir =
∫ r

0
Jz 2πρdρ =

∫ a

0
Jz 2πρdρ+

∫ r

a
Jz 2πρdρ

=
∫ a

0
AJ0(γcρ)2πρdρ+

∫ r

a
BH

(1)
0 (γρ)2πρdρ

= 2πaA
jωǫc
γc

J1(γca)+
[

2πrB
jωǫ0

γ
H
(1)
1 (γr)−2πaB

jωǫ0

γ
H
(1)
1 (γa)

]

= 2πrB
jωǫ0

γ
H
(1)
1 (γr)= 2πrHφ(r)

where we used Eqs. (10.15.7), the boundary conditions (10.15.8), and the indefinite inte-

gral,
∫

uH
(1)
0 (u)du = uH(1)1 (u).

The skin effect is discussed in most textbooks. A few references are [1050–1054], in

which one can find additional ones, including historical references.

10.19 Goubau Line

The Goubau line, or Harms-Goubau line, refers to a TM surface wave propagating along

a dielectric coated conductor, depicted in Fig. 10.19.1. It was considered first by Harms

in 1907, and studied extensively in the 1950s by Goubau as an alternative to the Som-

merfeld line that provides better lateral confinement [980–995]. Interest in the Goubau

line has been renewed in the 2000s for use in THz applications [996–1012].†

In the Sommerfeld wire, the finite conductivity of the conductor was essential in

order to render the lateral wavenumber complex-valued for lateral confinement. In the

Goubau line case, this is not necessary and we will initially assume that the conductor is

perfect and that the dielectric coating is lossless. Ohmic and dielectric losses can then

be taken into account approximately.

In Fig. 10.19.1, let a,b be the inner radius of the conductor and the outer radius

of the dielectric coating, so that the coating thickness is, d = b − a, and let εd be the

relative permittivity of the coating. Assuming cylindrical symmetry, the TM wave will

†Incidentally, our ECE Department at Rutgers awards yearly the “Georg Goubau Memorial Prize” to a

graduating senior for excellence in the study of Electromagnetics.
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Fig. 10.19.1 Goubau line, shown in cylindrical coordinates.

have field components Ez, Eρ,Hφ that satisfy Eq. (10.15.4),

1

ρ

∂

∂ρ

(

ρ
∂Ez
∂ρ

)

+ γ2Ez = 0 , γ2 = k2
0ε− β2

Eρ = − jβ
γ2

∂Ez
∂ρ

, Hφ = − jk0ε

η0γ2

∂Ez
∂ρ

(10.19.1)

with the assumed factor ejωt−jβz, and solution given as in Eq. (10.15.5),

Ez = C0(γρ) , Eρ = jβ

γ
C1(γρ) , Hφ = jk0ε

η0γ
C1(γρ) (10.19.2)

whereCn(γρ), n = 0,1, are linear combinations of the Bessel functions Jn(γρ),Yn(γρ),

or, the Hankel functions, H
(1,2)
n (γρ).

Because the conductor was assumed to be perfect, and the dielectric, lossless, we

are looking for solutions that have a real-valued propagation wavenumber β. Let us

denote the lateral wavenumber within the dielectric coating by h =
√

k2
0εd − β2. It may

be assumed to be real-valued. But outside the coating, within the air, the wavenumber

γa =
√

k2
0εa − β2 must necessarily be pure imaginary in order to guarantee that the

fields decay rapidly at large radial distances. Setting for example, γa = jγ, with positive

γ, it follows from Eq. (10.15.6) that the Hankel functionsH
(1)
n (γaρ)will decay as follows

with increasing ρ→∞,

H(1)n (γaρ)= H(1)n (jγρ)≈
√

2

πjγρ
e−γρ e−j(2n+1)π/4 = 1

jn+1

√

2

πγρ
e−γρ (10.19.3)

Thus, γ2
a = −γ2 = k2

0εa −β2, or, γ =
√

β2 − k2
0εa. Since both γ and h are real-valued, it

follows that β must lie in the range,

k0

√
εa ≤ β ≤ k0

√
εd (10.19.4)

The Hankel functions for imaginary argument are related to the modified Bessel

functions of second kind, via the relationship [1449],

Kn(u)= π

2
jn+1H(1)n (ju) , u > 0 (10.19.5)
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which have the same asymptotic form as (10.19.3), for large positive u,

Kn(u)≈
√
π

2u
e−u (10.19.6)

Thus, on the air side (ρ > b), instead of working with H
(1)
n (jγρ), it proves simpler

to express the field solutions in terms of Kn(γρ). The Helmholtz equations (10.19.1)

remain the same with the replacement, γ2 → −γ2,

1

ρ

∂

∂ρ

(

ρ
∂Ez
∂ρ

)

− γ2Ez = 0 , γ2 = β2 − k2
0εa

Eρ = jβ

γ2

∂Ez
∂ρ

, Hφ = jk0εa
η0γ2

∂Ez
∂ρ

(10.19.7)

The solutions are found after using the relationship, ∂K0(γρ)/∂ρ = −γK1(γρ),

Ez = E1K0(γρ) , Eρ = −E1
jβ

γ
K1(γρ) , Hφ = −E1

jk0εa
η0γ

K1(γρ) (10.19.8)

where E1 is a constant. Within the dielectric coating, a ≤ ρ ≤ b, the solution will be

a linear combination of J0(hρ),Y0(hρ), say, Z0(hρ)= J0(hρ)−AY0(hρ), and will be

given by (10.19.2),

Ez = E0Z0(hρ) , Eρ = E0
jβ

h
Z1(hρ) , Hφ = E0

jk0εd
η0h

Z1(hρ) (10.19.9)

where E0 is a constant, and Z1(hρ)= J1(hρ)−AY1(hρ). To determine A, we demand

that Ez vanish on the surface of the perfect conductor, that is, at ρ = a,

Ez(a)= 0 ⇒ Z0(ha)= J0(ha)−AY0(ha)= 0 ⇒ A = J0(ha)

Y0(ha)
(10.19.10)

In summary, the field solutions are given as follows, in the coating and in the air,

a ≤ ρ ≤ b

Ez = E0Z0(hρ)

Eρ = E0
jβ

h
Z1(hρ)

Hφ = E0
jk0εd
η0h

Z1(hρ)

h =
√

k2
0εd − β2

b ≤ ρ <∞

Ez = E1K0(γρ)

Eρ = −E1
jβ

γ
K1(γρ)

Hφ = −E1
jk0εa
η0γ

K1(γρ)

γ =
√

β2 − k2
0εa

(10.19.11)

and Z0, Z1 are defined as the functions,

Z0(hρ) = J0(hρ)− J0(ha)

Y0(ha)
Y0(hρ)

Z1(hρ) = J1(hρ)− J0(ha)

Y0(ha)
Y1(hρ)

(10.19.12)

512 10. Surface Waveguides

The boundary condition at the conductor surface (ρ = a) is built into the solution.

The boundary conditions at the coating-air interface (ρ = b) are the continuity of the

tangential electric and magnetic fields, Ez,Hφ, resulting in the conditions:

E0Z0(hb) = E1K0(γb)

E0
jk0εd
η0h

Z1(hb) = −E1
jk0εa
η0γ

K1(γb)
(10.19.13)

Dividing the two sides, we obtain the characteristic equation that determines the prop-

agation wavenumber β,

h =
√

k2
0εd − β2

γ =
√

β2 − k2
0εa

h

εd

Z0(hb)

Z1(hb)
= − γ

εa

K0(γb)

K1(γb)
(10.19.14)

where we may set εa = 1 from now on. One way to solve this equation iteratively, is to

first cast it in the form,

γ

h
= − 1

εd

K1(γb)

K0(γb)

Z0(hb)

Z1(hb)
≡ F(β) (10.19.15)

and then solve the left-hand side for β,

γ

h
= F(β) ⇒ γ2

h2
= β2 − k2

0

k2
0εd − β2

= F2(β) , or,

β = k0

√

1+ εdF2(β)

1+ F2(β)
(10.19.16)

This can be turned in the following recursion, for n = 0,1,2, . . . ,

βn+1 = r k0

√

1+ εdF2(βn)

1+ F2(βn)
+ (1− r)βn (10.19.17)

where we introduced a relaxation parameter, 0 < r ≤ 1. The recursion can be initialized

somewhere within the β range (10.19.4), for example, β0 = 0.9k0
√
εd. The following

MATLAB function, goubau, in the EWA toolbox, implements this iteration:

[be,ga,h,N,E,pd] = goubau(a,b,ed,f,r,tol,be0)

[be,ga,h,N,E,pd] = goubau(a,b,ed,f,r,tol) (be0 = 0.999*k0*sqrt(ed))

[be,ga,h,N,E,pd] = goubau(a,b,ed,f,r) (tol = 1e-10)

% a,b = inner and outer radii [meters]

% ed = relative dielectric constant of coating (ed>1)

% f = vector of frequencies [Hz]

% r = relaxation parameter (0 < r <= 1)

% tol = computational tolerance, default tol = 1e-10

% be0 = initializing vector, size(f), default, be0 = 0.999*k0*sqrt(ed)

%

% be = propagation wavenumber [rads/m], size(f)

% ga = lateral decay constant [1/m], size(f)
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% h = lateral wavenumber in dielectric coating [rads/m], size(f)

% N = number of iterations to converge, scalar, represents all f

% E = computational error of characteristic equation, size(f)

% pd = proportion of transmitted power in dielectric coating

The iteration is stopped when two successive iterates are to within a prescribed

error tolerance, that is, |βn+1 − βn| ≤ tol, typically with, tol = 10−10, or smaller. The

output parameter pd represents the proportion of transmitted power residing within

the dielectric coating, and is a measure of confinement. Its calculation is explained

below. The computational error output E is the difference between the two sides of

Eq. (10.19.15) for the last computed iterates,

E =
∣
∣
∣
∣

γ

h
− F(β)

∣
∣
∣
∣

Goubau [981] and King and Wiltse [990] made certain approximations to the char-

acteristic equation to cast it in a more manageable form. Such approximations are not

necessary in the above iteration, which is implemented using MATLAB’s built-in Bessel

functions. The iteration is applicable over a wide range of frequencies, including THz.

Once the fields are determined for the ideal conductor and lossless dielectric case,

they can be used to calculate the attenuation coefficient α (in nepers/m) along the line,

following the procedures discussed in Sec. 9.2, that is,

α = P′loss

2PT
(10.19.18)

where P′loss is the power loss per unit conductor length, and PT, the transmitted power.

The power loss P′loss consists of a part due to the losses in the conductor, assuming

a large but finite conductivity σ, and a part due to the losses in the dielectric coating,

assuming a small (negative) imaginary part for the dielectric permittivity, ǫI. The two

parts are given by,

P′c =
∮

C

1

2
Rs|H tan|2 dl , Rs =

√
ωμ0

2σ

P′d =
1

2
ωǫI

∫

S
|E|2 dS

(10.19.19)

where C is the periphery of the conductor, i.e., the circle of radius ρ = a, and H tan is

the tangential magnetic field on the surface, i.e.,Hφ(ρ) for ρ = a, and Rs is the surface

impedance of the conductor. For the dielectric, S is the cross-sectional annular area

defined by a ≤ ρ ≤ b. Thus, the total loss is given by,

P′loss = P′c + P′d =
1

2
Rs
∣
∣Hφ(a)

∣
∣2
(2πa)+1

2
ωǫI

∫ b

a

[|Ez|2 + |Eρ|2
]

2πρdρ (10.19.20)

The transmitted power is obtained by integrating the z-component of the Poynting

vector on the cross-sectional areas of the coating and the air side,

PT =
∫ b

a

1

2
Re[EρH

∗
φ]2πρdρ+

∫∞

b

1

2
Re[EρH

∗
φ]2πρdρ (10.19.21)
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From the solutions (10.19.11), we obtain,

P′loss =
1

2
Rs(2πa)

k2
0ε

2
d |E0|2
η2

0 h
2

Z2
1(ha)+

+ 1

2
|E0|2ωǫI

[∫ b

a
Z2

0(hρ)2πρdρ+ β
2

h2

∫ b

a
Z2

1(hρ)2πρdρ

]

PT = 1

2

k0εdβ |E0|2
η0 h2

∫ b

a
Z2

1(hρ)2πρdρ+ 1

2

k0εaβ |E1|2
η0 γ2

∫∞

b
K2

1(γρ)2πρdρ

Let us define the following normalized integrals that can be derived with the help of

related integrals in [1449], and after using the condition Z0(ha)= 0,

U ≡ 1

Z2
1(ha)

2

a2

∫ b

a
Z2

1(hρ)ρdρ =
b2

a2
· Z

2
1(hb)−Z0(hb)Z2(hb)

Z2
1(ha)

− 1

V ≡ 1

Z2
1(ha)

2

a2

∫ b

a
Z2

0(hρ)ρdρ =
b2

a2
· Z

2
1(hb)+Z2

0(hb)

Z2
1(ha)

− 1

W ≡ Z2
1(hb)

Z2
1(ha)

1

K2
1(γb)

2

a2

∫∞

b
K2

1(γρ)ρdρ =

= Z2
1(hb)

Z2
1(ha)

· b
2

a2
· K0(γb)K2(γb)−K2

1(γb)

K2
1(γb)

(10.19.22)

where the subscript 2 refers to the Bessel functions of order two. Using the relationships

(10.19.13) and (10.19.14), and setting εa = 1, we may express P′loss and PT in terms of

the quantities U,V,W,

P′loss = |E0|2πa2 k
2
0ε

2
d Z

2
1(ha)

η2
0 h

2

[
Rs
a
+ η0 tanθ

2k0εd

(

β2U + h2V
)
]

PT = 1

2
|E0|2πa2 βk0ε

2
d Z

2
1(ha)

η0 h2

[
1

εd
U +W

]
(10.19.23)

where we introduced the loss-tangent for the dielectric, ǫI = ǫd tanθ. Dividing, we

obtain the total attenuation coefficient, with the Rs term representing the conductor

losses, and the tanθ term, the dielectric ones,

α = P′loss

2PT
= k0

βη0

·
Rs
a
+ η0 tanθ

2k0εd

(

β2U + h2V
)

1

εd
U +W

(10.19.24)

Eq. (10.19.24) is equivalent† to the results of [992]. By taking appropriate limits as

d/a = (b− a)/a→ 0, we may obtain the approximation given by King-Wiltse [990],

αapp = k0

2βη0

·
Rs
a
+ η0 tanθ

k0εd

d

a
β2

1

εd

d

a
+ 1

2γb

(10.19.25)

†after using the Bessel function identities [1449], C0(u)+C2(u)= 2

u
C1(u), K0(u)−K2(u)= 2

u
K1(u).
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where, to the same order of approximation, we can replace,
d

a
= b− a

a
≈ ln

(
b

a

)

.

It follows also from Eq. (10.19.23) that the proportion of the transmitted power

within the dielectric (one of the outputs of the function goubau) is given by,

pd =
1

εd
U

1

εd
U +W

= proportion of power in dielectric coating (10.19.26)

The following MATLAB function, goubatt, implements Eqs. (10.19.24) and (10.19.25):

[atot,ac,ad,app,pd] = goubatt(a,b,ed,f,be,sigma,tand)

% a,b = inner and outer radii [meters]

% ed = relative dielectric constant of coating (ed>1)

% f = vector of frequencies [Hz]

% be = propagation wavenumber [rads/m], size(f), obtained from GOUBAU

% sigma = conductivity of inner conductor [siemens/m]

% tand = loss tangent of dielectric coating

%

% atot = total attenuation coefficient [nepers/m], size(f), atot = ac + ad

% ac = attenuation due to conductor [nepers/m], size(f)

% ad = attenuation due to dielectric [nepers/m], size(f)

% app = total attenuation coefficient [nepers/m], King-Wiltse-Goubau approx

% pd = proportion of transmitted power in dielectric coating

%

% conversions: dB/m = 8.68589 * atot = 20*log10(exp(1)) * atot

% dB/100ft = 8.68589 * 30.48 * atot

The Goubau TM mode discussed in this section is the lowest mode propagating along

a dielectric-coated metal wire. Higher modes exist and their cutoff frequencies have been

discussed in [991,994]. The cutoff condition occurs when the lateral wavenumber γ in

air becomes zero and the wave is no longer bound to the vicinity of the wire, becoming

a leaky mode. Since γ2 + h2 = k2
0(εd − 1), it follows that when γ = 0, then h takes

the value, h0 = k0

√

εd − 1. The characteristic equation (10.19.14) then implies that

Z0(h0b)= 0, or, equivalently [994],

Z0(h0b)= J0(h0b)−AY0(h0b)= J0(h0b)− J0(h0a)

Y0(h0a)
Y0(h0b)= 0 , or,

J0(h0b)Y0(h0a)−J0(h0a)Y0(h0b)= 0 , h0 = k0

√

εd − 1 (10.19.27)

For given dimensions a,b, this determines the maximum operating frequency of the

lowest TM mode, or, conversely, given a frequency f and inner radius a, it determines

the largest radius b such that operation is restricted to the lowest mode. The MATLAB

function, gcut, constructs this function, which may then be passed into fzero, to de-

termine the cutoff frequency or cutoff radius b, or, into the function plot as an aid for

choosing the initial search points for fzero,

G = gcut(a,b,ed,f) % Goubau line cutoff
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% a,b = inner, outer radii [meters]

% ed = relative permittivity

% f = frequency [Hz]

%

% constructs the function:

% G = J0(h0*b).*Y0(h0*a) - J0(h0*a).*Y0(h0*b);

% vectorized either in b, or, in f

%

% to be used with FZERO to find cutoff frequency or cutoff radius b:

%

% fc = fzero(@(f) gcut(a,b,ed,f), f0); % search near f0

% bc = fzero(@(b) gcut(a,b,ed,f), b0); % search near b0

%

% a convenient initial search point is the lowest cutoff

% of the planar version: f0*d0 = c0/sqrt(ed-1)/2, b0 = a+d0

%

% the function can also be used to plot G vs. f or vs.b

Example 10.19.1: In order to get an idea of what the fields look like inside and outside the

dielectric, consider an unrealistic example that has too large radii, a = 0.9 cm, b = 1

cm, to be of practical importance in THz applications. The dielectric permittivity is taken

to be εd = 2.54 (e.g., polystyrene rexolite), and the frequency, f = 100 GHz. Fig. 10.19.2

shows the longitudinal electric and magnetic fields, Ez(ρ),Hφ(ρ) as functions of the radial

distance ρ. Note that Ez vanishes at ρ = a, and both are normalized to unity at ρ = b.

The following MATLAB code generates the graph of Ez:
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Fig. 10.19.2 Tangential electric and magnetic fields.

ed = 2.54;

a = 0.9e-2; b = 1.0e-2; % meters

f = 100e9; % 100 GHz

rel = 0.5; % relaxation parameter

[be,ga,h,N,E,pd] = goubau(a,b,ed,f,rel); % uses default tol=1e-10

A = besselj(0,h*a)/bessely(0,h*a);

Z0 = @(r) besselj(0,h*r) - A*bessely(0,h*r);
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Ezd = @(r) abs(Z0(r)/Z0(b)); % Ez in dielectric

Eza = @(r) abs(besselk(0,ga*r)/besselk(0,ga*b)); % Ez in air

r20 = fzero(@(r) Eza(r)-1/10, b) * 100; % 20-dB radius in cm

r = linspace(a, 1.4*b, 400); % plot range, a <= rho <= 1.4*b

Ez = Ezd(r).*(r<b) + Eza(r).*(r>=b);

figure; fill([0.9,0.9,1,1],[-0.1,1,1,-0.1], [0.9 0.9 0.9]); hold;

plot(r*100,Ez,’b-’, ’linewidth’,2);

plot(r20,1/10,’r.’, ’markersize’,22);

xlabel(’\rho (cm)’); ylabel(’|{\itE_z}(\rho)|’)

We observe how the electric field is concentrated in the vicinity of the dielectric surface

at ρ = b. The percentage of the transmitted power residing in the dielectric coating is

100pd = 64.63%. A measure of the localization of the wave near the surface is the 20-dB

radius defined as that distance ρ at which the Ez field in the air has dropped to one-tenth

its value at the surface (i.e. by 20 dB). It is obtained by solving for ρ the equation,

∣
∣
∣
∣

Ez(ρ)

Ez(b)

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

K0(γρ)

K0(γb)

∣
∣
∣
∣
∣
= 1

10
(10.19.28)

We find, ρ = 1.1451 cm, that is, only 1.45 mm from the dielectric surface. The 20-dB

radial distance for the magnetic field is found in a similar fashion by solving the following

equation, whose solution is ρ = 1.1449 cm,

∣
∣
∣
∣
∣

Hφ(ρ)

Hφ(b)

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣

K1(γρ)

K1(γb)

∣
∣
∣
∣
∣
= 1

10
(10.19.29)

The computed wavenumbers were, [β,γ, h]= [26.0121, 15.4070, 20.9542] cm−1, the

number of iterations of the iterative algorithm was N = 12, and the computational error,

E = 1.11×10−15, with an assumed tolerance of, tol = 10−10. ⊓⊔

Example 10.19.2: This example is from King-Wiltse [990]. Consider a copper wire of radius, a =
0.995 cm, coated with a polystyrene dielectric of permittivity, εd = 2.54, and thickness,

d = b− a = 0.005 cm, so that the outer radius is, b = a+ d = 1 cm. The conductivity of

copper is σ = 5.75×107 siemens/m. The frequency is varied over, 10 ≤ f ≤ 1000 GHz.

The MATLAB code segment below, calculates the propagation wavenumber β, as well as

the phase and group velocities, vph = ω/β, vg = dω/dβ. The graphs are shown in Figs.

10.19.3 and 10.19.4.

c0 = 299792458; % NIST value, m/sec, speed of light

ff = logspace(1,3,201); % log-spacing in GHz, 10^1 <= ff <= 10^3

f = 1e9*ff; % Hz

w = 2*pi*f;

ed = 2.54; % polystyrene

sig = 5.75e7; % copper conductivity

a = 0.995e-2; % meters

b = 1.000e-2; % d = b-a = 0.005e-2
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tol = 1e-10; rel = 0.3; % tolerance and relaxation parameters

[be,ga,h,N,E] = goubau(a,b,ed,f,rel,tol); % coated

figure; semilogx(ff,be/1000,’b-’) % beta in rads/mm

vph = w./be; % phase velocity

figure; semilogx(ff, vph/c0, ’b-’)

vg = diff(w)./diff(be); % group velocity

figure; semilogx(ff(1:end-1), vg/c0, ’b-’)

For comparison, the uncoated Sommerfeld wire of the same radius, b = 1 cm, is calcu-

lated by the following code. In addition, the corresponding 20-dB radii of the coated and

uncoated cases are computed and plotted in Fig. 10.19.5, in which the right graph shows

an expanded view of the frequency subrange, 500 ≤ f ≤ 1000 GHz.

[bu,gau] = sommer(b,f,sig); % uncoated case, Sommerfeld wire

for i=1:length(f), % 20-dB radii

Ezc = @(r) abs(besselk(0,ga(i)*r)/besselk(0,ga(i)*b));

Ezu = @(r) abs(besselh(0,1,gau(i)*r)/besselh(0,1,gau(i)*a));

rc(i) = fzero(@(r) Ezc(r)-1/10, b) * 1000; % coated

ru(i) = fzero(@(r) Ezu(r)-1/10, b) * 1000; % uncoated

end

figure; loglog(ff,rc,’b-’, ff,ru,’r--’); % coated and uncoated 20-dB radii

ffs = ff(ff>100); rcs = rc(ff>100); % 500 <= f <= 1000 GHz sub-range

figure; plot(ffs, rcs, ’b-’); % plot over sub-range
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Fig. 10.19.3 Propagation wavenumber, β.

Fig. 10.19.6 shows the attenuation coefficients for the coated and uncoated cases, com-

puted and plotted by the following MATLAB code. The King-Wiltse approximation was

restricted to the range f > 100 GHz in order to more closely compare our results to those

of [990]. The right graph shows separately the attenuations due to the conductor and the

dielectric losses. The loss tangent for the dielectric was taken to be tanθ = 0.001.
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Fig. 10.19.5 Lateral 20-dB radii.

tanth = 1e-3;

[atot,ac,ad,app] = goubatt(a,b,ed,f,be,sig,tanth);

db100ft = 8.68589*30.48*atot; % convert to dB/100ft

dbc = 8.68589*30.48*ac;

dbd = 8.68589*30.48*ad;

dbapp = 8.68589*30.48*app;

f1 = ff(ff>=100);

db1 = dbapp(ff>=100); % restrict King-Wiltse to f>100 GHz

dBu = -8.68589*30.48*imag(bu); % uncoated case

figure; loglog(ff,db100ft,’b-’, ff,dBu,’r--’, f1,db1,’k:’); % coated

figure; loglog(ff,dbc,’b-’, ff,dbd,’r--’, ff,db100ft,’k:’); % uncoated

We observe that the coated case has substantially narrower lateral confinement, as quan-

tified by the 20dB radii, than the uncoated case, but at the expense of much larger attenu-

ation. However, in THz applications, lateral confinement is more important than attenua-

tion, because the relevant propagation distances are short, i.e., centimeters. ⊓⊔
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Fig. 10.19.6 Attenuation coefficient.

Example 10.19.3: Here, we explore the properties of the Goubau line over the THz frequency

range, 0.1 ≤ f ≤ 10 THz. Our choice of parameters a,b, εd, and results are similar to

those of Refs. [1010,1023]. We choose a = 100 μm, and two values of the permittivity of

the dielectric coating, εd = 2.54, corresponding to a polymer, and a higher value, εd = 9.

For each εd, we compare two coating thicknesses d1, d2, one thin and one larger near the

cutoff thickness determined by (10.19.27),

d1 = b1 − a = 10 μm , for εd = 2.54 and εd = 9

d2 = b2 − a = 100 μm , for εd = 2.54

d2 = b2 − a = 50 μm , for εd = 9

For the computation of the attenuations, we will assume a copper inner conductor of

conductivity σ = 5.8×107 siemens/m, and a loss tangent of tanθ = 0.001 for both types

of dielectric coatings.

Figs. 10.19.7 and (10.19.8) show the computed propagation wavenumber β, and the corre-

sponding phase velocity vph =ω/β.
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Fig. 10.19.7 Propagation wavenumber.
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Fig. 10.19.8 Phase velocity.

We note that β ≈ k0 for low frequencies, switching gradually to β ≈ k0
√
εd at higher

frequencies. This can be seen more clearly from the phase velocities, switching from near

c0 to near c0/
√
εd. Over the relatively flat parts of the phase velocity, the group velocity will

also be flat and equal to the phase velocity, implying that there will be very little dispersion.

The flat parts are wider for the thicker coatings and cover the 1–10 THz range. Indeed,

from the definitions of the group and phase velocities, one can show the relationship,

vph = ω

β
, vg = dω

dβ
⇒ vg =

vph

1− βv′ph

(10.19.30)

where v′ph = dvph/dω, so that if vph is constant over a band of ωs, then so is vg. The

MATLAB code for computing β and generating Figs. 10.19.7 and (10.19.8) is as follows,

c0 = 299792458; % NIST value, m/sec, speed of light

ff = logspace(-1,1,100); % log-spaced in THz, 0.1 <= ff <= 10

f = 1e12*ff; w = 2*pi*f; % f in Hz

a = 100e-6; % 100 microns

ed = 2.54;

% ed = 9; % uncomment this line for ed = 9

rel = 0.001; % relaxation parameter

d1 = 10e-6; % coating thickness

if ed==2.54, d2 = 100e-6; end

if ed==9.00, d2 = 50e-6; end

b1 = a+d1;

[be1,ga1,h1,N1,E1,Pd1] = goubau(a,b1,ed,f,rel); % uses tol=1e-10

b2 = a+d2;

[be2,ga2,h2,N2,E2,Pd2] = goubau(a,b2,ed,f,rel);

figure; loglog(ff,be1./1000,’b-’, ff,be2./1000,’r--’); % rads/mm

v1 = w./be1/c0; v2 = w./be2/c0; % phase velocities
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figure; semilogx(ff, v1, ’b-’, ff, v2, ’r--’);

The percentage of power in the dielectric coating is shown in Fig. 10.19.9. We note that

for the thicker coating almost 100% of transmitted power is contained in the coating, over

the 0.5-10 THz range. The graphs were generated by the code,

figure; semilogx(ff, 100*Pd1,’b-’, ff, 100*Pd2,’r--’);
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Fig. 10.19.9 Percentage of power in dielectric coating.

The attenuations in dB/cm were computed by the following code and plotted in Fig. 10.19.10.
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Fig. 10.19.10 Attenuation coefficient in dB/cm.

sigma = 5.8e7; % copper conductivity

tand = 1e-3; % loss tangent

at1 = goubatt(a,b1,ed,f,be1,sigma,tand);

at2 = goubatt(a,b2,ed,f,be2,sigma,tand);

dbcm = 20*log10(exp(1))/100; % convert to dB/cm

figure; loglog(ff, at1*dbcm,’b-’, ff, at2*dbcm,’r--’)
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The attenuations are high, but still acceptable for propagation over short distances of the

order of centimeters. The above frequency plots do not necessarily imply single-mode

operation, because frequency range my exceed the cutoff frequencies of the lowest TM

mode. The calculated cutoff frequencies with the help of the function, gcut, are as follows,

εd = 2.54 εd = 9

thickness d1 fc = 12.0776 THz fc = 5.2990 THz

thickness d2 fc = 1.2008 THz fc = 1.0577 THz

Single-mode operation is below these frequencies. They were computed by the following
MATLAB code in which Eq. (10.20.6) was used as the initial search point for fzero,

b1 = a + d1;

f10 = c0/2/sqrt(ed-1)/d1;

fc1 = fzero(@(f) gcut(a,b1,ed,f), f10)

b2 = a + d2;

f20 = c0/2/sqrt(ed-1)/d2;

fc2 = fzero(@(f) gcut(a,b2,ed,f), f20)

For the remainder of this example, let us fix the frequency to f = 1012 Hz, or, 1 THz. Figures

10.19.11 and 10.19.12 show the dependence of the wavenumber β and phase velocity vph

on the coating thickness. As the thickness increases, and more of the wave resides in the

coating, the phase velocity tends to that of the dielectric, i.e., c0/
√
εd.
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Fig. 10.19.11 Propagation wavenumbers vs. thickness at 1 THz.

The MATLAB code for generating these graphs is as follows. The power residing in the

coating and the attenuations are also computed and plotted in Figs. 10.19.14 and 10.19.13.

The function goubau is vectorized in the frequency variable f , but not in the thickness b.

Therefore, the solution for each thickness must be determined with a loop,

ff0 = 1; f0 = 1e12*ff0; w = 2*pi*f0;

sigma = 5.8e7; tand = 1e-3;

if ed==2.54, dd = linspace(1,120,120); end % dd in microns

if ed==9.00, dd = linspace(1,50,50); end
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Fig. 10.19.12 Phase velocity vs. thickness at 1 THz.

d = dd*1e-6; b = a+d; % d,b in meters

for i=1:length(d)

[be(i),~,~,~,~,Pd(i)] = goubau(a,b(i),ed,f0,rel);

[atot(i),ac(i),ad(i)] = goubatt(a,b(i),ed,f0,be(i),sigma,tand);

end

v = w./be/c0; % v in units of c0

cm = 20*log10(exp(1))/100; % conversion to dB/cm

figure; plot(dd, be/1000, ’b-’) % be in units of rads/mm

figure; plot(dd, v, ’b-’)

figure; plot(dd,100*Pd,’r-’)

figure; plot(dd,atot*cm,’b-’, dd,ac*cm,’g--’, dd,ad*cm,’r--’)
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Fig. 10.19.13 Power in dielectric vs. thickness at 1 THz.

The thickness range for each εd was determined by finding the maximum thickness from

the cutoff condition (10.19.27). For the given a, f , the MATLAB function gcut can be used

to find the cutoff width, as well as to plot the cutoff function (10.19.31) versus b, as shown

in Fig. 10.19.15,
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Fig. 10.19.15 Cutoff thickness at 1 THz.

G(b)= J0(h0b)Y0(h0a)−J0(h0a)Y0(h0b) (10.19.31)

The computed values of the cutoff thicknesses were dc = 52.88 μm for εd = 2.54, and

dc = 119.88 μm for εd = 9. The MATLAB code is given below,

f0 = 1e12; a=100e-6;

d0 = c0/2/sqrt(ed-1)/f0; % see Eq. (10.20.6)

b0 = a+d0; % initial search point for fzero

dc = fzero(@(b) gcut(a,b,ed,f0), b0) - a; % cutoff thickness

dd = linspace(0,200,201); d = dd * 1e-6; % dd in microns, d in meters

b = a + d;

figure; plot(dd,gcut(a,b,ed,f0),’b-’, dc*1e6, 0, ’r.’);

In conclusion, for THz applications, one can find a range of parameters a,b, εd of the

Goubau line that allows single-mode operation, high lateral confinement, acceptable atten-

uation, and low dispersion. ⊓⊔
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10.20 Planar Limit of the Goubau Line

The planar limit of the Goubau line, shown below, consists of a planar conductor with

a thin dielectric coating of thickness, say, d. It may be thought of as the limit of the

Goubau line as the radii a,b tend to infinity, such that the difference, d = b−a, remains

finite. It was originally studied by Attwood [984] as a simplified version of the Goubau

line. The conductor is assumed to be perfect and the dielectric, lossless.

To see how this evolves from the Goubau solution, let us rewrite Eq. (10.19.11) in a

normalized way by making the substitutions for the constants E0, E1,

E0 → E0

Z0(hb)
, E1 → E0

K0(γb)

a ≤ ρ ≤ b

Ez = E0
Z0(hρ)

Z0(hb)

Eρ = E0
jβ

h

Z1(hρ)

Z0(hb)

Hφ = E0
jk0εd
η0h

Z1(hρ)

Z0(hb)

h =
√

k2
0εd − β2

b ≤ ρ <∞

Ez = E0
K0(γρ)

K0(γb)

Eρ = −E0
jβ

γ

K1(γρ)

K0(γb)

Hφ = −E0
jk0εa
η0γ

K1(γρ)

K0(γb)

γ =
√

β2 − k2
0εa

(10.20.1)

The boundary condition at ρ = b is automatically satisfied for Ez, whereas that for

Hφ is equivalent to the characteristic equation (10.19.14). Following the same limiting

procedure as in Sec. 10.17, we set, ρ = a+ x, and, b = a+ d, and take the limit a → ∞
with x, d kept fixed. In this limit, we may replace the Bessel functions by their asymptotic

forms [1449], for n = 0,1,

Jn(u) =
√

2

πu
cos

(

u− π
4
− nπ

2

)

Yn(u) =
√

2

πu
sin

(

u− π
4
− nπ

2

)

Kn(u) =
√
π

2u
e−u

(10.20.2)

Using (10.20.2) and some trigonometric identities, we find the following asymptotic

forms, and limits as a→∞,
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Z0(hρ)

Z0(hb)
=
√

b

ρ
· sin

(

h(ρ− a))

sin
(

h(b− a)) =
√

a+ d
a+ x ·

sin(hx)

sin(hd)
→ sin(hx)

sin(hd)

Z1(hρ)

Z0(hb)
= −

√

b

ρ
· cos

(

h(ρ− a))

sin
(

h(b− a)) = −
√

a+ d
a+ x ·

cos(hx)

sin(hd)
→ −cos(hx)

sin(hd)

K0(γρ)

K0(γb)
= K1(γρ)

K0(γb)
=
√

b

ρ
· e−γ(ρ−b) =

√

a+ d
a+ x · e

−γ(x−d) → e−γ(x−d)

(10.20.3)

For example, we have for n = 0,1,

Zn(hρ) = Jn(hρ)− J0(ha)

Y0(ha)
Y0(hρ)

=
√

2

πhρ

[

cos

(

hρ− π
4
− nπ

2

)

− cos(ha−π/4)
sin(ha−π/4) sin

(

hρ− π
4
− nπ

2

)]

=
√

2

πhρ
· − sin

(

h(ρ− a)−nπ/2)

sin(ha−π/4)
The characteristic equation (10.19.14) simplifies as follows, at ρ = b, or, x = d,

h

εd

Z0(hb)

Z1(hb)
= − γ

εa

K0(γb)

K1(γb)
⇒ − h

εd

sin(hd)

cos(hd)
= − γ

εa
, or,

h

εd
tan(hd)= γ

εa
(10.20.4)

As shown by King-Wiltse [990], this simplified form of the characteristic equation

can be used as a substitute of (10.19.14) at higher frequencies, near THz. Similarly, the

field solutions (10.20.1) become,

0 ≤ x ≤ d d ≤ x <∞

Ez = E0
sin(hx)

sin(hd)
Ez = E0e

−γ(x−d)

Ex = −E0
jβ

h

cos(hx)

sin(hd)
Ex = −E0

jβ

γ
e−γ(x−d)

Hy = −E0
jk0εd
η0h

cos(hx)

sin(hd)
Hy = −E0

jk0εa
η0γ

e−γ(x−d)

h =
√

k2
0εd − β2 γ =

√

β2 − k2
0εa

(10.20.5)

where they must be multiplied by ejωt−jβz. The tangential component Ez vanishes on

the (assumed perfect) conductor at x = 0, and it matches the air side at x = d. The

matching of Hy at x = d is equivalent to Eq. (10.20.4).

As in the case of the Goubau line, the cutoff condition is γ = 0, which implies

through (10.20.4) that tan(h0d)= 0, h0 = k0

√

εd − 1. The lowest cutoff corresponds to

h0d = π, or, expressed as a frequency-thickness relation,
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f d = c0

2
√

εd − 1
(10.20.6)

The characteristic equation (10.20.4) can be solved recursively using the same itera-

tive procedure as for the Goubau line, that is, by writing it in the following form,

γ

h
= 1

εd
tan(hd)≡ F(β)

with εa = 1, and solving the left-hand side for β,

β = k0

√

1+ εdF2(β)

1+ F2(β)
(10.20.7)

and turning it into the recursion, for n = 0,1,2, . . . ,

βn+1 = r k0

√

1+ εdF2(βn)

1+ F2(βn)
+ (1− r)βn (10.20.8)

where r is a relaxation parameter, 0 < r ≤ 1. The following MATLAB function, attw,

implements this iteration:

[be,g,h,N,E,pd] = attw(d,ed,f,r,tol,be0) % Attwood surface waveguide

[be,g,h,N,E,pd] = attw(d,ed,f,r,tol) (be0 = 0.999*k0*sqrt(ed))

[be,g,h,N,E,pd] = attw(d,ed,f,r) (tol = 1e-10)

% d = coating thickness [meters]

% ed = relative dielectric constant of coating (ed>1)

% f = vector of frequencies [Hz]

% r = relaxation parameter (0 < r <= 1)

% tol = computational tolerance, default tol = 1e-10

% be0 = initializing vector, size(f), default be0 = 0.999*k0*sqrt(ed)

%

% be = propagation wavenumber [rads/m], size(f)

% ga = lateral decay constant [1/m], size(f)

% h = lateral wavenumber in dielectric coating [rads/m], size(f)

% N = number of iterations to converge (for all f)

% E = computational error of characteristic equation, size(f)

% pd = proportion of transmitted power in dielectric coating

The attenuation coefficient may be computed by,

α = P′loss

2PT
(10.20.9)

where P′loss is the power loss per unit conductor length, and PT, the transmitted power.

The two parts of P′loss due to the losses in the conductor and to the losses in the

dielectric coating are given as follows, relative to a finite strip in the y-direction of

width, Δy = 1 meter,

P′loss = P′c + P′d =
1

2
Rs

∣
∣Hy

∣
∣2
∣
∣
∣
x=0

+ 1

2
ωǫI

∫ d

0

[|Ez|2 + |Ex|2
]

dx (10.20.10)
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where, in terms of the loss-tangent of the dielectric, ǫI = ǫ0εI = ǫ0εd tanθ. The trans-

mitted power is obtained by integrating the z-component of the Poynting vector on a

dx ·Δy cross-sectional area of the coating and the air side,

PT =
∫ d

0

1

2
Re[ExH

∗
y ]dx+

∫∞

d

1

2
Re[ExH

∗
y ]dx (10.20.11)

Using the solutions (10.20.5), the indicated integrals can be done easily, resulting in,

P′loss =
|E0|2k2

0ε
2
d

2η2
0 h

2 sin2(hd)

{

Rs + η0 tanθ

2k0εd

(

β2

[

d+ sin(2hd)

2h

]

+ h2

[

d− sin(2hd)

2h

])}

PT =
|E0|2βk0ε

2
d

4η0 h2 sin2(hd)

{

1

εd

[

d+ sin(2hd)

2h

]

+ cos2(hd)

γ

}

where we used Eq. (10.20.4) and set εa = 1. Dividing, we obtain the total attenuation

coefficient, with the Rs term representing the conductor losses, and the tanθ term, the

dielectric ones,

α = k0

βη0

·
Rs + η0 tanθ

2k0εd

(

β2

[

d+ sin(2hd)

2h

]

+ h2

[

(d− sin(2hd)

2h

])

1

εd

[

d+ sin(2hd)

2h

]

+ cos2(hd)

γ

(10.20.12)

It also follows from the expression for PT that the proportion of the transmitted

power within the dielectric is given by,

pd =
1

εd

[

d+ sin(2hd)

2h

]

1

εd

[

d+ sin(2hd)

2h

]

+ cos2(hd)

γ

= power in dielectric (10.20.13)

The following MATLAB function, attwatt, implements Eqs. (10.20.12) and (10.20.13):

[atot,ac,ad,pd] = attwatt(d,ed,f,be,sigma,tand)

% d = coating thickness [meters]

% ed = relative dielectric constant of coating (ed>1)

% f = vector of frequencies [Hz]

% be = propagation wavenumber [rads/m], same size as f, obtained from GOUBAU

% sigma = conductivity of inner conductor [siemens/m]

% tand = loss tangent of dielectric coating, scalar, or, size(f)

%

% atot = total attenuation coefficient [nepers/m], size(f)

% ac = attenuation due to conductor [nepers/m], size(f)

% ad = attenuation due to dielectric [nepers/m], size(f)

% pd = proportion of transmitted power in dielectric coating

%

% conversions: dB/m = 8.68589 * atot = 20*log10(exp(1)) * atot

% dB/100ft = 8.68589 * 30.48 * atot
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Example 10.20.1: This example is from [984] and demonstrates that the planar version behaves

very similarly to the Goubau line with respect to the dependence of the wavenumber β and

attenuation α on frequency and coating thickness.

Consider a copper planar conductor with conductivity σ = 5.8×107 siemens/m, covered

with a dielectric coating of permittivity εd = 4. Three coating thicknesses are compared,

d1 = 1 mm, d2 = 5 mm, and d3 = 10 mm, over the frequency range, 0.3 ≤ f ≤ 30 GHz.

Figs. 10.20.1 and 10.20.2 show the propagation and lateral wavenumbers β,γ, as well as

the phase velocities, vph = ω/β, and percentage of power in the dielectric for the three

thicknesses.
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Fig. 10.20.1 Propagation and lateral wavenumbers, β,γ, vs. frequency.
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Fig. 10.20.2 Phase velocities and power in dielectric.

As in the Goubau line case, the wavenumber β switches gradually from near β = k0 to near

β = k0
√
εd. As the coating thickness and frequency increase, the power confinement in the

coating increases, while the field strength outside the coating decreases with distance, as

measured by the value of the decay constant γ−1. The following MATLAB code generates

the graphs,

c0 = 299792458;

ed = 4;
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d1 = 1e-3; d2 = 5e-3; d3 = 10e-3; % meters

ff = 3*logspace(-1,1,100); % 0.3 <= ff <= 30 GHz

f = ff * 1e9; % Hz

rel = 0.01; % relaxation parameter

[be1,ga1,h1,N1,E1,pd1] = attw(d1,ed,f,rel);

[be2,ga2,h2,N2,E2,pd2] = attw(d2,ed,f,rel);

[be3,ga3,h3,N3,E3,pd3] = attw(d3,ed,f,rel);

v1 = w./be1/c0; v2 = w./be2/c0; v3 = w./be3/c0;

figure; loglog(ff,be1,’b-’, ff,be2,’r--’, ff,be3, ’k:’)

figure; loglog(ff,ga1,’b-’, ff,ga2,’r--’, ff,ga3, ’k:’)

figure; semilogx(ff,v1,’b-’, ff,v2,’r--’,ff,v3,’b:’)

figure; semilogx(ff,100*pd1,’b-’, ff,100*pd2,’r--’, ff,100*pd3,’k:’);

The attenuations in the conductor and the dielectric are shown in Fig. 10.20.3. The loss

tangent in the dielectric was assumed in [984] to arise from a very small conductivity, i.e.,

tanθ = σd
ωǫd

= σd
ωǫ0 εd

, σd = 6.6667×10−4 siemens/m
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Fig. 10.20.3 Attenuations in conductor and dielectric coating.

The MATLAB code generating the graphs was,

ep0 = 8.854187817e-12; % NIST value, vacuum permittivity

sigma = 5.8e7; % copper conductor

sigd = 6.6667e-4; % dielectric

w = 2*pi*f;

tand = sigd./w/ep0/ed;

[at1,ac1,ad1] = attwatt(d1,ed,f,be1,sigma,tand);

[at2,ac2,ad2] = attwatt(d2,ed,f,be2,sigma,tand);

[at3,ac3,ad3] = attwatt(d3,ed,f,be3,sigma,tand);

db = 8.68589; % convert to dB/m
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figure; loglog(ff,db*ac1,’b-’, ff,db*ac2,’r--’, ff,db*ac3,’k:’);

figure; loglog(ff,db*ad1,’b-’, ff,db*ad2,’r--’, ff,db*ad3,’k:’);

As expected, the attenuation in the dielectric increases with thickness and frequency. ⊓⊔

10.21 Problems

10.1 Prove Eq. (10.3.8). To do so, introduce the following polar forms,

−εf = εR + jεI = |εf |ejθ , −εf − εc = εR − εc + jεI = |εf + εc|ejφ

Then, using Eqs. (10.2.6) and some trig identities, show that Eq. (10.3.8) reduces to the equiv-

alent condition,

|εf |
(

sinθ+ sin(φ− θ))+ εc(sinθ− sinφ)= εI
(

1+ εc
|εf |

)

Then, verify this condition by first proving the relationships,

sin(φ− θ)= εc εI
|εf | · |εf + εc|

, sinθ = εI
|εf |

, sinφ = εI
|εf + εc|

10.2 Prove Eqs. (10.3.9)–(10.3.11) and thereby prove the equality vg = ven for the lossless case of

surface plasmons along a single metal-dielectric interface.

10.3 Using some hyperbolic trigonometric identities, show that Eq. (10.1.6) for the transverse

magnetic field in a plasmonic waveguide can be written in the following equivalent forms,

which are commonly found in the literature,

Hy(x)= H1 ·

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

cosh
(

γ(x− a))− pcαc
γ

sinh
(

γ(x− a)) , |x| ≤ a

e−αc(x−a) , x ≥ a
[

cosh(2γa)+pcαc
γ

sinh(2γa)
]

eαs(x+a) , x ≤ −a

(10.21.1)

and

Hy(x)= H2 ·

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

cosh
(

γ(x+ a))+ psαs
γ

sinh
(

γ(x+ a)) , |x| ≤ a
[

cosh(2γa)+psαs
γ

sinh(2γa)
]

e−αc(x−a) , x ≥ a

eαs(x+a) , x ≤ −a

(10.21.2)

and show that the new constants H1,H2 are related to H0 of Eq. (10.1.6) by

H1 = H0 cosh(γa+ψ) , H2 = H0 cosh(γa−ψ)

10.4 Consider a symmetric MDM plasmonic waveguide with film width 2a and permittivities εf
and εc = εs, and assume lossless media so that εf is real positive and εc, real negative. We

saw at the end of Sec. 10.4 that complex modes can exist in the lossless case that are highly

damped and carry no net power in the propagation direction. Consider a TM0 complex mode

with β = βR − jβI , γ = γR + jγI , and αc = αR + jαI , satisfying the characteristic equation,
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tanh(γa)= −pcαc/γ, pc = εf/εc. The magnetic field is given by Eq. (10.1.5) with ψ = 0.

By integrating the z-component of the Poynting vector over the transverse x-direction, show

that up to an overall positive constant, the powers flowing within the dielectric film and

metal sides are given by

Pf = βR
εf

[

sinh(2γRa)

2γR
+ sin(2γIa)

2γI

]

, 2Pc = βR
εc

[
cosh(2γRa)+ cos(2γIa)

2αR

]

Using the characteristic equation, prove that Pf = −2Pc, so that the net power is zero,

P = Pf + 2Pc = 0. Hint: Prove and use the following two results, αRαI = γRγI , and

tanh
(

(γR + jγI)a
) = sinh(2γRa)+j sin(2γIa)

cosh(2γRa)+ cos(2γIa)

10.5 Consider a symmetric MDM plasmonic waveguide with film width 2a and permittivities εf
for the dielectric film and εc = εs for the metal sides. Let β,γ,αc be the propagation

parameters for the corresponding symmetric solution satisfying the characteristic equation,

γ tanh(γa)= −pcαc, where pc = εf/εc. Show that if εc is changed by a small amount Δεc,

that is, εc → εc +Δεc, then the propagation wavenumber changes from β to β+Δβ, where

Δβ = γ

β
·Δγ , Δγ =

k0pc

(
γ

k0

)(

α2
c

k2
0εc

+ 1

2

)

(k0a)

(

γ2αc

k3
0

)(

1− p
2
cα

2
c

γ2

)

− pc(εf − εc)
·Δεc (10.21.3)

10.6 Computer Experiment: Anomalous Complex Modes. This problem is based on [948]. Consider

an MDM guide that has εc = εs = −10, εf = 1, and film width 2a = λ0/4. It corresponds to

a lossless case, and therefore the modes will come in pairs, ±βR − jβI , and (except for the

even q = 0 mode) carry no net power. The following two tables show the computed even

and odd modes, where the index q and the ± signs refer to Eq. (10.9.2), and even and odd

correspond to the index m = 0,1 in Eq. (10.9.2).

q β/k0 (even modes) γ/k0 αc/k0

0 1.21340 0.68728j 3.38709

1 − 0.07361− 3.87013j 0.07127− 3.99720j 0.12755− 2.23356j

1 + −0.07361− 3.87013j 0.07127+ 3.99720j 0.12755+ 2.23356j

2 − 0.11711− 7.93691j 0.11620− 7.99965j 0.12768− 7.27992j

2 + −0.11711− 7.93691j 0.11620+ 7.99965j 0.12768+ 7.27992j

3 − 0.12317− 11.95816j 0.12274− 11.99990j 0.12772− 11.53251j

3 + −0.12317− 11.95816j 0.12274+ 11.99990j 0.12772+ 11.53251j

q β/k0 (odd modes) γ/k0 αc/k0

0 −1.50304j 1.80531j 2.78224

1 − 0.10788− 5.91526j 0.10637− 5.99917j 0.12764− 4.99950j

1 + −0.10788− 5.91526j 0.10637+ 5.99917j 0.12764+ 4.99950j

2 − 0.12109− 9.94970j 0.12048− 9.99982j 0.12771− 9.43388j

2 + −0.12109− 9.94970j 0.12048+ 9.99982j 0.12771+ 9.43388j

3 − 0.12441− 13.96418j 0.12409− 13.99993j 0.12773− 13.60144j

3 + −0.12441− 13.96418j 0.12409+ 13.99993j 0.12773+ 13.60144j

a. Following Example 10.9.1, write MATLAB code that verifies the entries in the above

tables. In addition, calculate the corresponding error norms of the two tables.
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b. For all cases, calculate the net power for each mode, as well as the amount of power

and its direction flowing in the metal and the dielectric media. Note that the q = 0

even mode is the fundamental G-SPP mode. The q = 0 odd mode is truly evanescent in

the sense that it has βR = 0 and βI = − Im(β)> 0, and it is laterally confined since αc
is positive real. This mode carries no power in any of the three media—explain why.

10.7 Verify the equality Eq. (10.16.9). As a preliminary step, use the definition, γ2
c = k2

0εc − β2 =
k2

0(εR − jεI)−(βR − jβI)2, to show the following relationship,

2βI Re
[

βε∗c ]−|β|2εI = εc Im[γ2
c]+εI γ2

c

10.8 The Zenneck surface wave was discussed in Sec. 10.17 with field solutions given by Eqs. (10.17.3).

Consider a rectangular volume, LxLyLz, within the conductor whose top side coincides with

the interface with the air side, as shown below.

You may assume Ly = 1 meter. Following a similar discussion as that carried out for the

Sommerfeld wire, show that the power flowing into this volume from all sides is given by,

Pin =ω 1

2
ǫ0|E0|2

(

1− e−2βILz
)(

1− e−2αcLx
)

[

Re[γcε
∗
c ]

2βI · |γc|2
+ Re[βε∗c ]

2αc · |γc|2
]

where αc = − Im(γc)> 0. Similarly, show that the power dissipated into Ohmic losses

within the LxLyLz volume is given by,

Ploss =ω 1

2
ǫ0|E0|2

(

1− e−2βILz
)(

1− e−2αcLx
)

[

εI|β|2 + εI|γc|2
2βI · 2αc · |γc|2

]

where εI = − Im(εc). Finally, using the relationship γ2
c = k2

0εc − β2, show that Pin = Ploss.

10.9 The planar limit of the Goubau line discussed in Sec. 10.20 is obtained in the limit a,b→∞,

such that the thickness, d = b − a, is kept constant. Show that the attenuation coefficient

(10.20.12) of the planar case is obtained as the limit of the Goubau line attenuation (10.19.24).

To do so, use the asymptotic forms (10.20.2) inside the integrands of Eqs. (10.19.22) to show

the following limiting forms for the U,V,W,

U ≈ 1

a
·
[

d+ sin(2hd)

2h

]

, V ≈ 1

a
·
[

d− sin(2hd)

2h

]

, W ≈ b

a2
· cos2(hd)

γ

Then, use these into (10.19.24) and apply the planar limit.
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Transmission Lines

11.1 General Properties of TEM Transmission Lines

We saw in Sec. 9.3 that TEM modes are described by Eqs. (9.3.3) and (9.3.4), the latter

being equivalent to a two-dimensional electrostatic problem:

HT = 1

η
ẑ× ET

∇∇∇T × ET = 0

∇∇∇T · ET = 0

(TEM modes) (11.1.1)

The second of (11.1.1) implies that ET can be expressed as the (two-dimensional)

gradient of a scalar electrostatic potential. Then, the third equation becomes Laplace’s

equation for the potential. Thus, the electric field can be obtained from:

∇2
Tϕ = 0

ET = −∇∇∇Tϕ
(equivalent electrostatic problem) (11.1.2)

Because in electrostatic problems the electric field lines must start at positively

charged conductors and end at negatively charged ones, a TEM mode can be supported

only in multi-conductor guides, such as the coaxial cable or the two-wire line. Hollow

conducting waveguides cannot support TEM modes.

Fig. 11.1.1 depicts the transverse cross-sectional area of a two-conductor transmis-

sion line. The cross-section shapes are arbitrary.

The conductors are equipotentials of the electrostatic solution. Let ϕa,ϕb be the

constant potentials on the two conductors. The voltage difference between the conduc-

tors will be V =ϕa −ϕb. The electric field lines start perpendicularly on conductor (a)

and end perpendicularly on conductor (b).

The magnetic field lines, being perpendicular to the electric lines according to Eq. (11.1.1),

are recognized to be the equipotential lines. As such, they close upon themselves sur-

rounding the two conductors.
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Fig. 11.1.1 Two-conductor transmission line.

In particular, on the conductor surfaces the magnetic field is tangential. According

to Ampère’s law, the line integrals of the magnetic field around each conductor will

result into total currents I and −I flowing on the conductors in the z-direction. These

currents are equal and opposite.

Impedance, Inductance, and Capacitance

Because the fields are propagating along the z-direction with frequency ω and wave-

number β =ω/c, the z, t dependence of the voltage V and current I will be:

V(z, t)= Vejωt−jβz
I(z, t)= Iejωt−jβz (11.1.3)

For backward-moving voltage and current waves, we must replace β by−β. The ratio

V(z, t)/I(z, t)= V/I remains constant and independent of z. It is called the character-

istic impedance of the line:

Z = V

I
(line impedance) (11.1.4)

In addition to the impedance Z, a TEM line is characterized by its inductance per unit

length L′ and its capacitance per unit length C′. For lossless lines, the three quantities

Z,L′, C′ are related as follows:

L′ = μ Z
η
, C′ = ǫ η

Z
(inductance and capacitance per unit length) (11.1.5)

where η = √

μ/ǫ is the characteristic impedance of the dielectric medium between the

conductors.† By multiplying and dividing L′ and C′, we also obtain:

†These expressions explain why μ and ǫ are sometimes given in units of henry/m and farad/m.
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Z =
√

L′

C′
, c = 1√

ǫμ
= 1√

L′C′
(11.1.6)

The velocity factor of the line is the ratio c/c0 = 1/n, where n = √

ǫ/ǫ0 = √ǫr is the

refractive index of the dielectric, which is assumed to be non-magnetic.

Because ω = βc, the guide wavelength will be λ = 2π/β = c/f = c0/fn = λ0/n,

where λ0 is the free-space wavelength. For a finite length l of the transmission line, the

quantity l/λ = nl/λ0 is referred to as the electrical length of the line and plays the same

role as the optical length in thin-film layers.

Eqs. (11.1.5) and (11.1.6) are general results that are valid for any TEM line. They can

be derived with the help of Fig. 11.1.2.

Fig. 11.1.2 Surface charge and magnetic flux linkage.

The voltage V is obtained by integrating ET ·dl along any path from (a) to (b). How-

ever, if that path is chosen to be an E-field line, then ET · dl = |ET|dl, giving:

V =
∫ b

a
|ET|dl (11.1.7)

Similarly, the current I can be obtained by the integral of HT · dl along any closed

path around conductor (a). If that path is chosen to be an H-field line, such as the

periphery Ca of the conductor, we will obtain:

I =
∮

Ca

|HT|dl (11.1.8)

The surface charge accumulated on an infinitesimal area dldz of conductor (a) is

dQ = ρsdldz, where ρs is the surface charge density. Because the conductors are

assumed to be perfect, the boundary conditions require that ρs be equal to the normal

component of the D-field, that is, ρs = ǫ|ET|. Thus, dQ = ǫ|ET|dldz.

If we integrate over the peripheryCa of conductor (a), we will obtain the total surface

charge per unit z-length:

Q′ = dQ

dz
=
∮

Ca

ǫ|ET|dl

But because of the relationship |ET| = η|HT|, which follows from the first of Eqs. (11.1.1),

we have:
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Q′ =
∮

Ca

ǫ|ET|dl = ǫη
∮

Ca

|HT|dl = ǫηI (11.1.9)

where we used Eq. (11.1.8). Because Q′ is related to the capacitance per unit length and

the voltage by Q′ = C′V, we obtain

Q′ = C′V = ǫηI ⇒ C′ = ǫη I
V
= ǫ η

Z

Next, we consider an E-field line between pointsA and B on the two conductors. The

magnetic flux through the infinitesimal area dldz will be dΦ = |BT|dldz = μ|HT|dldz
because the vector HT is perpendicular to the area.

If we integrate from (a) to (b), we will obtain the total magnetic flux linking the two

conductors per unit z-length:

Φ′ = dΦ

dz
=
∫ b

a
μ|HT|dl

replacing |HT| = |ET|/η and using Eq. (11.1.7), we find:

Φ′ =
∫ b

a
μ|HT|dl = μ

η

∫ b

a
|ET|dl = μ

η
V

The magnetic flux is related to the inductance via Φ′ = L′I. Therefore, we get:

Φ′ = L′I = μ

η
V ⇒ L′ = μ

η

V

I
= μ Z

η

Transmitted Power

The relationships among Z,L′, C′ can also be derived using energy considerations. The

power transmitted along the line is obtained by integrating the z-component of the

Poynting vector over the cross-section S of the line. For TEM modes we have Pz =
|ET|2/2η, therefore,

PT = 1

2η

∫∫

S
|ET|2dxdy = 1

2η

∫∫

S
|∇∇∇Tϕ|2dxdy (11.1.10)

It can be shown in general that Eq. (11.1.10) can be rewritten as:

PT = 1

2
Re(V∗I)= 1

2
Z|I|2 = 1

2Z
|V|2 (11.1.11)

We will verify this in the various examples below. It can be proved using the following

Green’s identity:

|∇∇∇Tϕ|2 +ϕ∗∇2
Tϕ =∇∇∇T · (ϕ∗∇∇∇Tϕ)

Writing ET = −∇∇∇Tϕ and noting that ∇2
Tϕ = 0, we obtain:

|ET|2 = −∇∇∇T · (ϕ∗ET)
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Then, the two-dimensional Gauss’ theorem implies:

PT = 1

2η

∫∫

S
|ET|2dxdy = − 1

2η

∫∫

S
∇∇∇T · (ϕ∗ET)dxdy

= − 1

2η

∮

Ca

ϕ∗ET · (−n̂)dl− 1

2η

∮

Cb

ϕ∗ET · (−n̂)dl

= 1

2η

∮

Ca

ϕ∗(ET · n̂)dl+ 1

2η

∮

Cb

ϕ∗(ET · n̂)dl

where n̂ are the outward normals to the conductors (the quantity −n̂ is the normal

outward from the region S.) Because the conductors are equipotential surfaces, we have

ϕ∗ =ϕ∗
a on conductor (a) andϕ∗ =ϕ∗

b on conductor (b). Using Eq. (11.1.9) and noting

that ET · n̂ = ±|ET| on conductors (a) and (b), we obtain:

PT = 1

2η
ϕ∗
a

∮

Ca

|ET|dl− 1

2η
ϕ∗
b

∮

Cb

|ET|dl = 1

2η
ϕ∗
a

Q′

ǫ
− 1

2η
ϕ∗
b

Q′

ǫ

= 1

2
(ϕ∗

a −ϕ∗
b )
Q′

ǫη
= 1

2
V∗
ǫηI

ǫη
= 1

2
V∗I = 1

2
Z|I|2

The distribution of electromagnetic energy along the line is described by the time-

averaged electric and magnetic energy densities per unit length, which are given by:

W′
e =

1

4
ǫ

∫∫

S
|ET|2dxdy , W′

m =
1

4
μ

∫∫

S
|HT|2dxdy

Using Eq. (11.1.10), we may rewrite:

W′
e =

1

2
ǫηPT = 1

2c
PT , W′

m =
1

2

μ

η
PT = 1

2c
PT

Thus, W′
e = W′

m and the total energy density is W′ = W′
e +W′

m = PT/c, which

implies that the energy velocity will be ven = PT/W
′ = c. We may also express the

energy densities in terms of the capacitance and inductance of the line:

W′
e =

1

4
C′|V|2 , W′

m =
1

4
L′|I|2 (11.1.12)

Power Losses, Resistance, and Conductance

Transmission line losses can be handled in the manner discussed in Sec. 9.2. The field

patterns and characteristic impedance are determined assuming the conductors are per-

fectly conducting. Then, the losses due to the ohmic heating of the dielectric and the

conductors can be calculated by Eqs. (9.2.5) and (9.2.9).

These losses can be quantified by two more characteristic parameters of the line, the

resistance and conductance per unit length, R′ and G′. The attenuation coefficients due

to conductor and dielectric losses are then expressible in terms R′, G′ and Z by:

αc = R′

2Z
, αd = 1

2
G′Z (11.1.13)
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They can be derived in general terms as follows. The induced surface currents on

the conductor walls are Js = n̂×HT = n̂× (ẑ× ET)/η, where n̂ is the outward normal

to the wall.

Using the BAC-CAB rule, we find Js = ẑ(n̂ · ET)/η. But, n̂ is parallel to ET on the

surface of conductor (a), and anti parallel on (b). Therefore, n̂ · ET = ±|ET|. It follows

that Js = ±ẑ|ET|/η = ±ẑ|HT|, pointing in the +z direction on (a) and −z direction on

(b). Inserting these expressions into Eq. (9.2.8), we find for the conductor power loss per

unit z-length:

P′loss =
dPloss

dz
= 1

2
Rs

∮

Ca

|HT|2 dl+ 1

2
Rs

∮

Cb

|HT|2 dl (11.1.14)

Because HT is related to the total current I via Eq. (11.1.8), we may define the resis-

tance per unit length R′ through the relationship:

P′loss =
1

2
R′|I|2 (conductor ohmic losses) (11.1.15)

Using Eq. (11.1.11), we find for the attenuation coefficient:

αc =
P′loss

2PT
=

1

2
R′|I|2

2
1

2
Z|I|2

= R′

2Z
(11.1.16)

If the dielectric between the conductors is slightly conducting with conductivity σd
or loss tangent tanδ = σd/ǫω, then there will be some current flow between the two

conductors.

The induced shunt current per unit z-length is related to the conductance by I′d =
G′V. The shunt current density within the dielectric is Jd = σdET. The total shunt

current flowing out of conductor (a) towards conductor (b) is obtained by integrating Jd
around the periphery of conductor (a):

I′d =
∮

Ca

Jd · n̂dl = σd
∮

Ca

|ET|dl

Using Eq. (11.1.9), we find:

I′d = σd
Q′

ǫ
= G′V ⇒ G′ = σd

ǫ
C′ = σd η

Z

It follows that the dielectric loss constant (9.2.5) will be:

αd = 1

2
σdη = 1

2
G′Z

Alternatively, the power loss per unit length due to the shunt current will be P′d =
Re(I′dV

∗)/2 = G′|V|2/2, and therefore, αd can be computed from:

αd =
P′d

2PT
=

1

2
G′|V|2

2
1

2Z
|V|2

= 1

2
G′Z
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It is common practice to express the dielectric losses and shunt conductance in terms

of the loss tangent tanδ and the wavenumber β =ω/c =ωǫη:

αd = 1

2
σdη = 1

2
ωǫη tanδ = 1

2
β tanδ and G′ = σd

ǫ
C′ =ωC′ tanδ (11.1.17)

Next, we discuss four examples: the parallel plate line, the microstrip line, the coaxial

cable, and the two-wire line. In each case, we discuss the nature of the electrostatic

problem and determine the characteristic impedance Z and the attenuation coefficients

αc and αd.

11.2 Parallel Plate Lines

The parallel plate line shown in Fig. 11.2.1 consists of two parallel conducting plates of

width w separated by height h by a dielectric material ǫ. Examples of such lines are

microstrip lines used in microwave integrated circuits.

For arbitrary values of w and h, the fringing effects at the ends of the plates cannot

be ignored. In fact, fringing requires the fields to have longitudinal components, and

therefore TEM modes are not strictly-speaking supported.

Fig. 11.2.1 Parallel plate transmission line.

However, assuming the width is much larger than the height, w≫ h, we may ignore

the fringing effects and assume that the fields have no dependence on the x-coordinate.

The electrostatic problem is equivalent to that of a parallel plate capacitor. Thus,

the electric field will have only a y component and will be constant between the plates.

Similarly, the magnetic field will have only an x component. It follows from Eqs. (11.1.7)

and (11.1.8) that:

V = −Eyh , I = Hxw

Therefore, the characteristic impedance of the line will be:

Z = V

I
= −Eyh
Hxw

= η h
w

(11.2.1)

where we used Ey = −ηHx. The transmitted power is obtained from Eq. (11.1.10):

PT = 1

2η
|Ey|2(wh)= 1

2η

V2

h2
wh = 1

2η

w

h
V2 = 1

2Z
V2 = 1

2
ZI2 (11.2.2)
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The inductance and capacitance per unit length are obtained from Eq. (11.1.5):

L′ = μ h
w
, C′ = ǫw

h
(11.2.3)

The surface current on the top conductor is Js = n̂ × H = (−ŷ)×H = ẑHx. On the

bottom conductor, it will be Js = −ẑHx. Therefore, the power loss per unit z-length is

obtained from Eq. (9.2.8):

P′loss = 2
1

2
Rs|Hx|2w = 1

w
RsI

2

Comparing with Eq. (11.1.15), we identify the resistance per unit length R′ = 2Rs/w.

Then, the attenuation constant due to conductor losses will be:

αc =
P′loss

2PT
= R′

2Z
= Rs
wZ

= Rs
hη

(11.2.4)

11.3 Microstrip Lines

Practical microstrip lines, shown in Fig. 11.3.1, have width-to-height ratios w/h that are

not necessarily much greater than unity, and can vary over the interval 0.1 < w/h < 10.

Typical heights h are of the order of millimeters.

Fig. 11.3.1 A microstrip transmission line.

Fringing effects cannot be ignored completely and the simple assumptions about the

fields of the parallel plate line are not valid. For example, assuming a propagating wave

in the z-direction with z, t dependence of ejωt−jβz with a common β in the dielectric

and air, the longitudinal-transverse decomposition (9.1.5) gives:

∇∇∇TEz × ẑ− jβ ẑ× ET = −jωμHT ⇒ ẑ× (∇∇∇TEz + jβET)= jωμHT

In particular, we have for the x-component:

∂yEz + jβEy = −jωμHx

The boundary conditions require that the components Hx and Dy = ǫEy be contin-

uous across the dielectric-air interface (at y = h). This gives the interface conditions:

∂yE
air
z + jβEair

y = ∂yEdiel
z + jβEdiel

y

ǫ0E
air
y = ǫEdiel

y
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Combining the two conditions, we obtain:

∂y
(

Ediel
z − Eair

z

) = jβǫ− ǫ0

ǫ
Eair
y = jβǫ− ǫ0

ǫ0

Ediel
y (11.3.1)

Because Ey is non-zero on either side of the interface, it follows that the left-hand

side of Eq. (11.3.1) cannot be zero and the wave cannot be assumed to be strictly TEM.

However, Ey is small in both the air and the dielectric in the fringing regions (to the

left and right of the upper conductor). This gives rise to the so-called quasi-TEM approx-

imation in which the fields are assumed to be approximately TEM and the effect of the

deviation from TEM is taken into account by empirical formulas for the line impedance

and velocity factor.

In particular, the air-dielectric interface is replaced by an effective dielectric, filling

uniformly the entire space, and in which there would be a TEM propagating mode. If

we denote by ǫeff the relative permittivity of the effective dielectric, the wavelength and

velocity factor of the line will be given in terms of their free-space values λ0, c0:

λ = λ0√
ǫeff

, c = c0√
ǫeff

(11.3.2)

There exist many empirical formulas for the characteristic impedance of the line

and the effective dielectric constant. Hammerstad and Jensen’s are some of the most

accurate ones [891,897]:

ǫeff = ǫr + 1

2
+ ǫr − 1

2

(

1+ 10

u

)−ab
, u = w

h
(11.3.3)

where ǫr = ǫ/ǫ0 is the relative permittivity of the dielectric and the quantities a,b are

defined by:

a = 1+ 1

49
ln

[

u4 + (u/52)2

u4 + 0.432

]

+ 1

18.7
ln

[

1+
(
u

18.1

)3
]

b = 0.564

(
ǫr − 0.9

ǫr + 3

)0.053
(11.3.4)

The accuracy of these formulas is better than 0.01% foru < 1 and 0.03% foru < 1000.

Similarly, the characteristic impedance is given by the empirical formula:

Z = η0

2π
√
ǫeff

ln

⎡

⎣
f(u)

u
+
√

1+ 4

u2

⎤

⎦ (11.3.5)

where η0 =
√

μ0/ǫ0 and the function f(u) is defined by:

f(u)= 6+ (2π− 6)exp

[

−
(

30.666

u

)0.7528
]

(11.3.6)

The accuracy is better than 0.2% for 0.1 ≤ u ≤ 100 and ǫr < 128. In the limit of

large ratio w/h, or, u → ∞, Eqs. (11.3.3) and (11.3.5) tend to those of the parallel plate

line of the previous section:
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ǫeff → ǫr , Z → η0√
ǫr

h

w
= η h

w

Some typical substrate dielectric materials used in microstrip lines are alumina, a

ceramic form of Al2O4 with er = 9.8, and RT-Duroid, a teflon composite material with

ǫr = 2.2. Practical values of the width-to-height ratio are in the range 0.1 ≤ u ≤ 10

and practical values of characteristic impedances are between 10–200 ohm. Fig. 11.3.2

shows the dependence of Z and ǫeff on u for the two cases of ǫr = 2.2 and ǫr = 9.8.
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Fig. 11.3.2 Characteristic impedance and effective permittivity of microstrip line.

The synthesis of a microstrip line requires that we determine the ratiow/h that will

achieve a given characteristic impedance Z. The inverse of Eq. (11.3.5)—solving for u in

terms of Z—is not practical. Direct synthesis empirical equations exist [892,897], but

are not as accurate as (11.3.5). Given a desired Z, the ratio u = w/h is calculated as

follows. If u ≤ 2,

u = 8

eA − 2e−A
(11.3.7)

and, if u > 2,

u = ǫr − 1

πǫr

[

ln(B− 1)+0.39− 0.61

ǫr

]

+ 2

π

[

B− 1− ln(2B− 1)
]

(11.3.8)

where A,B are given by:

A = π
√

2(ǫr + 1)
Z

η0

+ ǫr − 1

ǫr + 1

(

0.23+ 0.11

ǫr

)

B = π

2
√
ǫr

η0

Z

(11.3.9)

The accuracy of these formulas is about 1%. The method can be improved iteratively

by a process of refinement to achieve essentially the same accuracy as Eq. (11.3.5). Start-

ing with u computed from Eqs. (11.3.7) and (11.3.8), a value of Z is computed through

Eq. (11.3.5). If that Z is more than, say, 0.2% off from the desired value of the line
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impedance, then u is slightly changed, and so on, until the desired level of accuracy is

reached [897]. Because Z is monotonically decreasing with u, if Z is less than the de-

sired value, then u is decreased by a small percentage, else, u is increased by the same

percentage.

The three MATLAB functions mstripa, mstrips, and mstripr implement the anal-

ysis, synthesis, and refinement procedures. They have usage:

[eff,Z] = mstripa(er,u); % analysis equations (11.3.3) and (11.3.5)

u = mstrips(er,Z); % synthesis equations (11.3.7) and (11.3.8)

[u,N] = mstripr(er,Z,per); % refinement

The function mstripa accepts also a vector of several u’s, returning the correspond-

ing vector of values of ǫeff and Z. In mstripr, the output N is the number of iterations

required for convergence, and per is the desired percentage error, which defaults to

0.2% if this parameter is omitted.

Example 11.3.1: Given ǫr = 2.2 and u = w/h = 2,4,6, the effective permittivities and impe-

dances are computed from the MATLAB call:

u = [2; 4; 6];

[eff, Z] = mstripa(er,u);

The resulting output vectors are:

u =

⎡

⎢
⎣

2

4

6

⎤

⎥
⎦ ⇒ ǫeff =

⎡

⎢
⎣

1.8347

1.9111

1.9585

⎤

⎥
⎦ , Z =

⎡

⎢
⎣

65.7273

41.7537

30.8728

⎤

⎥
⎦ ohm

Example 11.3.2: To compare the outputs of mstrips and mstripr, we design a microstrip line

with ǫr = 2.2 and characteristic impedance Z = 50 ohm. We find:

u = mstrips(2.2,50)= 3.0779 ⇒ [ǫeff, Z]= mstripa(2.2, u)= [1.8811, 50.0534]

u = mstripr(2.2,50)= 3.0829 ⇒ [ǫeff, Z]= mstripa(2.2, u)= [1.8813, 49.9990]

The first solution has an error of 0.107% from the desired 50 ohm impedance, and the

second, a 0.002% error.

As another example, if Z = 100 Ω, the function mstrips results in u = 0.8949, Z =
99.9495 Ω, and a 0.050% error, whereas mstripr gives u = 0.8939, Z = 99.9980 Ω, and a

0.002% error. ⊓⊔

In using microstrip lines several other effects must be considered, such as finite strip

thickness, frequency dispersion, dielectric and conductor losses, radiation, and surface

waves. Guidelines for such effects can be found in [891–897].

The dielectric losses are obtained from Eq. (11.1.17) by multiplying it by an effective

dielectric filling factor q:

αd = qω
2c

tanδ = f

c0

πq
√
ǫeff tanδ = 1

λ0

πq
√
ǫeff tanδ , q = 1− ǫ−1

eff

1− ǫ−1
r

(11.3.10)
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Typical values of the loss tangent are of the order of 0.001 for alumina and duroid

substrates. The conductor losses are approximately computed from Eq. (11.2.4):

αc = Rs
wZ

(11.3.11)

11.4 Coaxial Lines

The coaxial cable, depicted in Fig. 11.4.1, is the most widely used TEM transmission line.

It consists of two concentric conductors of inner and outer radii of a and b, with the

space between them filled with a dielectric ǫ, such as polyethylene or teflon.

The equivalent electrostatic problem can be solved conveniently in cylindrical coor-

dinates ρ,φ. The potential ϕ(ρ,φ) satisfies Laplace’s equation:

∇2
Tϕ = 1

ρ

∂

∂ρ

(

ρ
∂ϕ

∂ρ

)

+ 1

ρ2

∂2ϕ

∂2φ
= 0

Because of the cylindrical symmetry, the potential does not depend on the azimuthal

angle φ. Therefore,

1

ρ

∂

∂ρ

(

ρ
∂ϕ

∂ρ

)

= 0 ⇒ ρ
∂ϕ

∂ρ
= B ⇒ ϕ(ρ)= A+ B lnρ

where A,B are constants of integration. Assuming the outer conductor is grounded,

ϕ(ρ)= 0 at ρ = b, and the inner conductor is held at voltageV,ϕ(a)= V, the constants

A,B are determined to be B = −V ln(b/a) and A = −B lnb, resulting in the potential:

ϕ(ρ)= V

ln(b/a)
ln(b/ρ) (11.4.1)

It follows that the electric field will have only a radial component, Eρ = −∂ρϕ, and

the magnetic field only an azimuthal component Hφ = Eρ/η:

Eρ = V

ln(b/a)

1

ρ
, Hφ = V

η ln(b/a)

1

ρ
(11.4.2)

Integrating Hφ around the inner conductor we obtain the current:

Fig. 11.4.1 Coaxial transmission line.



11.4. Coaxial Lines 547

I =
∫ 2π

0
Hφ ρdφ =

∫ 2π

0

V

η ln(b/a)

1

ρ
ρdφ = 2πV

η ln(b/a)
(11.4.3)

It follows that the characteristic impedance of the line Z = V/I, and hence the

inductance and capacitance per unit length, will be:

Z = η

2π
ln(b/a), L′ = μ

2π
ln(b/a), C′ = 2πǫ

ln(b/a)
(11.4.4)

Using Eq. (11.4.3) into (11.4.2), we may express the magnetic field in the form:

Hφ = I

2πρ
(11.4.5)

This is also obtainable by the direct application of Ampère’s law around the loop of

radius ρ encircling the inner conductor, that is, I = (2πρ)Hφ.

The transmitted power can be expressed either in terms of the voltage V or in terms

of the maximum value of the electric field inside the line, which occurs at ρ = a, that is,

Ea = V/
(

a ln(b/a)
)

:

PT = 1

2Z
|V|2 = π|V|2

η ln(b/a)
= 1

η
|Ea|2(πa2)ln(b/a) (11.4.6)

Example 11.4.1: A commercially available polyethylene-filled RG-58/U cable† is quoted to have

impedance of 50 Ω, velocity factor of 66 percent, inner conductor radius a = 0.4060

mm (AWG 20-gauge wire), and maximum operating RMS voltage of 1400 volts. Determine

the outer-conductor radius b, the capacitance and inductance per unit length C′, L′, the

maximum power PT that can be transmitted, and the maximum electric field inside the

cable.

Solution: Polyethylene has a relative dielectric constant of ǫr = 2.25, so that n = √ǫr = 1.5.

The velocity factor is c/c0 = 1/n = 0.667. Given that η = η0/n = 376.73/1.5 = 251.15 Ω

and c = c0/n = 2.9979×108/1.5 = 1.9986×108 m/sec, we have:

Z = η

2π
ln(b/a) ⇒ b = ae2πZ/η = 0.4060e2π50/251.15 = 1.4183 mm

Therefore, b/a = 3.49. The capacitance and inductance per unit length are found from:

C′ = ǫη
Z
= 1

cZ
= 1

1.9986×108×50
= 100.07 pF/m

L′ = μZ
η
= Z

c
= 50

1.9986×108
= 0.25 μH/m

The peak voltage is related to its RMS value by |V| = √2Vrms. It follows that the maximum

power transmitted is:

PT = 1

2Z
|V|2 = V2

rms

Z
= 14002

50
= 39.2 kW

†see, for example, the 9310 Coax RG-58/U cable from www.belden.com.
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The peak value of the electric field occurring at the inner conductor will be:

|Ea| = |V|
a ln(b/a)

=
√

2Vrms

a ln(b/a)
=

√
2 · 1400

0.4060×10−3 ln(1.4183/0.4060)
= 3.9 MV/m

This is to be compared with the dielectric breakdown of polyethylene of about 20 MV/m.

⊓⊔

Example 11.4.2: Most cables have a nominal impedance of either 50 or 75 Ω. The precise value

depends on the manufacturer and the cable. For example, a 50-Ω cable might actually have

an impedance of 52 Ω and a 75-Ω cable might actually be a 73-Ω cable.

The table below lists some commonly used cables with their AWG-gauge number of the

inner conductor, the inner conductor radius a in mm, and their nominal impedance. Their

dielectric filling is polyethylene with ǫr = 2.25 or n = √ǫr = 1.5.

type AWG a Z

RG-6/U 18 0.512 75

RG-8/U 11 1.150 50

RG-11/U 14 0.815 75

RG-58/U 20 0.406 50

RG-59/U 22 0.322 75

RG-174/U 26 0.203 50

RG-213/U 13 0.915 50

The most commonly used cables are 50-Ω ones, such as the RG-58/U. Home cable-TV uses

75-Ω cables, such as the RG-59/U or RG-6/U.

The thin ethernet computer network, known as 10base-2, uses RG-58/U or RG-58A/U,

which is similar to the RG-58/U but has a stranded inner copper core. Thick ethernet

(10base-5) uses the thicker RG-8/U cable.

Because a dipole antenna has an input impedance of about 73 Ω, the RG-11, RG-6, and

RG-59 75-Ω cables can be used to feed the antenna. ⊓⊔

Next, we determine the attenuation coefficient due to conductor losses. The power

loss per unit length is given by Eq. (11.1.14). The magnetic fields at the surfaces of

conductors (a) and (b) are obtained from Eq. (11.4.5) by setting ρ = a and ρ = b:

Ha = I

2πa
, Hb = I

2πb

Because these are independent of the azimuthal angle, the integrations around the

peripheries dl = adφ or dl = bdφ will contribute a factor of (2πa) or (2πb). Thus,

P′loss =
1

2
Rs
[

(2πa)|Ha|2 + (2πb)|Hb|2
] = Rs|I|2

4π

(
1

a
+ 1

b

)

(11.4.7)

It follows that:

αc =
P′loss

2PT
=
Rs|I|2

4π

(
1

a
+ 1

b

)

2
1

2
Z|I|2
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Using Eq. (11.4.4), we finally obtain:

αc = Rs
2η

(
1

a
+ 1

b

)

ln

(
b

a

) (11.4.8)

The ohmic losses in the dielectric are described by Eq. (11.1.17). The total attenuation

constant will be the sum of the conductor and dielectric attenuations:

α = αc +αd = Rs
2η

(
1

a
+ 1

b

)

ln

(
b

a

) + ω

2c
tanδ (attenuation) (11.4.9)

The attenuation in dB/m will be αdB = 8.686α. This expression tends to somewhat

underestimate the actual losses, but it is generally a good approximation. The αc term

grows in frequency like
√

f and the term αd, like f .

The smaller the dimensions a,b, the larger the attenuation. The loss tangent tanδ

of a typical polyethylene or teflon dielectric is of the order of 0.0004–0.0009 up to about

3 GHz.

The ohmic losses and the resulting heating of the dielectric and conductors also limit

the power rating of the line. For example, if the maximum supported voltage is 1400

volts as in Example 11.4.2, the RMS value of the current for an RG-58/U line would be

Irms = 1400/50 = 28 amps, which would likely melt the conductors. Thus, the actual

power rating is much smaller than that suggested by the maximum voltage rating. The

typical power rating of an RG-58/U cable is typically 1 kW, 200 W, and 80 W at the

frequencies of 10 MHz, 200 MHz, and 1 GHz.

Example 11.4.3: The table below lists the nominal attenuations in dB per 100 feet of the RG-8/U

and RG-213/U cables. The data are from [1505].

f (MHz) 50 100 200 400 900 1000 3000 5000

α (dB/100ft) 1.3 1.9 2.7 4.1 7.5 8.0 16.0 27.0

Both are 50-ohm cables and their radii a are 1.15 mm and 0.915 mm for RG-8/U and RG-

213/U. In order to compare these ratings with Eq. (11.4.9), we took a to be the average of

these two values, that is, a = 1.03 mm. The required value of b to give a 50-ohm impedance

is b = 3.60 mm.

Fig. 11.4.2 shows the attenuations calculated from Eq. (11.4.9) and the nominal ones from

the table. We assumed copper conductors with σ = 5.8×107 S/m and polyethylene di-

electric with n = 1.5, so that η = η0/n = 376.73/1.5 = 251.15 Ω and c = c0/n = 2×108

m/sec. The loss tangent was taken to be tanδ = 0.0007.

The conductor and dielectric attenuations αc and αd become equal around 2.3 GHz, and

αd dominates after that.

It is evident that the useful operation of the cable is restricted to frequencies up to 1 GHz.

Beyond that, the attenuations are too excessive and the cable may be used only for short

lengths. ⊓⊔
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Fig. 11.4.2 Attenuation coefficient α versus frequency.

Optimum Coaxial Cables

Given a fixed outer-conductor radius b, one may ask three optimization questions: What

is the optimum value of a, or equivalently, the ratio b/a that (a) minimizes the electric

field Ea inside the guide (for fixed voltage V), (b) maximizes the power transfer PT (for

fixed Ea field), and (c) minimizes the conductor attenuation αc.

The three quantities Ea, PT,αc can be thought of as functions of the ratio x = b/a
and take the following forms:

Ea = V

b

x

lnx
, PT = 1

η
|Ea|2πb2 lnx

x2
, αc = Rs

2ηb

x+ 1

lnx
(11.4.10)

Setting the derivatives of the three functions of x to zero, we obtain the three

conditions: (a) lnx = 1, (b) lnx = 1/2, and (c) lnx = 1 + 1/x, with solutions (a)

b/a = e1 = 2.7183, (b) b/a = e1/2 = 1.6487 and (c) b/a = 3.5911.

Unfortunately, the three optimization problems have three different answers, and

it is not possible to satisfy them simultaneously. The corresponding impedances Z for

the three values of b/a are 60 Ω, 30 Ω, and 76.7 Ω for an air-filled line and 40 Ω, 20 Ω,

and 51 Ω for a polyethylene-filled line.

The value of 50 Ω is considered to be a compromise between 30 and 76.7 Ω corre-

sponding to maximum power and minimum attenuation. Actually, the minimum of αc
is very broad and any neighboring value to b/a = 3.5911 will result in an αc very near

its minimum.

Higher Modes

The TEM propagation mode is the dominant one and has no cutoff frequency. However,

TE and TM modes with higher cutoff frequencies also exist in coaxial lines [875], with

the lowest being a TE11 mode with cutoff wavelength and frequency:

λc = 1.873
π

2
(a+ b) , fc = c

λc
= c0

nλc
(11.4.11)
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This is usually approximated by λc = π(a + b). Thus, the operation of the TEM

mode is restricted to frequencies that are less than fc.

Example 11.4.4: For the RG-58/U line of Example 11.4.2, we have a = 0.406 mm and b = 1.548

mm, resulting in λc = 1.873π(a+b)/2 = 5.749 mm, which gives for the cutoff frequency

fc = 20/0.5749 = 34.79 GHz, where we used c = c0/n = 20 GHz cm.

For the RG-8/U and RG-213/U cables, we may use a = 1.03 mm and b = 3.60 as in Example

11.4.3, resulting in λc = 13.622 mm, and cutoff frequency of fc = 14.68 GHz.

The above cutoff frequencies are far above the useful operating range over which the

attenuation of the line is acceptable. ⊓⊔

11.5 Two-Wire Lines

The two-wire transmission line consists of two parallel cylindrical conductors of radius

a separated by distance d from each other, as shown in Fig. 11.5.1.

Fig. 11.5.1 Two-wire transmission line.

We assume that the conductors are held at potentials ±V/2 with charge per unit

length ±Q′. The electrostatic problem can be solved by the standard technique of re-

placing the finite-radius conductors by two thin line-charges ±Q′.
The locations b1 and b2 of the line-charges are determined by the requirement that

the cylindrical surfaces of the original conductors be equipotential surfaces, the idea

being that if these equipotential surfaces were to be replaced by the conductors, the

field patterns will not be disturbed.

The electrostatic problem of the two lines is solved by invoking superposition and

adding the potentials due to the two lines, so that the potential at the field point P will

be:

ϕ(ρ,φ)= − Q′

2πǫ
lnρ1 − −Q

′

2πǫ
lnρ2 = Q′

2πǫ
ln

(

ρ2

ρ1

)

(11.5.1)

where the ρ1, ρ2 are the distances from the line charges to P. From the triangles

OP(+Q′) and OP(−Q′), we may express these distances in terms of the polar co-

ordinates ρ,φ of the point P:
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ρ1 =
√

ρ2 − 2ρb1 cosφ+ b2
1 , ρ2 =

√

ρ2 − 2ρb2 cosφ+ b2
2 (11.5.2)

Therefore, the potential function becomes:

ϕ(ρ,φ)= Q′

2πǫ
ln

(

ρ2

ρ1

)

= Q′

2πǫ
ln

⎛

⎝

√
√
√
√
ρ2 − 2ρb2 cosφ+ b2

2

ρ2 − 2ρb1 cosφ+ b2
1

⎞

⎠ (11.5.3)

In order that the surface of the left conductor at ρ = a be an equipotential surface,

that is, ϕ(a,φ)= V/2, the ratio ρ2/ρ1 must be a constant independent of φ. Thus, we

require that for some constant k and all angles φ:

ρ2

ρ1

∣
∣
∣
∣
∣
ρ=a

=
√
√
√
√
a2 − 2ab2 cosφ+ b2

2

a2 − 2ab1 cosφ+ b2
1

= k

which can be rewritten as:

a2 − 2ab2 cosφ+ b2
2 = k2(a2 − 2ab1 cosφ+ b2

1)

This will be satisfied for all φ provided we have:

a2 + b2
2 = k2(a2 + b2

1) , b2 = k2b1

These may be solved for b1, b2 in terms of k:

b2 = ka , b1 = a

k
(11.5.4)

The quantity k can be expressed in terms of a,d by noting that because of symmetry,

the charge −Q′ is located also at distance b1 from the center of the right conductor.

Therefore, b1 + b2 = d. This gives the condition:

b1 + b2 = d ⇒ a(k+ k−1)= d ⇒ k+ k−1 = d

a

with solution for k:

k = d

2a
+
√
(
d

2a

)2

− 1 (11.5.5)

An alternative expression is obtained by setting k = eχ. Then, we have the condition:

b1 + b2 = d ⇒ a(eχ + e−χ)= 2a coshχ = d ⇒ χ = acosh

(
d

2a

)

(11.5.6)

Because χ = lnk, we obtain for the potential value of the left conductor:

ϕ(a,φ)= Q′

2πǫ
lnk = Q′

2πǫ
χ = 1

2
V

This gives for the capacitance per unit length:
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C′ = Q′

V
= πǫ

χ
= πǫ

acosh

(
d

2a

) (11.5.7)

The corresponding line impedance and inductance are obtained from C′ = ǫη/Z

and L′ = μZ/η. We find:

Z = η

π
χ = η

π
acosh

(
d

2a

)

L′ = μ

π
χ = μ

π
acosh

(
d

2a

)

(11.5.8)

In the common case when d ≫ a, we have approximately k ≃ d/a, and therefore,

χ = lnk = ln(d/a). Then, Z can be written approximately as:

Z = η

π
ln(d/a) (11.5.9)

To complete the electrostatic problem and determine the electric and magnetic fields

of the TEM mode, we replace b2 = ak and b1 = a/k in Eq. (11.5.3) and write it as:

ϕ(ρ,φ)= Q′

2πǫ
ln

⎛

⎝k

√

ρ2 − 2akρ cosφ+ a2k2

ρ2k2 − 2akρ cosφ+ a2

⎞

⎠ (11.5.10)

The electric and magnetic field components are obtained from:

Eρ = ηHφ = −∂ϕ
∂ρ

, Eφ = −ηHρ = − ∂ϕ

ρ∂φ
(11.5.11)

Performing the differentiations, we find:

Eρ = − Q′

2πǫ

[

ρ− ak cosφ

ρ2 − 2akρ cosφ+ a2k2
− ρk2 − ak cosφ

ρ2k2 − 2akρ cosφ+ a2

]

Eφ = − Q′

2πǫ

[

ak sinφ

ρ2 − 2ak cosφ+ a2k2
− ak sinφ

ρ2k2 − 2akρ cosφ+ a2

] (11.5.12)

The resistance per unit length and corresponding attenuation constant due to con-

ductor losses are calculated in Problem 11.3:

R′ = Rs
πa

d
√

d2 − 4a2
, αc = R′

2Z
= Rs

2ηa

d

acosh(d/2a)
√

d2 − 4a2
(11.5.13)

11.6 Distributed Circuit Model of a Transmission Line

We saw that a transmission line has associated with it the parameters L′, C′ describing

its lossless operation, and in addition, the parameters R′, G′ which describe the losses.

It is possible then to define a series impedance Z′ and a shunt admittance Y′ per unit

length by combining R′ with L′ and G′ with C′:
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Z′ = R′ + jωL′
Y′ = G′ + jωC′ (11.6.1)

This leads to a so-called distributed-parameter circuit, which means that every in-

finitesimal segment Δz of the line can be replaced by a series impedance Z′Δz and a

shunt admittance Y′Δz, as shown in Fig. 11.6.1. The voltage and current at location z

will be V(z), I(z) and at location z+Δz, V(z+Δz), I(z+Δz).

Fig. 11.6.1 Distributed parameter model of a transmission line.

The voltage across the branch a–b is Vab = V(z + Δz) and the current through it,

Iab = (Y′Δz)Vab = Y′ΔzV(z + Δz). Applying Kirchhoff’s voltage and current laws,

we obtain:

V(z) = (Z′Δz) I(z)+Vab = Z′ΔzI(z)+V(z+Δz)
I(z) = Iab + I(z+Δz)= Y′ΔzV(z+Δz)+I(z+Δz)

(11.6.2)

Using a Taylor series expansion, we may expand I(z + Δz) and V(z + Δz) to first

order in Δz:

I(z+Δz) = I(z)+I′(z)Δz
V(z+Δz) = V(z)+V′(z)Δz and Y′ΔzV(z+Δz)= Y′ΔzV(z)

Inserting these expressions in Eq. (11.6.2) and matching the zeroth- and first-order

terms in the two sides, we obtain the equivalent differential equations:

V′(z)= −Z′I(z)= −(R′ + jωL′)I(z)
I′(z)= −Y′V(z)= −(G′ + jωC′)V(z) (11.6.3)

It is easily verified that the most general solution of this coupled system is express-

ible as a sum of a forward and a backward moving wave:

V(z) = V+e−jβcz +V−ejβcz

I(z) = 1

Zc

(

V+e−jβcz −V−ejβcz
) (11.6.4)
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where βc, Zc are the complex wavenumber and complex impedance:

βc = −j
√

(R′ + jωL′)(G′ + jωC′) =ω
√

L′C′
√
(

1− j R
′

ωL′

)(

1− j G
′

ωC′

)

Zc =
√

Z′

Y′
=
√

R′ + jωL′
G′ + jωC′

(11.6.5)

The time-domain impulse response of such a line was given in Sec. 3.3. The real and

imaginary parts of βc = β − jα define the propagation and attenuation constants. In

the case of a lossless line, R′ = G′ = 0, we obtain using Eq. (11.1.6):

βc =ω
√

L′C′ =ω√μǫ = ω

c
= β , Zc =

√

L′

C′
= Z (11.6.6)

In practice, we always assume a lossless line and then take into account the losses by

assuming that R′ andG′ are small quantities, which can be evaluated by the appropriate

expressions that can be derived for each type of line, as we did for the parallel-plate,

coaxial, and two-wire lines. The lossless solution (11.6.4) takes the form:

V(z) = V+e−jβz +V−ejβz = V+(z)+V−(z)

I(z) = 1

Z

(

V+e−jβz −V−ejβz
) = 1

Z

(

V+(z)−V−(z)
)

(11.6.7)

This solution is identical to that of uniform plane waves of Chap. 5, provided we

make the identifications:

V(z)←→ E(z)

I(z)←→ H(z)

Z ←→ η

and
V+(z)←→ E+(z)

V−(z)←→ E−(z)

11.7 Wave Impedance and Reflection Response

All the concepts of Chap. 5 translate verbatim to the transmission line case. For example,

we may define the wave impedance and reflection response at location z:

Z(z)= V(z)

I(z)
= Z0

V+(z)+V−(z)
V+(z)−V−(z)

, Γ(z)= V−(z)
V+(z)

(11.7.1)

To avoid ambiguity in notation, we will denote the characteristic impedance of the

line by Z0. It follows from Eq. (11.7.1) that Z(z) and Γ(z) are related by:

Z(z)= Z0
1+ Γ(z)
1− Γ(z) , Γ(z)= Z(z)−Z0

Z(z)+Z0

(11.7.2)

For a forward-moving wave, the conditions Γ(z)= 0 and Z(z)= Z0 are equivalent.

The propagation equations of Z(z) and Γ(z) between two points z1, z2 along the line

separated by distance l = z2 − z1 are given by:
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Z1 = Z0
Z2 + jZ0 tanβl

Z0 + jZ2 tanβl
⇔ Γ1 = Γ2e

−2jβl (11.7.3)

where we have the relationships between Z1, Z2 and Γ1, Γ2:

Z1 = Z0
1+ Γ1

1− Γ1

, Z2 = Z0
1+ Γ2

1− Γ2

(11.7.4)

We may also express Z1 in terms of Γ2:

Z1 = Z0
1+ Γ1

1− Γ1

= Z0
1+ Γ2e

−2jβl

1− Γ2e−2jβl
(11.7.5)

The relationship between the voltage and current waves at points z1 and z2 is ob-

tained by the propagation matrix:

[

V1

I1

]

=
[

cosβl jZ0 sinβl

jZ−1
0 sinβl cosβl

][

V2

I2

]

(propagation matrix) (11.7.6)

Similarly, we may relate the forward/backward voltages at the points z1 and z2:

[

V1+
V1−

]

=
[

ejβl 0

0 e−jβl

][

V2+
V2−

]

(propagation matrix) (11.7.7)

It follows from Eq. (11.6.7) that V1±, V2± are related to V1, I1 and V2, I2 by:

V1± = 1

2
(V1 ± Z0I1) , V2± = 1

2
(V2 ± Z0I2) (11.7.8)

Fig. 11.7.1 depicts these various quantities. We note that the behavior of the line

remains unchanged if the line is cut at the point z2 and the entire right portion of the

line is replaced by an impedance equal to Z2, as shown in the figure.

This is so because in both cases, all the points z1 to the left of z2 see the same

voltage-current relationship at z2, that is, V2 = Z2I2.

Sometimes, as in the case of designing stub tuners for matching a line to a load,

it is more convenient to work with the wave admittances. Defining Y0 = 1/Z0, Y1 =
1/Z1, and Y2 = 1/Z2, it is easily verified that the admittances satisfy exactly the same

propagation relationship as the impedances:

Y1 = Y0
Y2 + jY0 tanβl

Y0 + jY2 tanβl
(11.7.9)

As in the case of dielectric slabs, the half- and quarter-wavelength separations are

of special interest. For a half-wave distance, we have βl = 2π/2 = π, which translates

to l = λ/2, where λ = 2π/β is the wavelength along the line. For a quarter-wave, we

have βl = 2π/4 = π/2 or l = λ/4. Setting βl = π or π/2 in Eq. (11.7.3), we obtain:
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Fig. 11.7.1 Length segment on infinite line and equivalent terminated line.

l = λ

2
⇒ Z1 = Z2, Γ1 = Γ2

l = λ

4
⇒ Z1 =

Z2
0

Z2

, Γ1 = −Γ2

(11.7.10)

The MATLAB functions z2g.m and g2z.m compute Γ from Z and conversely, by

implementing Eq. (11.7.2). The functions gprop.m, zprop.m and vprop.m implement

the propagation equations (11.7.3) and (11.7.6). The usage of these functions is:

G = z2g(Z,Z0); % Z to Γ

Z = g2z(G,Z0); % Γ to Z

G1 = gprop(G2,bl); % propagates Γ2 to Γ1

Z1 = zprop(Z2,Z0,bl); % propagates Z2 to Z1

[V1,I1] = vprop(V2,I2,Z0,bl); % propagates V2, I2 to V1, I1

The parameter bl is βl. The propagation equations and these MATLAB functions

also work for lossy lines. In this case, β must be replaced by the complex wavenumber

βc = β− jα. The propagation phase factors become now:

e±jβl −→ e±jβcl = e±αle±jβl (11.7.11)

11.8 Two-Port Equivalent Circuit

Any length-l segment of a transmission line may be represented as a two-port equivalent

circuit. Rearranging the terms in Eq. (11.7.6), we may write it in impedance-matrix form:

[

V1

V2

]

=
[

Z11 Z12

Z21 Z22

][

I1
−I2

]

(impedance matrix) (11.8.1)
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where the impedance elements are:

Z11 = Z22 = −jZ0 cotβl

Z12 = Z21 = −jZ0
1

sinβl

(11.8.2)

The negative sign, −I2, conforms to the usual convention of having the currents

coming into the two-port from either side. This impedance matrix can also be realized

in a T-section configuration as shown in Fig. 11.8.1.

Fig. 11.8.1 Length-l segment of a transmission line and its equivalent T-section.

Using Eq. (11.8.1) and some trigonometry, the impedancesZa, Zb, Zc of theT-section

are found to be:

Za = Z11 − Z12 = jZ0 tan(βl/2)

Zb = Z22 − Z12 = jZ0 tan(βl/2)

Zc = Z12 = −jZ0
1

sinβl

(11.8.3)

The MATLAB function tsection.m implements Eq. (11.8.3). Its usage is:

[Za,Zc] = tsection(Z0,bl);

11.9 Terminated Transmission Lines

We can use the results of the previous section to analyze the behavior of a transmission

line connected between a generator and a load. For example in a transmitting antenna

system, the transmitter is the generator and the antenna, the load. In a receiving system,

the antenna is the generator and the receiver, the load.

Fig. 11.9.1 shows a generator of voltage VG and internal impedance ZG connected

to the load impedance ZL through a length d of a transmission line of characteristic
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Fig. 11.9.1 Terminated line and equivalent circuit.

impedance Z0. We wish to determine the voltage and current at the load in terms of the

generator voltage.

We assume that the line is lossless and hence Z0 is real. The generator impedance

is also assumed to be real but it does not have to be. The load impedance will have in

general both a resistive and a reactive part, ZL = RL + jXL.

At the load location, the voltage, current, and impedance are VL, IL, ZL and play

the same role as the quantities V2, I2, Z2 of the previous section. They are related by

VL = ZLIL. The reflection coefficient at the load will be:

ΓL = ZL − Z0

ZL + Z0

⇔ ZL = Z0
1+ ΓL
1− ΓL

(11.9.1)

The quantities ZL, ΓL can be propagated now by a distance d to the generator at the

input to the line. The corresponding voltage, current, and impedance Vd, Id, Zd play

the role of V1, I1, Z1 of the previous section, and are related by Vd = ZdId. We have the

propagation relationships:

Zd = Z0
ZL + jZ0 tanβd

Z0 + jZL tanβd
⇔ Γd = ΓLe−2jβd (11.9.2)

where

Γd = Zd − Z0

Zd + Z0

⇔ Zd = Z0
1+ Γd
1− Γd

= Z0
1+ ΓLe−2jβd

1− ΓLe−2jβd
(11.9.3)

At the line input, the entire length-d line segment and load can be replaced by the

impedance Zd, as shown in Fig. 11.9.1. We have now a simple voltage divider circuit.

Thus,

Vd = VG − IdZG = VGZd
ZG + Zd

, Id = VG
ZG + Zd

(11.9.4)

Once we have Vd, Id in terms of VG, we can invert the propagation matrix (11.7.6)

to obtain the voltage and current at the load:
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[

VL
IL

]

=
[

cosβd −jZ0 sinβd

−jZ−1
0 sinβd cosβd

][

Vd
Id

]

(11.9.5)

It is more convenient to express Vd, Id in terms of the reflection coefficients Γd and

ΓG, the latter being defined by:

ΓG = ZG − Z0

ZG + Z0

⇔ ZG = Z0
1+ ΓG
1− ΓG

(11.9.6)

It is easy to verify using Eqs. (11.9.3) and (11.9.6) that:

ZG + Zd = 2Z0
1− ΓGΓd

(1− ΓG)(1− Γd)
, ZG + Z0 = 2Z0

1

1− ΓG
From these, it follows that:

Vd = VGZ0

ZG + Z0

1+ Γd
1− ΓGΓd

, Id = VG
ZG + Z0

1− Γd
1− ΓGΓd

(11.9.7)

where Γd may be replaced by Γd = ΓLe−2jβd. If the line and load are matched so that

ZL = Z0, then ΓL = 0 and Γd = 0 and Zd = Z0 for any distance d. Eq. (11.9.7) then

reduces to:

Vd = VGZ0

ZG + Z0

, Id = VG
ZG + Z0

(matched load) (11.9.8)

In this case, there is only a forward-moving wave along the line. The voltage and

current at the load will correspond to the propagation of these quantities to location

l = 0, which introduces a propagation phase factor e−jβd:

V0 = VGZ0

ZG + Z0

e−jβd , I0 = VG
ZG + Z0

e−jβd (matched load) (11.9.9)

where V0, I0 denote VL, IL when ZL = Z0. It is convenient also to express VL directly in

terms of Vd and the reflection coefficients Γd and ΓL. We note that:

VL = VL+(1+ ΓL) , VL+ = Vd+e−jβd , Vd+ = Vd
1+ Γd

It follows that the voltage VL and current IL = VL/ZL are:

VL = Vde−jβd 1+ ΓL
1+ Γd

, IL = Ide−jβd 1− ΓL
1− Γd

(11.9.10)

Expressing VL and also IL = VL/ZL directly in terms of VG, we have:

VL = VGZ0

ZG + Z0

1+ ΓL
1− ΓGΓd

e−jβd , IL = VG
ZG + Z0

1− ΓL
1− ΓGΓd

e−jβd (11.9.11)
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It should be emphasized that d refers to the fixed distance between the generator

and the load. For any other distance, say l, from the load (or, distance z = d − l from

the generator,) the voltage and current can be expressed in terms of the load voltage

and current as follows:

Vl = VLejβl 1+ Γl
1+ ΓL

, Il = ILejβl 1− Γl
1− ΓL

, Γl = ΓLe−2jβl (11.9.12)

11.10 Power Transfer from Generator to Load

The total power delivered by the generator is dissipated partly in its internal resistance

and partly in the load. The power delivered to the load is equal (for a lossless line) to

the net power traveling to the right at any point along the line. Thus, we have:

Ptot = Pd + PG = PL + PG (11.10.1)

This follows from VG = Vd + IdZG, which implies

VGI
∗
d = VdI∗d + ZG|Id|2 (11.10.2)

Eq. (11.10.1) is a consequence of (11.10.2) and the definitions:

Ptot = 1

2
Re(V∗GId)=

1

2
Re
[

(Vd + ZGId)∗Id
]

PG = 1

2
Re(ZGIdI

∗
d )=

1

2
Re(ZG)|Id|2

Pd = 1

2
Re(V∗d Id)=

1

2
Re(V∗L IL)= PL

(11.10.3)

The last equality follows from Eq. (11.9.5) or from Vd± = VL±e±jβd:

1

2
Re(V∗d Id)=

1

2Z0

(|Vd+|2 − |Vd−|2
) = 1

2Z0

(|VL+|2 − |VL−|2
) = 1

2
Re(V∗L IL)

In the special case when the generator and the load are matched to the line, so that

ZG = ZL = Z0, then we find the standard result that half of the generated power is

delivered to the load and half is lost in the internal impedance. Using Eq. (11.9.8) with

ZG = Z0, we obtain Vd = IdZG = VG/2, which gives:

Ptot = |VG|2
4Z0

, PG = |VG|2
8Z0

= 1

2
Ptot , Pd = PL = |VG|2

8Z0

= 1

2
Ptot (11.10.4)

Example 11.10.1: A load ZL = 50+ j10 Ω is connected to a generator VG = 10∠0o volts with a

100-ft (30.48 m) cable of a 50-ohm transmission line. The generator’s internal impedance

is 20 ohm, the operating frequency is 10 MHz, and the velocity factor of the line, 2/3.

Determine the voltage across the load, the total power delivered by the generator, the

power dissipated in the generator’s internal impedance and in the load.
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Solution: The propagation speed is c = 2c0/3 = 2×108 m/sec. The line wavelength λ = c/f =
20 m and the propagation wavenumber β = 2π/λ = 0.3142 rads/m. The electrical length

is d/λ = 30.48/20 = 1.524 and the phase length βd = 9.5756 radians.

Next, we calculate the reflection coefficients:

ΓL = ZL − Z0

ZL + Z0

= 0.0995∠84.29o , ΓG = ZG − Z0

ZG + Z0

= −0.4286

and Γd = ΓLe−2jβd = 0.0995∠67.01o. It follows that:

Zd = Z0

1+ Γd
1− Γd

= 53.11+ j9.83 , Vd = VGZd
ZG + Zd

= 7.31+ j0.36 = 7.32∠2.83o

The voltage across the load will be:

VL = Vde−jβd 1+ ΓL
1+ Γd

= −7.09+ j0.65 = 7.12∠174.75o V

The current through the generator is:

Id = Vd
Zd

= 0.13− j0.02 = 0.14∠−7.66o A

It follows that the generated and dissipated powers will be:

Ptot = 1

2
Re(V∗GId)= 0.6718 W

PG = 1

2
Re(ZG)|Id|2 = 0.1838 W

PL = Pd = 1

2
Re(V∗d Id)= 0.4880 W

We note that Ptot = PG + PL. ⊓⊔

If the line is lossy, with a complex wavenumber βc = β − jα, the power PL at the

output of the line is less than the power Pd at the input of the line. Writing Vd± =
VL±e±αde±jβd, we find:

Pd = 1

2Z0

(|Vd+|2 − |Vd−|2
) = 1

2Z0

(|VL+|2e2αd − |VL−|2e−2αd
)

PL = 1

2Z0

(|VL+|2 − |VL−|2
)

We note that Pd > PL for all ΓL. In terms of the incident forward power at the load,

Pinc = |VL+|2/2Z0, we have:

Pd = Pinc

(

e2αd − |ΓL|2e−2αd
) = Pince

2αd
(

1− |Γd|2
)

PL = Pinc

(

1− |ΓL|2
) (11.10.5)

where |Γd| = |ΓL|e−2αd. The total attenuation or loss of the line is Pd/PL (the inverse

PL/Pd is the total gain, which is less than one.) In decibels, the loss is:
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L = 10 log10

(
Pd
PL

)

= 10 log10

(

e2αd − |ΓL|2e−2αd

1− |ΓL|2
)

(total loss) (11.10.6)

If the load is matched to the line, ZL = Z0, so that ΓL = 0, the loss is referred to as

the matched-line loss and is due only to the transmission losses along the line:

LM = 10 log10

(

e2αd
) = 8.686αd (matched-line loss) (11.10.7)

Denoting the matched-line loss in absolute units by a = 10LM/10 = e2αd, we may

write Eq. (11.10.6) in the equivalent form:

L = 10 log10

(

a2 − |ΓL|2
a(1− |ΓL|2)

)

(total loss) (11.10.8)

The additional loss due to the mismatched load is the difference:

L− LM = 10 log10

(

1− |ΓL|2e−4αd

1− |ΓL|2
)

= 10 log10

(

1− |Γd|2
1− |ΓL|2

)

(11.10.9)

Example 11.10.2: A 150 ft long RG-58 coax is connected to a load ZL = 25+ 50j ohm. At the

operating frequency of 10 MHz, the cable is rated to have 1.2 dB/100 ft of matched-line

loss. Determine the total loss of the line and the excess loss due to the mismatched load.

Solution: The matched-line loss of the 150 ft cable is LM = 150×1.2/100 = 1.8 dB or in absolute

units, a = 101.8/10 = 1.51. The reflection coefficient has magnitude computed with the

help of the MATLAB function z2g:

|ΓL| = abs(z2g(25+ 50j,50)= 0.62

It follows that the total loss will be:

L = 10 log10

(

a2 − |ΓL|2
a(1− |ΓL|2)

)

= 10 log10

(

1.512 − 0.622

1.51(1− 0.622)

)

= 3.1 dB

The excess loss due to the mismatched load is 3.1 − 1.8 = 1.3 dB. At the line input, we

have |Γd| = |ΓL|e−2αd = |ΓL|/a = 0.62/1.51 = 0.41. Therefore, from the point of view of

the input the line appears to be more matched. ⊓⊔

11.11 Open- and Short-Circuited Transmission Lines

Open- and short-circuited transmission lines are widely used to construct resonant cir-

cuits as well as matching stubs. They correspond to the special cases for the load

impedance: ZL = ∞ for an open-circuited line and ZL = 0 for a short-circuited one.

Fig. 11.11.1 shows these two cases.

Knowing the open-circuit voltage and the short-circuit current at the end terminals

a,b, allows us also to replace the entire left segment of the line, including the generator,
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Fig. 11.11.1 Open- and short-circuited line and Thévenin-equivalent circuit.

with a Thévenin-equivalent circuit. Connected to a load impedance ZL, the equivalent

circuit will produce the same load voltage and current VL, IL as the original line and

generator.

Setting ZL = ∞ and ZL = 0 in Eq. (11.9.2), we obtain the following expressions for

the wave impedance Zl at distance l from the open- or short-circuited termination:

Zl = −jZ0 cotβl

Zl = jZ0 tanβl

(open-circuited)

(short-circuited)
(11.11.1)

The corresponding admittances Yl = 1/Zl will be:

Yl = jY0 tanβl

Yl = −jY0 cotβl

(open-circuited)

(short-circuited)
(11.11.2)

To determine the Thévenin-equivalent circuit that replaces everything to the left of

the terminals a,b, we must find the open-circuit voltage Vth, the short-circuit current

Isc, and the Thévenin impedance Zth.

The impedance Zth can be determined either by Zth = Vth/Isc, or by disconnecting

the generator and finding the equivalent impedance looking to the left of the terminals

a,b. It is obtained by propagating the generator impedance ZG by a distance d:

Zth = Z0
ZG + jZ0 tanβd

Z0 + jZG tanβd
= Z0

1+ Γth

1− Γth

, Γth = ΓGe−2jβd (11.11.3)

The open-circuit voltage can be determined from Eq. (11.9.11) by setting ZL = ∞,

which implies that ΓL = 1, Γd = e−2jβd, and ΓGΓd = ΓGe
−2jβd = Γth. The short-

circuit current is also obtained from (11.9.11) by setting ZL = 0, which gives ΓL = −1,

Γd = −e−2jβd, and ΓGΓd = −ΓGe−2jβd = −Γth. Then, we find:
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Vth = VGZ0

ZG + Z0

2e−jβd

1− Γth

, Isc = VG
ZG + Z0

2e−jβd

1+ Γth

(11.11.4)

It follows that Vth/Isc = Zth, as given by Eq. (11.11.3). A more convenient way of

writing Eq. (11.11.4) is by noting the relationships:

1− Γth = 2Z0

Zth + Z0

, 1+ Γth = 2Zth

Zth + Z0

Then, Eq. (11.11.4) becomes:

Vth = V0
Zth + Z0

Z0

, Isc = I0 Zth + Z0

Zth

(11.11.5)

where V0, I0 are the load voltage and currents in the matched case, given by Eq. (11.9.9).

The intuitive meaning of these expressions can be understood by writing them as:

V0 = Vth
Z0

Zth + Z0

, I0 = Isc
Zth

Zth + Z0

(11.11.6)

These are recognized to be the ordinary voltage and current dividers obtained by

connecting the Thévenin and Norton equivalent circuits to the matched load impedance

Z0, as shown in Fig. 11.11.2.

Fig. 11.11.2 Thévenin and Norton equivalent circuits connected to a matched load.

The quantities V0, I0 are the same as those obtained by connecting the actual line to

the matched load, as was done in Eq. (11.9.9).

An alternative way of determining the quantities Vth and Zth is by replacing the

length-d transmission line segment by its T-section equivalent circuit, as shown in

Fig. 11.11.3.

The Thévenin equivalent circuit to the left of the terminals a,b is easily determined

by shorting the generator and finding the Thévenin impedance and then finding the

open-circuit voltage. We have:

Zth = Zb + Zc(Za + ZG)
Zc + Za + ZG

, Vth = VGZc
Zc + Za + ZG

(11.11.7)
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Fig. 11.11.3 T-section and Thévenin equivalent circuits.

where Za, Zb, Zc for a length-d segment are given by Eq. (11.8.3):

Za = Zb = jZ0 tan

(
βd

2

)

, Zc = −jZ0
1

sinβd

It is straightforward to verify that the expressions in Eq. (11.11.7) are equivalent to

those in Eq. (11.11.3) and (11.11.4).

Example 11.11.1: For the generator, line, and load of Example 11.10.1, determine the Thévenin

equivalent circuit. Using this circuit determine the load voltage.

Solution: We work with the T-section approach. The following MATLAB call gives Za and Zc,

with Z0 = 50 and βd = 9.5756:

[Za, Zc]= tsection(50, 9.5756)= [−661.89j, 332.83j]

Then, Eq. (11.11.7) gives with Zb = Za:

Zth = Zb + Zc(Za + ZG)
Zc + Za + ZG

= 20.39+ j6.36 Ω

Vth = VGZc
Zc + Za + ZG

= −10.08+ j0.61 = 10.10∠176.52o V

Alternatively, Zth can be computed by propagating ZG = 20 by a distance d:

Zth = zprop(20,50,9.5756)= 20.39+ j6.36 Ω

The load voltage is found from the Thévenin circuit:

VL = VthZL
ZL + Zth

= −7.09+ j0.65 = 7.12∠174.75o V

which agrees with that found in Example 11.10.1. ⊓⊔

11.12 Standing Wave Ratio

The line voltage at a distance l from the load is given by Eq. (11.9.12), which can be

written as follows in terms of the forward wave VL+ = VL/(1+ ΓL):

Vl = VL+ejβl(1+ Γl) (11.12.1)
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The magnitude of Vl will be:

|Vl| = |VL+||1+ Γl| = |VL+||1+ ΓLe−2jβl| (11.12.2)

It follows that |Vl| will vary sinusoidally as a function of l. Its limits of variation are

determined by noting that the quantity |1+ Γl| varies between:

1− |ΓL| = 1− |Γl| ≤ |1+ Γl| ≤ 1+ |Γl| = 1+ |ΓL|

where we used |Γl| = |ΓL|. Thus, |Vl| will vary over the limits:

Vmin ≤ |Vl| ≤ Vmax (11.12.3)

where

Vmin = |VL+| − |VL−| = |VL+|
(

1− |ΓL|
)

Vmax = |VL+| + |VL−| = |VL+|
(

1+ |ΓL|
) (11.12.4)

We note that the reflection coefficient at a load ZL = RL+jXL has always magnitude

less than unity, |ΓL| ≤ 1. Indeed, this follows from the positivity ofRL and the following

property:

ZL = Z0
1+ ΓL
1− ΓL

⇒ RL = Re(ZL)= Z0
1− |ΓL|2
|1− ΓL|2

(11.12.5)

The voltage standing wave ratio (SWR) of a terminated transmission line is a measure

of the degree of matching of the line to the load and is defined as the ratio of the

maximum to minimum voltage along the line:

S = Vmax

Vmin

= 1+ |ΓL|
1− |ΓL|

⇔ |ΓL| = S− 1

S+ 1
(11.12.6)

Because |ΓL| ≤ 1, the SWR will always be S ≥ 1. A matched load, ΓL = 0, has S = 1.

The more unmatched the load is, the larger the SWR. Indeed, S → ∞ as |ΓL| → 1. A

matched line has Vmin = |Vl| = Vmax at all points l, and is sometimes referred to as a

flat line. The MATLAB function swr.m calculates the SWR from Eq. (11.12.6):

S = swr(Gamma); % calculates SWR from reflection coefficient Γ

The SWR can be used to quantify the amount of power delivered to the load. The

percentage of reflected power from the load is |ΓL|2. Therefore, the percentage of the

power delivered to the load relative to the incident power will be:

PL
Pinc

= 1− |ΓL|2 = 4S

(S+ 1)2
(11.12.7)

The larger the SWR, the smaller the percentage of delivered power. For example, if

S = 9, the reflection coefficient will have magnitude |ΓL| = 0.8, resulting in 1− |ΓL|2 =
0.36, that is, only 36 percent of the incident power gets transferred to the load.
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Example 11.12.1: If the reflected wave at the load of a transmission line is 6 dB below the

incident wave, what is the SWR at the load? What percentage of the incident power gets

transferred to the load?

Solution: The relative power levels of the reflected and incident waves will be:

|ΓL|2 = |V−|2
|V+|2

= 10−6/10 = 1

4
⇒ |ΓL| = 1

2
⇒ S = 1+ 0.5

1− 0.5
= 3

The fraction of power transferred to the load is 1− |ΓL|2 = 0.75, or 75 percent. ⊓⊔

If both the line and load impedances are real-valued, then the standing wave ratio is

S = ZL/Z0 if ZL ≥ Z0, and S = Z0/ZL, if ZL ≤ Z0. This follows from the identity:

S = 1+ |ΓL|
1− |ΓL|

= |ZL + Z0| + |ZL − Z0|
|ZL + Z0| − |ZL − Z0|

= max(ZL, Z0)

min(ZL, Z0)
(11.12.8)

or, explicitly:

S = 1+ |ΓL|
1− |ΓL|

=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

ZL
Z0

, if ZL ≥ Z0

Z0

ZL
, if ZL ≤ Z0

(11.12.9)

11.13 Determining an Unknown Load Impedance

Often a transmission line is connected to an unknown impedance, and we wish to de-

termine that impedance by making appropriate measurements of the voltage along the

line.

The SWR can be readily determined by measuring |Vl| and finding its maximum and

minimum values Vmax and Vmin. From the SWR, we then determine the magnitude of

the reflection coefficient |ΓL|.
The phase of ΓL can be determined by finding the locations along the line at which

a voltage maximum or a voltage minimum is measured. If θL is the required phase, so

that ΓL = |ΓL|ejθL , then we have:

|Vl| = |VL+||1+ Γl| = |VL+||1+ ΓLe−2jβl| = |VL+|
∣
∣1+ |ΓL|ej(θL−2βl)

∣
∣

At all locations l for which θL − 2βl = ±2πn, where n is an integer, we will have

Γl = |ΓL| and |Vl| will be equal to Vmax. Similarly, at all locations for which θL − 2βl =
±(2n+ 1)π, we will have Γl = −|ΓL| and |Vl| will be equal to Vmin.

We note that two successive maxima, or two successive minima, are separated by a

distance λ/2 and a maximum is separated by the next minimum by a distance λ/4, so

that |lmax − lmin| = λ/4.

Once such distances lmax, lmin have been determined, the full reflection coefficient

can be constructed fromΓL = Γle2jβl, whereΓl = ±|ΓL| depending on using a maximum-

or minimum-voltage distance l. From ΓL and the knowledge of the line impedance Z0,

the load impedance ZL can be computed. Thus, we have:
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ΓL = |ΓL|ejθL = |ΓL|e2jβlmax = −|ΓL|e2jβlmin ⇒ ZL = Z0
1+ ΓL
1− ΓL

(11.13.1)

If 0 ≤ θL ≤ π, the locations for the closest maxima and minima to the load are

determined from the conditions:

θL − 2βlmax = 0 , θL − 2βlmin = −π

resulting in the distances:

lmax = θL
4π

λ , lmin = θL +π
4π

λ , (0 ≤ θL ≤ π) (11.13.2)

Similarly, if −π ≤ θL ≤ 0, we must solve θL − 2βlmax = −2π and θL − 2βlmin = −π:

lmax = θL + 2π

4π
λ , lmin = θL +π

4π
λ , (−π ≤ θL ≤ 0) (11.13.3)

Of course, one wants to solve for θL in terms of the measured lmax or lmin. Using lmin

is more convenient than using lmax because θL is given by the same expression in both

cases. The lengths lmax, lmin may be assumed to be less than λ/2 (if not, we may subtract

enough multiples of λ/2 until they are.) Expressing θL in terms of the measured lmin,

we have:

θL = 4πlmin

λ
−π = 2βlmin −π (11.13.4)

Alternatively, we have in terms of lmax:

θL =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

4πlmax

λ
= 2βlmax if 0 ≤ lmax ≤ λ

4

4πlmax

λ
− 2π = 2βlmax − 2π if

λ

4
≤ lmax ≤ λ

2

(11.13.5)

Example 11.13.1: A 50-ohm line is connected to an unknown impedance. Voltage measure-

ments along the line reveal that the maximum and minimum voltage values are 1.75 and

0.25 volts, respectively. Moreover, the closest distance to the load at which a voltage max-

imum is observed is 0.125λ.

Determine the reflection coefficient ΓL, the load impedance ZL, and the closest distance

to the load at which a voltage minimum is observed.

For another load, the same maxima and minima are observed, but now the closest distance

to the load at which a minimum is observed is 0.125λ. Determine ΓL and ZL.

Solution: The SWR is determined to be S = Vmax/Vmin = 1.75/0.25 = 7. Then, the magnitude

of the reflection coefficient is found to be |ΓL| = (S−1)/(S+1)= (7−1)/(7+1)= 0.75.

Given that at lmax = λ/8 we observe a voltage maximum, we compute the phase from

Eq. (11.13.5), θL = 2βlmax = 4π/8 = π/2. Then, the reflection coefficient will be:
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ΓL = |ΓL|ejθL = 0.75ejπ/2 = 0.75j

It follows that the load impedance will be:

ZL = Z0

1+ ΓL
1− ΓL

= 50
1+ 0.75j

1− 0.75j
= 14+ 48j Ω

The closest voltage minimum will occur at lmin = lmax + λ/4 = 0.375λ = 3λ/8. Alter-

natively, we could have determined the phase from Eq. (11.13.4), θL = 2βlmin − π =
4π(3/8)−π = π/2. The left graph of Fig. 11.13.1 shows a plot of |Vl| versus l.
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Fig. 11.13.1 Standing wave patterns.

Note the locations of the closest voltage maxima and minima to the load, that is λ/8 and

3λ/8. In the second case, we are given lmin = λ/8. It follows that θL = 2βlmin − π =
π/2 − π = −π/2. Alternatively, we may work with lmax = lmin + λ/4 = 3λ/8. Because

lmax > λ/4, Eq. (11.13.5) will give θL = 2βlmax − 2π = 4π(3/8)−2π = −π/2. The

reflection coefficient and load impedance will be:

ΓL = |ΓL|ejθL = 0.75e−jπ/2 = −0.75j ⇒ ZL = 14− 48j Ω

The right graph of Fig. 11.13.1 depicts the standing wave pattern in this case. ⊓⊔

It is interesting also to determine the wave impedances at the locations along the

line at which we have voltage maxima or minima, that is, at l = lmax or lmin. The answers

are expressed in terms of the SWR. Indeed, at l = lmax, we have Γl = |ΓL| which gives:

Zmax = Z0
1+ Γl
1− Γl

= Z0
1+ |ΓL|
1− |ΓL|

= SZ0 (11.13.6)

Similarly, at l = lmin, we have Γl = −|ΓL| and find:

Zmin = Z0
1+ Γl
1− Γl

= Z0
1− |ΓL|
1+ |ΓL|

= 1

S
Z0 (11.13.7)
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We note that ZmaxZmin = Z2
0 , as is expected because the points lmax and lmin are

separated by a quarter-wavelength distance λ/4.

Because at lmax and lmin the wave impedances are real-valued, these points can be

used as convenient locations at which to insert a quarter-wave transformer to match a

line with real Z0 to a complex load ZL. Given θL, the required locations are determined

from Eq. (11.13.2) or (11.13.3). We discuss this matching method later on.

The MATLAB function lmin.m calculates the locations lmin and lmax from Eqs. (11.13.2)

and (11.13.3), and the corresponding impedances Zmin and Zmax. It has usage:

[lm,Zm] = lmin(ZL,Z0,’min’); % locations of voltage minima

[lm,Zm] = lmin(ZL,Z0,’max’); % locations of voltage maxima

For a lossless line the power delivered to the load can be measured at any point l

along the line, and in particular, at lmax and lmin. Then, Eq. (11.12.7) can be written in

the alternative forms:

PL = 1

2Z0

(|VL+|2 − |VL−|2
) = VmaxVmin

2Z0

= V2
min

2Zmin

= V2
max

2Zmax

= V2
max

2SZ0

(11.13.8)

The last expression shows that for a given maximum voltage that can be supported

along a line, the power transmitted to the load is S times smaller than it could be if the

load were matched.

Conversely, for a given amount PL of transmitted power, the maximum voltage will

be Vmax =
√

2SPLZ0. One must ensure that for a highly unmatched load, Vmax remain

less than the breakdown voltage of the line.

If the line is lossy, measurements of the SWR along its length will give misleading

results. Because the reflected power attenuates as it propagates backwards away from

the load, the SWR will be smaller at the line input than at the load.

For a lossy line with βc = β− jα, the reflection coefficient at the line input will be:

Γd = ΓLe−2(α+jβ)d, which gives for the input SWR:

Sd = 1+ |Γd|
1− |Γd|

= 1+ |ΓL|e−2αd

1− |ΓL|e−2αd
= e2αd + |ΓL|
e2αd − |ΓL|

= a+ |ΓL|
a− |ΓL|

(11.13.9)

where we expressed it in terms of the matched-line loss of Eq. (11.10.7).

Example 11.13.2: For the RG-58 coax cable of Example 11.10.2, we find the SWRs:

SL = 1+ |ΓL|
1− |ΓL|

= 1+ 0.62

1− 0.62
= 4.26 , Sd = 1+ |Γd|

1− |Γd|
= 1+ 0.41

1− 0.41
= 2.39

If one does not know that the line is lossy, and measures the SWR at the line input, one

would think that the load is more matched than it actually is. ⊓⊔

Example 11.13.3: The SWR at the load of a line is 9. If the matched-line loss is 10 dB, what is

the SWR at the line input?
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Solution: We calculate the reflection coefficient at the load:

|ΓL| = S− 1

S+ 1
= 9− 1

9+ 1
= 0.8

The matched-line loss is a = 10LM/10 = 1010/10 = 10. Thus, the reflection coefficient

at the input will be |Γd| = |ΓL|/a = 0.8/10 = 0.08. The corresponding SWR will be

S = (1+ 0.08)/(1− 0.08)= 1.17. ⊓⊔

Example 11.13.4: A 50-ohm line feeds a half-wave dipole antenna with impedance of 73+j42.5

ohms. The line has matched-line loss of 3 dB. What is the total loss of the line? What is

the SWR at the load and at the line input?

If the line length is doubled, what is the matched-line loss, the total loss, the input and

load SWRs?

Solution: The matched-line loss in absolute units isa = 103/10 = 2. Using the MATLAB functions

z2g and swr, we compute the reflection coefficient at the load and its SWR:

|ΓL| =
∣
∣
∣
∣

ZL − Z0

ZL + Z0

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

73+ j42.5− 50

73+ j42.5+ 50

∣
∣
∣
∣
∣
= abs(z2g(73+ 42.5j,50))= 0.3713

The SWR will be S = swr(0.3713)= 2.1814. The reflection coefficient at the line input will

be |Γd| = |ΓL|e−2αd = |ΓL|/a = 0.1857, and its SWR, S = swr(0.1857)= 1.4560.

If the line length is doubled, the matched-line loss in dB will double to 6 dB, since it is

given by LM = 8.686αd. In absolute units, it is a = 22 = 4.

The corresponding reflection coefficient at the line input will be |Γd| = |ΓL|/a = 0.0928,

and its SWR, S = swr(0.0928)= 1.2047. ⊓⊔

11.14 Smith Chart

The relationship between the wave impedance Z and the corresponding reflection re-

sponse Γ along a transmission line Z0 can be stated in terms the normalized impedance

z = Z/Z0 as follows:

Γ = z− 1

z+ 1
⇔ z = 1+ Γ

1− Γ (11.14.1)

It represents a mapping between the complex impedance z-plane and the complex

reflection coefficient Γ-plane, as shown in Fig. 11.14.1. The mapping is similar to the

bilinear transformation mapping in linear system theory between the s-plane (playing

the role of the impedance plane) and the z-plane of the z-transform (playing the role of

the Γ-plane.)

A complex impedance z = r + jx with positive resistive part, r > 0, gets mapped

onto a point Γ that lies inside the unit-circle in the Γ-plane, that is, satisfying |Γ| < 1.

An entire resistance line z = r (a vertical line on the z-plane) gets mapped onto

a circle on the Γ-plane that lies entirely inside the unit-circle, if r > 0. Similarly, a

reactance line z = jx (a horizontal line on the z-plane) gets mapped onto a circle on the

Γ-plane, a portion of which lies inside the unit-circle.
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Fig. 11.14.1 Mapping between z-plane and Γ-plane.

The Smith chart is a graphical representation of the Γ-plane with a curvilinear grid

of constant resistance and constant reactance circles drawn inside the unit-circle. In

effect, the Smith chart is a curvilinear graph paper.

Any reflection coefficient point Γ falls at the intersection of a resistance and a reac-

tance circle, r, x, from which the corresponding impedance can be read off immediately

as z = r + jx. Conversely, given z = r + jx and finding the intersection of the r, x

circles, the complex point Γ can be located and its value read off in polar or cartesian

coordinates.

To determine the centers and radii of the resistance and reactance circles, we use

the result that a circle with center C and radius R on the Γ-plane has the following two

equivalent representations:

|Γ|2 −C∗Γ−CΓ∗ = B ⇔ |Γ−C| = R , where B = R2 − |C|2 (11.14.2)

Setting z = r + jx in Eq. (11.14.1) and extracting the real and imaginary parts, we

can write r and x in terms of Γ, as follows:

r = Rez = 1− |Γ|2
|1− Γ|2 , x = Imz = j(Γ∗ − Γ)

|1− Γ|2 (11.14.3)

In particular, the expression for the resistive part implies that the condition r > 0 is

equivalent to |Γ| < 1. The r, x circles are obtained by putting Eqs. (11.14.3) in the form

of Eq. (11.14.2). We have:

r|Γ− 1|2 = 1− |Γ|2 ⇒ r
(|Γ|2 − Γ− Γ∗ + 1

) = 1− |Γ|2

and rearranging terms:

|Γ|2 − r

r + 1
Γ− r

1+ rΓ
∗ = 1− r

1+ r ⇒
∣
∣
∣
∣Γ−

r

1+ r
∣
∣
∣
∣

2

= 1− r
1+ r +

r2

(1+ r)2
=
(

1

1+ r
)2
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Similarly, we have

x|Γ− 1|2 = j(Γ∗ − Γ) ⇒ x
(|Γ|2 − Γ− Γ∗ + 1

) = j(Γ∗ − Γ)

which can be rearranged as:

|Γ|2−
(

1− j

x

)

Γ−
(

1+ j

x

)

Γ∗ = −1 ⇒
∣
∣
∣
∣Γ−

(

1+ j

x

)∣
∣
∣
∣

2

= −1+
(

1+ 1

x2

)

=
(

1

x

)2

To summarize, the constant resistance and reactance circles are:

∣
∣
∣
∣Γ−

r

1+ r
∣
∣
∣
∣ =

1

1+ r (resistance circles)

∣
∣
∣
∣Γ−

(

1+ j

x

)∣
∣
∣
∣ =

1

|x| (reactance circles)

(11.14.4)

The centers of the resistance circles are on the positive half of the real axis on the Γ-

plane, lying between 0 ≤ Γ ≤ 1. When r = 0, the impedance circle is the entire unit-circle

with center at Γ = 0. As r increases, the radii become smaller and the centers move

towards Γ = 1. The centers of the reactance circles lie on the tangent of the unit-circle

at Γ = 1.

Example 11.14.1: Fig. 11.14.2 depicts the resistance and reactance circles for the following

values of r, x:

r = [0.2, 0.5, 1, 2, 5] , x = [0.2, 0.5, 1, 2, 5]

Because the point A is at the intersection of the r = 0.2 and x = 0.5 circles, the corre-

sponding impedance will be zA = 0.2+ 0.5j. We list below the impedances and reflection

coefficients at the points A,B,C,D,E, S, P,O:

zA = 0.2+ 0.5j, ΓA = −0.420+ 0.592j = 0.726∠125.37o

zB = 0.5− j, ΓB = 0.077− 0.615j = 0.620∠−82.88o

zC = 2− 2j, ΓC = 0.539− 0.308j = 0.620∠−29.74o

zD = j, ΓD = j = 1∠90o

zE = −j, ΓE = −j = 1∠−90o

(short circuit) zS = 0, ΓS = −1 = 1∠180o

(open circuit) zP = ∞, ΓP = 1 = 1∠0o

(matched) zO = 1, ΓO = 0 = 0∠0o

The points S and P correspond to a short-circuited and an open-circuited impedance. The

center of the Smith chart at point O corresponds to z = 1, that is, an impedance matched

to the line. ⊓⊔

The Smith chart helps one visualize the wave impedance as one moves away from

or towards a load. Assuming a lossless line, the wave impedance and corresponding

reflection response at a distance l from the load are given by:

zl = zL + j tanβl

1+ jzL tanβl
⇔ Γl = e−2jβlΓL (11.14.5)
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Fig. 11.14.2 Smith chart example.

The magnitude of Γl remains constant as l varies, indeed, |Γl| = |ΓL|. On the Smith

chart, this represents a circle centered at the origin Γ = 0 of radius |ΓL|. Such circles

are called constant SWR circles because the SWR is related to the circle radius by

S = 1+ |ΓL|
1− |ΓL|

The relative phase angle between Γl and ΓL is negative,−2βl, and therefore, the point

Γl moves clockwise along the constant SWR circle, as shown in Fig. 11.14.3. Conversely,

if l is decreasing towards the load, the point Γl will be moving counter-clockwise.

Fig. 11.14.3 Moving towards the generator along a constant SWR circle.

The rotation angle φl = 2βl can be read off in degrees from the outer periphery of

the Smith chart. The corresponding length l can also be read off in units of wavelengths
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towards the generator (WTG) or wavelengths towards the load (WTL). Moving towards

the generator by a distance l = λ/8 corresponds to a clockwise rotation by an angle of

φl = 2(2π/8)= π/2, that is, 90o. Moving by l = λ/4 corresponds to a 180o rotation,

and by l = λ/2, to a full 360o rotation.

Smith charts provide an intuitive geometrical representation of a load in terms of

its reflection coefficient and help one design matching circuits—where matching means

moving towards the center of the chart. However, the computational accuracy of the

Smith chart is not very high, about 5–10%, because one must visually interpolate between

the grid circles of the chart.

Smith charts are used widely to display S-parameters of microwave amplifiers and

help with the design of matching circuits. Some of the tools used in such designs are the

stability circles, gain circles, and noise figure circles of an amplifier, which are intuitively

represented on a Smith chart. We discuss them in Chap. 14.

Various resources, including a history of the Smith chart and high-quality download-

able charts in Postscript format can be found on the web site [1500].

Laursen’s Smith chart MATLAB toolbox can be used to draw Smith charts. It is avail-

able from the Mathworks web site [1511]. Our MATLAB function smith.m can be used

to draw simple Smith charts.

11.15 Time-Domain Response of Transmission Lines

So far we discussed only the sinusoidal response of transmission lines. The response to

arbitrary time-domain inputs can be obtained by writing Eq. (11.6.3) in the time domain

by replacing jω→ ∂/∂t. We will assume a lossless line and set R′ = G′ = 0.† We obtain

then the system of coupled equations:

∂V

∂z
= −L′∂I

∂t
,

∂I

∂z
= −C′∂V

∂t
(11.15.1)

These are called telegrapher’s equations. By differentiating again with respect to z,

it is easily verified that V and I satisfy the uncoupled one-dimensional wave equations:

∂2V

∂z2
− 1

c2

∂2V

∂t2
= 0 ,

∂2I

∂z2
− 1

c2

∂2I

∂t2
= 0

where c = 1/
√
L′C′. As in Sec. 2.1, it is better to deal directly with the first-order coupled

system (11.15.1). This system can be uncoupled by defining the forward and backward

wave components:

V±(t, z)= V(t, z)±Z0I(t, z)

2
, where Z0 =

√

L′

C′
(11.15.2)

These satisfy the uncoupled equations:

∂V±
∂z

= ∓1

c

∂V±
∂t

(11.15.3)

†At RF,R′, G′ may be small but cannot be assumed to be frequency-independent, for example,R′ depends

on the surface impedance Rs, which grows like f1/2.
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with general solutions given in terms of two arbitrary functions f(t), g(t):

V+(t, z)= f(t − z/c) , V−(t, z)= g(t + z/c) (11.15.4)

These solutions satisfy the basic forward and backward propagation property:

V+(t, z+Δz) = V+(t −Δt, z)
V−(t, z+Δz) = V−(t +Δt, z)

, where Δt = Δz

c
(11.15.5)

In particular, we have:

V+(t, z) = V+(t − z/c,0)
V−(t, z) = V−(t + z/c,0)

(11.15.6)

These allow the determination of the line voltages at any point z along the line from

the knowledge of the voltages at z = 0. Next, we consider a terminated line, shown in

Fig. 11.15.1, driven by a generator voltage VG(t), which is typically turned on at t = 0

as indicated by the closing of the switch.

Fig. 11.15.1 Transient response of terminated line.

In general, ZG and ZL may have inductive or capacitive parts. To begin with, we will

assume that they are purely resistive. Let the length of the line be d, so that the one-

and two-way travel-time delays will be T = d/c and 2T = 2d/c.

When the switch closes, an initial waveform is launched forward along the line. When

it reaches the load T seconds later, it gets reflected, picking up a factor of ΓL, and begins

to travel backward. It reaches the generator T seconds later, or 2T seconds after the

initial launch, and gets reflected there traveling forward again, and so on. The total

forward- and backward-moving componentsV±(t, z) include all the multiple reflections.

Before we sum up the multiple reflections, we can express V±(t, z) in terms of the

total forward-moving component V+(t)≡ V+(t,0) at the generator end, with the help

of (11.15.6). In fact, we have V+(t, z)= V+(t − z/c). Applying this at the load end

z = d, we have V+L (t)= V+(t, d)= V+(t − d/c)= V+(t − T). Because of Ohm’s law at

the load, VL(t)= ZLIL(t), we have for the forward/backward components:

V±L (t)=
VL(t)±Z0IL(t)

2
= ZL ± Z0

2
IL(t) ⇒ V−L (t)=

ZL − Z0

ZL + Z0

V+L (t)= ΓLV+(t−T)
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Therefore, we find the total voltage at the load end:

VL(t)= V+L (t)+V−L (t)= (1+ ΓL)V+(t −T) (11.15.7)

Using (11.15.6), the backward component at z = 0 is:

V−(t +T) = V−(t + d/c,0)= V−(t, d)= V−L (t)= ΓLV+(t −T) , or,

V−(t) = ΓLV+(t − 2T)

Thus, the total line voltage at the generator end will be:

Vd(t)= V+(t)+V−(t)= V+(t)+ΓLV+(t − 2T) (11.15.8)

More generally, the voltage at any point z along the line will be:

V(t, z)= V+(t, z)+V−(t, z)= V+(t − z/c)+ΓLV+(t + z/c− 2T) (11.15.9)

It remains to determine the total forward component V+(t) in terms of the multiple

reflections of the initially launched wave along the line. We find below that:

V+(t) =
∞∑

m=0

(ΓGΓL)
mV(t − 2mT)

= V(t)+(ΓGΓL)V(t − 2T)+(ΓGΓL)2V(t − 4T)+· · ·
(11.15.10)

where V(t) is the initially launched waveform:

V(t)= Z0

ZG + Z0

VG(t) (11.15.11)

Thus, initially the transmission line can be replaced by a voltage divider with Z0 in

series with ZL. For a right-sided signal V(t), such as that generated after closing the

switch, the number of terms in (11.15.10) is finite, but growing with time. Indeed, the

requirement that the argument of V(t − 2mT) be non-negative, t − 2mT ≥ 0, may be

solved for the limits on m:

0 ≤m ≤M(t) , where M(t)= floor

(
t

2T

)

(11.15.12)

To justify (11.15.10) and (11.15.11), we may start with the single-frequency case dis-

cussed in Sec. 11.9 and perform an inverse Fourier transform. Defining the z-transform

variable ζ = ejωT = ejβd,† we may rewrite Eq. (11.9.7) in the form:

Vd = V 1+ ΓLζ−2

1− ΓGΓLζ−2
, Z0Id = V 1− ΓLζ−2

1− ΓGΓLζ−2
, where V = VGZ0

ZG + Z0

†We use ζ instead of z to avoid confusion with the position variable z.
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The forward and backward waves at z = 0 will be:

V+ = Vd + Z0Id
2

= V

1− ΓGΓLζ−2

V− = Vd − Z0Id
2

= VΓLζ
−2

1− ΓGΓLζ−2
= ΓLζ−2V+

Vd = V+ +V− = V+ + ΓLζ−2V+ ⇒ Vd(ω)= V+(ω)+ΓLe−2jωTV+(ω)

(11.15.13)

where in the last equation we indicated explicitly the dependence onω. Using the delay

theorem of Fourier transforms, it follows that the equation for Vd(ω) is the Fourier

transform of (11.15.8). Similarly, we have at the load end:

VL = VGZ0

ZG + Z0

1+ ΓL
1− ΓGΓLζ−2

ζ−1 = (1+ ΓL)ζ−1V+

which is recognized as the Fourier transform of Eq. (11.15.7). Next, we expand V+ using

the geometric series noting that |ΓGΓLζ−2| = |ΓGΓL| < 1:

V+ = V

1− ΓGΓLζ−2
= V + (ΓGΓL)ζ−2V + (ΓGΓL)2ζ−4V + · · · (11.15.14)

which is equivalent to the Fourier transform of Eq. (11.15.10). The same results can be

obtained using a lattice timing diagram, shown in Fig. 11.15.2, like that of Fig. 5.6.1.

Fig. 11.15.2 Lattice timing diagram.

Each propagation segment introduces a delay factor ζ−1, forward or backward, and

each reflection at the load and generator ends introduces a factor ΓL or ΓG. Summing

up all the forward-moving waves at the generator end gives Eq. (11.15.14). Similarly, the

summation of the backward terms at the generator, and the summation of the forward
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and backward terms at the load, give:

V− = VΓLζ−2
[

1+ (ΓGΓL)ζ−2 + (ΓGΓL)2ζ−4 + · · · ] = ΓLζ−2V+

V+L = Vζ−1
[

1+ (ΓGΓL)ζ−2 + (ΓGΓL)2ζ−4 + · · · ] = ζ−1V+

V−L = ΓLVζ−1
[

1+ (ΓGΓL)ζ−2 + (ΓGΓL)2ζ−4 + · · · ] = ΓLζ−1V+ = ΓLV+L
Replacing V+(t) in terms of (11.15.10), we obtain from (11.15.7) and (11.15.8):

Vd(t) = V(t)+
(

1+ 1

ΓG

) ∞∑

m=1

(ΓGΓL)
mV(t − 2mT)

VL(t) = (1+ ΓL)
∞∑

m=0

(ΓGΓL)
mV

(

t − (2m+ 1)T
)

(11.15.15)

The line voltage at an arbitrary location z along the line, can be determined from

(11.15.9). The substitution of the series expansion of V+ leads to the expression:

V(t, z)=
∞∑

m=0

(ΓGΓL)
mV(t − z/c− 2mT)+ΓL

∞∑

k=0

(ΓGΓL)
kV(t + z/c− 2kT − 2T)

For a causal input V(t), the allowed ranges for the summation indices m,k are:

0 ≤m ≤ floor

(
t − z/c

2T

)

, 0 ≤ k ≤ floor

(
t + z/c− 2T

2T

)

Example 11.15.1: A terminated line has Z0 = 50, ZG = 450, ZL = 150 Ω. The corresponding

reflection coefficients are calculated to be: ΓG = 0.8 and ΓL = 0.5. For simplicity, we

take c = 1, d = 1, T = d/c = 1. First, we consider the transient response of the line

to a step generator voltage VG(t)= 10u(t). The initial voltage input to the line will be:

V(t)= VG(t)Z0/(ZG + Z0)= 10u(t)·50/(450 + 50)= u(t). It follows from (11.15.15)

that:

Vd(t)= u(t)+2.25

∞∑

m=1

(0.4)m u(t − 2mT) , VL(t)= 1.5
∞∑

m=1

(0.4)m u
(

t − (2m+ 1)T
)

These functions are plotted in Fig. 11.15.3. The successive step levels are calculated by:

Vd(t) VL(t)

1 0

1+ 2.25[0.41]= 1.90 1.5

1+ 2.25[0.41 + 0.42]= 2.26 1.5[1+ 0.41]= 2.10

1+ 2.25[0.41 + 0.42 + 0.43]= 2.40 1.5([1+ 0.41 + 0.42]= 2.34

1+ 2.25[0.41 + 0.42 + 0.43 + 0.44]= 2.46 1.5([1+ 0.41 + 0.42 + 0.43]= 2.44

Both Vd and VL converge to the same asymptotic value:

1+2.25[0.41+0.42+0.43+0.44+· · · ]= 1.5[1+0.41+0.42+0.43+· · · ]= 1.5

1− 0.4
= 2.5
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Fig. 11.15.3 Transient step and pulse responses of a terminated line.

More generally, the asymptotic level for a step input VG(t)= VGu(t) is found to be:

V∞ = V 1+ ΓL
1− ΓGΓL

= VGZ0

ZG + Z0

1+ ΓL
1− ΓGΓL

= VGZL
ZG + ZL

(11.15.16)

Thus, the line behaves asymptotically like a lumped circuit voltage divider with ZL in series

with ZG. We consider next, the response to a pulse input VG(t)= 10
[

u(t)−u(t − τ)], so

thatV(t)= u(t)−u(t−τ), where τ is the pulse duration. Fig. 11.15.3 shows the generator

and load line voltages for the case τ = T/10 = 1/10. The pulse levels are:

[1, 2.25(0.4)m] = [1.00, 0.90, 0.36, 0.14, 0.06, . . . ] (at generator)

1.5(0.4)m = [1.50, 0.60, 0.24, 0.10, 0.04, . . . ] (at load)

The following MATLAB code illustrates the computation of Vd(t):

d = 1; c=1; T = d/c; tau = T/10; VG = 10;

Z0 = 50; ZG = 450; ZL = 150;

V = VG * Z0 / (ZG+Z0);

gG = z2g(ZG,Z0); gL = z2g(ZL,Z0); % reflection coefficients ΓG, ΓL

t = 0 : T/1500 : 10*T;

for i=1:length(t),

M = floor(t(i)/2/T);

Vd(i) = V * upulse(t(i), tau);

if M >= 1,

m = 1:M;

Vd(i) = Vd(i) + (1+1/gG)*V*sum((gG*gL).^m .* upulse(t(i)-2*m*T, tau));

end

end

plot(t, Vd, ’r’);

where upulse(t, τ) generates the unit-pulse function u(t)−u(t − τ). The code can be

adapted for any other input function V(t).
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The MATLAB file pulsemovie.m generates a movie of the step or pulse input as it propa-

gates back and forth between generator and load. It plots the voltage V(t, z) as a function

of z at successive time instants t. ⊓⊔

Next, we discuss briefly the case of reactive terminations. These are best han-

dled using Laplace transforms. Introducing the s-domain variable s = jω, we write

ζ−1 = e−jωT = e−sT. The terminating impedances, and hence the reflection coeffi-

cients, become functions of s. For example, if the load is a resistor in series with an

inductor, we have ZL(s)= R+ sL. Indicating explicitly the dependence on s, we have:

V+(s)= V(s)

1− ΓG(s)ΓL(s)e−2sT
, where V(s)= VG(s)Z0

ZG(s)+Z0

(11.15.17)

In principle, we may perform an inverse Laplace transform on V+(s) to find V+(t).
However, this is very tedious and we will illustrate the method only in the case of a

matched generator, that is, when ZG = Z0, or, ΓG = 0. Then, V+(s)= V(s), where

V(s)= VG(s)Z0/2Z0 = VG(s)/2. The line voltages at the generator and load ends will

be from (11.15.13) and (11.15.7):

Vd(s) = V(s)+ΓL(s)e−2sTV(s)

VL(s) =
[

1+ ΓL(s)
]

e−sTV(s)
(11.15.18)

We consider the four typical cases of series and parallel R–L and series and parallel

R–C loads. The corresponding ZL(s) and ΓL(s) are shown below, where in all cases

ΓR = (R − Z0)/(R + Z0) and the parameter a gives the effective time constant of the

termination, τ = 1/a:

series R–L parallel R–L series R–C parallel R–C

ZL(s)= R+ sL ZL(s)= RsL

R+ sL ZL = R+ 1

sC
ZL(s)= R

1+RCs

ΓL(s)= s+ aΓR
s+ a ΓL(s)= sΓR − a

s+ a ΓL(s)= sΓR + a
s+ a ΓL(s)= −s+ aΓR

s+ a

a = R+ Z0

L
a = Z0R

(R+ Z0)L
a = 1

(R+ Z0)C
a = R+ Z0

RZ0C

We note that in all cases ΓL(s) has the form: ΓL(s)= (b0s+b1)/(s+a). Assuming

a step-input VG(t)= 2V0 u(t), we have V(t)= V0 u(t), so that V(s)= V0/s. Then,

Vd(s)= V0

[
1

s
+ ΓL(s)1

s
e−2sT

]

= V0

[
1

s
+ b0s+ b1

s(s+ a)e
−2sT

]

(11.15.19)

Using partial-fraction expansions and the delay theorem of Laplace transforms, we

find the inverse Laplace transform:

Vd(t)= V0 u(t)+V0

[
b1

a
+
(

b0 − b1

a

)

e−a(t−2T)

]

u(t − 2T) (11.15.20)
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Applying this result to the four cases, we find:

Vd(t)= V0 u(t)+V0

[

ΓR + (1− ΓR)e−a(t−2T)
]

u(t − 2T) (series R–L)

Vd(t)= V0 u(t)+V0

[−1+ (1+ ΓR)e−a(t−2T)
]

u(t − 2T) (parallel R–L)

Vd(t)= V0 u(t)+V0

[

1− (1− ΓR)e−a(t−2T)
]

u(t − 2T) (series R–C)

Vd(t)= V0 u(t)+V0

[

ΓR − (1+ ΓR)e−a(t−2T)
]

u(t − 2T) (parallel R–C)

(11.15.21)

In a similar fashion, we determine the load voltage:

VL(t)= V0

[

(1+ ΓR)+(1− ΓR)e−a(t−T)
]

u(t −T) (series R–L)

VL(t)= V0(1+ ΓR)e−a(t−T) u(t −T) (parallel R–L)

VL(t)= V0

[

2− (1− ΓR)e−a(t−T)
]

u(t −T) (series R–C)

VL(t)= V0(1+ ΓR)
[

1− e−a(t−T)]u(t −T) (parallel R–C)

(11.15.22)

Example 11.15.2: We take V0 = 1, Z0 = 50, R = 150 Ω, and, as before, d = 1, c = 1, T = 1.

We find ΓR = 0.5. Fig. 11.15.4 shows the voltages Vd(t) and VL(t) in the four cases.

In all cases, we adjusted L and C such that a = 1. This gives L = 200 and C = 1/200, and

L = 37.5 and C = 1/37.5, for the series and parallel cases.

Asymptotically, the series R–L and the parallel R–C cases look like a voltage divider Vd =
VL = VGR/(R + Z0)= 1.5, the parallel R–L case looks like a short-circuited load Vd =
VL = 0, and the series R–C looks like and open circuit so that Vd = VL = VG = 2.

Using the expressions for V(t, z) of Problem 11.40, the MATLAB file RLCmovie.m makes a

movie of the step input as it propagates to and gets reflected from the reactive load. ⊓⊔

11.16 Problems

11.1 Design a two-wire line made of two AWG 20-gauge (diameter 0.812 mm) copper wires that

has a 300-ohm impedance. Calculate its capacitance per unit length.

11.2 For the two-wire line shown in Fig. 11.5.1, show that the tangential component of the electric

field vanishes on both cylindrical conductor surfaces. Show that the surface charge and

current densities on the positively charged conductor are given in terms of the azimuthal

angle φ as follows:

ρs(φ)= Q′

2πa

k2 − 1

k2 − 2k cosφ+ 1
, Jsz(φ)= I

2πa

k2 − 1

k2 − 2k cosφ+ 1

Show and interpret the following:

∫ 2π

0
ρs(φ)adφ = Q′ ,

∫ 2π

0
Jsz(φ)adφ = I

11.3 For the two-wire line of the previous problem, show that the power loss per unit length due

to ohmic conductor losses is given by:
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Fig. 11.15.4 Transient response of reactive terminations.

P′loss = Rs
∫ 2π

0
|Jsz(φ)|2adφ = Rs|I|2

2πa

k2 + 1

k2 − 1

From this result, derive Eq. (11.5.13) for R′ and αc.

11.4 A polyethylene-filled RG-59 coaxial cable has impedance of 75 ohm and velocity factor of

2/3. If the radius of the inner conductor is 0.322 mm, determine the radius of the outer

conductor in mm. Determine the capacitance and inductance per unit length. Assuming

copper conductors and a loss tangent of 7×10−4 for the polyethylene dielectric, calculate

the attenuation of the cable in dB/100-ft at 50 MHz and at 1 GHz. Finally, calculate the cutoff

frequency of higher propagating modes.

11.5 Computer Experiment: Coaxial Cable Attenuation. Consider the attenuation data of an RG-

8/U cable given in Example 11.4.3.

a. Reproduce the graph of that Example. Show that with the assumed characteristics of

the cable, the total attenuation may be written as a function of frequency in the form,

where α is in dB per 100 ft and f is in GHz:

α(f)= 4.3412 f1/2 + 2.9131 f

b. Carry out a least-squares fit of the attenuation data given in the table of that Exam-

ple by fitting them to a function of the form α(f)= Af1/2 + Bf , and determine the

fitted coefficients A,B. This requires that you find A,B by minimizing the weighted

performance index:

J =
∑

i

wi
(

αi −Af1/2
i − Bfi

)2 = min
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where you may take the weights wi = 1. Show that the minimization problem gives

rise to a 2×2 linear system of equations in the unknowns A,B, and solve this system

with MATLAB.

Plot the resulting function of α(f) on the same graph as that of part (a). How do the

fitted coefficients compare with those of part (a)?

Given the fitted coefficients A,B, extract from them the estimated values of the loss

tangent tanδ and the refractive index n of the dielectric filling (assuming the cable

radii a,b and conductivity σ are as given.)

c. Because it appears that the 5-GHz data point is not as accurate as the others, redo part

(b) by assigning only 1/2 weight to that point in the least-squares fit. Finally, redo part

(b) by assigning zero weight to that point (i.e., not using it in the fit.)

11.6 Computer Experiment—Optimum Coaxial Cables. Plot the three quantities Ea, PT , and αc
given in Eq. (11.4.10) versus the ratio b/a over the range 1.5 ≤ b/a ≤ 4. Indicate on the

graphs the positions of the optimum ratios that correspond to the minima of Ea and αc,

and the maximum of PT .

Moreover, write a MATLAB function that solves iteratively (for example, using Newton’s

method) the equation for minimizing αc, that is, lnx = 1+ 1/x.

11.7 Let Zl = Rl + jXl be the wave impedance on a lossless line at a distance l from a purely

resistive load ZL. Derive explicit expressions for Rl and Xl in terms of ZL and the charac-

teristic impedance Z0 of the line for the distances l = nλ/8, where n = 1,2,3,4,5,6,7,8.

Discuss the signs of Xl (inductive or capacitive) for the two cases ZL > Z0 and ZL < Z0.

What happens to the above expressions when ZL = Z0?

11.8 A dipole antenna operating in the 30-meter band is connected to a transmitter by a 15-meter

long lossless coaxial cable having velocity factor of 0.667 and characteristic impedance of

50 ohm. The wave impedance at the transmitter end of the cable is measured and found to

be 25.5− 14.9j ohm. Determine the input impedance of the antenna.

11.9 It is desired to measure the characteristic impedanceZ0 and propagation constantγ = α+jβ
of a lossy line. To this end, a length l of the line is short-circuited and its input impedanceZsc

is measured. Then, the segment is open-circuited and its input impedance Zoc is measured.

Explain how to extract the two unknown quantities Z0 and γ from Zsc and Zoc.

11.10 The wave impedances of a 100-meter long short- and open-circuited segment of a lossy

transmission line were measured to be Zsc = 68.45+ 128.13j ohm and Zoc = 4.99− 16.65j

ohm at 10 MHz. Using the results of the previous problem, determine the characteristic

impedance of the line Z0, the attenuation constant α in dB/100-m, and the velocity factor

of the cable noting that the cable length is at least two wavelengths long.

11.11 For a lossless line, show the inequality:

1− |ΓL|
1+ |ΓL|

≤
∣
∣
∣
∣
∣

1+ ΓLe−2jβl

1− ΓLe−2jβl

∣
∣
∣
∣
∣
≤ 1+ |ΓL|

1− |ΓL|

where ΓL is the load reflection coefficient. Then, show that the magnitude of the wave

impedance Zl along the line varies between the limits:

Zmin ≤ |Zl| ≤ Zmax , Zmin = 1

S
Z0 , Zmax = SZ0

where Z0 is the characteristic impedance of the line and S, the voltage SWR.
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11.12 For a lossless line, show that the current Il at a distance l from a load varies between the

limits:

Imin ≤ |Il| ≤ Imax , where Imin = 1

Z0

Vmin , Imax = 1

Z0

Vmax

where Vmin and Vmax are the minimum and maximum voltage along the line. Then, show

that the minimum and maximum wave impedances of the previous problem can be written

in the alternative forms:

Zmax = Vmax

Imin

, Zmin = Vmin

Imax

Recall from Sec. 11.13 that Zmax, Zmin correspond to the distances lmax and lmin. However,

show that Imin and Imax correspond to lmax and lmin, respectively.

11.13 If 500 W of power are delivered to a load by a 50-ohm lossless line and the SWR on the line is

5, determine the maximum voltage Vmax along the line. Determine also the quantities Vmin,

Imax, Imin, Zmax, and Zmin.

11.14 A transmitter is connected to an antenna by an 80-ft length of coaxial cable of characteristic

impedance of 50 ohm and matched-line loss of 0.6 dB/100-ft. The antenna impedance is

30+40j ohm. The transmitter delivers 1 kW of power into the line. Calculate the amount of

power delivered to the load and the power lost in the line. Calculate the SWR at the antenna

and transmitter ends of the line.

11.15 Let SL and Sd be the SWRs at the load and at distance d from the load on a lossy and

mismatched line. Let a = e2αd be the matched-line loss for the length-d segment. Show that

the SWRs are related by:

Sd = SL − (a− 1)(S2
L − 1)

a(SL + 1)−(SL − 1)
and SL = Sd +

(a− 1)(S2
d − 1)

(Sd + 1)−a(Sd − 1)

Show that 1 ≤ Sd ≤ SL. When are the equalities valid? Show also that Sd → 1 as d→∞.

11.16 A 100-Ω lossless transmission line is terminated at an unknown load impedance. The line

is operated at a frequency corresponding to a wavelength λ = 40 cm. The standing wave

ratio along this line is measured to be S = 3. The distance from the load where there is a

voltage minimum is measured to be 5 cm. Based on these two measurements, determine the

unknown load impedance.

11.17 The wavelength on a 50 Ω transmission line is 80 cm. Determine the load impedance if the

SWR on the line is 3 and the location of the first voltage minimum is 10 cm from the load.

At what other distances from the load would one measure a voltage minimum? A voltage

maximum?

11.18 A 75-ohm line is connected to an unknown load. Voltage measurements along the line reveal

that the maximum and minimum voltage values are 6 V and 2 V. It is observed that a voltage

maximum occurs at the distance from the load:

l = 0.5λ− λ

4π
atan(0.75)= 0.44879λ

Determine the reflection coefficient ΓL (in cartesian form) and the load impedance ZL.

11.19 A load is connected to a generator by a 30-ft long 75-ohm RG-59/U coaxial cable. The SWR

is measured at the load and the generator and is found to be equal to 3 and 2, respectively.

Determine the attenuation of the cable in dB/ft. Assuming the load is resistive, what are all

possible values of the load impedance in ohm?
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11.20 A lossless 50-ohm line with velocity factor of 0.8 is connected to an unknown load. The

operating frequency is 1 GHz. Voltage measurements along the line reveal that the maximum

and minimum voltage values are 6 V and 2 V. It is observed that a voltage minimum occurs

at a distance of 3 cm from the load. Determine the load reflection coefficient ΓL and the

load impedance ZL.

11.21 The SWR on a lossy line is measured to be equal to 3 at a distance of 5 meters from the load,

and equal to 4 at a distance of 1 meter from the load.

a. Determine the attenuation constant of the line in dB/m.

b. Assuming that the load is purely resistive, determine the two possible values of the

load impedance.

11.22 A lossless 50-ohm transmission line of length d = 17 m is connected to an unknown load

ZL and to a generator VG = 10 volts having an unknown internal impedance ZG, as shown

below. The wavelength on the line is λ = 8 m. The current and voltage on the line at the

generator end are measured and found to be Id = 40 mA and Vd = 6 volts.

a. Determine the wave impedance Zd at the generator end, as well as the generator’s

internal impedance ZG.

b. Determine the load impedance ZL.

c. What percentage of the total power produced by the generator is absorbed by the load?

11.23 The wavelength on a 50-ohm transmission line is 8 meters. Determine the load impedance

if the SWR on the line is 3 and the location of the first voltage maximum is 1 meter from

the load. At what other distances from the load would one measure a voltage minimum? A

voltage maximum?

11.24 A 10-volt generator with a 25-ohm internal impedance is connected to a 100-ohm load via

a 6-meter long 50-ohm transmission line. The wavelength on the line is 8 meters. Carry out

the following calculations in the stated order:

a. Calculate the wave impedanceZd at the generator end of the line. Then, using an equiv-

alent voltage divider circuit, calculate the voltage and current Vd, Id. Then, calculate

the forward and backward voltages Vd+, Vd− from the knowledge of Vd, Id.

b. Propagate Vd+, Vd− to the load end of the line to determine the values of the forward

and backward voltages VL+, VL− at the load end. Then, calculate the corresponding

voltage and current VL, IL from the knowledge of VL+, VL−.

c. Assuming that the real-valued form of the generator voltage is

VG = 10 cos(ωt)

determine the real-valued forms of the quantities Vd, VL expressed in the sinusoidal

form A cos(ωt + θ).
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11.25 A lossless 50-ohm transmission line is connected to an unknown load impedanceZL. Voltage

measurements along the line reveal that the maximum and minimum voltage values are

(
√

2 + 1) volts and (
√

2 − 1) volts. Moreover, a distance at which a voltage maximum is

observed has been found to be lmax = 15λ/16.

a. Determine the load reflection coefficient ΓL and the impedance ZL.

b. Determine a distance (in units of λ) at which a voltage minimum will be observed.

11.26 A 50-ohm transmission line is terminated at a load impedance:

ZL = 75+ j25 Ω

a. What percentage of the incident power is reflected back into the line?

b. In order to make the load reflectionless, a short-circuited 50-ohm stub of length d is

inserted in parallel at a distance l from the load. What are the smallest values of the

lengths d and l in units of the wavelength λ that will make the load reflectionless?

Show all work.

11.27 A load is connected to a generator by a 20-meter long 50-ohm coaxial cable. The SWR is

measured at the load and the generator and is found to be equal to 3 and 2, respectively.

a. Determine the attenuation of the cable in dB/m.

b. Assuming that the load is resistive, what are all possible values of the load impedance

in ohm? [Hint: the load impedance can be greater or less than the cable impedance.]

11.28 A 50-ohm lossless transmission line with velocity factor of 0.8 and operating at a frequency

of 15 MHz is connected to an unknown load impedance. The voltage SWR is measured to be

S = 3+ 2
√

2. A voltage maximum is found at a distance of 1 m from the load.

a. Determine the unknown load impedance ZL.

b. Suppose that the line is lossy and that it is connected to the load found in part (a).

Suppose that the SWR at a distance of 10 m from the load is measured to be S = 3.

What is the attenuation of the line in dB/m?

11.29 A lossless 50-ohm transmission line is connected to an unknown load impedance. Voltage

measurements along the line reveal that the maximum and minimum voltage values are 6 V

and 2 V. Moreover, the closest distance to the load at which a voltage minimum is observed

has been found to be such that: e2jβlmin = 0.6−0.8j.Determine the load reflection coefficient

ΓL and the impedance ZL.

11.30 A resonant dipole antenna operating in the 30-meter band is connected to a transmitter

by a 30-meter long lossless coaxial cable having velocity factor of 0.8 and characteristic

impedance of 50 ohm. The wave impedance at the transmitter end of the cable is measured

to be 40 ohm. Determine the input impedance of the antenna.

11.31 The next four problems are based on Ref. [1120]. A lossless transmission line with real

characteristic impedance Z0 is connected to a series RLC circuit.

a. Show that the corresponding load impedance may be written as a function of frequency

in the form (with f , f0 in Hz):

ZL = R+ jRQ
(

f

f0
− f0
f

)
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where f0 and Q are the frequency and Q-factor at resonance. Such a load impedance

provides a simplified model for the input impedance of a resonant dipole antenna.

Show that the corresponding SWR SL satisfies SL ≥ S0 for all f , where S0 is the SWR

at resonance, that is, corresponding to ZL = R.

b. The SWR bandwidth is defined by Δf = f2 − f1, where f1, f2 are the left and right

bandedge frequencies at which the SWR SL reaches a certain level, say SL = SB, such

that SB > S0. Often the choice SB = 2 is made. Assuming that Z0 ≥ R, show that the

bandedge frequencies satisfy the conditions:

f1f2 = f2
0 , f2

1 + f2
2 = 2f2

0 + f2
0

(S0 + 1)2Γ2
B − (S0 − 1)2

Q2(1− Γ2
B)

, where ΓB = SB − 1

SB + 1

c. Show that the normalized bandwidth is given by:

Q
Δf

f0
=
√

(SB − S0)(S0 − S−1
B ) =

√
√
√
√

4(Γ2
B − Γ2

0)

(1− Γ0)2(1− Γ2
B)
, with Γ0 = S0 − 1

S0 + 1

Show that the left and right bandedge frequencies are given by:

f1 =
√

f2
0 +

(Δf)2

4
− Δf

2
, f2 =

√

f2
0 +

(Δf)2

4
+ Δf

2

d. Show that the maximum bandwidth is realized for a mismatched load that has the

following optimum SWR at resonance:

S0 = SB + S−1
B

2
, Γ0 = Γ2

B ⇒ Q
Δfmax

f0
= S2

B − 1

2SB
= 2ΓB

1− Γ2
B

For example, if SB = 2, we have ΓB = 1/3, S0 = 1.25, and Δf/f0 = 0.75/Q, whereas

for a matched load we have S0 = 1 and Δf/f0 = 0.50/Q.

11.32 We assume now that the transmission line of the previous problem is lossy and that the

RLC load is connected to a generator by a length-d segment of the line. Let a = e2αd be the

matched-line loss. For such lossy line, we may define the bandwidth in terms of the SWR Sd
at the generator end.

Show that the normalized bandwidth is given by the same expression as in the previous

problem, but with the replacement ΓB → ΓLB, where ΓLB ≡ aΓB:

Q
Δf

f0
=
√

(SLB − S0)(S0 − S−1
LB) =

√
√
√
√

4(Γ2
LB − Γ2

0)

(1− Γ0)2(1− Γ2
LB)

, where SLB = 1+ ΓLB
1− ΓLB

Show that ΓLB, SLB are the quantities ΓB, SB referred to the load end of the line. Show

that the meaningful range of the bandwidth formula is 1 ≤ S0 ≤ SLB in the lossy case, and

1 ≤ So ≤ SB for the lossless case. Show that for the same S0 the bandwidth for the lossy

case is always greater than the bandwidth of the lossless case.

Show that this definition of bandwidth makes sense as long as the matched line loss satisfies

aΓB < 1. Show that the bandwidth vanishes at the S0 that has Γ0 = aΓB. Show that the

maximum bandwidth is realized for the optimum S0:

S0 = SLB + S−1
LB

2
, Γ0 = Γ2

LB ⇒ Q
Δfmax

f0
= S2

LB − 1

2SLB
= 2ΓLB

1− Γ2
LB

= 2aΓB

1− a2Γ2
B
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Show that the optimum S0 is given at the load and generator ends of the line by:

S0 = 1+ a2Γ2
B

1− a2Γ2
B

, Sd0 = 1+ aΓ2
B

1− aΓ2
B

11.33 Assume now that Z0 ≤ R in the previous problem. Show that the normalized bandwidth is

given by:

Q
Δf

f0
=
√

(SLB − S−1
0 )(S

−1
0 − S−1

LB) =
√
√
√
√

4(Γ2
LB − Γ2

0)

(1+ Γ0)2(1− Γ2
LB)

Show that the maximum always occurs at S0 = 1. Show that the conditions aΓB < 1 and

0 ≤ S0 ≤ SLB are still required.

Show that, for the same S0, the bandwidth of the case Z0 ≤ R is always smaller than that of

the case Z0 ≥ R.

11.34 Computer Experiment—Antenna Bandwidth. An 80-meter dipole antenna is resonant at f0 =
3.75 MHz. Its input impedance is modeled as a series RLC circuit as in Problem 11.31. Its

Q-factor is Q = 13 and its resistance R at resonance will be varied to achieve various values

of the SWR S0. The antenna is connected to a transmitter with a length of 75-ohm coaxial

cable with matched-line loss of a = e2αd.

a. For a lossless line (a = 0 dB), plot the normalized bandwidths Q(Δf)/f0 versus the

SWR at the antenna at resonance S0. Do two such plots corresponding to SWR band-

width levels of SB = 2 and SB = 1.75. On the same graphs, add the normalized

bandwidth plots for the case of a lossy line with a = 2 dB. Identify on each graph the

optimum bandwidth points and the maximum range of S0 (for convenience, use the

same vertical and horizontal scales in all graphs.)

b. Assume now that S0 = 1.25. What are the two possible values of R? For these two

cases and assuming a lossy line with a = 2 dB, plot the SWR at the antenna end of

the line versus frequency in the interval 3.5 ≤ f ≤ 4 MHz. Then, plot the SWRs at

the transmitter end of the line. Using common scales on all four graphs, add on each

graph the left and right bandedge frequencies corresponding to the two SWR levels of

SB = 2 and SB = 1.75. Note the wider bandwidth in the lossy case and for the case

having Z0 ≥ R.

11.35 For the special case of a matched generator havingZL = Z0, or, ΓG = 0, show that Eq. (11.15.15)

reduces to:

Vd(t)= V(t)+ΓLV(t − 2T) and VL(t)= (1+ ΓL)V(t −T)

11.36 A terminated transmission line may be thought of as a sampled-data linear system. Show

that Eq. (11.15.15) can be written in the convolutional form:

Vd(t)=
∫ ∞

−∞
hd(t

′)V(t − t′)dt′ , VL(t)=
∫∞

−∞
hL(t

′)V(t − t′)dt′

so that V(t) may be considered to be the input and Vd(t) and VL(t), the outputs. Show

that the corresponding impulse responses have the sampled-data forms:

hd(t) = δ(t)+
(

1+ 1

ΓG

) ∞∑

m=1

(ΓGΓL)
m δ(t − 2mT)

hL(t) = (1+ ΓL)
∞∑

m=0

(ΓGΓL)
m δ

(

t − (2m+ 1)T
)
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What are the corresponding frequency responses? Show that the effective time constant of

the system may be defined as:

τ = 2T
ln ǫ

ln |ΓGΓL|

where ǫ is a small number, such as ǫ = 10−2. Provide an interpretation of τ.

11.37 Computer Experiment—Rise Time and Propagation Effects. In digital systems where pulses

are transmitted along various interconnects, a rule of thumb is used according to which if

the rise time-constant of a pulse is tr ≤ 2.5T, where T = d/c is the propagation delay along

the interconnect, then propagation effects must be taken into account. If tr > 5T, then a

lumped circuit approach may be used.

Consider the transmission line of Example 11.15.1. Using the MATLAB function upulse.m,

generate four trapezoidal pulses of duration td = 20T and rise times tr = 0, 2.5T, 5T, 10T.

You may take the fall-times to be equal to the rise-times.

For each pulse, calculate and plot the line voltages Vd(t),VL(t) at the generator and load

ends for the time period 0 ≤ t ≤ 80T. Superimpose on these graphs the initial trapezoidal

waveform that is launched along the line. Discuss the above rule of thumb in the light of

your results.

11.38 Two coaxial transmission lines of lengths d1, d2, impedances Z01, Z02, and propagation

speeds c1, c2 are connected in cascade as shown below. Define the one-way travel times

and z-transform variables by T1 = d1/c1, T2 = d2/c2, ζ1 = ejωT1 , and ζ2 = ejωT2 .

Show that the reflection response at the left of the junction is given by:

Γ1 = ρ+ ΓLζ−2
2

1+ ρΓLζ−2
2

= ρ+ ΓL(1− ρ
2)ζ−2

2

1+ ρΓLζ−2
2

where ρ = (Z02 − Z01)/(Z02 + Z01) and ΓL is the load reflection coefficient. Show that the

forward and backward voltages at the generator end and to the right of the junction are:

V+ = V

1− ΓGΓ1ζ
−2
1

, V− = Γ1ζ
−2
1 V+ , where V = VGZ01

ZG + Z01

V′1+ =
(1+ ρ)ζ−1

1

1+ ρΓLζ−2
2

V+ , V′1− =
(1+ ρ)ΓLζ−1

1 ζ−2
2

1+ ρΓLζ−2
2

V+

Assume a matched generator, that is, having ZG = Z01, or, ΓG = 0, and a purely resistive

load. Show that the time-domain forward and backward transient voltages are given by:

V+(t)= V(t)= 1

2
VG(t)

V−(t)= ρV(t − 2T1)+ΓL(1− ρ2)
∞∑

m=0

(−ρΓL)mV(t − 2mT2 − 2T2 − 2T1)

V′+(t)= (1+ ρ)
∞∑

m=0

(−ρΓL)mV(t − 2mT2 −T1)

V′−(t)= ΓL(1+ ρ)
∞∑

m=0

(−ρΓL)mV(t − 2mT2 − 2T2 −T1)
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Show that the line voltage V(t, z) is given in terms of the above quantities by:

V(t, z)=
⎧

⎨

⎩

V+(t − z/c1)+V−(t + z/c1), for 0 ≤ z ≤ d1

V′1+
(

t − (z− d1)/c2

)+V′1−
(

t + (z− d1)/c2

)

, for d1 ≤ z ≤ d1 + d2

11.39 Computer Experiment—Transient Response of Cascaded Lines. For the previous problem,

assume the numerical values d1 = 8, d2 = 2, c1 = c2 = 1, Z01 = 50, Z02 = 200, ZG = 50,

and ZL = 600 Ω.

Plot the line voltage Vd(t)= V+(t)+V−(t) at the generator end for 0 ≤ t ≤ 5T1, in the

two cases of (a) a step input VG(t)= 3.25u(t), and (b) a pulse input of width τ = T1/20

defined by VG(t)= 3.25
[

u(t)−u(t−τ)]. You may use the MATLAB functions ustep.m and

upulse.m.

For case (a), explain also the initial and final voltage levels. In both cases, explain the reasons

for the time variations of Vd(t).

The MATLAB file pulse2movie.m generates a movie of the pulse or step signal V(t, z) as it

propagates through this structure.

11.40 Equations (11.15.21) and (11.15.22) represent the line voltages at the generator and load

ends of a line terminated by a reactive load. Using inverse Laplace transforms, show that

the line voltage at any point z along such a line is given by:

V(t, z)= V0 u(t − z/c)+V0

[

ΓR + (1− ΓR)e−a(t+z/c−2T)
]

u(t + z/c− 2T) (series R–L)

V(t, z)= V0 u(t − z/c)+V0

[−1+ (1+ ΓR)e−a(t+z/c−2T)
]

u(t + z/c− 2T) (parallel R–L)

V(t, z)= V0 u(t − z/c)+V0

[

1− (1− ΓR)e−a(t+z/c−2T)
]

u(t + z/c− 2T) (series R–C)

V(t, z)= V0 u(t − z/c)+V0

[

ΓR − (1+ ΓR)e−a(t+z/c−2T)
]

u(t + z/c− 2T) (parallel R–C)

The MATLAB file RLCmovie.m generates a movie of these waves as they propagate to and get

reflected from the reactive load.

11.41 Time-domain reflectometry (TDR) is used in a number of applications, such as determining

fault locations in buried transmission lines, or probing parts of circuit that would otherwise

be inaccessible. As a fault-location example, consider a transmission line of impedance Z0

matched at both the generator and load ends, having a fault at a distance d1 from the source,

or distance d2 from the load, as shown below.

The fault is shown as a shunt or series capacitor C. But C can equally well be replaced by

an inductor L, or a resistor R. Assuming a unit-step input VG(t)= 2V0 u(t), show that the

TDR voltage Vd(t) measured at the generator end will be given by:

Vd(t)= V0 u(t)−V0 e
−a(t−2T1)u(t − 2T1) (shunt C)

Vd(t)= V0 u(t)−V0

[

1− e−a(t−2T1)
]

u(t − 2T1) (shunt L)

Vd(t)= V0 u(t)+V0

[

1− e−a(t−2T1)
]

u(t − 2T1) (series C)

Vd(t)= V0 u(t)+V0 e
−a(t−2T1)u(t − 2T1) (series L)

Vd(t)= V0 u(t)+V0 Γ1 u(t − 2T1) (shunt or series R)
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where T1 = d1/c is the one-way travel time to the fault. Show that the corresponding time

constant τ = 1/a is in the four cases:

τ = Z0C

2
, τ = 2Z0C , τ = 2L

Z0

, τ = L

2Z0

For a resistive fault, show that Γ1 = −Z0/(2R+ Z0), or, Γ1 = R/(2R+ Z0), for a shunt or

series R. Moreover, show that Γ1 = (Z1 − Z0)/(Z1 + Z0), where Z1 is the parallel (in the

shunt-R case) or series combination of R with Z0 and give an intuitive explanation of this

fact. For a series C, show that the voltage wave along the two segments is given as follows,

and also derive similar expressions for all the other cases:

V(t, z)=
⎧

⎨

⎩

V0 u(t − z/c)+V0

[

1− e−a(t+z/c−2T1)
]

u(t + z/c− 2T1), for 0 ≤ z < d1

V0 e
−a(t−z/c)u(t − z/c), for d1 < z ≤ d1 + d2

Make a plot of Vd(t) for 0 ≤ t ≤ 5T1, assuming a = 1 for the C and L faults, and Γ1 = ∓1

corresponding to a shorted shunt or an opened series fault.

The MATLAB file TDRmovie.m generates a movie of the step input as it propagates and gets

reflected from the fault. The lengths were d1 = 6, d2 = 4 (in units such that c = 1), and the

input was V0 = 1.

12

Coupled Lines

12.1 Coupled Transmission Lines

Coupling between two transmission lines is introduced by their proximity to each other.

Coupling effects may be undesirable, such as crosstalk in printed circuits, or they may

be desirable, as in directional couplers where the objective is to transfer power from one

line to the other.

In Sections 12.1–12.3, we discuss the equations, and their solutions, describing cou-

pled lines and crosstalk [1055–1072]. In Sec. 12.4, we discuss directional couplers, as

well as fiber Bragg gratings, based on coupled-mode theory [1073–1094]. Fig. 12.1.1

shows an example of two coupled microstrip lines over a common ground plane, and

also shows a generic circuit model for coupled lines.

Fig. 12.1.1 Coupled Transmission Lines.

For simplicity, we assume that the lines are lossless. Let Li, Ci, i = 1,2 be the

distributed inductances and capacitances per unit length when the lines are isolated from

each other. The corresponding propagation velocities and characteristic impedances

are: vi = 1/
√

LiCi, Zi =
√

Li/Ci, i = 1,2. The coupling between the lines is modeled

by introducing a mutual inductance and capacitance per unit length, Lm, Cm. Then, the

coupled versions of telegrapher’s equations (11.15.1) become:†

†C1 is related to the capacitance to ground C1g via C1 = C1g + Cm, so that the total charge per unit

length on line-1 is Q1 = C1V1 −CmV2 = C1g(V1 −Vg)+Cm(V1 −V2), where Vg = 0.



11.16. Problems 593
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by introducing a mutual inductance and capacitance per unit length, Lm, Cm. Then, the

coupled versions of telegrapher’s equations (11.15.1) become:†

†C1 is related to the capacitance to ground C1g via C1 = C1g + Cm, so that the total charge per unit

length on line-1 is Q1 = C1V1 −CmV2 = C1g(V1 −Vg)+Cm(V1 −V2), where Vg = 0.
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∂V1

∂z
= −L1

∂I1
∂t

− Lm∂I2
∂t

,
∂I1
∂z

= −C1
∂V1

∂t
+Cm∂V2

∂t

∂V2

∂z
= −L2

∂I2
∂t

− Lm∂I1
∂t

,
∂I2
∂z

= −C2
∂V2

∂t
+Cm∂V1

∂t

(12.1.1)

When Lm = Cm = 0, they reduce to the uncoupled equations describing the isolated

individual lines. Eqs. (12.1.1) may be written in the 2×2 matrix forms:

∂V

∂z
= −

[

L1 Lm
Lm L2

]

∂I

∂t

∂I

∂z
= −

[

C1 −Cm
−Cm C2

]

∂V

∂t

(12.1.2)

where V, I are the column vectors:

V =
[

V1

V2

]

, I =
[

I1
I2

]

(12.1.3)

For sinusoidal time dependence ejωt, the system (12.1.2) becomes:

dV

dz
= −jω

[

L1 Lm
Lm L2

]

I

dI

dz
= −jω

[

C1 −Cm
−Cm C2

]

V

(12.1.4)

It proves convenient to recast these equations in terms of the forward and backward

waves that are normalized with respect to the uncoupled impedances Z1, Z2 :

a1 = V1 + Z1I1

2
√

2Z1

, b1 = V1 − Z1I1

2
√

2Z1

a2 = V2 + Z2I2

2
√

2Z2

, b2 = V2 − Z2I2

2
√

2Z2

⇒ a =
[

a1

a2

]

, b =
[

b1

b2

]

(12.1.5)

The a,b waves are similar to the power waves defined in Sec. 14.7. The total average

power on the line can be expressed conveniently in terms of these:

P = 1

2
Re[V †I]= 1

2
Re[V∗1 I1]+

1

2
Re[V∗2 I2]= P1 + P2

= (|a1|2 − |b1|2
)+ (|a2|2 − |b2|2

) = (|a1|2 + |a2|2
)− (|b1|2 + |b2|2

)

= a†a− b†b

(12.1.6)

where the dagger operator denotes the conjugate-transpose, for example, a† = [a∗1 , a∗2 ].
Thus, the a-waves carry power forward, and the b-waves, backward. After some algebra,

it can be shown that Eqs. (12.1.4) are equivalent to the system:

da

dz
= −jF a+ jGb

db

dz
= −jG a+ jF b

⇒ d

dz

[

a

b

]

= −j
[

F −G
G −F

][

a

b

]

(12.1.7)
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with the matrices F,G given by:

F =
[

β1 κ

κ β2

]

, G =
[

0 χ

χ 0

]

(12.1.8)

where β1, β2 are the uncoupled wavenumbers βi = ω/vi = ω
√

LiCi, i = 1,2 and the

coupling parameters κ,χ are:

κ = 1

2
ω

(

Lm
√

Z1Z2

−Cm
√

Z1Z2

)

= 1

2

√

β1β2

(

Lm
√

L1L2

− Cm
√

C1C2

)

χ = 1

2
ω

(

Lm
√

Z1Z2

+Cm
√

Z1Z2

)

= 1

2

√

β1β2

(

Lm
√

L1L2

+ Cm
√

C1C2

) (12.1.9)

A consequence of the structure of the matrices F,G is that the total power P defined

in (12.1.6) is conserved along z. This follows by writing the power in the following form,

where I is the 2×2 identity matrix:

P = a†a− b†b = [a†,b†]
[

I 0

0 −I

][

a

b

]

Using (12.1.7), we find:

dP

dz
= j[a†,b†]

([

F† G†

−G† −F†
][

I 0

0 −I

]

−
[

I 0

0 −I

][

F −G
G −F

])[

a

b

]

= 0

the latter following from the conditions F† = F and G† = G. Eqs. (12.1.6) and (12.1.7)

form the basis of coupled-mode theory.

Next, we specialize to the case of two identical lines that have L1 = L2 ≡ L0 and

C1 = C2 ≡ C0, so that β1 = β2 =ω
√

L0C0 ≡ β and Z1 = Z2 =
√

L0/C0 ≡ Z0, and speed

v0 = 1/
√

L0C0. Then, the a,b waves and the matrices F,G take the simpler forms:

a = V+ Z0I

2
√

2Z0

, b = V− Z0I

2
√

2Z0

⇒ a = V+ Z0I

2
, b = V− Z0I

2
(12.1.10)

F =
[

β κ

κ β

]

, G =
[

0 χ

χ 0

]

(12.1.11)

where, for simplicity, we removed the common scale factor
√

2Z0 from the denominator

of a,b. The parameters κ,χ are obtained by setting Z1 = Z2 = Z0 in (12.1.9):

κ = 1

2
β

(
Lm
L0

− Cm
C0

)

, χ = 1

2
β

(
Lm
L0

+ Cm
C0

)

, (12.1.12)

The matrices F,G commute with each other. In fact, they are both examples of

matrices of the form:

A =
[

a0 a1

a1 a0

]

= a0I + a1J , I =
[

1 0

0 1

]

, J =
[

0 1

1 0

]

(12.1.13)
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where a0, a1 are real such that |a0| �= |a1|. Such matrices form a commutative subgroup

of the group of nonsingular 2×2 matrices. Their eigenvalues are λ± = a0±a1 and they

can all be diagonalized by a common unitary matrix:

Q = 1√
2

[

1 1

1 −1

]

= [e+, e−] , e+ = 1√
2

[

1

1

]

, e− = 1√
2

[

1

−1

]

(12.1.14)

so that we have QQ† = Q†Q = I and Ae± = λ±e±.

The eigenvectors e± are referred to as the even and odd modes. To simplify sub-

sequent expressions, we will denote the eigenvalues of A by A± = a0 ± a1 and the

diagonalized matrix by Ā. Thus,

A = QĀQ† , Ā =
[

A+ 0

0 A−

]

=
[

a0 + a1 0

0 a0 − a1

]

(12.1.15)

Such matrices, as well as any matrix-valued function thereof, may be diagonalized

simultaneously. Three examples of such functions appear in the solution of Eqs. (12.1.7):

B =
√

(F +G)(F −G) = Q
√

(F̄ + Ḡ)(F̄ − Ḡ)Q†

Z = Z0

√

(F +G)(F −G)−1 = Z0Q
√

(F̄ + Ḡ)(F̄ − Ḡ)−1Q†

Γ = (Z − Z0 I)(Z + Z0 I)
−1= Q(Z̄ − Z0 I)(Z̄ + Z0 I)

−1Q†

(12.1.16)

Using the property FG = GF, and differentiating (12.1.7) one more time, we obtain

the decoupled second-order equations, with B as defined in (12.1.16):

d2a

dz2
= −B2 a ,

d2b

dz2
= −B2 b

However, it is better to work with (12.1.7) directly. This system can be decoupled by

forming the following linear combinations of the a,b waves:

A = a− Γb

B = b− Γa
⇒

[

A

B

]

=
[

I −Γ
−Γ I

][

a

b

]

(12.1.17)

The A,B can be written in terms of V, I and the impedance matrix Z as follows:

A = (2D)−1(V+ ZI)

B = (2D)−1(V− ZI)
⇒

V = D(A+ B)

ZI = D(A− B)
D = Z + Z0 I

2Z0

(12.1.18)

Using (12.1.17), we find that A,B satisfy the decoupled first-order system:

d

dz

[

A

B

]

= −j
[

B 0

0 −B

][

A

B

]

⇒ dA

dz
= −jBA ,

dB

dz
= jBB (12.1.19)

with solutions expressed in terms of the matrix exponentials e±jBz:

A(z)= e−jBzA(0) , B(z)= ejBzB(0) (12.1.20)
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Using (12.1.18), we obtain the solutions for V, I :

V(z) = D[e−jBzA(0)+ejBzB(0)]

ZI(z) = D[e−jBzA(0)−ejBzB(0)]
(12.1.21)

To complete the solution, we assume that both lines are terminated at common

generator and load impedances, that is, ZG1 = ZG2 ≡ ZG and ZL1 = ZL2 ≡ ZL. The

generator voltagesVG1, VG2 are assumed to be different. We define the generator voltage

vector and source and load matrix reflection coefficients:

VG =
[

VG1

VG2

]

,
ΓG = (ZGI − Z)(ZGI + Z)−1

ΓL = (ZLI − Z)(ZLI + Z)−1 (12.1.22)

The terminal conditions for the line are at z = 0 and z = l :
VG = V(0)+ZGI(0) , V(l)= ZLI(l) (12.1.23)

They may be re-expressed in terms of A,B with the help of (12.1.18):

A(0)−ΓGB(0)= D−1Z(Z + ZGI)−1VG , B(l)= ΓLA(l) (12.1.24)

But from (12.1.19), we have:†

ejBlB(0)= B(l)= ΓLA(l)= ΓLe−jBlA(0) ⇒ B(0)= ΓLe−2jBlA(0) (12.1.25)

Inserting this into (12.1.24), we may solve for A(0) in terms of the generator voltage:

A(0)= D−1
[

I − ΓGΓLe−2jBl]−1
Z(Z + ZGI)−1VG (12.1.26)

Using (12.1.26) into (12.1.21), we finally obtain the voltage and current at an arbitrary

position z along the lines:

V(z) = [e−jBz + ΓLe−2jBlejBz
][

I − ΓGΓLe−2jBl]−1
Z(Z + ZGI)−1VG

I(z) = [e−jBz − ΓLe−2jBlejBz
][

I − ΓGΓLe−2jBl]−1
(Z + ZGI)−1VG

(12.1.27)

These are the coupled-line generalizations of Eqs. (11.9.7). Resolving VG and V(z)

into their even and odd modes, that is, expressing them as linear combinations of the

eigenvectors e±, we have:

VG = VG+e+ +VG−e− , where VG± = VG1 ±VG2√
2

V(z)= V+(z)e+ +V−(z)e− , V±(z)= V1(z)±V2(z)√
2

(12.1.28)

In this basis, the matrices in (12.1.27) are diagonal resulting in the equivalent solution:

V(z)= V+(z)e+ +V−(z)e− =e
−jβ+z + ΓL+e−2jβ+lejβ+z

1− ΓG+ΓL+e−2jβ+l
Z+

Z+ + ZG
VG+e+

+e
−jβ−z + ΓL−e−2jβ−lejβ−z

1− ΓG−ΓL−e−2jβ−l
Z−

Z− + ZG
VG−e−

(12.1.29)

†The matrices D,Z, ΓG, ΓL, Γ,B all commute with each other.
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where β± are the eigenvalues of B, Z± the eigenvalues of Z, and ΓG±, ΓL± are:

ΓG± = ZG − Z±
ZG + Z±

, ΓL± = ZL − Z±
ZL + Z±

(12.1.30)

The voltages V1(z),V2(z) are obtained by extracting the top and bottom compo-

nents of (12.1.29), that is, V1,2(z)=
[

V+(z)±V−(z)
]

/
√

2 :

V1(z) = e−jβ+z + ΓL+e−2jβ+lejβ+z

1− ΓG+ΓL+e−2jβ+l
V+ + e

−jβ−z + ΓL−e−2jβ−lejβ−z

1− ΓG−ΓL−e−2jβ−l
V−

V2(z) = e−jβ+z + ΓL+e−2jβ+lejβ+z

1− ΓG+ΓL+e−2jβ+l
V+ − e

−jβ−z + ΓL−e−2jβ−lejβ−z

1− ΓG−ΓL−e−2jβ−l
V−

(12.1.31)

where we defined:

V± =
(

Z±
Z± + ZG

)
VG±√

2
= 1

4
(1− ΓG±)(VG1 ±VG2) (12.1.32)

The parametersβ±, Z± are obtained using the rules of Eq. (12.1.15). From Eq. (12.1.12),

we find the eigenvalues of the matrices F ±G:

(F +G)± = β± (κ+ χ)= β
(

1± Lm
L0

)

=ω 1

Z0

(L0 ± Lm)

(F −G)± = β± (κ− χ)= β
(

1∓ Cm
C0

)

=ωZ0(C0 ∓Cm)

Then, it follows that:

β+ =
√

(F +G)+(F −G)+ =ω
√

(L0 + Lm)(C0 −Cm)

β− =
√

(F +G)−(F −G)− =ω
√

(L0 − Lm)(C0 +Cm)
(12.1.33)

Z+ = Z0

√

(F +G)+
(F −G)+

=
√

L0 + Lm
C0 −Cm

Z− = Z0

√

(F +G)−
(F −G)−

=
√

L0 − Lm
C0 +Cm

(12.1.34)

Thus, the coupled system acts as two uncoupled lines with wavenumbers and char-

acteristic impedances β±, Z±, propagation speeds v± = 1/
√

(L0 ± Lm)(C0 ∓Cm), and

propagation delays T± = l/v±. The even mode is energized when VG2 = VG1, or,

VG+ �= 0, VG− = 0, and the odd mode, when VG2 = −VG1, or, VG+ = 0, VG− �= 0.

When the coupled lines are immersed in a homogeneous medium, such as two parallel

wires in air over a ground plane, then the propagation speeds must be equal to the speed

of light within this medium [1065], that is, v+ = v− = 1/
√
μǫ. This requires:

(L0 + Lm)(C0 −Cm)= μǫ
(L0 − Lm)(C0 +Cm)= μǫ

⇒
L0 = μǫC0

C2
0 −C2

m

Lm = μǫCm

C2
0 −C2

m

(12.1.35)

Therefore, Lm/L0 = Cm/C0, or, equivalently, κ = 0. On the other hand, in an

inhomogeneous medium, such as for the case of the microstrip lines shown in Fig. 12.1.1,

the propagation speeds may be different, v+ �= v−, and hence T+ �= T−.
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12.2 Crosstalk Between Lines

When only line-1 is energized, that is, VG1 �= 0, VG2 = 0, the coupling between the lines

induces a propagating wave in line-2, referred to as crosstalk, which also has some minor

influence back on line-1. The near-end and far-end crosstalk are the values of V2(z) at

z = 0 and z = l, respectively. Setting VG2 = 0 in (12.1.32), we have from (12.1.31):

V2(0) = 1

2

(1− ΓG+)(1+ ΓL+ζ−2+ )
1− ΓG+ΓL+ζ−2+

V − 1

2

(1− ΓG−)(1+ ΓL−ζ−2− )
1− ΓG−ΓL−ζ−2

V

V2(l) = 1

2

ζ−1+ (1− ΓG+)(1+ ΓL+)
1− ΓG+ΓL+ζ−2+

V − 1

2

ζ−1− (1− ΓG−)(1+ ΓL−)
1− ΓG−ΓL−ζ−2−

V

(12.2.1)

where we defined V = VG1/2 and introduced the z-transform delay variables ζ± =
ejωT± = ejβ±l. Assuming purely resistive termination impedances ZG, ZL, we may use

Eq. (11.15.15) to obtain the corresponding time-domain responses:

V2(0, t) = 1

2
(1− ΓG+)

⎡

⎣V(t)+
(

1+ 1

ΓG+

) ∞∑

m=1

(ΓG+ΓL+)mV(t − 2mT+)

⎤

⎦

− 1

2
(1− ΓG−)

⎡

⎣V(t)+
(

1+ 1

ΓG−

) ∞∑

m=1

(ΓG−ΓL−)mV(t − 2mT−)

⎤

⎦

V2(l, t) = 1

2
(1− ΓG+)(1+ ΓL+)

∞∑

m=0

(ΓG+ΓL+)mV(t − 2mT+ −T+)

− 1

2
(1− ΓG−)(1+ ΓL−)

∞∑

m=0

(ΓG−ΓL−)mV(t − 2mT− −T−)

(12.2.2)

where V(t)= VG1(t)/2.† Because Z± �= Z0, there will be multiple reflections even when

the lines are matched to Z0 at both ends. Setting ZG = ZL = Z0, gives for the reflection

coefficients (12.1.30):

ΓG± = ΓL± = Z0 − Z±
Z0 + Z±

= −Γ± (12.2.3)

In this case, we find for the crosstalk signals:

V2(0, t) = 1

2
(1+ Γ+)

⎡

⎣V(t)−(1− Γ+)
∞∑

m=1

Γ2m−1
+ V(t − 2mT+)

⎤

⎦

− 1

2
(1+ Γ−)

⎡

⎣V(t)−(1− Γ−)
∞∑

m=1

Γ2m−1
− V(t − 2mT−)

⎤

⎦

V2(l, t) = 1

2
(1− Γ2

+)
∞∑

m=0

Γ2m
+ V(t − 2mT+ −T+)

− 1

2
(1− Γ2

−)
∞∑

m=0

Γ2m
− V(t − 2mT− −T−)

(12.2.4)

†V(t) is the signal that would exist on a matched line-1 in the absence of line-2, V = Z0VG1/(Z0+ZG)=
VG1/2, provided ZG = Z0.
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Similarly, the near-end and far-end signals on the driven line are found by adding,

instead of subtracting, the even- and odd-mode terms:

V1(0, t) = 1

2
(1+ Γ+)

⎡

⎣V(t)−(1− Γ+)
∞∑

m=1

Γ2m−1
+ V(t − 2mT+)

⎤

⎦

+ 1

2
(1+ Γ−)

⎡

⎣V(t)−(1− Γ−)
∞∑

m=1

Γ2m−1
− V(t − 2mT−)

⎤

⎦

V1(l, t) = 1

2
(1− Γ2

+)
∞∑

m=0

Γ2m
+ V(t − 2mT+ −T+)

+ 1

2
(1− Γ2

−)
∞∑

m=0

Γ2m
− V(t − 2mT− −T−)

(12.2.5)

These expressions simplify drastically if we assume weak coupling. It is straightfor-

ward to verify that to first-order in the parameters Lm/L0, Cm/C0, or equivalently, to

first-order in κ,χ, we have the approximations:

β± = β±Δβ = β± κ , Z± = Z0 ±ΔZ = Z0 ± Z0
χ

β
, v± = v0 ∓ v0

κ

β

Γ± = 0±ΔΓ = ± χ

2β
, T± = T ±ΔT = T ±T κ

β

(12.2.6)

where T = l/v0. Because the Γ±s are already first-order, the multiple reflection terms

in the above summations are a second-order effect, and only the lowest terms will con-

tribute, that is, the term m = 1 for the near-end, and m = 0 for the far end. Then,

V2(0, t) = 1

2
(Γ+ − Γ−)V(t)−1

2

[

Γ+V(t − 2T+)−Γ−V(t − 2T−)
]

V2(l, t) = 1

2

[

V(t −T+)−V(t −T−)]

Using a Taylor series expansion and (12.2.6), we have to first-order:

V(t − 2T±)= V(t − 2T ∓ΔT)≃ V(t − 2T)∓(ΔT)V̇(t − 2T) , V̇ = dV

dt

V(t −T±)= V(t −T ∓ΔT)≃ V(t −T)∓(ΔT)V̇(t −T)
Therefore, Γ±V(t − 2T±)= Γ±

[

V(t − 2T)∓(ΔT)V̇] ≃ Γ±V(t − 2T), where we

ignored the second-order terms Γ±(ΔT)V̇. It follows that:

V2(0, t) = 1

2
(Γ+ − Γ−)

[

V(t)−V(t − 2T)
] = (ΔΓ)[V(t)−V(t − 2T)

]

V2(l, t) = 1

2

[

V(t −T)−(ΔT)V̇ −V(t −T)−(ΔT)V̇] = −(ΔT)dV(t −T)
dt

These can be written in the commonly used form:

V2(0, t)= Kb
[

V(t)−V(t − 2T)
]

V2(l, t)= Kf dV(t −T)
dt

(near- and far-end crosstalk) (12.2.7)
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where Kb, Kf are known as the backward and forward crosstalk coefficients:

Kb = χ

2β
= v0

4

(
Lm
Z0

+CmZ0

)

, Kf = −T κ
β
= −v0T

2

(
Lm
Z0

−CmZ0

)

(12.2.8)

where we may replace l = v0T. The same approximations give for line-1,V1(0, t)= V(t)
and V1(l, t)= V(t −T). Thus, to first-order, line-2 does not act back to disturb line-1.

Example 12.2.1: Fig. 12.2.1 shows the signals V1(0, t), V1(l, t), V2(0, t), V2(l, t) for a pair of

coupled lines matched at both ends. The uncoupled line impedance was Z0 = 50 Ω.
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Fig. 12.2.1 Near- and far-end crosstalk signals on lines 1 and 2.

For the left graph, we chose Lm/L0 = 0.4, Cm/C0 = 0.3, which results in the even and odd

mode parameters (using the exact formulas):

Z+ = 70.71 Ω , Z− = 33.97 Ω , v+ = 1.01v0 , v− = 1.13v0

Γ+ = 0.17 , Γ− = −0.19 , T+ = 0.99T , T− = 0.88T , Kb = 0.175 , Kf = 0.05

The right graph corresponds to Lm/L0 = 0.8, Cm/C0 = 0.7, with parameters:

Z+ = 122.47 Ω , Z− = 17.15 Ω , v+ = 1.36v0 , v− = 1.71v0

Γ+ = 0.42 , Γ− = −0.49 , T+ = 0.73T , T− = 0.58T , Kb = 0.375 , Kf = 0.05

The generator input to line-1 was a rising step with rise-time tr = T/4, that is,

V(t)= 1

2
VG1(t)= t

tr

[

u(t)−u(t − tr)
]+ u(t − tr)

The weak-coupling approximations are more closely satisfied for the left case. Eqs. (12.2.7)

predict for V2(0, t) a trapezoidal pulse of duration 2T and height Kb, and for V2(l, t), a

rectangular pulse of width tr and height Kf/tr = −0.2 starting at t = T:

V2(l, t)= Kf dV(t −T)
dt

= Kf

tr

[

u(t −T)−u(t −T − tr)]

These predictions are approximately correct as can be seen in the figure. The approxima-

tion predicts also that V1(0, t)= V(t) and V1(l, t)= V(t −T), which are not quite true—

the effect of line-2 on line-1 cannot be ignored completely.
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The interaction between the two lines is seen better in the MATLAB movie xtalkmovie.m,

which plots the waves V1(z, t) and V2(z, t) as they propagate to and get reflected from

their respective loads, and compares them to the uncoupled case V0(z, t)= V(t − z/v0).

The waves V1,2(z, t) are computed by the same method as for the movie pulsemovie.m

of Example 11.15.1, applied separately to the even and odd modes. ⊓⊔

12.3 Weakly Coupled Lines with Arbitrary Terminations

The even-odd mode decomposition can be carried out only in the case of identical lines

both of which have the same load and generator impedances. The case of arbitrary

terminations has been solved in closed form only for homogeneous media [1062,1065].

It has also been solved for arbitrary media under the weak coupling assumption [1072].

Following [1072], we solve the general equations (12.1.7)–(12.1.9) for weakly coupled

lines assuming arbitrary terminating impedances ZLi, ZGi, with reflection coefficients:

ΓLi = ZLi − Zi
ZLi + Zi

, ΓGi = ZGi − Zi
ZGi + Zi

, i = 1,2 (12.3.1)

Working with the forward and backward waves, we write Eq. (12.1.7) as the 4×4

matrix equation:

dc

dz
= −jMc , c =

⎡

⎢
⎢
⎢
⎣

a1

a2

b1

b2

⎤

⎥
⎥
⎥
⎦
, M =

⎡

⎢
⎢
⎢
⎣

β1 κ 0 −χ
κ β2 −χ 0

0 χ −β1 −κ
χ 0 −κ −β2

⎤

⎥
⎥
⎥
⎦

The weak coupling assumption consists of ignoring the coupling of a1, b1 on a2, b2.

This amounts to approximating the above linear system by:

dc

dz
= −jM̂c , M̂ =

⎡

⎢
⎢
⎢
⎣

β1 0 0 0

κ β2 −χ 0

0 0 −β1 0

χ 0 −κ −β2

⎤

⎥
⎥
⎥
⎦

(12.3.2)

Its solution is given by c(z)= e−jM̂zc(0), where the transition matrix e−jM̂z can be

expressed in closed form as follows:

e−jM̂z =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

e−jβ1z 0 0 0

κ̂(e−jβ1z − e−jβ2z) e−jβ2z χ̂(ejβ1z − e−jβ2z) 0

0 0 ejβ1z 0

χ̂(e−jβ1z − ejβ2z) 0 κ̂(ejβ1z − ejβ2z) ejβ2z

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

κ̂ = κ

β1 − β2

χ̂ = χ

β1 + β2

The transition matrix e−jM̂l may be written in terms of the z-domain delay variables

ζi = ejβil = eiωTi , i = 1,2, where Ti are the one-way travel times along the lines, that is,

Ti = l/vi. Then, we find:

⎡

⎢
⎢
⎢
⎣

a1(l)

a2(l)

b1(l)

b2(l)

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

ζ−1
1 0 0 0

κ̂(ζ−1
1 − ζ−1

2 ) ζ−1
2 χ̂(ζ1 − ζ−1

2 ) 0

0 0 ζ1 0

χ̂(ζ−1
1 − ζ2) 0 κ̂(ζ1 − ζ2) ζ2

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

a1(0)

a2(0)

b1(0)

b2(0)

⎤

⎥
⎥
⎥
⎦

(12.3.3)
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These must be appended by the appropriate terminating conditions. Assuming that

only line-1 is driven, we have:

V1(0)+ZG1I1(0)= VG1 , V1(l)= ZL1I1(l)

V2(0)+ZG2I2(0)= 0 , V2(l)= ZL2I2(l)

which can be written in terms of the a,b waves:

a1(0)−ΓG1b1(0)= U1 , b1(l)= ΓL1a1(l)

a2(0)−ΓG2b2(0)= 0 , b2(l)= ΓL2a2(l)
, U1 =

√

2

Z1

(1− ΓG1)
VG1

2
(12.3.4)

Eqs. (12.3.3) and (12.3.4) provide a set of eight equations in eight unknowns. Once

these are solved, the near- and far-end voltages may be determined. For line-1, we find:

V1(0)=
√

Z1

2

[

a1(0)+b1(0)
] = 1+ ΓL1ζ

−2
1

1− ΓG1ΓL1ζ
−2
1

V

V1(l)=
√

Z1

2

[

a1(l)+b1(l)
] = ζ−1

1 (1+ ΓL1)

1− ΓG1ΓL1ζ
−2
1

V

(12.3.5)

where V = (1− ΓG1)VG1/2 = Z1VG1/(Z1 + ZG1). For line-2, we have:

V2(0) = κ̄(ζ−1
1 − ζ−1

2 )(ΓL1ζ
−1
1 + ΓL2ζ

−1
2 )+χ̄(1− ζ−1

1 ζ−1
2 )(1+ ΓL1ΓL2ζ

−1
1 ζ−1

2 )

(1− ΓG1ΓL1ζ
−2
1 )(1− ΓG2ΓL2ζ

−2
2 )

V20

V2(l) = κ̄(ζ−1
1 − ζ−1

2 )(1+ ΓL1ΓG2ζ
−1
1 ζ−1

2 )+χ̄(1− ζ−1
1 ζ−1

2 )(ΓL1ζ
−1
1 + ΓG2ζ

−1
2 )

(1− ΓG1ΓL1ζ
−2
1 )(1− ΓG2ΓL2ζ

−2
2 )

V2l

(12.3.6)

where V20 = (1 + ΓG2)V = (1 + ΓG2)(1 − ΓG1)VG1/2 and V2l = (1 + ΓL2)V, and we

defined κ̄, χ̄ by:

κ̄ =
√

Z2

Z1

κ̂ =
√

Z2

Z1

κ

β1 − β2

= ω

β1 − β2

1

2

(
Lm
Z1

−CmZ2

)

χ̄ =
√

Z2

Z1

χ̂ =
√

Z2

Z1

χ

β1 + β2

= ω

β1 + β2

1

2

(
Lm
Z1

+CmZ2

)
(12.3.7)

In the case of identical lines with Z1 = Z2 = Z0 and β1 = β2 = β =ω/v0, we must

take the limit:

lim
β2→β1

e−jβ1l − e−jβ2l

β1 − β2

= d

dβ1

e−jβ1l = −jle−jβ1l

Then, we obtain:

κ̄(ζ−1
1 − ζ−1

2 )→ jωKfe
−jβl = −jω l

2

(
Lm
Z0

−CmZ0

)

e−jβl

χ̄→ Kb = v0

4

(
Lm
Z0

+CmZ0

) (12.3.8)

where Kf , Kb were defined in (12.2.8). Setting ζ1 = ζ2 = ζ = ejβl = ejωT, we obtain the

crosstalk signals:
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V2(0) =
jωKf(ΓL1 + ΓL2)ζ

−2 +Kb(1− ζ−2)(1+ ΓL1ΓL2ζ
−2)

(1− ΓG1ΓL1ζ−2)(1− ΓG2ΓL2ζ−2)
V20

V2(l) =
jωKf(1+ ΓL1ΓG2ζ

−2)ζ−1 +Kb(1− ζ−2)(ΓL1 + ΓG2)ζ
−1

(1− ΓG1ΓL1ζ−2)(1− ΓG2ΓL2ζ−2)
V2l

(12.3.9)

The corresponding time-domain signals will involve the double multiple reflections

arising from the denominators. However, if we assume the each line is matched in at

least one of its ends, so that ΓG1ΓL1 = ΓG2ΓL2 = 0, then the denominators can be

eliminated. Replacing jω by the time-derivative d/dt and each factor ζ−1 by a delay by

T, we obtain:

V2(0, t)= Kf(ΓL1 + ΓL2 + ΓL1ΓG2)V̇(t − 2T)

+Kb(1+ ΓG2)
[

V(t)−V(t − 2T)
]+KbΓL1ΓL2

[

V(t − 2T)−V(t − 4T)
]

V2(l, t)= Kf
[

(1+ ΓL2)V̇(t −T)+ΓL1ΓG2V̇(t − 3T)
]

+Kb(ΓL1 + ΓG2 + ΓL1ΓL2)
[

V(t −T)−V(t − 3T)
]

(12.3.10)

where V(t)= (1− ΓG1)VG1(t)/2, and we used the property ΓG2ΓL2 = 0 to simplify the

expressions. Eqs. (12.3.10) reduce to (12.2.7) when the lines are matched at both ends.

12.4 Coupled-Mode Theory

In its simplest form, coupled-mode or coupled-wave theory provides a paradigm for the

interaction between two waves and the exchange of energy from one to the other as they

propagate. Reviews and earlier literature may be found in Refs. [1073–1094], see also

[784–803] for the relationship to fiber Bragg gratings and distributed feedback lasers.

There are several mechanical and electrical analogs of coupled-mode theory, such as

a pair of coupled pendula, or two masses at the ends of two springs with a third spring

connecting the two, or two LC circuits with a coupling capacitor between them. In these

examples, the exchange of energy is taking place over time instead of over space.

Coupled-wave theory is inherently directional. If two forward-moving waves are

strongly coupled, then their interactions with the corresponding backward waves may

be ignored. Similarly, if a forward- and a backward-moving wave are strongly coupled,

then their interactions with the corresponding oppositely moving waves may be ignored.

Fig. 12.4.1 depicts these two cases of co-directional and contra-directional coupling.

Fig. 12.4.1 Directional Couplers.

Eqs. (12.1.7) form the basis of coupled-mode theory. In the co-directional case, if

we assume that there are only forward waves at z = 0, that is, a(0)�= 0 and b(0)= 0,
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then it may shown that the effect of the backward waves on the forward ones becomes

a second-order effect in the coupling constants, and therefore, it may be ignored. To

see this, we solve the second of Eqs. (12.1.7) for b in terms of a, assuming zero initial

conditions, and substitute it in the first:

b(z)= −j
∫ z

0
ejF(z−z

′)G a(z′)dz′ ⇒ da

dz
= −jF a+

∫ z

0
GejF(z−z

′)G a(z′)dz′

The second term is second-order in G, or in the coupling constant χ. Ignoring this

term, we obtain the standard equations describing a co-directional coupler:

da

dz
= −jF a ⇒ d

dz

[

a1

a2

]

= −j
[

β1 κ

κ β2

][

a1

a2

]

(12.4.1)

For the contra-directional case, a similar argument that assumes the initial conditions

a2(0)= b1(0)= 0 gives the following approximation that couples the a1 and b2 waves:

d

dz

[

a1

b2

]

= −j
[

β1 −χ
χ −β2

][

a1

b2

]

(12.4.2)

The conserved powers are in the two cases:

P = |a1|2 + |a2|2 , P = |a1|2 − |b2|2 (12.4.3)

The solution of Eq. (12.4.1) is obtained with the help of the transition matrix e−jFz :

e−jFz = e−jβz
⎡

⎢
⎢
⎣

cosσz− j δ
σ

sinσz −j κ
σ

sinσz

−j κ
σ

sinσz cosσz+ j δ
σ

sinσz

⎤

⎥
⎥
⎦ (12.4.4)

where

β = β1 + β2

2
, δ = β1 − β2

2
, σ =

√

δ2 + κ2 (12.4.5)

Thus, the solution of (12.4.1) is:

[

a1(z)

a2(z)

]

= e−jβz
⎡

⎢
⎢
⎣

cosσz− j δ
σ

sinσz −j κ
σ

sinσz

−j κ
σ

sinσz cosσz− j δ
σ

sinσz

⎤

⎥
⎥
⎦

[

a1(0)

a2(0)

]

(12.4.6)

Starting with initial conditions a1(0)= 1 and a2(0)= 0, the total initial power will

be P = |a1(0)|2+|a2(0)|2 = 1. As the waves propagate along the z-direction, power is

exchanged between lines 1 and 2 according to:

P1(z)= |a1(z)|2 = cos2σz+ δ2

σ2
sin2σz

P2(z)= |a2(z)|2 = κ2

σ2
sin2σz = 1− P1(z)

(12.4.7)

Fig. 12.4.2 shows the two cases for which δ/κ = 0 and δ/κ = 0.5. In both cases,

maximum exchange of power occurs periodically at distances that are odd multiples of

z = π/2σ. Complete power exchange occurs only in the case δ = 0, or equivalently,

when β1 = β2. In this case, we have σ = κ and P1(z)= cos2 κz, P2(z)= sin2 κz.
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Fig. 12.4.2 Power exchange in co-directional couplers.

12.5 Fiber Bragg Gratings

As an example of contra-directional coupling, we consider the case of a fiber Bragg

grating (FBG), that is, a fiber with a segment that has a periodically varying refractive

index, as shown in Fig. 12.5.1.

Fig. 12.5.1 Fiber Bragg grating.

The backward wave is generated by the reflection of a forward-moving wave incident

on the interface from the left. The grating behaves very similarly to a periodic multilayer

structure, such as a dielectric mirror at normal incidence, exhibiting high-reflectance

bands. A simple model for an FBG is as follows [784–803]:

d

dz

[

a(z)

b(z)

]

= −j
[

β κe−jKz

−κ∗ejKz −β

][

a(z)

b(z)

]

(12.5.1)

whereK = 2π/Λ is the Bloch wavenumber,Λ is the period, anda(z), b(z) represent the

forward and backward waves. The following transformation removes the phase factor

e−jKz from the coupling constant:

[

A(z)

B(z)

]

=
[

ejKz/2 0

0 e−jKz/2

][

a(z)

b(z)

]

=
[

ejKz/2a(z)

e−jKz/2b(z)

]

(12.5.2)

d

dz

[

A(z)

B(z)

]

= −j
[

δ κ

−κ∗ −δ

][

A(z)

B(z)

]

(12.5.3)

608 12. Coupled Lines

where δ = β−K/2 is referred to as a detuning parameter. The conserved power is given

by P(z)= |a(z)|2 − |b(z)|2. The fields at z = 0 are related to those at z = l by:

[

A(0)

B(0)

]

= ejFl
[

A(l)

B(l)

]

, with F =
[

δ κ

−κ∗ −δ

]

(12.5.4)

The transfer matrix ejFl is given by:

ejFl =

⎡

⎢
⎢
⎣

cosσl+ j δ
σ

sinσl j
κ

σ
sinσl

−j κ
∗

σ
sinσl cosσl− j δ

σ
sinσl

⎤

⎥
⎥
⎦ ≡

[

U11 U12

U∗12 U∗11

]

(12.5.5)

where σ =
√

δ2 − |κ|2. If |δ| < |κ|, then σ becomes imaginary. In this case, it is more

convenient to express the transfer matrix in terms of the quantity γ =
√

|κ|2 − δ2:

ejFl =

⎡

⎢
⎢
⎣

coshγl+ j δ
γ

sinhγl j
κ

γ
sinhγl

−j κ
∗

γ
sinhγl coshγl− j δ

γ
sinhγl

⎤

⎥
⎥
⎦ (12.5.6)

The transfer matrix has unit determinant, which implies that |U11|2 − |U12|2 = 1.

Using this property, we may rearrange (12.5.4) into its scattering matrix form that relates

the outgoing fields to the incoming ones:

[

B(0)

A(l)

]

=
[

Γ T

T Γ′

][

A(0)

B(l)

]

, Γ = U∗12

U11

, Γ′ = −U12

U11

, T = 1

U11

(12.5.7)

where Γ, Γ′ are the reflection coefficients from the left and right, respectively, and T is

the transmission coefficient. We have explicitly,

Γ =
−j κ

∗

σ
sinσl

cosσl+ j δ
σ

sinσl

, T = 1

cosσl+ j δ
σ

sinσl

(12.5.8)

If there is only an incident wave from the left, that is, A(0) �= 0 and B(l)= 0, then

(12.5.7) implies that B(0)= ΓA(0) and A(l)= TA(0).
A consequence of power conservation, |A(0)|2 − |B(0)|2 = |A(l)|2 − |B(l)|2, is

the unitarity of the scattering matrix, which implies the property |Γ|2 + |T|2 = 1. The

reflectance |Γ|2 may be expressed in the following two forms, the first being appropriate

when |δ| ≥ |κ|, and the second when |δ| ≤ |κ|:

|Γ|2 = 1− |T|2 = |κ|2 sin2σl

σ2 cos2σl+ δ2 sin2σl
= |κ|2 sinh2 γl

γ2 cosh2 γl+ δ2 sinh2 γl
(12.5.9)

Fig. 12.5.2 shows |Γ|2 as a function of δ. The high-reflectance band corresponds to

the range |δ| ≤ |κ|. The left graph has κl = 3 and the right one κl = 6.

As κl increases, the reflection band becomes sharper. The asymptotic width of the

band is −|κ| ≤ δ ≤ |κ|. For any finite value of κl, the maximum reflectance achieved
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Fig. 12.5.2 Reflectance of fiber Bragg gratings.

at the center of the band, δ = 0, is given by |Γ|2max = tanh2 |κl|. The reflectance at the

asymptotic band edges is given by:

|Γ|2 = |κl|2
1+ |κl|2 , at δ = ±|κ|

The zeros of the reflectance correspond to sinσl = 0, or, σ = mπ/l, which gives

δ = ±
√

|κ|2 + (mπ/l)2, where m is a non-zero integer.

The Bragg wavelength λB is the wavelength at the center of the reflecting band, that

is, corresponding to δ = 0, or, β = K/2, or λB = 2π/β = 4π/K = 2Λ.

By concatenating two identical FBGs separated by a “spacer” of length d = λB/4 =
Λ/2, we obtain a quarter-wave phase-shifted FBG, which has a narrow transmission

window centered at δ = 0. Fig. 12.5.3 depicts such a compound grating. Within the

spacer, the A,B waves propagate with wavenumber β as though they are uncoupled.

Fig. 12.5.3 Quarter-wave phase-shifted fiber Bragg grating.

The compound transfer matrix is obtained by multiplying the transfer matrices of

the two FBGs and the spacer: V = UFBGUspacerUFBG, or, explicitly:

[

V11 V12

V∗12 V∗11

]

=
[

U11 U12

U∗12 U∗11

][

ejβd 0

0 e−jβd

][

U11 U12

U∗12 U∗11

]

(12.5.10)

where the Uij are given in Eq. (12.5.5). It follows that the matrix elements of V are:

V11 = U2
11e

jβd + |U12|2e−jβd , V12 = U12

(

U11e
jβd +U∗11e

−jβd) (12.5.11)

The reflection coefficient of the compound grating will be:

Γcomp = V∗12

V11

= U12

(

U11e
jβd +U∗11e

−jβd)

U2
11e

jβd + |U12|2e−jβd
= Γ

(

T∗ejβd +Te−jβd)

T∗ejβd + |Γ|2Te−jβd (12.5.12)
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where we replaced U∗12 = Γ/T and U11 = 1/T. Assuming a quarter-wavelength spacing

d = λB/4 = Λ/2, we have βd = (δ+π/Λ)d = δd+π/2. Replacing ejβd = ejδd+jπ/2 =
j ejδd, we obtain:

Γcomp = Γ
(

T∗ejδd −Te−jδd)

T∗ejδd − |Γ|2Te−jδd (12.5.13)

At δ = 0, we have T = T∗ = 1/ cosh |κ|l, and therefore, Γcomp = 0. Fig. 12.5.4 depicts

the reflectance, |Γcomp|2, and transmittance, 1− |Γcomp|2, for the case κl = 2.
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Fig. 12.5.4 Quarter-wave phase-shifted fiber Bragg grating.

Quarter-wave phase-shifted FBGs are similar to the Fabry-Perot resonators discussed

in Sec. 6.5. Improved designs having narrow and flat transmission bands can be obtained

by cascading several quarter-wave FBGs with different lengths [784–804]. Some appli-

cations of FBGs in DWDM systems were pointed out in Sec. 6.7.

12.6 Diffuse Reflection and Transmission

Another example of contra-directional coupling is the two-flux model of Schuster and

Kubelka-Munk describing the absorption and multiple scattering of light propagating in

a turbid medium [1095–1111].

The model has a large number of applications, such as radiative transfer in stellar

atmospheres, reflectance spectroscopy, reflection and transmission properties of pow-

ders, papers, paints, skin tissue, dental materials, and the sea.

The model assumes a simplified parallel-plane geometry, as shown in Fig. 12.6.1.

Let I±(z) be the forward and backward radiation intensities per unit frequency interval

at location z within the material. The model is described by the two coefficients k, s

of absorption and scattering per unit length. For simplicity, we assume that k, s are

independent of z.

Within a layer dz, the forward intensity I+ will be diminished by an amount of I+kdz
due to absorption and an amount of I+sdz due to scattering, and it will be increased by

an amount of I−sdz arising from the backward-moving intensity that is getting scattered
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Fig. 12.6.1 Forward and backward intensities in stratified medium.

forward. Similarly, the backward intensity, going from z+dz to z, will be decreased by

I−(k+ s)(−dz) and increased by I+s(−dz). Thus, the incremental changes are:

dI+ = −(k+ s)I+dz+ sI−dz
−dI− = −(k+ s)I−dz+ sI+dz

or, written in matrix form:

d

dz

[

I+(z)
I−(z)

]

= −
[

k+ s −s
s −k− s

][

I+(z)
I−(z)

]

(12.6.1)

This is similar in structure to Eq. (12.5.3), except the matrix coefficients are real. The

solution at distance z = l is obtained in terms of the initial values I±(0) by:

[

I+(l)
I−(l)

]

= e−Fl
[

I+(0)
I−(0)

]

, with F =
[

k+ s −s
s −k− s

]

(12.6.2)

The transfer matrix e−Fl is:

U = e−Fl =

⎡

⎢
⎢
⎣

coshβl− α
β

sinhβl
s

β
sinhβl

− s
β

sinhβl coshβl+ α
β

sinhβl

⎤

⎥
⎥
⎦ =

[

U11 U12

U21 U22

]

(12.6.3)

where α = k+ s and β =
√
α2 − s2 =

√

k(k+ 2s).† The transfer matrix is unimodular,

that is, detU = U11U22 −U12U21 = 1.

Of interest are the input reflectance (the albedo) R = I−(0)/I+(0) of the length-l

structure and its transmittanceT = I+(l)/I+(0) , both expressed in terms of the output,

or background, reflectance Rg = I−(l)/I+(l). Using Eq. (12.6.2), we find:

R = −U21 +U11Rg

U22 −U12Rg
= s sinhβl+ (β coshβl−α sinhβl)Rg

β coshβl+ (α− sRg)sinhβl

T = 1

U22 −U12Rg
= β

β coshβl+ (α− sRg)sinhβl

(12.6.4)

†These are related to the normalized Kubelka [1101] variables a = α/s, b = β/s.
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The reflectance and transmittance corresponding to a black, non-reflecting, back-

ground are obtained by setting Rg = 0 in Eq. (12.6.4):

R0 = −U21

U22

= s sinhβl

β coshβl+α sinhβl

T0 = 1

U22

= β

β coshβl+α sinhβl

(12.6.5)

The reflectance of an infinitely-thick medium is obtained in the limit l→∞:

R∞ = s

α+ β =
s

k+ s+
√

k(k+ 2s)
⇒ k

s
= (R∞ − 1)2

2R∞
(12.6.6)

For the special case of an absorbing but non-scattering medium (k �= 0, s = 0), we

have α = β = k and the transfer matrix (12.6.3) and Eq. (12.6.4) simplify into:

U = e−Fl =
[

e−kl 0

0 ekl

]

, R = e−2klRg , T = e−kl (12.6.7)

These are in accordance with our expectations for exponential attenuation with dis-

tance. The intensities are related by I+(l)= e−klI+(0) and I−(l)= eklI−(0). Thus, the

reflectance corresponds to traversing a forward and a reverse path of length l, and the

transmittance only a forward path.

Perhaps, the most surprising prediction of this model (first pointed out by Schuster)

is that, in the case of a non-absorbing but scattering medium (k = 0, s �= 0), the trans-

mittance is not attenuating exponentially, but rather, inversely with distance. Indeed,

setting α = s and taking the limit β−1 sinhβl→ l as β→ 0, we find:

U = e−Fl =
[

1− sl sl

−sl 1+ sl

]

, R = sl+ (1− sl)Rg
1+ sl− slRg

, T = 1

1+ sl− slRg
(12.6.8)

In particular, for the case of a non-reflecting background, we have:

R0 = sl

1+ sl , T0 = 1

1+ sl (12.6.9)

12.7 Problems

12.1 Show that the coupled telegrapher’s equations (12.1.4) can be written in the form (12.1.7).

12.2 Consider the practical case in which two lines are coupled only over a middle portion of

length l, with their beginning and ending segments being uncoupled, as shown below:

Assuming weakly coupled lines, how should Eqs. (12.3.6) and (12.3.9) be modified in this

case? [Hint: Replace the segments to the left of the reference plane A and to the right of

plane B by their Thévenin equivalents.]
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12.3 Derive the transition matrix e−jM̂z of weakly coupled lines described by Eq. (12.3.2).

12.4 Verify explicitly that Eq. (12.4.6) is the solution of the coupled-mode equations (12.4.1).

12.5 Computer Experiment—Fiber Bragg Gratings. Reproduce the results and graphs of Figures

12.5.2 and 12.5.3.

13

Impedance Matching

13.1 Conjugate and Reflectionless Matching

The Thévenin equivalent circuits depicted in Figs. 11.11.1 and 11.11.3 also allow us to

answer the question of maximum power transfer. Given a generator and a length-d

transmission line, maximum transfer of power from the generator to the load takes

place when the load is conjugate matched to the generator, that is,

ZL = Z∗th (conjugate match) (13.1.1)

The proof of this result is postponed until Sec. 16.4. Writing Zth = Rth + jXth and

ZL = RL+jXL, the condition is equivalent to RL = Rth andXL = −Xth. In this case, half

of the generated power is delivered to the load and half is dissipated in the generator’s

Thévenin resistance. From the Thévenin circuit shown in Fig. 11.11.1, we find for the

current through the load:

IL = Vth

Zth + ZL
= Vth

(Rth +RL)+j(Xth +XL)
= Vth

2Rth

Thus, the total reactance of the circuit is canceled. It follows then that the power de-

livered by the Thévenin generator and the powers dissipated in the generator’s Thévenin

resistance and the load will be:

Ptot = 1

2
Re(V∗thIL)=

|Vth|2
4Rth

Pth = 1

2
Rth|IL|2 = |Vth|2

8Rth

= 1

2
Ptot , PL = 1

2
RL|IL|2 = |Vth|2

8Rth

= 1

2
Ptot

(13.1.2)

Assuming a lossless line (real-valued Z0 and β), the conjugate match condition can

also be written in terms of the reflection coefficients corresponding to ZL and Zth:

ΓL = Γ∗th = Γ∗Ge2jβd (conjugate match) (13.1.3)

Moving the phase exponential to the left, we note that the conjugate match condition

can be written in terms of the same quantities at the input side of the transmission line:
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Assuming a lossless line (real-valued Z0 and β), the conjugate match condition can

also be written in terms of the reflection coefficients corresponding to ZL and Zth:

ΓL = Γ∗th = Γ∗Ge2jβd (conjugate match) (13.1.3)

Moving the phase exponential to the left, we note that the conjugate match condition

can be written in terms of the same quantities at the input side of the transmission line:
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Γd = ΓLe−2jβd = Γ∗G ⇔ Zd = Z∗G (conjugate match) (13.1.4)

Thus, the conjugate match condition can be phrased in terms of the input quantities

and the equivalent circuit of Fig. 11.9.1. More generally, there is a conjugate match at

every point along the line.

Indeed, the line can be cut at any distance l from the load and its entire left segment

including the generator can be replaced by a Thévenin-equivalent circuit. The conjugate

matching condition is obtained by propagating Eq. (13.1.3) to the left by a distance l, or

equivalently, Eq. (13.1.4) to the right by distance d− l:

Γl = ΓLe−2jβl = Γ∗Ge2jβ(d−l) (conjugate match) (13.1.5)

Conjugate matching is not the same as reflectionless matching, which refers to match-

ing the load to the line impedance, ZL = Z0, in order to prevent reflections from the

load.

In practice, we must use matching networks at one or both ends of the transmission

line to achieve the desired type of matching. Fig. 13.1.1 shows the two typical situations

that arise.

Fig. 13.1.1 Reflectionless and conjugate matching of a transmission line.

In the first, referred to as a flat line, both the generator and the load are matched

so that effectively, ZG = ZL = Z0. There are no reflected waves and the generator

(which is typically designed to operate into Z0) transmits maximum power to the load,

as compared to the case when ZG = Z0 but ZL �= Z0.

In the second case, the load is connected to the line without a matching circuit

and the generator is conjugate-matched to the input impedance of the line, that is,

Zd = Z∗G. As we mentioned above, the line remains conjugate matched everywhere

along its length, and therefore, the matching network can be inserted at any convenient

point, not necessarily at the line input.

Because the value of Zd depends on ZL and the frequency ω (through tanβd), the

conjugate match will work as designed only at a single frequency. On the other hand, if
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the load and generator are purely resistive and are matched individually to the line, the

matching will remain reflectionless over a larger frequency bandwidth.

Conjugate matching is usually accomplished using L-section reactive networks. Re-

flectionless matching is achieved by essentially the same methods as antireflection coat-

ing. In the next few sections, we discuss several methods for reflectionless and conju-

gate matching, such as (a) quarter-wavelength single- and multi-section transformers;

(b) two-section series impedance transformers; (c) single, double, and triple stub tuners;

and (d) L-section lumped-parameter reactive matching networks.

13.2 Multisection Transmission Lines

Multisection transmission lines are used primarily in the construction of broadband

matching terminations. A typical multisection line is shown in Fig. 13.2.1.

Fig. 13.2.1 Multi-section transmission line.

It consists of M segments between the main line and the load. The ith segment

is characterized by its characteristic impedance Zi, length li, and velocity factor, or

equivalently, refractive index ni. The speed in the ith segment is ci = c0/ni. The phase

thicknesses are defined by:

δi = βili = ω

ci
li = ω

c0

nili , i = 1,2, . . . ,M (13.2.1)

We may define the electrical lengths (playing the same role as the optical lengths of

dielectric slabs) in units of some reference free-space wavelength λ0 or corresponding

frequency f0 = c0/λ0 as follows:

(electrical lengths) Li = nili
λ0

= li
λi

, i = 1,2, . . . ,M (13.2.2)

where λi = λ0/ni is the wavelength within the ith segment. Typically, the electrical

lengths are quarter-wavelengths, Li = 1/4. It follows that the phase thicknesses can be

expressed in terms of Li as δi =ωnili/c0 = 2πfnili/(f0λ0), or,

(phase thicknesses) δi = βili = 2πLi
f

f0
= 2πLi

λ0

λ
, i = 1,2, . . . ,M (13.2.3)
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where f is the operating frequency and λ = c0/f the corresponding free-space wave-

length. The wave impedances, Zi, are continuous across the M + 1 interfaces and are

related by the recursions:

Zi = Zi Zi+1 + jZi tanδi
Zi + jZi+1 tanδi

, i =M, . . . ,1 (13.2.4)

and initialized by ZM+1 = ZL. The corresponding reflection responses at the left of each

interface, Γi = (Zi − Zi−1)/(Zi + Zi−1), are obtained from the recursions:

Γi = ρi + Γi+1e
−2jδi

1+ ρiΓi+1e−2jδi
, i =M, . . . ,1 (13.2.5)

and initialized at ΓM+1 = ΓL = (ZL − ZM)/(ZL + ZM), where ρi are the elementary

reflection coefficients at the interfaces:

ρi = Zi − Zi−1

Zi + Zi−1

, i = 1,2, . . . ,M + 1 (13.2.6)

where ZM+1 = ZL. The MATLAB function multiline calculates the reflection response

Γ1(f) at interface-1 as a function of frequency. Its usage is:

Gamma1 = multiline(Z,L,ZL,f); % reflection response of multisection line

where Z = [Z0, Z1, . . . , ZM] and L = [L1, L2, . . . , LM] are the main line and segment

impedances and the segment electrical lengths.

The function multiline implements Eq. (13.2.6) and is similar to multidiel, except

here the load impedance ZL is a separate input in order to allow it to be a function of

frequency. We will see examples of its usage below.

13.3 Quarter-Wavelength Chebyshev Transformers

Quarter-wavelength Chebyshev impedance transformers allow the matching of real-

valued load impedances ZL to real-valued line impedances Z0 and can be designed to

achieve desired attenuation and bandwidth specifications.

The design method has already been discussed in Sec. 6.8. The results of that sec-

tion translate verbatim to the present case by replacing refractive indices ni by line

admittances Yi = 1/Zi. Typical design specifications are shown in Fig. 6.8.1.

In anM-section transformer, all segments have equal electrical lengths, Li = li/λi =
nili/λ0 = 1/4 at some operating wavelength λ0. The phase thicknesses of the segments

are all equal and are given by δi = 2πLif/f0, or, because Li = 1/4:

δ = π

2

f

f0
(13.3.1)

The reflection response |Γ1(f)|2 at the left of interface-1 is expressed in terms of

the order-M Chebyshev polynomials TM(x), where x is related to the phase thickness

by x = x0 cosδ:

|Γ1(f)|2 =
e2

1T
2
M(x0 cosδ)

1+ e2
1T

2
M(x0 cosδ)

(13.3.2)
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where e1 = e0/TM(x0) and e0 is given in terms of the load and main line impedances:

e2
0 =

(ZL − Z0)
2

4ZLZ0

= |ΓL|2
1− |ΓL|2

, ΓL = ZL − Z0

ZL + Z0

(13.3.3)

The parameter x0 is related to the desired reflectionless bandwidth Δf by:

x0 = 1

sin

(
π

4

Δf

f0

) (13.3.4)

and TM(x0) is related to the attenuation A in the reflectionless band by:

A = 10 log10

(

T2
M(x0)+e2

0

1+ e2
0

)

(13.3.5)

Solving for M in terms of A, we have (rounding up to the next integer):

M = ceil

⎛

⎜
⎜
⎝

acosh

(√

(1+ e2
0)10A/10 − e2

0

)

acosh(x0)

⎞

⎟
⎟
⎠ (13.3.6)

where A is in dB and is measured from dc, or equivalently, with respect to the reflec-

tion response |ΓL| of the unmatched line. The maximum equiripple level within the

reflectionless band is given by

|Γ1|max = |ΓL|10−A/20 ⇒ A = 20 log10

( |ΓL|
|Γ1|max

)

(13.3.7)

This condition can also be expressed in terms of the maximum SWR within the

desired bandwidth. Indeed, setting Smax = (1 + |Γ1|max)/(1 − |Γ1|max) and SL =
(1+ |ΓL|)/(1− |ΓL|), we may rewrite (13.3.7) as follows:

A = 20 log10

( |ΓL|
|Γ1|max

)

= 20 log10

(
SL − 1

SL + 1

Smax + 1

Smax − 1

)

(13.3.8)

where we must demand Smax < SL or |Γ1|max < |ΓL|. The MATLAB functions chebtr,

chebtr2, and chebtr3 implement the design steps. In the present context, they have

usage:

[Y,a,b] = chebtr(Y0,YL,A,DF); % Chebyshev multisection transformer design

[Y,a,b,A] = chebtr2(Y0,YL,M,DF); % specify order and bandwidth

[Y,a,b,DF] = chebtr3(Y0,YL,M,A); % specify order and attenuation

The outputs are the admittances Y = [Y0, Y1, Y2, . . . , YM, YL] and the reflection

and transmission polynomials a,b. In chebtr2 and chebtr3, the order M is given. The

designed segment impedances Zi, i = 1,2, . . . ,M satisfy the symmetry properties:

ZiZM+1−i = Z0ZL , i = 1,2, . . . ,M (13.3.9)
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Fig. 13.3.1 One, two, and three-section quarter-wavelength transformers.

Fig. 13.3.1 depicts the three cases of M = 1,2,3 segments. The case M = 1 is

used widely and we discuss it in more detail. According to Eq. (13.3.9), the segment

impedance satisfies Z2
1 = Z0ZL, or,

Z1 =
√

Z0ZL (13.3.10)

This implies that the reflection coefficients at interfaces 1 and 2 are equal:

ρ1 = Z1 − Z0

Z1 + Z0

= ZL − Z1

ZL + Z1

= ρ2 (13.3.11)

Because the Chebyshev polynomial of order-1 is T1(x)= x, the reflection response

(13.3.2) takes the form:

|Γ1(f)|2 =
e2

0 cos2 δ

1+ e2
0 cos2 δ

(13.3.12)

Using Eq. (13.3.11), we can easily verify that e0 is related to ρ1 by

e2
0 =

4ρ2
1

(1− ρ2
1)

2

Then, Eq. (13.3.12) can be cast in the following equivalent form, which is recognized

as the propagation of the load reflection response Γ2 = ρ2 = ρ1 by a phase thickness δ

to interface-1:

|Γ1(f)|2 =
∣
∣
∣
∣
∣

ρ1(1+ z−1)

1+ ρ2
1z
−1

∣
∣
∣
∣
∣

2

(13.3.13)

where z = e2jδ. The reflection response has a zero at z = −1 or δ = π/2, which occurs

at f = f0 and at odd multiples of f0. The wave impedance at interface-1 will be:

Z1 = Z1
ZL + jZ1 tanδ

Z0 + jZL tanδ
(13.3.14)
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Using Eq. (13.3.10), we obtain the matching condition at f = f0, or at δ = π/2:

Z1 = Z2
1

ZL
= Z0 (13.3.15)

Example 13.3.1: Single-section quarter wavelength transformer. Design a single-section trans-

former that will match a 200-ohm load to a 50-ohm line at 100 MHz. Determine the band-

width over which the SWR on the line remains less than 1.5.

Solution: The quarter-wavelength section has impedance Z1 =
√

ZLZ0 =
√

200 · 50 = 100 ohm.

The reflection response |Γ1(f)| and the SWR S(f)= (

1+|Γ1(f)|
)

/
(

1−|Γ1(f)|
)

are plotted

in Fig. 13.3.1 versus frequency.
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Fig. 13.3.2 Reflection response and line SWR of single-section transformer.

The reflection coefficient of the unmatched line and the maximum tolerable reflection

response over the desired bandwidth are:

ΓL = ZL − Z0

ZL + Z0)
= 200− 50

200+ 50
= 0.6 , |Γ1|max = Smax − 1

Smax + 1
= 1.5− 1

1.5+ 1
= 0.2

It follows from Eq. (13.3.7) that the attenuation in dB over the desired band will be:

A = 20 log10

( |ΓL|
|Γ1|max

)

= 20 log10

(
0.6

0.2

)

= 9.54 dB

Because the number of sections and the attenuation are fixed, we may use the MATLAB

function chebtr3. The following code segment calculates the various design parameters:

Z0 = 50; ZL = 200;

GL = z2g(ZL,Z0); Smax = 1.5;

f0 = 100; f = linspace(0,2*f0,401); % plot over [0,200] MHz

A = 20*log10(GL*(Smax+1)/(Smax-1)); % Eq. (13.3.8)

[Y,a,b,DF] = chebtr3(1/Z0, 1/ZL, 1, A); % note, M = 1

Z = 1./Y; Df = f0*DF; L = 1/4; % note, Z = [Z0, Z1, ZL]
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G1 = abs(multiline(Z(1:2), L, ZL, f/f0)); % reflection response |Γ1(f)|

S = swr(G1); % calculate SWR versus frequency

plot(f,G1); figure; plot(f,S);

The reflection response |Γ1(f)| is computed by multiline with frequencies normalized

to the desired operating frequency of f0 = 100 MHz. The impedance inputs to multiline

were [Z0, Z1] and ZL and the electrical length of the segment was L = 1/4. The resulting

bandwidth is Δf = 35.1 MHz. The reflection polynomials are:

b = [b0, b1]= [ρ1, ρ1] , a = [a0, a1]= [1, ρ2
1] , ρ1 = Z1 − Z0

Z1 + Z0

= 1

3

Two alternative ways to compute the reflection response are by using MATLAB’s built-in

function freqz, or the function dtft:

delta = pi * f/f0/2;

G1 = abs(freqz(b,a,2*delta));

% G1 = abs(dtft(b,2*delta) ./ dtft(a,2*delta));

where 2δ = πf/f0 is the digital frequency, such that z = e2jδ. The bandwidth Δf can be

computed from Eqs. (13.3.4) and (13.3.5), that is,

A = 10 log10

(

x2
0 + e2

0

1+ e2
0

)

⇒ x0 =
√

(1+ e2
0)10A/10 − e2

0 , Δf = f0 4

π
asin

(
1

x0

)

where we replaced T1(x0)= x0. ⊓⊔

Example 13.3.2: Three- and four-section quarter-wavelength Chebyshev transformers. Design

a Chebyshev transformer that will match a 200-ohm load to a 50-ohm line. The line SWR

is required to remain less than 1.25 over the frequency band [50,150] MHz.

Repeat the design if the SWR is required to remain less than 1.1 over the same bandwidth.

Solution: Here, we let the design specifications determine the number of sections and their

characteristic impedances. In both cases, the unmatched reflection coefficient is the same

as in the previous example, ΓL = 0.6. Using Smax = 1.25, the required attenuation in dB is

for the first case:

A = 20 log10

(

|ΓL| Smax + 1

Smax − 1

)

= 20 log10

(

0.6
1.25+ 1

1.25− 1

)

= 14.65 dB

The reflection coefficient corresponding to Smax is |Γ1|max = (1.25−1)/(1.25+1)= 1/9 =
0.1111. In the second case, we use Smax = 1.1 to find A = 22.0074 dB and |Γ1|max =
(1.1− 1)/(1.1+ 1)= 1/21 = 0.0476.

In both cases, the operating frequency is at the middle of the given bandwidth, that is,

f0 = 100 MHz. The normalized bandwidth is ΔF = Δf/f0 = (150 − 50)/100 = 1. With

these values ofA,ΔF, the function chebtr calculates the required number of sections and

their impedances. The typical code is as follows:
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Z0 = 50; ZL = 200;

GL = z2g(ZL,Z0); Smax = 1.25;

f1 = 50; f2 = 150; % given bandedge frequencies

Df = f2-f1; f0 = (f2+f1)/2; DF = Df/f0; % operating frequency and bandwidth

A = 20*log10(GL*(Smax+1)/(Smax-1)); % attenuation of reflectionless band

[Y,a,b] = chebtr(1/Z0, 1/ZL, A, DF); % Chebyshev transformer design

Z = 1./Y; rho = n2r(Y); % impedances and reflection coefficients

For the first case, the resulting number of sections isM = 3, and the corresponding output

vector of impedancesZ, reflection coefficients at the interfaces, and reflection polynomials

a,b are:

Z = [Z0, Z1, Z2, Z3, ZL]= [50, 66.4185, 100, 150.5604, 200]

ρρρ = [ρ1, ρ2, ρ3, ρ4]= [0.1410, 0.2018, 0.2018, 0.1410]

b = [b0, b1, b2, b3]= [0.1410, 0.2115, 0.2115, 0.1410]

a = [a0, a1, a2, a3]= [1, 0.0976, 0.0577, 0.0199]

In the second case, we find M = 4 sections with design parameters:

Z = [Z0, Z1, Z2, Z3, Z4, ZL]= [50, 59.1294, 81.7978, 122.2527, 169.1206, 200]

ρρρ = [ρ1, ρ2, ρ3, ρ4, ρ5]= [0.0837, 0.1609, 0.1983, 0.1609, 0.0837]

b = [b0, b1, b2, b3, b4]= [0.0837, 0.1673, 0.2091, 0.1673, 0.0837]

a = [a0, a1, a2, a3, a4]= [1, 0.0907, 0.0601, 0.0274, 0.0070]

The reflection responses and SWRs are plotted versus frequency in Fig. 13.3.3. The upper

two graphs corresponds to the case, Smax = 1.25, and the bottom two graphs, to the case

Smax = 1.1.

The reflection responses |Γ1(f)| can be computed either with the help of the function

multiline, or as the ratio of the reflection polynomials:

Γ1(z)= b0 + b1z
−1 + · · · + bMz−M

a0 + a1z−1 + · · · + aMz−M
, z = e2jδ, δ = π

2

f

f0

The typical MATLAB code for producing these graphs uses the outputs of chebtr:

f = linspace(0,2*f0,401); % plot over [0,200] MHz

M = length(Z)-2; % number of sections

L = ones(1,M)/4; % quarter-wave lengths

G1 = abs(multiline(Z(1:M+1), L, ZL, f/f0)); % ZL is a separate input

G1 = abs(freqz(b, a, pi*f/f0)); % alternative way of computing G1

S = swr(G1); % SWR on the line

plot(f,G1); figure; plot(f,S);
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Fig. 13.3.3 Three and four section transformers.

In both cases, the section impedances satisfy the symmetry properties (13.3.9) and the

reflection coefficients ρρρ are symmetric about their middle, as discussed in Sec. 6.8.

We note that the reflection coefficients ρi at the interfaces agree fairly closely with the

reflection polynomial b—equating the two is equivalent to the so-called small-reflection

approximation that is usually made in designing quarter-wavelength transformers [818].

The above values are exact and do not depend on any approximation. ⊓⊔

13.4 Two-Section Dual-Band Chebyshev Transformers

Recently, a two-section sixth-wavelength transformer has been designed [1127,1128]

that achieves matching at a frequency f1 and its first harmonic 2f1. Each section has

length λ/6 at the design frequency f1. Such dual-band operation is desirable in certain

applications, such as GSM and PCS systems. The transformer is depicted in Fig. 13.4.1.

Here, we point out that this design is actually equivalent to a two-section quarter-

wavelength Chebyshev transformer whose parameters have been adjusted to achieve

reflectionless notches at both frequencies f1 and 2f1.

Using the results of the previous section, a two-section Chebyshev transformer will

have reflection response:
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|Γ1(f)|2 = e2
1T

2
2(x0 cosδ)

1+ e2
1T

2
2(x0 cosδ)

, δ = π

2

f

f0
(13.4.1)

where f0 is the frequency at which the sections are quarter-wavelength. The second-

order Chebyshev polynomial is T2(x)= 2x2−1 and has roots at x = ±1/
√

2. We require

that these two roots correspond to the frequencies f1 and 2f1, that is, we set:

x0 cosδ1 = 1√
2
, x0 cos 2δ1 = − 1√

2
, δ1 = π

2

f1
f0

(13.4.2)

Fig. 13.4.1 Two-section dual-band Chebyshev transformer.

These conditions have the unique solution (such that x0 ≥ 1):

x0 =
√

2 , δ1 = π

3
= π

2

f1
f0

⇒ f0 = 3

2
f1 (13.4.3)

Thus, at f1 the phase length is δ1 = π/3 = 2π/6, which corresponds to section

lengths of l1 = l2 = λ1/6, where λ1 = v/f1, and v is the propagation speed. Defining

also λ0 = v/f0, we note that λ0 = 2λ1/3. According to Sec. 6.6, the most general two-

section reflection response is expressed as the ratio of the second-order polynomials:

Γ1(f)= B1(z)

A1(z)
= ρ1 + ρ2(1+ ρ1ρ3)z

−1 + ρ3z
−2

1+ ρ2(ρ1 + ρ3)z−1 + ρ1ρ3z−2
(13.4.4)

where

z = e2jδ , δ = π

2

f

f0
= π

3

f

f1
(13.4.5)

and we used the relationship 2f0 = 3f1 to express δ in terms of f1. The polynomial

B1(z) must have zeros at z = e2jδ1 = e2πj/3 and z = e2j(2δ1) = e4πj/3 = e−2πj/3, hence,

it must be (up to the factor ρ1):

B1(z)= ρ1

(

1− e2πj/3z−1
)(

1− e−2πj/3z−1
) = ρ1(1+ z−1 + z−2) (13.4.6)

Comparing this with (13.4.4), we arrive at the conditions:

ρ3 = ρ1 , ρ2(1+ ρ1ρ3)= ρ1 ⇒ ρ2 = ρ1

1+ ρ2
1

(13.4.7)

We recall from the previous section that the condition ρ1 = ρ3 is equivalent to

Z1Z2 = Z0ZL. Using (13.4.7) and the definition ρ2 = (Z2 − Z1)/(Z2 + Z1), or its

inverse, Z2 = Z1(1+ ρ2)/(1− ρ2), we have:

ZLZ0 = Z1Z2 = Z2
1

1+ ρ2

1− ρ2

= Z2
1

ρ2
1 + ρ1 + 1

ρ2
1 − ρ1 + 1

= Z2
1

3Z2
1 + Z2

0

Z2
1 + 3Z2

0

(13.4.8)
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where in the last equation, we replaced ρ1 = (Z1−Z0)/(Z1+Z0). This gives a quadratic

equation in Z2
1 . Picking the positive solution of the quadratic equation, we find:

Z1 =
√

Z0

6

[

ZL − Z0 +
√

(ZL − Z0)2+36ZLZ0

]

(13.4.9)

Once Z1 is known, we may compute Z2 = ZLZ0/Z1. Eq. (13.4.9) is equivalent to the

expression given by Monzon [1128].

The sections are quarter-wavelength at f0 and sixth-wavelength at f1, that is, l1 =
l2 = λ1/6 = λ0/4. We note that the frequency f0 lies exactly in the middle between f1
and 2f1. Viewed as a quarter-wavelength transformer, the bandwidth will be:

sin

(
π

4

Δf

f0

)

= 1

x0

= 1√
2

⇒ Δf = f0 = 1.5f1 (13.4.10)

which spans the interval [f0 − Δf/2, f0 + Δf/2]= [0.75f1,2.25f1]. Using T2(x0)=
2x2

0 − 1 = 3 and Eq. (13.3.6), we find the attenuation achieved over the bandwidth Δf :

√

(1+ e2
0)10A/10 − e2

0 = T2(x0)= 3 ⇒ A = 10 log10

(

9+ e2
0

1+ e2
0

)

(13.4.11)

As an example, we consider the matching of ZL = 200 Ω to Z0 = 50 Ω. The section

impedances are found from Eq. (13.4.9) to be: Z1 = 80.02 Ω, Z2 = 124.96 Ω. More

simply, we can invoke the function chebtr2 with M = 2 and ΔF = Δf/f0 = 1.

Fig. 13.4.2 shows the designed reflection response normalized to its dc value, that

is, |Γ1(f)|2/|Γ1(0)|2. The response has exact zeros at f1 and 2f1. The attenuation was

A = 7.9 dB. The reflection coefficients were ρ1 = ρ3 = 0.2309 and ρ2 = ρ1/(1+ ρ2
1)=

0.2192, and the reflection polynomials:

B1(z)= 0.2309(1+ z−1 + z−2) , A1(z)= 1+ 0.1012z−1 + 0.0533z−2
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Fig. 13.4.2 Reflection response |Γ1(f)|2 normalized to unity gain at dc.

The reflection response can be computed using Eq. (13.4.1), or using the MATLAB

function multiline, or the function freqz and the computed polynomial coefficients.

The following code illustrates the computation using chebtr2:

626 13. Impedance Matching

Z0 = 50; ZL = 100; x0 = sqrt(2); e0sq = (ZL-Z0)^2/(4*ZL*Z0); e1sq = e0sq/9;

[Y,a1,b1,A] = chebtr2(1/Z0, 1/ZL, 2, 1); % a1 = [1, 0.1012, 0.0533]

% b1 = [0.2309, 0.2309, 0.2309]

Z = 1./Y; rho = n2r(Z0*Y); % Z = [50, 80.02, 124.96, 200]

% ρ = [0.2309, 0.2192, 0.2309]

f = linspace(0,3,301); % f is in units of f1
delta = pi*f/3; x = x0*cos(delta); T2 = 2*x.^2-1;

G1 = e1sq*T2.^2 ./ (1 + e1sq*T2.^2);

% G1 = abs(multiline(Z(1:3), [1,1]/6, ZL, f)).^2; % alternative calculation

% G1 = abs(freqz(b1,a1, 2*delta)).^2; % alternative calculation

% G1 = abs(dtft(b1,2*delta)./dtft(a1,2*delta)).^2; % alternative calculation

plot(f, G1/G1(1));

The above design method is not restricted to the first and second harmonics. It can

be generalized to any two frequencies f1, f2 at which the two-section transformer is

required to be reflectionless [1129,1130].

Possible applications are the matching of dual-band antennas operating in the cellu-

lar/PCS, GSM/DCS, WLAN, GPS, and ISM bands, and other dual-band RF applications for

which the frequency f2 is not necessarily 2f1.

We assume that f1 < f2, and define r = f2/f1, where r can take any value greater

than unity. The reflection polynomial B1(z) is constructed to have zeros at f1, f2:

B1(z)= ρ1

(

1− e2jδ1z−1
)(

1− e2jδ2z−1
)

, δ1 = πf1
2f0

, δ2 = πf2
2f0

(13.4.12)

The requirement that the segment impedances, and hence the reflection coefficients

ρ1, ρ2, ρ3, be real-valued implies that the zeros of B1(z) must be conjugate pairs. This

can be achieved by choosing the quarter-wavelength normalization frequency f0 to lie

half-way between f1, f2, that is, f0 = (f1 + f2)/2 = (r + 1)f1/2. This implies that:

δ1 = π

r + 1
, δ2 = rδ1 = π− δ1 (13.4.13)

The phase length at any frequency f will be:

δ = π

2

f

f0
= π

r + 1

f

f1
(13.4.14)

The section lengths become quarter-wavelength at f0 and 2(r + 1)-th wavelength at f1:

l1 = l2 = λ0

4
= λ1

2(r + 1)
(13.4.15)

It follows now from Eq. (13.4.13) that the zeros of B1(z) are complex-conjugate pairs:

e2jδ2 = e2j(π−δ1) = e−2jδ1 (13.4.16)

Then, B1(z) takes the form:

B1(z)= ρ1

(

1− e2jδ1z−1
)(

1− e−2jδ1z−1
) = ρ1

(

1− 2 cos 2δ1 z
−1 + z−2

)

(13.4.17)
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Comparing with Eq. (13.4.4), we obtain the reflection coefficients:

ρ3 = ρ1 , ρ2 = −2ρ1 cos 2δ1

1+ ρ2
1

(13.4.18)

Proceeding as in (13.4.8) and using the identity tan2 δ1 = (1−cos 2δ1)/(1+cos 2δ1),

we find the following equation for the impedance Z1 of the first section:

ZLZ0 = Z1Z2 = Z2
1

1+ ρ2

1− ρ2

= Z2
1

ρ2
1 − 2ρ1 cos 2δ1 + 1

ρ2
1 + 2ρ1 cos 2δ1 + 1

= Z2
1

Z2
1 tan2 δ1 + Z2

0

Z2
1 + Z2

0 tan2 δ1

(13.4.19)

with solution for Z1 and Z2:

Z1 =
√

Z0

2 tan2 δ1

[

ZL − Z0 +
√

(ZL − Z0)2+4ZLZ0 tan4 δ1

]

, Z2 = Z0ZL
Z1

(13.4.20)

Equations (13.4.13), (13.4.15), and (13.4.20) provide a complete solution to the two-

section transformer design problem. The design equations have been implemented by

the MATLAB function dualband:

[Z1,Z2,a1,b1] = dualband(Z0,ZL,r); % two-section dual-band Chebyshev transformer

where a1,b1 are the coefficients ofA1(z) and B1(z). Next, we show that B1(z) is indeed

proportional to the Chebyshev polynomial T2(x). Setting z = e2jδ, where δ is given by

(13.4.14), we find:

B1(z) = ρ1

(

z+ z−1 − 2 cos 2δ1

)

z−1 = ρ1

(

2 cos 2δ− 2 cos 2δ1

)

e−2jδ

= 4ρ1

(

cos2 δ− cos2 δ1

)

e−2jδ = 4ρ1 cos2 δ1

( cos2 δ

cos2 δ1

− 1
)

e−2jδ

= 4ρ1 cos2 δ1

(

2x2
0 cos2 δ− 1

)

e−2jδ = 4ρ1 cos2 δ1T2(x0 cosδ)e−2jδ

(13.4.21)

where we defined:

x0 = 1√
2 cosδ1

(13.4.22)

We may also show that the reflection response |Γ1(f)|2 is given by Eq. (13.4.1). At

zero frequency, δ = 0, we have T2(x0)= 2x2
0−1 = tan2 δ1. As discussed in Sec. 6.8, the

sum of the coefficients of the polynomial B1(z), or equivalently, its value at dc, δ = 0

or z = 1, must be given by |B1(1)|2 = σ2e2
0, where

σ2 = (1− ρ2
1)(1− ρ2

2)(1− ρ2
3) , e2

0 =
(ZL − Z0)

2

4ZLZ0

(13.4.23)

Using Eq. (13.4.21), this condition reads σ2e2
0 = |B1(1)|2 = 16ρ2

1 cos4 δ1T
2
2(x0), or,

σ2e2
0 = 16ρ2

1 sin4 δ1. This can be verified with some tedious algebra. Because e2
1 =

e2
0/T

2
2(x0), the same condition reads σ2e2

1 = 16ρ2
1 cos4 δ1.

It follows that |B1(z)|2 = σ2e2
1T

2
2(x). On the other hand, according to Sec. 6.6,

the denominator polynomial A1(z) in (13.4.4) satisfies |A1(z)|2 − |B1(z)|2 = σ2, or,

|A1(z)|2 = σ2 + |B1(z)|2. Therefore,

|Γ1(f)|2 = |B1(z)|2
|A1(z)|2

= |B1(z)|2
σ2 + |B1(z)|2

= σ2e2
1T

2
2(x)

σ2 +σ2e2
1T

2
2(x)

= e2
1T

2
2(x)

1+ e2
1T

2
2(x)

(13.4.24)
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Thus, the reflectance is identical to that of a two-section Chebyshev transformer.

However, the interpretation as a quarter-wavelength transformer, that is, a transformer

whose attenuation at f0 is less than the attenuation at dc, is valid only for a limited

range of values, that is, 1 ≤ r ≤ 3. For this range, the parameter x0 defined in (13.4.22)

is x0 ≥ 1. In this case, the corresponding bandwidth about f0 can be meaningfully

defined through Eq. (13.3.4), which gives:

sin

(

π

2(r + 1)

Δf

f1

)

=
√

2 cosδ1 =
√

2 cos

(
π

r + 1

)

(13.4.25)

For 1 ≤ r ≤ 3, the right-hand side is always less than unity. On the other hand, when

r > 3, the parameter x0 becomes x0 < 1, the bandwidth Δf loses its meaning, and the

reflectance at f0 becomes greater than that at dc, that is, a gain. For any value of r, the

attenuation or gain at f0 can be calculated from Eq. (13.3.5) with M = 2:

A = 10 log10

(

T2
2(x0)+e2

0

1+ e2
0

)

= 10 log10

(

tan4 δ1 + e2
0

1+ e2
0

)

(13.4.26)

The quantity A is positive for 1 < r < 3 or tanδ1 > 1, and negative for r > 3 or

tanδ1 < 1. For the special case of r = 3, we have δ1 = π/4 and tanδ1 = 1, which

gives A = 0. Also, it follows from (13.4.18) that ρ2 = 0, which means that Z1 = Z2 and

(13.4.19) gives Z2
1 = ZLZ0. The two sections combine into a single section of double

length 2l1 = λ1/4 at f1, that is, a single-section quarter wavelength transformer, which,

as is well known, has zeros at odd multiples of its fundamental frequency.

For the case r = 2, we have δ1 = π/3 and tanδ1 =
√

3. The design equation (13.4.20)

reduces to that given in [1128] and the section lengths become λ1/6.

Fig. 13.4.3 shows two examples, one with r = 2.5 and one with r = 3.5, both trans-

forming ZL = 200 into Z0 = 50 ohm.
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Fig. 13.4.3 Dual-band transformers at frequencies {f1,2.5f1} and {f1,3.5f1}.

The reflectances are normalized to unity gain at dc. For r = 2.5, we find Z1 = 89.02

and Z2 = 112.33 ohm, and attenuation A = 2.9 dB. The section lengths at f1 are l1 =
l2 = λ1/(2(2.5+ 1))= λ1/7. The bandwidth Δf calculated from Eq. (13.4.25) is shown
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on the left graph. For the case r = 3.5, we find Z1 = 112.39 and Z2 = 88.98 ohm and

section lengths l1 = l2 = λ1/9. The quantity A is negative, A = −1.7 dB, signifying a

gain at f0. The polynomial coefficients were in the two cases:

r = 2.5, a1 = [1, 0.0650, 0.0788], b1 = [0.2807, 0.1249, 0.2807]

r = 3.5, a1 = [1, −0.0893, 0.1476], b1 = [0.3842, −0.1334, 0.3842]

The bandwidth about f1 and f2 corresponding to any desired bandwidth level can be

obtained in closed form. Let ΓB be the desired bandwidth level. Equivalently, ΓB can be

determined from a desired SWR level SB through ΓB = (SB−1)/(SB+1). The bandedge

frequencies can be derived from Eq. (13.4.24) by setting:

|Γ1(f)|2 = Γ2
B

Solving this equation, we obtain the left and right bandedge frequencies:

f1L = 2f0
π

asin
(√

1− a sinδ1

)

, f2R = 2f0 − f1L

f1R = 2f0
π

asin
(√

1+ a sinδ1

)

, f2L = 2f0 − f1R
(13.4.27)

where f0 = (f1 + f2)/2 and a is defined in terms of ΓB and ΓL by:

a =
[

Γ2
B

1− Γ2
B

1− Γ2
L

Γ2
L

]1/2

= SB − 1

SL − 1

√

SL
SB

(13.4.28)

where ΓL = (ZL−Z0)/(ZL+Z0) and SL = (1+|ΓL|)/(1−|ΓL|). We note the symmetry

relations: f1L + f2R = f1R + f2L = 2f0. These imply that the bandwidths about f1 and f2
are the same:

ΔfB = f1R − f1L = f2R − f2L (13.4.29)

The MATLAB function dualbw implements Eqs. (13.4.27):

[f1L,f1R,f2L,f2R] = dualbw(ZL,Z0,r,GB); % bandwidths of dual-band transformer

The bandwidth ΔfB is shown in Fig. 13.4.3. For illustration purposes, it was com-

puted at a level such that Γ2
B/Γ

2
L = 0.2.

13.5 Quarter-Wavelength Transformer With Series Section

One limitation of the Chebyshev quarter-wavelength transformer is that it requires the

load to be real-valued. The method can be modified to handle complex loads, but gen-

erally the wide bandwidth property is lost. The modification is to insert the quarter-

wavelength transformer not at the load, but at a distance from the load corresponding

to a voltage minimum or maximum.

For example, Fig. 13.5.1 shows the case of a single quarter-wavelength section in-

serted at a distance Lmin from the load. At that point, the wave impedance seen by the

quarter-wave transformer will be real-valued and given by Zmin = Z0/SL, where SL is the

630 13. Impedance Matching

Fig. 13.5.1 Quarter-wavelength transformer for matching a complex load.

SWR of the unmatched load. Alternatively, one can choose a point of voltage maximum

Lmax at which the wave impedance will be Zmax = Z0SL.

As we saw in Sec. 11.13, the electrical lengths Lmin or Lmax are related to the phase

angle θL of the load reflection coefficient ΓL by Eqs. (11.13.2) and (11.13.3). The MAT-

LAB function lmin can be called to calculate these distances and corresponding wave

impedances.

The calculation of the segment length, Lmin or Lmax, depends on the desired match-

ing frequency f0. Because a complex impedance can vary rapidly with frequency, the

segment will have the wrong length at other frequencies.

Even if the segment is followed by a multisection transformer, the presence of the

segment will tend to restrict the overall operating bandwidth to essentially that of a

single quarter-wavelength section. In the case of a single section, its impedance can be

calculated simply as:

Z1 =
√

Z0Zmin = 1
√

SL
Z0 and Z1 =

√

Z0Zmax =
√

SL Z0 (13.5.1)

Example 13.5.1: Quarter-wavelength matching of a complex load impedance. Design a quarter-

wavelength transformer of length M = 1,3,5 that will match the complex impedance

ZL = 200+ j100 ohm to a 50-ohm line at f0 = 100 MHz. Perform the design assuming the

maximum reflection coefficient level of |Γ1|max = 0.1.

Assuming that the inductive part ofZL arises from an inductance, replace the complex load

by ZL = 200+ j100f/f0 at other frequencies. Plot the corresponding reflection response

|Γ1(f)| versus frequency.

Solution: At f0, the load is ZL = 200+ j100 and its reflection coefficient and SWR are found to

be |ΓL| = 0.6695 and SL = 5.0521. It follows that the line segments corresponding to a

voltage minimum and maximum will have parameters:

Lmin = 0.2665, Zmin = 1

SL
Z0 = 9.897, Lmax = 0.0165, Zmax = SLZ0 = 252.603

For either of these cases, the effective load reflection coefficient seen by the transformer

will be |Γ| = (SL−1)/(SL+1)= 0.6695. It follows that the design attenuation specification

for the transformer will be:

A = 20 log10

( |Γ|
|Γ1|max

)

= 20 log10

(
0.6695

0.1

)

= 16.5155 dB

With the given number of sections M and this value of the attenuation A, the following

MATLAB code will design the transformer and calculate the reflection response of the

overall structure:
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Z0 = 50; ZL0 = 200 + 100j; % load impedance at f0

[Lmin, Zmin] = lmin(ZL0,Z0,’min’); % calculate Lmin

Gmin = abs(z2g(Zmin,Z0)); G1max = 0.1; % design based on Zmin

A = 20*log10(Gmin/G1max);

M = 3; % three-section transformer

Z = 1./chebtr3(1/Z0, 1/Zmin, M, A);

Ztot = [Z(1:M+1), Z0]; % concatenate all sections

Ltot = [ones(1,M)/4, Lmin]; % electrical lengths of all sections

f0 = 100; f = linspace(0,2*f0, 801);

ZL = 200 + j*100*f/f0; % assume inductive load

G1 = abs(multiline(Ztot, Ltot, ZL, f/f0)); % overall reflection response

where the designed impedances and quarter-wavelength segments are concatenated with

the last segment of impedance Z0 and length Lmin or Lmax. The corresponding frequency

reflection responses are shown in Fig. 13.5.2.
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Fig. 13.5.2 Matching a complex impedance.

The calculated vector outputs of the transformer impedances are in the Lmin case:

Z = [50, 50/S1/2
L , 50/SL]= [50, 22.2452, 9.897]

Z = [50, 36.5577, 22.2452, 13.5361, 9.897]

Z = [50, 40.5325, 31.0371, 22.2452, 15.9437, 12.2087, 9.897]

and in the Lmax case:

Z = [50, 50S1/2
L , 50SL]= [50, 112.3840, 252.603]

Z = [50, 68.3850, 112.3840, 184.6919, 252.603]

Z = [50, 61.6789, 80.5486, 112.3840, 156.8015, 204.7727, 252.603]

We note that there is essentially no difference in bandwidth over the desired design level

of |Γ1|max = 0.1 in the Lmin case, and very little difference in the Lmax case. ⊓⊔
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The MATLAB function qwt1 implements this matching method. Its inputs are the

complex load and line impedances ZL, Z0 and its outputs are the quarter-wavelength

section impedance Z1 and the electrical length Lm of the Z0-section. It has usage:

[Z1,Lm] = qwt1(ZL,Z0,type); % λ/4-transformer with series section

where type is one of the strings ’min’ or ’max’, depending on whether the first section

gives a voltage minimum or maximum.

13.6 Quarter-Wavelength Transformer With Shunt Stub

Two other possible methods of matching a complex load are to use a shorted or opened

stub connected in parallel with the load and adjusting its length or its line impedance

so that its susceptance cancels the load susceptance, resulting in a real load that can

then be matched by the quarter-wave section.

In the first method, the stub length is chosen to be either λ/8 or 3λ/8 and its

impedance is determined in order to provide the required cancellation of susceptance.

In the second method, the stub’s characteristic impedance is chosen to have a conve-

nient value and its length is determined in order to provide the susceptance cancellation.

These methods are shown in Fig. 13.6.1. In practice, they are mostly used with

microstrip lines that have easily adjustable impedances. The methods are similar to the

stub matching methods discussed in Sec. 13.8 in which the stub is not connected at the

load but rather after the series segment.

Fig. 13.6.1 Matching with a quarter-wavelength section and a shunt stub.

Let YL = 1/ZL = GL+ jBL be the load admittance. The admittance of a shorted stub

of characteristic admittance Y2 = 1/Z2 and length d is Ystub = −jY2 cotβd and that of

an opened stub, Ystub = jY2 tanβd.

The total admittance at point a in Fig. 13.6.1 is required to be real-valued, resulting

in the susceptance cancellation condition:

Ya = YL +Ystub = GL + j(BL −Y2 cotβd)= GL ⇒ Y2 cotβd = BL (13.6.1)

For an opened stub the condition becomes Y2 tanβd = −BL. In the first method,

the stub length is d = λ/8 or 3λ/8 with phase thicknesses βd = π/4 or 3π/4. The
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corresponding values of the cotangents and tangents are cotβd = tanβd = 1 or

cotβd = tanβd = −1.

Then, the susceptance cancellation condition becomes Y2 = BL for a shorted λ/8-

stub or an opened 3λ/8-stub, and Y2 = −BL for a shorted 3λ/8-stub or an opened

λ/8-stub. The case Y2 = BL must be chosen when BL > 0 and Y2 = −BL, when BL < 0.

In the second method,Z2 is chosen and the lengthd is determined from the condition

(13.6.1), cotβd = BL/Y2 = Z2BL for a shorted stub, and tanβd = −Z2BL for an opened

one. The resulting d must be reduced modulo λ/2 to a positive value.

With the cancellation of the load susceptance, the impedance looking to the right

of point a will be real-valued, Za = 1/Ya = 1/GL. Therefore, the quarter-wavelength

section will have impedance:

Z1 =
√

Z0Za =
√

Z0

GL
(13.6.2)

The MATLAB functions qwt2 and qwt3 implement the two matching methods. Their

usage is as follows:

[Z1,Z2] = qwt2(ZL,Z0); % λ/4-transformer with λ/8 shunt stub

[Z1,d] = qwt3(ZL,Z0,Z2,type) % λ/4-transformer with shunt stub of given impedance

where type takes on the string values ’s’ or ’o’ for shorted or opened stubs.

Example 13.6.1: Design quarter-wavelength matching circuits to match the load impedance

ZL = 15 + 20j Ω to a 50-ohm generator at 5 GHz using series sections and shunt stubs.

Use microstrip circuits with a Duroid substrate (ǫr = 2.2) of height h = 1 mm. Determine

the lengths and widths of all required microstrip sections, choosing always the shortest

possible lengths.

Solution: For the quarter-wavelength transformer with a series section, it turns out that the

shortest length corresponds to a voltage maximum. The impedance Z1 and section length

Lmax are computed with the MATLAB function qwt1:

[Z1, Lmax]= qwt1(ZL, Z0,’max’) ⇒ Z1 = 98.8809 Ω, Lmax = 0.1849

The widths and lengths of the microstrip sections are designed with the help of the func-

tions mstripr and mstripa. For the quarter-wavelength section Z1, the corresponding

width-to-height ratio u1 = w1/h is calculated from mstripr and then used in mstripa to

get the effective permittivity, from which the wavelength and length of the segment can

be calculated:

u1 = mstripr(ǫr , Z1)= 0.9164, w1 = u1h = 0.9164 mm

ǫeff = mstripa(ǫr , u1)= 1.7659, λ1 = λ0√
ǫeff

= 4.5151 cm, l1 = λ1

4
= 1.1288 cm

where the free-space wavelength is λ0 = 6 cm. Similarly, we find for the series segment

with impedance Z2 = Z0 and length L2 = Lmax:

u2 = mstripr(ǫr , Z2)= 3.0829, w2 = u2h = 3.0829 mm

ǫeff = mstripa(ǫr , u2)= 1.8813, λ2 = λ0√
ǫeff

= 4.3745 cm, l2 = L2λ2 = 0.8090 cm

For the case of the λ/8 shunt stub, we find from qwt2:
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[Z1, Z2]= qwt2(ZL, Z0)= [45.6435,−31.2500] Ω

where the negative Z2 means that we should use either a shorted 3λ/8 stub or an opened

λ/8 one. Choosing the latter and setting Z2 = 31.25 Ω, we can go on to calculate the

microstrip widths and lengths:

u1 = mstripr(ǫr , Z1)= 3.5241, w1 = u1h = 3.5241 mm

ǫeff = mstripa(ǫr , u1)= 1.8965, λ1 = λ0√
ǫeff

= 4.3569 cm, l1 = λ1

4
= 1.0892 cm

u2 = mstripr(ǫr , Z2)= 5.9067, w2 = u2h = 5.9067 mm

ǫeff = mstripa(ǫr , u2)= 1.9567, λ2 = λ0√
ǫeff

= 4.2894 cm, l2 = λ2

8
= 0.5362 cm

For the third matching method, we use a shunt stub of impedance Z2 = 30 Ω. It turns out

that the short-circuited version has the shorter length. We find with the help of qwt3:

[Z1, d]= qwt3(ZL, Z0, Z2,’s’) ⇒ Z1 = 45.6435 Ω, d = 0.3718

The microstrip width and length of the quarter-wavelength section Z1 are the same as in

the previous case, because the two cases differ only in the way the load susceptance is

canceled. The microstrip parameters of the shunt stub are:

u2 = mstripr(ǫr , Z2)= 6.2258, w2 = u2h = 6.2258 mm

ǫeff = mstripa(ǫr , u2)= 1.9628, λ2 = λ0√
ǫeff

= 4.2826 cm, l2 = dλ2 = 1.5921 cm

Had we used a 50 Ω shunt segment, its width and length would be w2 = 3.0829 mm and

l2 = 1.7983 cm. Fig. 13.6.2 depicts the microstrip matching circuits. ⊓⊔

Fig. 13.6.2 Microstrip matching circuits.

13.7 Two-Section Series Impedance Transformer

One disadvantage of the quarter-wavelength transformer is that the required impedan-

ces of the line segments are not always easily realized. In certain applications, such

as microwave integrated circuits, the segments are realized by microstrip lines whose

impedances can be adjusted easily by changing the strip widths. In other applications,

however, such as matching antennas to transmitters, we typically use standard 50- and

75-ohm coaxial cables and it is not possible to re-adjust their impedances.
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The two-section series impedance transformer, shown in Fig. 13.7.1, addresses this

problem [1117,1118]. It employs two line segments of known impedances Z1 and Z2

that have convenient values and adjusts their (electrical) lengths L1 and L2 to match

a complex load ZL to a main line of impedance Z0. Fig. 13.7.1 depicts this kind of

transformer.

The design method is identical to that of designing two-layer antireflection coatings

discussed in Sec. 6.2. Here, we modify that method slightly in order to handle complex

load impedances. We assume that Z0, Z1, and Z2 are real and the load complex, ZL =
RL + jXL.

Fig. 13.7.1 Two-section series impedance transformer.

Defining the phase thicknesses of the two segments by δ1 = 2πn1l1/λ0 = 2πL1

and δ2 = 2πn2l2/λ0 = 2πL2, the reflection responses Γ1 and Γ2 at interfaces 1 and 2

are:

Γ1 = ρ1 + Γ2e
−2jδ1

1+ ρ1Γ2e−2jδ1
, Γ2 = ρ2 + ρ3e

−2jδ2

1+ ρ2ρ3e−2jδ2

where the elementary reflection coefficients are:

ρ1 = Z1 − Z0

Z1 + Z0

, ρ2 = Z2 − Z1

Z2 + Z1

, ρ3 = ZL − Z2

ZL + Z2

The coefficients ρ1, ρ2 are real, but ρ3 is complex, and we may represent it in polar

form ρ3 = |ρ3|ejθ3 . The reflectionless matching condition is Γ1 = 0 (at the operating

free-space wavelength λ0). This requires that ρ1 + Γ2e
−2jδ1 = 0, which implies:

e2jδ1 = −Γ2

ρ1

(13.7.1)

Because the left-hand side has unit magnitude, we must have the condition |Γ2| =
|ρ1|, or, |Γ2|2 = ρ2

1, which is written as:

∣
∣
∣
∣
∣

ρ2 + |ρ3|ejθ3e−2jδ2

1+ ρ2|ρ3|ejθ3e−2jδ2

∣
∣
∣
∣
∣

2

= ρ2
2 + |ρ3|2 + 2ρ2|ρ3| cos(2δ2 − θ3)

1+ ρ2
2|ρ3|2 + 2ρ2|ρ3| cos(2δ2 − θ3)

= ρ2
1

Using the identity cos(2δ2 − θ3)= 2 cos2(δ2 − θ3/2)−1, we find:

cos2
(

δ2 − θ3

2

) = ρ2
1(1− ρ2|ρ3|)2−(ρ2 − |ρ3|)2

4ρ2|ρ3|(1− ρ2
1)

sin2
(

δ2 − θ3

2

) = (ρ2 + |ρ3|)2−ρ2
1(1+ ρ2|ρ3|)2

4ρ2|ρ3|(1− ρ2
1)

(13.7.2)
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Not every combination of ρ1, ρ2, ρ3 will result into a solution for δ2 because the

left-hand sides must be positive and less than unity. If a solution for δ2 exists, then δ1

is determined from Eq. (13.7.1). Actually, there are two solutions for δ2 corresponding

to the ± signs of the square root of Eq. (13.7.2), that is, we have:

δ2 = 1

2
θ3 + acos

⎡

⎣±
(

ρ2
1(1− ρ2|ρ3|)2−(ρ2 − |ρ3|)2

4ρ2|ρ3|(1− ρ2
1)

)1/2
⎤

⎦ (13.7.3)

If the resulting value of δ2 is negative, it may be shifted by π or 2π to make it

positive, and then solve for the electrical length L2 = δ2/2π. An alternative way of

writing Eqs. (13.7.2) is in terms of the segment impedances (see also Problem 6.6):

cos2
(

δ2 − θ3

2

) = (Z2
2 − Z3Z0)(Z3Z

2
1 − Z0Z

2
2)

Z0(Z
2
2 − Z2

3)(Z
2
1 − Z2

2)

sin2
(

δ2 − θ3

2

) = Z2
2(Z0 − Z3)(Z

2
1 − Z0Z3)

Z0(Z
2
2 − Z2

3)(Z
2
1 − Z2

2)

(13.7.4)

where Z3 is an equivalent “resistive” termination defined in terms of the load impedance

through the relationship:

Z3 − Z2

Z3 + Z2

= |ρ3| =
∣
∣
∣
∣

ZL − Z2

ZL + Z2

∣
∣
∣
∣ (13.7.5)

Clearly, if ZL is real and greater than Z2, then Z3 = ZL, whereas if it is less that

Z2, then, Z3 = Z2
2/ZL. Eq. (13.7.4) shows more clearly the conditions for existence

of solutions. In the special case when section-2 is a section of the main line, so that

Z2 = Z0, then (13.7.4) simplifies to:

cos2
(

δ2 − θ3

2

) = Z3Z
2
1 − Z3

0

(Z3 + Z0)(Z
2
1 − Z2

0)

sin2
(

δ2 − θ3

2

) = Z0(Z
2
1 − Z0Z3)

(Z3 + Z0)(Z
2
1 − Z2

0)

(13.7.6)

It is easily verified from these expressions that the condition for the existence of

solutions is that the equivalent load impedance Z3 lie within the intervals:

Z3
0

Z2
1

≤ Z3 ≤ Z2
1

Z0

, if Z1 > Z0

Z2
1

Z0

≤ Z3 ≤
Z3

0

Z2
1

, if Z1 < Z0

(13.7.7)

They may be combined into the single condition:

Z0

S2
≤ Z3 ≤ Z0S

2 , S = max(Z1, Z0)

min(Z1, Z0)
= swr(Z1, Z0) (13.7.8)
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Example 13.7.1: Matching range with 50- and 75-ohm lines. If Z0 = 50 and Z1 = 75 ohm, then

the following loads can be matched by this method:

503

752
≤ Z3 ≤ 752

50
⇒ 22.22 ≤ Z3 ≤ 112.50 Ω

And, if Z0 = 75 and Z1 = 50, the following loads can be matched:

502

75
≤ Z3 ≤ 753

502
⇒ 33.33 ≤ Z3 ≤ 168.75 Ω

In general, the farther Z1 is from Z0, the wider the range of loads that can be matched.

For example, with Z0 = 75 and Z1 = 300 ohm, all loads in the range from 4.5 to 1200 ohm

can be matched. ⊓⊔

The MATLAB function twosect implements the above design procedure. Its inputs

are the impedancesZ0, Z1, Z2, and the complexZL, and its outputs are the two solutions

for L1 and L2, if they exist. Its usage is as follows, where L12 is a 2×2 matrix whose

rows are the two possible sets of values of L1, L2:

L12 = twosect(Z0,Z1,Z2,ZL); % two-section series impedance transformer

The essential code in this function is as follows:

r1 = (Z1-Z0)/(Z1+Z0);

r2 = (Z2-Z1)/(Z2+Z1);

r3 = abs((ZL-Z2)/(ZL+Z2));

th3 = angle((ZL-Z2)/(ZL+Z2));

s = ((r2+r3)^2 - r1^2*(1+r2*r3)^2) / (4*r2*r3*(1-r1^2));

if (s<0)|(s>1), fprintf(’no solution exists’); return; end

de2 = th3/2 + asin(sqrt(s)) * [1;-1]; % construct two solutions

G2 = (r2 + r3*exp(j*th3-2*j*de2)) ./ (1 + r2*r3*exp(j*th3-2*j*de2));

de1 = angle(-G2/r1)/2;

L1 = de1/2/pi; L2 = de2/2/pi;

L12 = mod([L1,L2], 0.5); % reduce modulo λ/2

Example 13.7.2: Matching an antenna with coaxial cables. A 29-MHz amateur radio antenna

with input impedance of 38 ohm is to be fed by a 50-ohm RG-58/U cable. Design a two-

section series impedance transformer consisting of a length of RG-59/U 75-ohm cable

inserted into the main line at an appropriate distance from the antenna [1118]. The velocity

factor of both cables is 0.79.

Solution: Here, we have Z0 = 50, Z1 = 75, Z2 = Z0, and ZL = 38 ohm. The call to the function

twosect results in the MATLAB output for the electrical lengths of the segments:

L12 =
[

0.0536 0.3462

0.4464 0.1538

]

⇒ L1 = 0.0536, L2 = 0.3462

L1 = 0.4464, L2 = 0.1538
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Using the given velocity factor, the operating wavelength is λ = 0.79λ0 = 0.79c0/f0 =
8.1724 m, where f0 = 29 MHz. Therefore, the actual physical lengths for the segments are,

for the first possible solution:

l1 = 0.0536λ = 0.4379 m = 1.4367 ft , l2 = 0.3462λ = 2.8290 m = 9.2813 ft

and for the second solution:

l1 = 0.4464λ = 3.6483 m = 11.9695 ft , l2 = 0.1538λ = 1.2573 m = 4.1248 ft

Fig. 13.7.2 depicts the corresponding reflection responses at interface-1, |Γ1(f)|, as a func-

tion of frequency. The standing wave ratio on the main line is also shown, that is, the

quantity S1(f)=
(

1+ |Γ1(f)|
)

/
(

1− |Γ1(f)|
)

.
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Fig. 13.7.2 Reflection response of two-section series transformer.

The reflection response was computed with the help of multiline. The typical MATLAB

code for this example was:

Z0 = 50; Z1 = 75; ZL = 38;

c0 = 3e8; f0 = 29e6; vf = 0.79;

la0 = c0/f0; la = la0*vf;

L12 = twosect(Z0,Z1,Z0,ZL);

f = linspace(0,2,401); % in units of f0

G1 = abs(multiline([Z0,Z1,Z0],L12(1,:),ZL,f)); % reflection response 1

G2 = abs(multiline([Z0,Z1,Z0],L12(2,:),ZL,f)); % reflection response 2

S1=(1+G1)./(1-G1); S2=(1+G2)./(1-G2); % SWRs

We note that the two solutions have unequal bandwidths. ⊓⊔

Example 13.7.3: Matching a complex load. Design a 75-ohm series section to be inserted into

a 300-ohm line that feeds the load 600+ 900j ohm [1118].

Solution: The MATLAB call
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L12 = twosect(300, 75, 300, 600+900j);

produces the solutions: L1 = [0.3983, 0.1017] and L2 = [0.2420, 0.3318]. ⊓⊔

One-section series impedance transformer

We mention briefly also the case of the one-section series impedance transformer, shown

in Fig. 13.7.3. This is one of the earliest impedance transformers [1112–1116]. It has

limited use in that not all complex loads can be matched, although its applicability can

be extended somewhat [1116].

Fig. 13.7.3 One-section series impedance transformer.

Both the section impedance Z1 and length L1 are treated as unknowns to be fixed

by requiring the matching condition Γ1 = 0 at the operating frequency. It is left as an

exercise (see Problem 13.9) to show that the solution is given by:

Z1 =
√

Z0RL −
Z0X

2
L

Z0 −RL
, L1 = 1

2π
atan

[
Z1(Z0 −RL)

Z0XL

]

(13.7.9)

provided that either of the following conditions is satisfied:

Z0 < RL or Z0 > RL +
X2
L

RL
(13.7.10)

In particular, there is always a solution if ZL is real. The MATLAB function onesect

implements this method. It has usage:

[Z1,L1] = onesect(ZL,Z0); % one-section series impedance transformer

where L1 is the normalized length L1 = l1/λ1, with l1 and λ1 the physical length and

wavelength of the Z1 section. The routine outputs the smallest positive L1.

13.8 Single Stub Matching

Stub tuners are widely used to match any complex load† to a main line. They consist of

shorted or opened segments of the line, connected in parallel or in series with the line

at a appropriate distances from the load.

†The resistive part of the load must be non-zero. Purely reactive loads cannot be matched to a real line

impedance by this method nor by any of the other methods discussed in this chapter. This is so because

the transformation of a reactive load through the matching circuits remains reactive.
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In coaxial cable or two-wire line applications, the stubs are obtained by cutting ap-

propriate lengths of the main line. Shorted stubs are usually preferred because opened

stubs may radiate from their opened ends. However, in microwave integrated circuits

employing microstrip lines, radiation is not as a major concern because of their smaller

size, and either opened or shorted stubs may be used.

The single stub tuner is perhaps the most widely used matching circuit and can

match any load. However, it is sometimes inconvenient to connect to the main line if

different loads are to be matched. In such cases, double stubs may be used, but they

cannot match all loads. Triple stubs can match any load. A single stub tuner is shown

in Figs. 13.8.1 and 13.8.2, connected in parallel and in series.

Fig. 13.8.1 Parallel connection of single stub tuner.

Fig. 13.8.2 Series connection of single stub tuner.

In the parallel case, the admittance Ya = 1/Za at the stub location a is the sum of

the admittances of the length-d stub and the wave admittance at distance l from the

load, that is,

Ya = Yl +Ystub = Y0
1− Γl
1+ Γl

+Ystub

where Γl = ΓLe−2jβl. The admittance of a short-circuited stub is Ystub = −jY0 cotβd,

and of an open-circuited one, Ystub = jY0 tanβd. The matching condition is that Ya =
Y0. Assuming a short-circuited stub, we have:
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Y0
1− Γl
1+ Γl

− jY0 cotβd = Y0 ⇒ 1− Γl
1+ Γl

− j cotβd = 1

which can be rearranged into the form:

2j tanβd = 1+ 1

Γl
(13.8.1)

Inserting Γl = ΓLe−2jβl = |ΓL|ejθL−2jβl, where ΓL = |ΓL|ejθL is the polar form of the

load reflection coefficient, we may write (13.8.1) as:

2j tanβd = 1+ e
j(2βl−θL)

|ΓL|
(13.8.2)

Equating real and imaginary parts, we obtain the equivalent conditions:

cos(2βl− θL)= −|ΓL| , tanβd = sin(2βl− θL)
2|ΓL|

= −1

2
tan(2βl− θL) (13.8.3)

The first of (13.8.3) may be solved resulting in two solutions for l; then, the second

equation may be solved for the corresponding values of d:

βl = 1

2
θL ± 1

2
acos

(−|ΓL|
)

, βd = atan
(−1

2
tan(2βl− θL)

)

(13.8.4)

The resulting values of l, d must be made positive by reducing them modulo λ/2.

In the case of an open-circuited shunt stub, the first equation in (13.8.3) remains the

same, and in the second we must replace tanβd by − cotβd. In the series connection

of a shorted stub, the impedances are additive at point a, resulting in the condition:

Za = Zl + Zstub = Z0
1+ Γl
1− Γl

+ jZ0 tanβd = Z0 ⇒ 1+ Γl
1− Γl

+ j tanβd = 1

This may be solved in a similar fashion as Eq. (13.8.1). We summarize below the

solutions in the four cases of parallel or series connections with shorted or opened

stubs:

βl = 1

2

[

θL ± acos
(−|ΓL|

)]

, βd = atan
(−1

2
tan(2βl− θL)

)

, parallel/shorted

βl = 1

2

[

θL ± acos
(−|ΓL|

)]

, βd = acot
(1

2
tan(2βl− θL)

)

, parallel/opened

βl = 1

2

[

θL ± acos
(|ΓL|

)]

, βd = acot
(1

2
tan(2βl− θL)

)

, series/shorted

βl = 1

2

[

θL ± acos
(|ΓL|

)]

, βd = atan
(−1

2
tan(2βl− θL)

)

, series/opened

The MATLAB function stub1 implements these equations. Its input is the normal-

ized load impedance, zL = ZL/Z0, and the desired type of stub. Its outputs are the dual

solutions for the lengths d, l, arranged in the rows of a 2x2 matrix dl. Its usage is as

follows:
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dl = stub1(zL,type); % single stub tuner

The parameter type takes on the string values ’ps’, ’po’, ’ss’, ’so’, for parallel/short,

parallel/open, series/short, series/open stubs.

Example 13.8.1: The load impedance ZL = 10−5j ohm is to be matched to a 50-ohm line. The

normalized load is zL = ZL/Z0 = 0.2− 0.1j. The MATLAB calls, dl=stub1(zL,type), re-

sult into the following solutions for the cases of parallel/short, parallel/open, series/short,

series/open stubs:

[

0.0806 0.4499

0.4194 0.0831

]

,

[

0.3306 0.4499

0.1694 0.0831

]

,

[

0.1694 0.3331

0.3306 0.1999

]

,

[

0.4194 0.3331

0.0806 0.1999

]

Each row represents a possible solution for the electrical lengths d/λ and l/λ. We illustrate

below the solution details for the parallel/short case.

Given the load impedance zL = 0.2 − 0.1j, we calculate the reflection coefficient and put

it in polar form:

ΓL = zL − 1

zL + 1
= −0.6552− 0.1379j ⇒ |ΓL| = 0.6695 , θL = −2.9341 rad

Then, the solution of Eq. (13.8.4) is:

βl = 1

2

[

θL ± acos
(−|ΓL|

)] = 1

2

[−2.9341± acos(−0.6695)
] = 1

2

[−2.9341± 2.3044)
]

which gives the two solutions:

βl = 2πl

λ
=
[

−0.3149 rad

−2.6192 rad

]

⇒ l = λ

2π

[

−0.3149

−2.6192

]

=
[

−0.0501λ

−0.4169λ

]

These may be brought into the interval [0, λ/2] by adding enough multiples of λ/2. The

built-in MATLAB function mod does just that. In this case, a single multiple of λ/2 suffices,

resulting in:

l =
[

−0.0501λ+ 0.5λ

−0.4169λ+ 0.5λ

]

=
[

0.4499λ

0.0831λ

]

⇒ βl =
[

2.8267 rad

0.5224 rad

]

With these values of βl, we calculate the stub length d:

βd = atan
(−1

2
tan(2βl− θL)

) =
[

0.5064 rad

−0.5064 rad

]

⇒ d =
[

0.0806λ

−0.0806λ

]

Shifting the second d by λ/2, we finally find:

d =
[

0.0806λ

−0.0806λ+ 0.5λ

]

=
[

0.0806λ

0.4194λ

]

, βd =
[

0.5064 rad

2.6351 rad

]

Next, we verify the matching condition. The load admittance is yL = 1/zL = 4 + 2j.

Propagating it to the left of the load by a distance l, we find for the two values of l and for

the corresponding values of d:
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yl = yL + j tanβl

1+ jyL tanβl
=
[

1.0000+ 1.8028j

1.0000− 1.8028j

]

, ystub = −j cotβd =
[

−1.8028j

1.8028j

]

For both solutions, the susceptance of yl is canceled by the susceptance of the stub, re-

sulting in the matched total normalized admittance ya = yl + ystub = 1. ⊓⊔

Example 13.8.2: Match the antenna and feed line of Example 13.7.2 using a single shorted or

opened stub. Plot the corresponding matched reflection responses.

Solution: The normalized load impedance is zL = 38/50 = 0.76. The MATLAB function stub1

yields the following solutions for the lengths d, l, in the cases of parallel/short, paral-

lel/open, series/short, series/open stubs:

[

0.2072 0.3859

0.2928 0.1141

]

,

[

0.4572 0.3859

0.0428 0.1141

]

,

[

0.0428 0.3641

0.4572 0.1359

]

,

[

0.2928 0.3641

0.2072 0.1359

]

,

These numbers must be multiplied by λ0, the free-space wavelength corresponding to

the operating frequency of f0 = 29 MHz. The resulting reflection responses |Γa(f)| at

the connection point a of the stub, corresponding to all the pairs of d, l are shown in

Fig. 13.8.3. For example, in the parallel/short case, Γa is calculated by

Γa = 1− ya
1+ ya

, ya = 1− ΓLe−2jβl

1+ ΓLe−2jβl
− j cotβd , βl = 2π

f

f0

l

λ0

, βd = 2π
f

f0

d

λ0

We note that different solutions can have very different bandwidths. ⊓⊔
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Fig. 13.8.3 Reflection response of single stub matching solutions.

13.9 Balanced Stubs

In microstrip realizations of single-stub tuners, balanced stubs are often used to reduce

the transitions between the series and shunt segments. Fig. 13.9.1 depicts two identical

balanced stubs connected at opposite sides of the main line.
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Fig. 13.9.1 Balanced stubs.

Because of the parallel connection, the total admittance of the stubs will be dou-

ble that of each leg, that is, Ybal = 2Ystub. A single unbalanced stub of length d can

be converted into an equivalent balanced stub of length db by requiring that the two

configurations provide the same admittance. Depending on whether shorted or opened

stubs are used, we obtain the relationships between db and d:

2 cotβdb = cotβd ⇒ db = λ

2π
acot(0.5 cotβd) (shorted)

2 tanβdb = tanβd ⇒ db = λ

2π
atan(0.5 tanβd) (opened)

(13.9.1)

The microstrip realization of such a balanced stub is shown in Fig. 13.9.2. The figure

also shows the use of balanced stubs for quarter-wavelength transformers with a shunt

stub as discussed in Sec. 13.6.

Fig. 13.9.2 Balanced microstrip single-stub and quarter-wavelength transformers.

If the shunt stub has length λ/8 or 3λ/8, then the impedance Z2 of each leg must

be double that of the single-stub case. On the other hand, if the impedance Z2 is fixed,

then the stub length db of each leg may be calculated by Eq. (13.9.1).
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13.10 Double and Triple Stub Matching

Because the stub distance l from the load depends on the load impedance to be matched,

the single-stub tuner is inconvenient if several different load impedances are to be

matched, each requiring a different value for l.

The double-stub tuner, shown in Fig. 13.10.1, provides an alternative matching method

in which two stubs are used, one at the load and another at a fixed distance l from the

load, where typically, l = λ/8. Only the stub lengths d1, d2 need to be adjusted to match

the load impedance.

Fig. 13.10.1 Double stub tuner.

The two stubs are connected in parallel to the main line and can be short- or open-

circuited. We discuss the matching conditions for the case of shorted stubs.

Let YL = 1/ZL = GL + jBL be the load admittance, and define its normalized ver-

sion yL = YL/Y0 = gL + jbL, where gL, bL are the normalized load conductance and

susceptance. At the connection points a,b, the total admittance is the sum of the wave

admittance of the line and the stub admittance:

ya = yl + ystub,1 = yb + j tanβl

1+ jyb tanβl
− j cotβd1

yb = yL + ystub,2 = gL + j(bL − cotβd2)

The matching condition is ya = 1, which gives rise to two equations that can be

solved for the unknown lengths d1, d2. It is left as an exercise (see Problem 13.10) to

show that the solutions are given by:

cotβd2 = bL − b , cotβd1 = 1− b tanβl− gL
gL tanβl

(13.10.1)

where

b = cotβl±
√

gL(gmax − gL) , gmax = 1+ cot2 βl = 1

sin2 βl
(13.10.2)

Evidently, the condition for the existence of a real-valued b is that the load conduc-

tance gL be less than gmax, that is, gL ≤ gmax. If this condition is not satisfied, the
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load cannot be matched with any stub lengths d1, d2. Stub separations near λ/2, or

near zero, result in gmax = ∞, but are not recommended because they have very narrow

bandwidths [883].

Assuming l ≤ λ/4, the condition gL ≤ gmax can be turned around into a condition

for the maximum length l that will admit a matching solution for the given load:

l ≤ lmax = λ

2π
asin

( 1√
gL

)

(maximum stub separation) (13.10.3)

If the existence condition is satisfied, then Eq. (13.10.2) results in two solutions for

b and, hence for, d1, d2. The lengths d1, d2 must be reduced modulo λ/2 to bring them

within the minimum interval [0, λ/2].

If any of the stubs are open-circuited, the corresponding quantity cotβdi must be

replaced by − tanβdi = cot(βdi −π/2).
The MATLAB function stub2 implements the above design procedure. Its inputs are

the normalized load impedance zL = ZL/Z0, the stub separation l, and the stub types,

and its outputs are the two possible solutions for the d1, d2. Its usage is as follows:

d12 = stub2(zL,l,type); % double stub tuner

d12 = stub2(zL,l); % equivalent to type=’ss’

d12 = stub2(zL); % equivalent to l = 1/8 and type=’ss’

The parameter type takes on the strings values: ’ss’, ’so’, ’os’, ’oo’, for short/short,

short/open, open/short, open/open stubs. If the existence condition fails, the function

outputs the maximum separation lmax that will admit a solution.

A triple stub tuner, shown in Fig. 13.10.2, can match any load. The distances l1, l2
between the stubs are fixed and only the stub lengths d1, d2, d3 are adjustable.

The first two stubs (from the left) can be thought of as a double-stub tuner. The

purpose of the third stub at the load is to ensure that the wave impedance seen by the

double-stub tuner satisfies the existence condition gL ≤ gmax.

Fig. 13.10.2 Triple stub tuner.

The total admittance at the load point c, and its propagated version by distance l2
to point b are given by:

yl = yc + j tanβl2
1+ jyc tanβl2

, yc = yL + ystub,3 = gL + jbL − j cotβd3 = gL + jb (13.10.4)
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where b = bL − cotβd3. The corresponding conductance is:

gl = Re(yl)= gL(1+ tan2 βl2)

(b tanβl2 − 1)2+g2
L tan2 βl2

(13.10.5)

The first two stubs see the effective load yl. The double-stub problem will have a

solution provided gl ≤ gmax,1 = 1/ sin2 βl1. The lengthd3 of the third stub is adjusted to

ensure this condition. To parametrize the possible solutions, we introduce a “smallness”

parameter e < 1 such that gl = egmax,1. This gives the existence condition:

gl = gL(1+ tan2 βl2)

(b tanβl2 − 1)2+g2
L tan2 βl2

= egmax,1

which can be rewritten in the form:

(b− cotβl2)
2= gL(gmax,2 − egmax,1gL)= g2

Lgmax,1(emax − e)

where we defined gmax,2 = 1 + cot2 βl2 = 1/ sin2 βl2 and emax = gmax,2/(gLgmax,1). If

emax < 1, we may replace e by the minimum of the chosen e and emax. But if emax > 1,

we just use the chosen e. In other words, we replace the above condition with:

(b− cotβl2)
2= g2

Lgmax,1(emax − emin) , emin = min(e, emax) (13.10.6)

It corresponds to setting gl = emingmax,1. Solving Eq. (13.10.6) for cotβd3 gives the

two solutions:

cotβd3 = bL − b , b = cotβl2 ± gL
√

gmax,1(emax − emin) (13.10.7)

For each of the two values of d3, there will be a feasible solution to the double-stub

problem, which will generate two possible solutions for d1, d2. Thus, there will be a

total of four triples d1, d2, d3 that will satisfy the matching conditions. Each stub can

be shorted or opened, resulting into eight possible choices for the stub triples.

The MATLAB function stub3 implements the above design procedure. It generates

a 4×3 matrix of solutions and its usage is:

d123 = stub3(zL,l1,l2,type,e); % triple stub tuner

d123 = stub3(zL,l1,l2,type); % equivalent to e = 0.9

d123 = stub3(zL,l1,l2); % equivalent to e = 0.9, type=’sss’

d123 = stub3(zL); % equivalent to e = 0.9, type=’sss’, l1 = l2 = 1/8

where type takes on one of the eight possible string values, defining whether the first,

second, or third stubs are short- or open-circuited: ’sss’, ’sso’, ’sos’, ’soo’, ’oss’, ’oso’,

’oos’, ’ooo’.

13.11 L-Section Lumped Reactive Matching Networks

Impedance matching by stubs or series transmission line segments is appropriate at

higher frequencies, such as microwave frequencies. At lower RF frequencies, lumped-

parameter circuit elements may be used to construct a matching network. Here, we

discuss L-section, Π-section, and T-section matching networks.
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The L-section matching network shown in Fig. 13.11.1 uses only reactive elements

(inductors or capacitors) to conjugately match any load impedance ZL to any generator

impedance ZG. The use of reactive elements minimizes power losses in the matching

network.

Fig. 13.11.1 L-section reactive conjugate matching network.

L-section networks are used to match the input and output impedances of amplifier

circuits [1157–1165] and also to match transmitters to feed lines [44,45,1119–1126].

An arbitrary load impedance may be matched by a normal L-section, or if that is

not possible, by a reversed L-section. Sometimes both normal and reversed types are

possible. We derive below the conditions for the existence of a matching solution of a

particular type.

The inputs to the design procedure are the complex load and generator impedances

ZL = RL + jXL and ZG = RG + jXG. The outputs are the reactances X1, X2. For

either type, the matching network transforms the load impedance ZL into the complex

conjugate of the generator impedance, that is,

Zin = Z∗G (conjugate match) (13.11.1)

where Zin is the input impedance looking into the L-section:

Zin = Z1(Z2 + ZL)
Z1 + Z2 + ZL

(normal)

Zin = Z2 + Z1ZL
Z1 + ZL

(reversed)

(13.11.2)

with Z1 = jX1 and Z2 = jX2. Inserting Eqs. (13.11.2) into the condition (13.11.1) and

equating the real and imaginary parts of the two sides, we obtain a system of equations

for X1, X2 with solutions for the two types:

X1 = XG ±RGQ
RG
RL

− 1

X2 = −(XL ±RLQ)

Q =
√
√
√
√RG
RL

− 1+ X2
G

RGRL

(normal) ,

X1 = XL ±RLQ
RL
RG

− 1

X2 = −(XG ±RGQ)

Q =
√
√
√RL
RG

− 1+ X2
L

RGRL

(reversed)

(13.11.3)
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If the load and generator impedances are both resistive, so that XL = 0 and XG = 0,

the above solutions take the particularly simple forms:

X1 = ±RG
Q

X2 = ∓RLQ

Q =
√

RG
RL

− 1

(normal) ,

X1 = ±RL
Q

X2 = ∓RGQ

Q =
√

RL
RG

− 1

(reversed) (13.11.4)

We note that the reversed solution is obtained from the normal one by exchanging

ZL with ZG. Both solution types assume that RG �= RL. If RG = RL, then for either type,

we have the solution:

X1 = ∞, X2 = −(XL +XG) (13.11.5)

Thus, X1 is open-circuited and X2 is such that X2 + XL = −XG. The Q quantities

play the role of series impedance Q-factors. Indeed, the X2 equations in all cases imply

that Q is equal to the ratio of the total series reactance by the corresponding series

resistance, that is, (X2 +XL)/RL or (X2 +XG)/RG.

The conditions for real-valued solutions forX1, X2 are that theQ factors in (13.11.3)

and (13.11.4) be real-valued or that the quantities under their square roots be non-

negative. WhenRL �= RG, it is straightforward to verify that this happens in the following

four mutually exclusive cases:

existence conditions L-section types

RG > RL , |XL| ≥
√

RL(RG −RL) normal and reversed

RG > RL , |XL| <
√

RL(RG −RL) normal only

RG < RL , |XG| ≥
√

RG(RL −RG) normal and reversed

RG < RL , |XG| <
√

RG(RL −RG) reversed only

(13.11.6)

It is evident that a solution of one or the other type always exists. When RG > RL
a normal section always exists, and when RG < RL a reversed one exists. The MATLAB

function lmatch implements Eqs. (13.11.3). Its usage is as follows:

X12 = lmatch(ZG,ZL,type); % L-section matching

where type takes on the string values ’n’ or ’r’ for a normal or reversed L-section.

The two possible solutions for X1, X2 are returned in the rows of the 2×2 matrix X12.

Example 13.11.1: Design an L-section matching network for the conjugate match of the load

impedanceZL = 100+50j ohm to the generatorZG = 50+10j ohm at 500 MHz. Determine

the capacitance or inductance values for the matching network.

Solution: The given impedances satisfy the last of the four conditions of Eq. (13.11.6). Therefore,

only a reversed L-section will exist. Its two solutions are:

X12 = lmatch(50+ 10j,100+ 50j,’r’)=
[

172.4745 −71.2372

−72.4745 51.2372

]
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The first solution has a capacitiveX2 = −71.2372 and an inductiveX1 = 172.4745. Setting

X2 = 1/jωC and X1 = jωL, where ω = 2πf = 2π500 · 106 rad/sec, we determine the

corresponding values of C and L to be C = 4.47 pF and L = 54.90 nH.

The second solution has an inductive X2 = 51.2372 and a capacitive X1 = −72.4745.

Setting X2 = jωL and X1 = 1/jωC, we find in this case, L = 16.3 nH and C = 4.39 pF. Of

the two solutions, the one with the smaller values is generally preferred. ⊓⊔

13.12 Pi-Section Lumped Reactive Matching Networks

Although the L-section network can match an arbitrary load to an arbitrary source,

its bandwidth and Q-factor are fixed uniquely by the values of the load and source

impedances through Eqs. (13.11.3).

TheΠ-section network, shown together with its T-section equivalent in Fig. 13.12.1,

has an extra degree of freedom that allows one to control the bandwidth of the match.

In particular, the bandwidth can be made as narrow as desired.

Fig. 13.12.1 Π- and T-section matching networks.

The Π, T networks (also called Δ, Y networks) can be transformed into each other

by the following standard impedance transformations, which are cyclic permutations of

each other:

Za = Z2Z3

U
, Zb = Z3Z1

U
, Zc = Z1Z2

U
, U = Z1 + Z2 + Z3

Z1 = V

Za
, Z2 = V

Zb
, Z3 = V

Zc
, V = ZaZb + ZbZc + ZcZa

(13.12.1)

Because Z1, Z2, Z3 are purely reactive, Z1 = jX1, Z2 = jX2, Z3 = jX3, so will be

Za, Zb, Zc, with Za = jXa, Zb = jXb, Zc = jXc.
The MATLAB functions pi2t and t2pi transform between the two parameter sets.

The function pi2t takes in the array of three values Z123 = [Z1, Z2, Z3] and outputs

Zabc = [Za, Zb, Zc], and t2pi does the reverse. Their usage is:
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Zabc = pi2t(Z123); % Π to T transformation

Z123 = t2pi(Zabc); % T to Π transformation

One of the advantages ofT networks is that often they result in more practical values

for the circuit elements; however, they tend to be more lossy [44,45].

Here we discuss only the design of the Π matching network. It can be transformed

into a T network if so desired. Fig. 13.12.2 shows the design procedure, in which the

Π network can be thought of as two L-sections arranged back to back, by splitting the

series reactance X2 into two parts, X2 = X4 +X5.

Fig. 13.12.2 Equivalent L-section networks.

An additional degree of freedom is introduced into the design by an intermediate

reference impedance, say Z = R + jX, such that looking into the right L-section the

input impedance is Z, and looking into the left L-section, it is Z∗.

Denoting the L-section impedances by Z1 = jX1, Z4 = jX4 and Z3 = jX3, Z5 = jX5,

we have the conditions:

Zleft = Z4 + Z1ZG
Z1 + ZG

= Z∗ , Zright = Z5 + Z3ZL
Z3 + ZL

= Z (13.12.2)

As shown in Fig. 13.12.2, the right L-section and the load can be replaced by the

effective load impedance Zright = Z. Because Z1 and Z4 are purely reactive, their con-

jugates will be Z∗1 = −Z1 and Z∗4 = −Z4. It then follows that the first of Eqs. (13.12.2)

can be rewritten as the equivalent condition:

Zin = Z1(Z4 + Z)
Z1 + Z4 + Z

= Z∗G (13.12.3)

This is precisely the desired conjugate matching condition that must be satisfied by

the network (as terminated by the effective load Z.)

Eq. (13.12.3) can be interpreted as the result of matching the source ZG to the load

Z with a normal L-section. An equivalent point of view is to interpreted the first of

Eqs. (13.12.2) as the result of matching the source Z to the load ZG using a reversed

L-section.
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Similarly, the second of Eqs. (13.12.2) is the result of matching the source Z∗ to the

load ZL (because the input impedance looking into the right section is then (Z∗)∗= Z.)

Thus, the reactances of the two L-sections can be obtained by the two successive calls

to lmatch:

X14 = [X1, X4]= lmatch(ZG, Z, ’n’)= lmatch(Z,ZG, ’r’)

X35 = [X3, X5]= lmatch(Z∗, ZL, ’r’)
(13.12.4)

In order for Eqs. (13.12.4) to always have a solution, the resistive part of Z must

satisfy the conditions (13.11.6). Thus, we must choose R < RG and R < RL, or equiva-

lently:

R < Rmin , Rmin = min(RG, RL) (13.12.5)

Otherwise, Z is arbitrary. For design purposes, the nominalQ factors of the left and

right sections can be taken to be the quantities:

QG =
√

RG
R
− 1 , QL =

√

RL
R
− 1 (13.12.6)

The maximum of the two is the one with the maximum value of RG or RL, that is,

Q =
√

Rmax

R
− 1 , Rmax = max(RG, RL) (13.12.7)

This Q-factor can be thought of as a parameter that controls the bandwidth. Given

a value of Q, the corresponding R is obtained by:

R = Rmax

Q2 + 1
(13.12.8)

For later reference, we may express QG,QL in terms of Q as follows:

QG =
√

RG
Rmax

(Q2 + 1)−1 , QL =
√

RL
Rmax

(Q2 + 1)−1 (13.12.9)

Clearly, one or the other of QL,QG is equal to Q. We note also that Q may not be

less than the value Qmin achievable by a single L-section match. This follows from the

equivalent conditions:

Q > Qmin ⇔ R < Rmin , Qmin =
√

Rmax

Rmin

− 1 (13.12.10)

The MATLAB function pmatch implements the design equations (13.12.4) and then

constructsX2 = X4+X5. Because there are two solutions forX4 and two forX5, we can

add them in four different ways, leading to four possible solutions for the reactances of

the Π network.

The inputs to pmatch are the impedances ZG, ZL and the reference impedance Z,

which must satisfy the condition (13.12.10). The output is a 4×3 matrix X123 whose

rows are the different solutions for X1, X2, X3:
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X123 = pmatch(ZG,ZL,Z); % Π matching network design

The analytical form of the solutions can be obtained easily by applying Eqs. (13.11.3)

to the two cases of Eq. (13.12.4). In particular, if the load and generator impedances are

real-valued, we obtain from (13.11.4) the following simple analytical expressions:

X1 = −ǫG RG
QG

, X2 = Rmax(ǫGQG + ǫLQL)
Q2 + 1

, X3 = −ǫL RL
QL

(13.12.11)

where ǫG, ǫL are ±1, QG,QL are given in terms of Q by Eq. (13.12.9), and either Q is

given or it can be computed from Eq. (13.12.7). The choice ǫG = ǫL = 1 is made often,

corresponding to capacitive X1, X3 and inductive X2 [44,1124].

As emphasized by Wingfield [44,1124], the definition of Q as the maximum of QL
andQG underestimates the totalQ-factor of the network. A more appropriate definition

is the sum Qo = QL +QG.

An alternative set of design equations, whose input is Qo, is obtained as follows.

Given Qo, we solve for the reference resistance R by requiring:

Qo = QG +QL =
√

RG
R
− 1+

√

RL
R
− 1

This gives the solution for R, and hence for QG,QL:

R = (RG −RL)2

(RG +RL)Q2
o − 2Qo

√

RGRLQ
2
o − (RG −RL)2

QG =
RGQo −

√

RGRLQ
2
o − (RG −RL)2

RG −RL

QL =
RLQo −

√

RGRLQ
2
o − (RG −RL)2

RL −RG

(13.12.12)

Then, construct the Π reactances from:

X1 = −ǫG RG
QG

, X2 = R(ǫGQG + ǫLQL) , X3 = −ǫL RL
QL

(13.12.13)

The only requirement is that Qo be greater than Qmin. Then, it can be verified that

Eqs. (13.12.12) will always result in positive values for R, QG, and QL. More simply, the

value of R may be used as an input to the function pmatch.

Example 13.12.1: We repeat Example 13.11.1 using a Π network. Because ZG = 50+ 10j and

ZL = 100+50j, we arbitrarily choose Z = 20+40j, which satisfies R < min(RG, RL). The

MATLAB function pmatch produces the solutions:

X123 = [X1, X2, X3]= pmatch(ZG, ZL, Z)=

⎡

⎢
⎢
⎢
⎣

48.8304 −71.1240 69.7822

−35.4970 71.1240 −44.7822

48.8304 20.5275 −44.7822

−35.4970 −20.5275 69.7822

⎤

⎥
⎥
⎥
⎦
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All values are in ohms and the positive ones are inductive while the negatives ones, capac-

itive. To see how these numbers arise, we consider the solutions of the two L-sections of

Fig. 13.12.2:

X14 = lmatch(ZG, Z, ’n’)=
[

48.8304 −65.2982

−35.4970 −14.7018

]

X35 = lmatch(Z∗, ZL, ’r’)=
[

69.7822 −5.8258

−44.7822 85.825

]

where X4 and X5 are the second columns. The four possible ways of adding the entries

of X4 and X5 give rise to the four values of X2. It is easily verified that each of the four

solutions satisfy Eqs. (13.12.2) and (13.12.3). ⊓⊔

Example 13.12.2: It is desired to match a 200 ohm load to a 50 ohm source at 500 MHz. Design

L-section and Π-section matching networks and compare their bandwidths.

Solution: Because RG < RL and XG = 0, only a reversed L-section will exist. Its reactances are

computed from:

X12 = [X1, X2]= lmatch(50,200, ’r’)=
[

115.4701 −86.6025

−115.4701 86.6025

]

The corresponding minimum Q factor is Qmin =
√

200/50− 1 = 1.73. Next, we design a

Π section with aQ factor of 5. The required reference resistance R can be calculated from

Eq. (13.12.8):

R = 200

52 + 1
= 7.6923 ohm

The reactances of the Π matching section are then:

X123 = [X1, X2, X3]= pmatch(50,200,7.6923)=

⎡

⎢
⎢
⎢
⎣

21.3201 −56.5016 40

−21.3201 56.5016 −40

21.3201 20.4215 −40

−21.3201 −20.4215 40

⎤

⎥
⎥
⎥
⎦

The Π to T transformation gives the reactances of the T-network:

Xabc = [Xa, Xb, Xc]= pi2t(X123)=

⎡

⎢
⎢
⎢
⎣

−469.0416 176.9861 −250

469.0416 −176.9861 250

−469.0416 −489.6805 250

469.0416 489.6805 −250

⎤

⎥
⎥
⎥
⎦

If we increase, the Q to 15, the resulting reference resistance becomes R = 0.885 ohm,

resulting in the reactances:

X123 = [X1, X2, X3]= pmatch(50,200,0.885)=

⎡

⎢
⎢
⎢
⎣

6.7116 −19.8671 13.3333

−6.7116 19.8671 −13.3333

6.7116 6.6816 −13.3333

−6.7116 −6.6816 13.3333

⎤

⎥
⎥
⎥
⎦
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Fig. 13.12.3 Comparison of L-section and Π-section matching.

Fig. 13.12.3 shows the plot of the input reflection coefficient, that is, the quantity Γin =
(Zin − Z∗G)/(Zin + ZG) versus frequency.

If a reactance Xi is positive, it represents an inductance with a frequency dependence of

Zi = jXif/f0, where f0 = 500 MHz is the frequency of the match. If Xi is negative, it

represents a capacitance with a frequency dependence of Zi = jXif0/f .
The graphs display the two solutions of the L-match, but only the first two solutions of

the Π match. The narrowing of the bandwidth with increasing Q is evident. ⊓⊔

The Π network achieves a narrower bandwidth over a single L-section network. In

order to achieve a wider bandwidth, one may use a double L-section network [1157], as

shown in Fig. 13.12.4.

Fig. 13.12.4 Double L-section networks.

The two L-sections are either both reversed or both normal. The design is similar to

Eq. (13.12.4). In particular, if RG < R < RL, we have:

X14 = [X1, X4]= lmatch(ZG, Z, ’r’)

X35 = [X3, X5]= lmatch(Z∗, ZL, ’r’)
(13.12.14)
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and if RG > R > RL:

X14 = [X1, X4]= lmatch(ZG, Z, ’n’)

X35 = [X3, X5]= lmatch(Z∗, ZL, ’n’)
(13.12.15)

The widest bandwidth (corresponding to the smallest Q) is obtained by selecting

R = √

RGRL. For example, consider the case RG < R < RL. Then, the corresponding

left and right Q factors will be:

QG =
√

R

RG
− 1 , QL =

√

RL
R
− 1

Both satisfy QG < Qmin and QL < Qmin. Because we always choose Q to be the

maximum of QG,QL, the optimum Q will correspond to that R that results in Qopt =
min

(

max(QG,QL)
)

. It can be verified easily that Ropt =
√

RGRL and

Qopt = QL,opt = QG,opt =
√

Ropt

RG
− 1 =

√

RL
Ropt

− 1

These results follow from the inequalities:

QG ≤ Qopt ≤ QL , if RG < R ≤ Ropt

QL ≤ Qopt ≤ QG , if Ropt ≤ R < RL

Example 13.12.3: Use a double L-section to widen the bandwidth of the single L-section of

Example 13.12.2.

Solution: The Q-factor of the single section is Qmin =
√

200/500− 1 = 1.73. The optimum ref-

erence resistor is Ropt =
√

50·200 = 100 ohm and the corresponding minimized optimum

Qopt = 1.

400 450 500 550 600
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0.2

0.4

0.6

0.8

1

|
Γ

in
(f

)|

f  (MHz)

Ropt = 100

 double L

 single L

 single L

Fig. 13.12.5 Comparison of single and double L-section networks.

The reactances of the single L-section were given in Example 13.12.2. The reactances of

the two sections of the double L-sections are calculated by the two calls to lmatch:
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X14 = [X1, X4]= lmatch(50,100,’r’)=
[

100 −50

−100 50

]

X35 = [X3, X5]= lmatch(100,200,’r’)=
[

200 −100

−200 100

]

The corresponding input reflection coefficients are plotted in Fig. 13.12.5. As in the design

of theΠ network, the dual solutions of each L-section can be paired in four different ways.

But, for the above optimum value ofR, the four solutions have virtually identical responses.

There is some widening of the bandwidth, but not by much. ⊓⊔

13.13 Reversed Matching Networks

The types of lossless matching networks that we considered in this chapter satisfy the

property that if a network is designed to transform a load impedance Zb into an input

impedance Za, then the reversed (i.e., flipped left-right) network will transform the load

Z∗a into the input Z∗b . This is illustrated in Fig. 13.13.1.

Fig. 13.13.1 Forward and reversed matching networks.

The losslessness assumption is essential. This property is satisfied only by matching

networks built from segments of lossless transmission lines, such as stub matching or

quarter-wave transformers, and by the L-, Π-, and T-section reactive networks. Some

examples are shown in Fig. 13.13.2.

Fig. 13.13.2 Examples of reversed matching networks.
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Working with admittances, we find for the stub example that the input and load

admittances must be related as follows for the forward and reverse networks:

Ya = Ystub +Y1
Yb + jY1 tanβl

Y1 + jYb tanβl
⇔ Y∗b = Y1

(Y∗a +Ystub)+jY1 tanβl

Y1 + j(Y∗a +Ystub)tanβl
(13.13.1)

where Ystub = −jY2 cotβd for a shorted parallel stub, and Ystub = jY2 tanβd for an

opened one. The equivalence of the two equations in (13.13.1) is a direct consequence

of the fact that Ystub is purely reactive and therefore satisfies Y∗stub = −Ystub. Indeed,

solving the left equation for Yb and conjugating the answer gives:

Yb = Y1
(Ya −Ystub)−jY1 tanβl

Y1 − j(Ya −Ystub)tanβl
⇒ Y∗b = Y1

(Y∗a −Y∗stub)+jY1 tanβl

Y1 + j(Y∗a −Y∗stub)tanβl

which is equivalent to the right equation (13.13.1) because Y∗stub = −Ystub. Similarly, for

the L-section example we find the conditions for the forward and reversed networks:

Za = Z1(Z2 + Zb)
Z1 + Z2 + Zb

⇔ Z∗b = Z2 +
Z1Z

∗
a

Z1 + Z∗a
(13.13.2)

where Z1 = jX1 and Z2 = jX2. The equivalence of Eqs. (13.13.2) follows again from the

reactive conditions Z∗1 = −Z1 and Z∗2 = −Z2.

As we will see in Chap. 14, the reversing property is useful in designing the input

and output matching networks of two-port networks, such as microwave amplifiers,

connected to a generator and load with standardized impedance values such as Z0 = 50

ohm. This is shown in Fig. 13.13.3.

Fig. 13.13.3 Designing input and output matching networks for a two-port.

To maximize the two-port’s gain or to minimize its noise figure, the two-port is re-

quired to be connected to certain optimum values of the generator and load impedances

ZG, ZL. The output matching network must transform the actual load Z0 into the de-

sired value ZL. Similarly, the input matching network must transform Z0 into ZG so

that the two-port sees ZG as the effective generator impedance.

In order to use the matching methods of the present chapter, it is more convenient

first to design the reversed matching networks transforming a load Z∗L (or Z∗G) into

the standardized impedance Z0, as shown in Fig. 13.13.3. Then the designed reversed

networks may be reversed to obtain the actual matching networks. Several such design

examples will be presented in Chap. 14.
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13.14 Problems

13.1 A one-section quarter-wavelength transformer matching a resistive load ZL to a line Z0 must

have characteristic impedance Z1 =
√

Z0ZL. Show that the reflection response Γ1 into the

main line (see Fig. 13.3.1) is given as a function of frequency by:

Γ1 = ρ(1+ e−2jδ)

1+ ρ2e−2jδ
, ρ =

√

ZL −
√

Z0
√

ZL +
√

Z0

, δ = π

2

f

f0

where f0 is the frequency at which the transformer length is a quarter wavelength. Show

that the magnitude-squared of Γ1 is given by:

|Γ1|2 = e2 cos2 δ

1+ e2 cos2 δ
, e = 2|ρ|

1− ρ2

Show that the bandwidth (about f0) over which the voltage standing-wave ratio on the line

remains less than S is given by:

sin

(

π

4

Δf

f0

)

= (S− 1)(1− ρ2)

4|ρ|√S

13.2 Design a one-section quarter-wavelength transformer that will match a 200-ohm load to a

50-ohm line at 100 MHz. Determine the impedance Z1 and the bandwidth Δf over which

the SWR on the line remains less than S = 1.2.

13.3 A transmission line with characteristic impedance Z0 = 100 Ω is terminated at a load

impedance ZL = 150 + j50 Ω. What percentage of the incident power is reflected back

into the line?

In order to make the load reflectionless, a short-circuited stub of length l1 and impedance

also equal to Z0 is inserted in parallel at a distance l2 from the load. What are the smallest

values of the lengths l1 and l2 in units of the wavelength λ that make the load reflectionless?

13.4 A loss-free line of impedance Z0 is terminated at a load ZL = Z0+ jX, whose resistive part is

matched to the line. To properly match the line, a short-circuited stub is connected across

the main line at a distance of λ/4 from the load, as shown below. The stub has characteristic

impedance Z0.

Find an equation that determines the length l of the stub in order that there be no reflected

waves into the main line. What is the length l (in wavelengths λ) when X = Z0? When

X = Z0/
√

3?

13.5 A transmission line with characteristic impedance Z0 must be matched to a purely resistive

load ZL. A segment of length l1 of another line of characteristic impedance Z1 is inserted at

a distance l0 from the load, as shown in Fig. 13.7.1 (with Z2 = Z0 and l2 = l0.)

Take Z0 = 50, Z1 = 100, ZL = 80 Ω and let β0 and β1 be the wavenumbers within the

segments l0 and l1. Determine the values of the quantities cot(β1l1) and cot(β0l0) that

would guarantee matching. Show that the widest range of resistive loads ZL that can be

matched using the given values of Z0 and Z1 is: 12.5 Ω < ZL < 200 Ω.
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13.6 A transmission line with resistive impedance Z0 is terminated at a load impedance ZL =
R+ jX. Derive an expression, in terms of Z0, R, X, for the proportion of the incident power

that is reflected back into the line.

In order to make the load reflectionless, a short-circuited stub of length l1 and impedance Z0

is inserted at a distance l2 from the load. Derive expressions for the smallest values of the

lengths l1 and l2 in terms of the wavelength λ and Z0, R,X, that make the load reflectionless.

13.7 It is required to match a lossless transmission line Z0 to a load ZL. To this end, a quarter-

wavelength transformer is connected at a distance l0 from the load, as shown below. Let λ0

and λ be the operating wavelengths of the line and the transformer segment.

Assume Z0 = 50 Ω. Verify that the required length l0 that will match the complex load

ZL = 40+ 30j Ω is l0 = λ/8. What is the value of Z1 in this case?

13.8 It is required to match a lossless transmission line of impedance Z0 = 75 Ω to the complex

load ZL = 60 + 45j Ω. To this end, a quarter-wavelength transformer is connected at a

distance l0 from the load, as shown in the previous problem. Let λ0 and λ be the operating

wavelengths of the line and the transformer segment.

What is the required length l0 in units of λ0? What is the characteristic impedance Z1 of the

transformer segment?

13.9 Show that the solution of the one-section series impedance transformer shown in Fig. 13.7.3

is given by Eq. (13.7.9), provided that either of the inequalities (13.7.10) is satisfied.

13.10 Show that the solution to the double-stub tuner is given by Eq. (13.10.1) and (13.10.2).

13.11 Match load impedance ZL = 10−5j ohm of Example 13.8.1 to a 50-ohm line using a double-

stub tuner with stub separation of l = λ/16. Show that a double-stub tuner with separation

of l = λ/8 cannot match this load.

13.12 Match the antenna and feed line of Example 13.7.2 using a double stub tuner with stub

separation of l = λ/8. Plot the corresponding matched reflection responses. Repeat when l

is near λ/2, say, l = 0.495λ, and compare the resulting notch bandwidths.

13.13 Show that the load impedance of Problem 13.11 can be matched with a triple-stub tuner

using shorted stubs with separations of l1 = l2 = λ/8, shorted stubs. Use the smallness

parameter values of e = 0.9 and e = 0.1.

13.14 Match the antenna and feed line of Example 13.7.2 using a stub tuner and plot the corre-

sponding matched reflection responses. Use shorted stubs with separations l1 = l2 = λ/8,

and the two smallness parameters e = 0.9 and e = 0.7.

13.15 Design an L-section matching network that matches the complex load impedance ZL =
30 + 40j ohm to a 50-ohm transmission line. Verify that both a normal and a reversed

L-section can be used.

13.16 It is desired to match a line with characteristic impedance Z0 to a complex load ZL = RL +
jXL. In order to make the load reflectionless, a quarter-wavelength section of impedance Z1

is inserted between the main line and the load, and a λ/8 or 3λ/8 short-circuited stub of

impedance Z2 is inserted in parallel at the end of the line, as shown below.



13.14. Problems 661

a. Show that the section characteristic impedances must be chosen as:

Z1 =
√

Z0RL , Z2 = Z0

RL
|XL|

Such segments are easily implemented with microstrip lines.

b. Depending on the sign of XL, decide when one should use a λ/8 or a 3λ/8 stub.

c. The above scheme works if both RL andXL are non-zero. What should we do if RL �= 0

and XL = 0? What should we do if RL = 0 and XL �= 0?

d. Repeat the above questions if an open-circuited stub is used.

13.17 A 50-ohm transmission line is terminated at the load impedance:

ZL = 40+ 80j Ω

a. In order to make the load reflectionless, a quarter-wavelength transformer section of

impedance Z1 is inserted between the line and the load, as show below, and a λ/8 or

3λ/8 short-circuited stub of impedance Z2 is inserted in parallel with the load.

Determine the characteristic impedances Z1 and Z2 and whether the parallel stub

should have length λ/8 or 3λ/8.

b. In the general case of a shorted stub, show that the matching conditions are equivalent

to the following relationship among the quantities Z0, ZL, Z1, Z2:

ZL = Z0Z
2
1Z

2
2 ± jZ2Z

4
1

Z2
0Z

2
2 + Z4

1

where Z0, Z1, Z2 are assumed to be lossless. Determine which ± sign corresponds to

λ/8 or 3λ/8 stub length.
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13.18 An FM antenna operating at a carrier frequency of f0 = 100 MHz has input impedance of

ZL = 112.5 ohm. The antenna is to be matched to a Z0 = 50 ohm feed line with a quarter-

wavelength transformer inserted as shown below.

a. Determine the quarter-wavelength segment’s impedance Z1.

b. Show that the reflection response back into the feed line at the left end of the quarter-

wavelength transformer is given as a function of frequency by:

Γ1(f)= ρ(1+ e−2jδ)

1+ ρ2e−2jδ
, δ = πf

2f0
, ρ = Z1 − Z0

Z1 + Z0

c. Plot |Γ1(f)| versus f in the range 0 ≤ f ≤ 200 MHz.

d. Using part (b), show that the bandwidth Δfa about the carrier frequency f0 that corre-

sponds to a prescribed value |Γa|2 of the reflection response is given by:

Δfa = 2f0
π

acos

(

2ρ2 − |Γa|2(1+ ρ4)

2ρ2(1− |Γa|2)

)

e. Calculate this bandwidth for the value |Γa| = 0.1 and determine the left and right

bandedge frequencies in MHz, and place them on the above graph of |Γ1(f)|.
f. The FCC stipulates that FM radio stations operate within a 200 kHz bandwidth about

their carrier frequency. What is the maximum value of the reflection response |Γa| for

such a bandwidth?

13.19 The same FM antenna is to be matched using a single-stub tuner as shown below, using an

open-ended stub.

a. Determine the segment lengths d, l (in cm) assuming the segments have chacteristic

impedance of Z0 = 50 ohm and that the velocity factor on all the lines is 0.8.

b. Calculate and plot versus frequency the reflection response |Γa(f)| into the feed line,

at the terminals a shown in the figure.



14

S-Parameters

14.1 Scattering Parameters

Linear two-port (and multi-port) networks are characterized by a number of equivalent

circuit parameters, such as their transfer matrix, impedance matrix, admittance matrix,

and scattering matrix. Fig. 14.1.1 shows a typical two-port network.

Fig. 14.1.1 Two-port network.

The transfer matrix, also known as the ABCD matrix, relates the voltage and current

at port 1 to those at port 2, whereas the impedance matrix relates the two voltages

V1, V2 to the two currents I1, I2:†
[

V1

I1

]

=
[

A B

C D

][

V2

I2

]

(transfer matrix)

[

V1

V2

]

=
[

Z11 Z12

Z21 Z22

][

I1
−I2

]

(impedance matrix)

(14.1.1)

Thus, the transfer and impedance matrices are the 2×2 matrices:

T =
[

A B

C D

]

, Z =
[

Z11 Z12

Z21 Z22

]

(14.1.2)

The admittance matrix is simply the inverse of the impedance matrix, Y = Z−1. The

scattering matrix relates the outgoing waves b1, b2 to the incoming waves a1, a2 that

are incident on the two-port:

†In the figure, I2 flows out of port 2, and hence −I2 flows into it. In the usual convention, both currents

I1, I2 are taken to flow into their respective ports.
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[

b1

b2

]

=
[

S11 S12

S21 S22

][

a1

a2

]

, S =
[

S11 S12

S21 S22

]

(scattering matrix) (14.1.3)

The matrix elements S11, S12, S21, S22 are referred to as the scattering parameters or

the S-parameters. The parameters S11, S22 have the meaning of reflection coefficients,

and S21, S12, the meaning of transmission coefficients.

The many properties and uses of the S-parameters in applications are discussed

in [1131–1170]. One particularly nice overview is the HP application note AN-95-1 by

Anderson [1146] and is available on the web [1506].

We have already seen several examples of transfer, impedance, and scattering ma-

trices. Eq. (11.7.6) or (11.7.7) is an example of a transfer matrix and (11.8.1) is the

corresponding impedance matrix. The transfer and scattering matrices of multilayer

structures, Eqs. (6.6.23) and (6.6.37), are more complicated examples.

The traveling wave variables a1, b1 at port 1 and a2, b2 at port 2 are defined in terms

of V1, I1 and V2, I2 and a real-valued positive reference impedance Z0 as follows:

a1 = V1 + Z0I1

2
√

Z0

b1 = V1 − Z0I1

2
√

Z0

a2 = V2 − Z0I2

2
√

Z0

b2 = V2 + Z0I2

2
√

Z0

(traveling waves) (14.1.4)

The definitions at port 2 appear different from those at port 1, but they are really

the same if expressed in terms of the incoming current −I2:

a2 = V2 − Z0I2

2
√

Z0

= V2 + Z0(−I2)
2
√

Z0

b2 = V2 + Z0I2

2
√

Z0

= V2 − Z0(−I2)
2
√

Z0

The term traveling waves is justified below. Eqs. (14.1.4) may be inverted to express

the voltages and currents in terms of the wave variables:

V1 =
√

Z0(a1 + b1)

I1 = 1
√

Z0

(a1 − b1)

V2 =
√

Z0(a2 + b2)

I2 = 1
√

Z0

(b2 − a2)
(14.1.5)

In practice, the reference impedance is chosen to be Z0 = 50 ohm. At lower fre-

quencies the transfer and impedance matrices are commonly used, but at microwave

frequencies they become difficult to measure and therefore, the scattering matrix de-

scription is preferred.

The S-parameters can be measured by embedding the two-port network (the device-

under-test, or, DUT) in a transmission line whose ends are connected to a network ana-

lyzer. Fig. 14.1.2 shows the experimental setup.

A typical network analyzer can measure S-parameters over a large frequency range,

for example, the HP 8720D vector network analyzer covers the range from 50 MHz to
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40 GHz. Frequency resolution is typically 1 Hz and the results can be displayed either

on a Smith chart or as a conventional gain versus frequency graph.

Fig. 14.1.2 Device under test connected to network analyzer.

Fig. 14.1.3 shows more details of the connection. The generator and load impedances

are configured by the network analyzer. The connections can be reversed, with the

generator connected to port 2 and the load to port 1.

Fig. 14.1.3 Two-port network under test.

The two line segments of lengths l1, l2 are assumed to have characteristic impedance

equal to the reference impedance Z0. Then, the wave variables a1, b1 and a2, b2 are

recognized as normalized versions of forward and backward traveling waves. Indeed,

according to Eq. (11.7.8), we have:

a1 = V1 + Z0I1

2
√

Z0

= 1
√

Z0

V1+

b1 = V1 − Z0I1

2
√

Z0

= 1
√

Z0

V1−

a2 = V2 − Z0I2

2
√

Z0

= 1
√

Z0

V2−

b2 = V2 + Z0I2

2
√

Z0

= 1
√

Z0

V2+

(14.1.6)

Thus, a1 is essentially the incident wave at port 1 and b1 the corresponding reflected

wave. Similarly, a2 is incident from the right onto port 2 and b2 is the reflected wave

from port 2.

The network analyzer measures the waves a′1, b
′
1 and a′2, b

′
2 at the generator and

load ends of the line segments, as shown in Fig. 14.1.3. From these, the waves at the

inputs of the two-port can be determined. Assuming lossless segments and using the

propagation matrices (11.7.7), we have:
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[

a1

b1

]

=
[

e−jδ1 0

0 ejδ1

][

a′1
b′1

]

,

[

a2

b2

]

=
[

e−jδ2 0

0 ejδ2

][

a′2
b′2

]

(14.1.7)

where δ1 = βll and δ2 = βl2 are the phase lengths of the segments. Eqs. (14.1.7) can be

rearranged into the forms:

[

b1

b2

]

= D
[

b′1
b′2

]

,

[

a′1
a′2

]

= D
[

a1

a2

]

, D =
[

ejδ1 0

0 ejδ2

]

The network analyzer measures the corresponding S-parameters of the primed vari-

ables, that is,

[

b′1
b′2

]

=
[

S′11 S′12

S′21 S′22

][

a′1
a′2

]

, S′ =
[

S′11 S′12

S′21 S′22

]

(measured S-matrix) (14.1.8)

The S-matrix of the two-port can be obtained then from:

[

b1

b2

]

= D
[

b′1
b′2

]

= DS′
[

a′1
a′2

]

= DS′D
[

a1

a2

]

⇒ S = DS′D

or, more explicitly,

[

S11 S12

S21 S22

]

=
[

ejδ1 0

0 ejδ2

][

S′11 S′12

S′21 S′22

][

ejδ1 0

0 ejδ2

]

=
[

S′11e
2jδ1 S′12e

j(δ1+δ2)

S′21e
j(δ1+δ2) S′22e

2jδ2

] (14.1.9)

Thus, changing the points along the transmission lines at which the S-parameters

are measured introduces only phase changes in the parameters.

Without loss of generality, we may replace the extended circuit of Fig. 14.1.3 with the

one shown in Fig. 14.1.4 with the understanding that either we are using the extended

two-port parameters S′, or, equivalently, the generator and segment l1 have been re-

placed by their Thévenin equivalents, and the load impedance has been replaced by its

propagated version to distance l2.

Fig. 14.1.4 Two-port network connected to generator and load.
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The actual measurements of the S-parameters are made by connecting to a matched

load, ZL = Z0. Then, there will be no reflected waves from the load, a2 = 0, and the

S-matrix equations will give:

b1 = S11a1 + S12a2 = S11a1 ⇒ S11 = b1

a1

∣
∣
∣
∣
ZL=Z0

= reflection coefficient

b2 = S21a1 + S22a2 = S21a1 ⇒ S21 = b2

a1

∣
∣
∣
∣
ZL=Z0

= transmission coefficient

Reversing the roles of the generator and load, one can measure in the same way the

parameters S12 and S22.

14.2 Power Flow

Power flow into and out of the two-port is expressed very simply in terms of the traveling

wave amplitudes. Using the inverse relationships (14.1.5), we find:

1

2
Re[V∗1 I1] =

1

2
|a1|2 − 1

2
|b1|2

−1

2
Re[V∗2 I2] =

1

2
|a2|2 − 1

2
|b2|2

(14.2.1)

The left-hand sides represent the power flow into ports 1 and 2. The right-hand sides

represent the difference between the power incident on a port and the power reflected

from it. The quantity Re[V∗2 I2]/2 represents the power transferred to the load.

Another way of phrasing these is to say that part of the incident power on a port

gets reflected and part enters the port:

1

2
|a1|2 = 1

2
|b1|2 + 1

2
Re[V∗1 I1]

1

2
|a2|2 = 1

2
|b2|2 + 1

2
Re[V∗2 (−I2)]

(14.2.2)

One of the reasons for normalizing the traveling wave amplitudes by
√

Z0 in the

definitions (14.1.4) was precisely this simple way of expressing the incident and reflected

powers from a port.

If the two-port is lossy, the power lost in it will be the difference between the power

entering port 1 and the power leaving port 2, that is,

Ploss = 1

2
Re[V∗1 I1]−

1

2
Re[V∗2 I2]=

1

2
|a1|2 + 1

2
|a2|2 − 1

2
|b1|2 − 1

2
|b2|2

Noting that a†a = |a1|2 + |a2|2 and b†b = |b1|2 + |b2|2, and writing b†b = a†S†Sa,

we may express this relationship in terms of the scattering matrix:

Ploss = 1

2
a†a− 1

2
b†b = 1

2
a†a− 1

2
a†S†Sa = 1

2
a†(I − S†S)a (14.2.3)
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For a lossy two-port, the power loss is positive, which implies that the matrix I−S†S
must be positive definite. If the two-port is lossless, Ploss = 0, the S-matrix will be

unitary, that is, S†S = I.
We already saw examples of such unitary scattering matrices in the cases of the equal

travel-time multilayer dielectric structures and their equivalent quarter wavelength mul-

tisection transformers.

14.3 Parameter Conversions

It is straightforward to derive the relationships that allow one to pass from one param-

eter set to another. For example, starting with the transfer matrix, we have:

V1 = AV2 + BI2
I1 = CV2 +DI2

⇒
V1 = A

( 1

C
I1 − D

C
I2
)+ BI2 = A

C
I1 − AD− BC

C
I2

V2 = 1

C
I1 − D

C
I2

The coefficients of I1, I2 are the impedance matrix elements. The steps are reversible,

and we summarize the final relationships below:

Z =
[

Z11 Z12

Z21 Z22

]

= 1

C

[

A AD− BC
1 D

]

T =
[

A B

C D

]

= 1

Z21

[

Z11 Z11Z22 − Z12Z21

1 Z22

] (14.3.1)

We note the determinants det(T)= AD − BC and det(Z)= Z11Z22 − Z12Z21. The

relationship between the scattering and impedance matrices is also straightforward to

derive. We define the 2×1 vectors:

V =
[

V1

V2

]

, I =
[

I1
−I2

]

, a =
[

a1

a2

]

, b =
[

b1

b2

]

(14.3.2)

Then, the definitions (14.1.4) can be written compactly as:

a = 1

2
√

Z0

(V+ Z0I)= 1

2
√

Z0

(Z + Z0I)I

b = 1

2
√

Z0

(V− Z0I)= 1

2
√

Z0

(Z − Z0I)I

(14.3.3)

where we used the impedance matrix relationship V = ZI and defined the 2×2 unit

matrix I. It follows then,

1

2
√

Z0

I = (Z + Z0I)
−1a ⇒ b = 1

2
√

Z0

(Z − Z0I)I = (Z − Z0I)(Z + Z0I)
−1a

Thus, the scattering matrix S will be related to the impedance matrix Z by

S = (Z − Z0I)(Z + Z0I)
−1

⇔ Z = (I − S)−1(I + S)Z0 (14.3.4)
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Explicitly, we have:

S =
[

Z11 − Z0 Z12

Z21 Z22 − Z0

][

Z11 + Z0 Z12

Z21 Z22 + Z0

]−1

=
[

Z11 − Z0 Z12

Z21 Z22 − Z0

]

1

Dz

[

Z22 + Z0 −Z12

−Z21 Z11 + Z0

]

where Dz = det(Z + Z0I)= (Z11 + Z0)(Z22 + Z0)−Z12Z21. Multiplying the matrix

factors, we obtain:

S = 1

Dz

[

(Z11 − Z0)(Z22 + Z0)−Z12Z21 2Z12Z0

2Z21Z0 (Z11 + Z0)(Z22 − Z0)−Z12Z21

]

(14.3.5)

Similarly, the inverse relationship gives:

Z = Z0

Ds

[

(1+ S11)(1− S22)+S12S21 2S12

2S21 (1− S11)(1+ S22)+S12S21

]

(14.3.6)

where Ds = det(I− S)= (1− S11)(1− S22)−S12S21. Expressing the impedance param-

eters in terms of the transfer matrix parameters, we also find:

S = 1

Da

⎡

⎢
⎢
⎣

A+ B

Z0

−CZ0 −D 2(AD− BC)

2 −A+ B

Z0

−CZ0 +D

⎤

⎥
⎥
⎦ (14.3.7)

where Da = A+ B

Z0

+CZ0 +D.

14.4 Input and Output Reflection Coefficients

When the two-port is connected to a generator and load as in Fig. 14.1.4, the impedance

and scattering matrix equations take the simpler forms:

V1 = ZinI1

V2 = ZLI2
⇔

b1 = Γina1

a2 = ΓLb2

(14.4.1)

where Zin is the input impedance at port 1, and Γin, ΓL are the reflection coefficients at

port 1 and at the load:

Γin = Zin − Z0

Zin + Z0

, ΓL = ZL − Z0

ZL + Z0

(14.4.2)

The input impedance and input reflection coefficient can be expressed in terms of

the Z- and S-parameters, as follows:
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Zin = Z11 − Z12Z21

Z22 + ZL
⇔ Γin = S11 + S12S21ΓL

1− S22ΓL
(14.4.3)

The equivalence of these two expressions can be shown by using the parameter

conversion formulas of Eqs. (14.3.5) and (14.3.6), or they can be shown indirectly, as

follows. Starting with V2 = ZLI2 and using the second impedance matrix equation, we

can solve for I2 in terms of I1:

V2 = Z21I1 − Z22I2 = ZLI2 ⇒ I2 = Z21

Z22 + ZL
I1 (14.4.4)

Then, the first impedance matrix equation implies:

V1 = Z11I1 − Z12I2 =
(

Z11 − Z12Z21

Z22 + ZL

)

I1 = ZinI1

Starting again with V2 = ZLI2 we find for the traveling waves at port 2:

a2 = V2 − Z0I2

2
√

Z0

= ZL − Z0

2
√

Z0

I2

b2 = V2 + Z0I2

2
√

Z0

= ZL + Z0

2
√

Z0

I2

⇒ a2 = ZL − Z0

ZL + Z0

b2 = ΓLb2

Using V1 = ZinI1, a similar argument implies for the waves at port 1:

a1 = V1 + Z0I1

2
√

Z0

= Zin + Z0

2
√

Z0

I1

b1 = V1 − Z0I1

2
√

Z0

= Zin − Z0

2
√

Z0

I1

⇒ b1 = Zin − Z0

Zin + Z0

a1 = Γina1

It follows then from the scattering matrix equations that:

b2 = S21a1 + S22a2 = S22a1 + S22ΓLb2 ⇒ b2 = S21

1− S22ΓL
a1 (14.4.5)

which implies for b1:

b1 = S11a1 + S12a2 = S11a1 + S12ΓLb2 =
(

S11 + S12S21ΓL
1− S22ΓL

)

a1 = Γina1

Reversing the roles of generator and load, we obtain the impedance and reflection

coefficients from the output side of the two-port:

Zout = Z22 − Z12Z21

Z11 + ZG
⇔ Γout = S22 + S12S21ΓG

1− S11ΓG
(14.4.6)

where

Γout = Zout − Z0

Zout + Z0

, ΓG = ZG − Z0

ZG + Z0

(14.4.7)
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Fig. 14.4.1 Input and output equivalent circuits.

The input and output impedances allow one to replace the original two-port circuit

of Fig. 14.1.4 by simpler equivalent circuits. For example, the two-port and the load can

be replaced by the input impedance Zin connected at port 1, as shown in Fig. 14.4.1.

Similarly, the generator and the two-port can be replaced by a Thévenin equivalent

circuit connected at port 2. By determining the open-circuit voltage and short-circuit

current at port 2, we find the corresponding Thévenin parameters in terms of the impe-

dance parameters:

Vth = Z21VG
Z11 + ZG

, Zth = Zout = Z22 − Z12Z21

Z11 + ZG
(14.4.8)

14.5 Stability Circles

In discussing the stability conditions of a two-port in terms of S-parameters, the follow-

ing definitions of constants are often used:

Δ = det(S)= S11S22 − S12S21

K = 1− |S11|2 − |S22|2 + |Δ|2
2|S12S21|

(Rollett stability factor)

μ1 = 1− |S11|2
|S22 −ΔS∗11| + |S12S21|

(Edwards-Sinsky stability parameter)

μ2 = 1− |S22|2
|S11 −ΔS∗22| + |S12S21|

B1 = 1+ |S11|2 − |S22|2 − |Δ|2

B2 = 1+ |S22|2 − |S11|2 − |Δ|2

C1 = S11 −ΔS∗22 , D1 = |S11|2 − |Δ|2

C2 = S22 −ΔS∗11 , D2 = |S22|2 − |Δ|2

(14.5.1)

The quantity K is the Rollett stability factor [1142], and μ1, μ2, the Edwards-Sinsky

stability parameters [1145]. The following identities hold among these constants:
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B2
1 − 4|C1|2 = B2

2 − 4|C2|2 = 4|S12S21|2(K2 − 1)

|C1|2 = |S12S21|2 +
(

1− |S22|2
)

D1

|C2|2 = |S12S21|2 +
(

1− |S11|2
)

D2

(14.5.2)

For example, noting that S12S21 = S11S22 − Δ, the last of Eqs. (14.5.2) is a direct

consequence of the identity:

|A− BC|2 − |B−AC∗|2 = (

1− |C|2)(|A|2 − |B|2) (14.5.3)

We define also the following parameters, which will be recognized as the centers and

radii of the source and load stability circles:

cG = C∗1
D1

, rG = |S12S21|
|D1|

(source stability circle) (14.5.4)

cL = C∗2
D2

, rL = |S12S21|
|D2|

(load stability circle) (14.5.5)

They satisfy the following relationships, which are consequences of the last two of

Eqs. (14.5.2) and the definitions (14.5.4) and (14.5.5):

1− |S11|2 =
(|cL|2 − r2

L

)

D2

1− |S22|2 =
(|cG|2 − r2

G

)

D1

(14.5.6)

We note also that using Eqs. (14.5.6), the stability parameters μ1, μ2 can be written as:

μ1 =
(|cL| − rL

)

sign(D2)

μ2 =
(|cG| − rG

)

sign(D1)
(14.5.7)

For example, we have:

μ1 = 1− |S11|2
|C2| + |S12S21|

= D2

(|cL|2 − r2
L

)

|D2||cL| + |D2|rL
= D2

(|cL|2 − r2
L

)

|D2|
(|cL| + rL

) = D2

|D2|
(|cL| − rL

)

We finally note that the input and output reflection coefficients can be written in the

alternative forms:

Γin = S11 + S12S21ΓL
1− S22ΓL

= S11 −ΔΓL
1− S22ΓL

Γout = S22 + S12S21ΓG
1− S22ΓG

= S22 −ΔΓG
1− S11ΓG

(14.5.8)

Next, we discuss the stability conditions. The two-port is unconditionally stable if

any generator and load impedances with positive resistive parts RG, RL, will always lead

to input and output impedances with positive resistive parts Rin, Rout.

Equivalently, unconditional stability requires that any load and generator with |ΓL| <
1 and |ΓG| < 1 will result into |Γin| < 1 and |Γout| < 1.

The two-port is termed potentially or conditionally unstable if there are |ΓL| < 1 and

|ΓG| < 1 resulting into |Γin| ≥ 1 and/or |Γout| ≥ 1.
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The load stability region is the set of all ΓL that result into |Γin| < 1, and the source

stability region, the set of all ΓG that result into |Γout| < 1.

In the unconditionally stable case, the load and source stability regions contain the

entire unit-circles |ΓL| < 1 or |ΓG| < 1. However, in the potentially unstable case, only

portions of the unit-circles may lie within the stability regions and such ΓG, ΓL will lead

to a stable input and output impedances.

The connection of the stability regions to the stability circles is brought about by the

following identities, which can be proved easily using Eqs. (14.5.1)–(14.5.8):

1− |Γin|2 =
|ΓL − cL|2 − r2

L

|1− S22ΓL|2
D2

1− |Γout|2 =
|ΓG − cG|2 − r2

G

|1− S11ΓG|2
D1

(14.5.9)

For example, the first can be shown starting with Eq. (14.5.8) and using the definitions

(14.5.5) and the relationship (14.5.6):

1− |Γin|2 = 1−
∣
∣
∣
∣

S11 −ΔΓL
1− S22ΓL

∣
∣
∣
∣

2

= |S11 −ΔΓL|2 − |1− S22ΓL|2
|1− S22ΓL|2

=
(|S22|2 − |Δ|2

)|ΓL|2 − (S22 −ΔS∗11)ΓL − (S∗22 −Δ∗S11)Γ
∗
L + 1− |S11|2

|1− S22ΓL|2

= D2|ΓL|2 −C2ΓL −C∗2 Γ∗L + 1− |S11|2
|1− S22ΓL|2

= D2

(|ΓL|2 − c∗LΓL − c∗LΓ∗L + |cL|2 − r2
L

)

|1− S22ΓL|2
= D2

(|ΓL − cL|2 − r2
L

)

|1− S22ΓL|2

It follows from Eq. (14.5.9) that the load stability region is defined by the conditions:

1− |Γin|2 > 0 ⇔
(|ΓL − cL|2 − r2

L

)

D2 > 0

Depending on the sign of D2, these are equivalent to the outside or the inside of the

load stability circle of center cL and radius rL:

|ΓL − cL| > rL , if D2 > 0

|ΓL − cL| < rL , if D2 < 0
(load stability region) (14.5.10)

The boundary of the circle |ΓL−cL| = rL corresponds to |Γin| = 1. The complement

of these regions corresponds to the unstable region with |Γin| > 1. Similarly, we find

for the source stability region:

|ΓG − cG| > rG , if D1 > 0

|ΓG − cG| < rG , if D1 < 0
(source stability region) (14.5.11)

In order to have unconditional stability, the stability regions must contain the unit-

circle in its entirety. If D2 > 0, the unit-circle and load stability circle must not overlap
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at all, as shown in Fig. 14.5.1. Geometrically, the distance between the pointsO andA in

the figure is (OA)= |cL|−rL. The non-overlapping of the circles requires the condition

(OA)> 1, or, |cL| − rL > 1.

If D2 < 0, the stability region is the inside of the stability circle, and therefore, the

unit-circle must lie within that circle. This requires that (OA)= rL−|cL| > 1, as shown

in Fig. 14.5.1.

Fig. 14.5.1 Load stability regions in the unconditionally stable case.

These two conditions can be combined into sign(D2)
(|cL| − rL

)

> 1. But, that is

equivalent to μ1 > 1 according to Eq. (14.5.7). Geometrically, the parameter μ1 repre-

sents the distance (OA). Thus, the condition for the unconditional stability of the input

is equivalent to:

μ1 > 1 (unconditional stability condition) (14.5.12)

It has been shown by Edwards and Sinsky [1145] that this single condition (or, alter-

natively, the single condition μ2 > 1) is necessary and sufficient for the unconditional

stability of both the input and output impedances of the two-port. Clearly, the source

stability regions will be similar to those of Fig. 14.5.1.

If the stability condition is not satisfied, that is, μ1 < 1, then only that portion of the

unit-circle that lies within the stability region will be stable and will lead to stable input

and output impedances. Fig. 14.5.2 illustrates such a potentially unstable case.

If D2 > 0, then μ1 < 1 is equivalent to |cL| − rL < 1, and if D2 < 0, it is equivalent

to rL − |cL| < 1. In either case, the unit-circle is partially overlapping with the stability

circle, as shown in Fig. 14.5.2. The portion of the unit-circle that does not lie within the

stability region will correspond to an unstable Zin.

There exist several other unconditional stability criteria that are equivalent to the

single criterion μ1 > 1. They all require that the Rollett stability factor K be greater

than unity, K > 1, as well as one other condition. Any one of the following criteria are

necessary and sufficient for unconditional stability [1143]:
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Fig. 14.5.2 Load stability regions in potentially unstable case.

K > 1 and |Δ| < 1

K > 1 and B1 > 0

K > 1 and B2 > 0

K > 1 and |S12S21| < 1− |S11|2
K > 1 and |S12S21| < 1− |S22|2

(stability conditions) (14.5.13)

Their equivalence to μ1 > 1 has been shown in [1145]. In particular, it follows from

the last two conditions that unconditional stability requires |S11| < 1 and |S22| < 1.

These are necessary but not sufficient for stability.

A very common circumstance in practice is to have a potentially unstable two-port,

but with |S11| < 1 and |S22| < 1. In such cases, Eq. (14.5.6) implies D2

(|cL|2 − r2
L)> 0,

and the lack of stability requires μ1 = sign(D2)
(|cL|2 − r2

L)< 1.

Therefore, if D2 > 0, then we must have |cL|2 − r2
L > 0 and |cL| − rL < 1, which

combine into the inequality rL < |cL| < rL + 1. This is depicted in the left picture of

Fig. 14.5.2. The geometrical distance (OA)= |cL| − rL satisfies 0 < (OA)< 1, so that

stability circle partially overlaps with the unit-circle but does not enclose its center.

On the other hand, ifD2 < 0, the two conditions require |cL|2−r2
L < 0 and rL−|cL| <

1, which imply |cL| < rL < |cL| + 1. This is depicted in the right Fig. 14.5.2. The

geometrical distance (OA)= rL − |cL| again satisfies 0 < (OA)< 1, but now the center

of the unit-circle lies within the stability circle, which is also the stability region.

We have written a number of MATLAB functions that facilitate working with S-

parameters. They are described in detail later on:

smat reshape S-parameters into S-matrix

sparam calculate stability parameters

sgain calculate transducer, available, operating, and unilateral power gains

smatch calculate simultaneous conjugate match for generator and load

gin,gout calculate input and output reflection coefficients

smith draw a basic Smith chart

smithcir draw a stability or gain circle on Smith chart

sgcirc determine stability and gain circles

nfcirc determine noise figure circles

nfig calculate noise figure
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The MATLAB function sparam calculates the stability parameters μ1, K, |Δ|, B1, B2,

as well as the parameters C1, C2,D1,D2. It has usage:

[K,mu,D,B1,B2,C1,C2,D1,D2] = sparam(S); % stability parameters

The function sgcirc calculates the centers and radii of the source and load stability

circles. It also calculates gain circles to be discussed later on. Its usage is:

[cL,rL] = sgcirc(S,’l’); % load or Zin stability circle

[cG,rG] = sgcirc(S,’s’); % source or Zout stability circle

The MATLAB function smith draws a basic Smith chart, and the function smithcir

draws the stability circles:

smith(n); % draw four basic types of Smith charts, n = 1,2,3,4

smith; % default Smith chart corresponding to n = 3

smithcir(c,r,max,width); % draw circle of center c and radius r

smithcir(c,r,max); % equivalent to linewidth width=1

smithcir(c,r); % draw full circle with linewidth width=1

The parameter max controls the portion of the stability circle that is visible outside

the Smith chart. For example, max = 1.1 will display only that portion of the circle that

has |Γ| < 1.1.

Example 14.5.1: The Hewlett-Packard AT-41511 NPN bipolar transistor has the following S-

parameters at 1 GHz and 2 GHz [1507]:

S11 = 0.48∠−149o , S21 = 5.189∠89o , S12 = 0.073∠43o , S22 = 0.49∠−39o

S11 = 0.46∠162o , S21 = 2.774∠59o , S12 = 0.103∠45o , S22 = 0.42∠−47o

Determine the stability parameters, stability circles, and stability regions.

Solution: The transistor is potentially unstable at 1 GHz, but unconditionally stable at 2 GHz.

The source and load stability circles at 1 GHz are shown in Fig. 14.5.3.

Fig. 14.5.3 Load and source stability circles at 1 GHz.

The MATLAB code used to generate this graph was:
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S = smat([0.48 -149 5.189 89 0.073 43 0.49 -39]); % form S-matrix

[K,mu,D,B1,B2,C1,C2,D1,D2] = sparam(S); % stability parameters

[cL,rL] = sgcirc(S,’l’); % stability circles

[cG,rG] = sgcirc(S,’s’);

smith; % draw basic Smith chart

smithcir(cL, rL, 1.1, 1.5); % draw stability circles

smithcir(cG, rG, 1.1, 1.5);

The computed stability parameters at 1 GHz were:

[K,μ1, |Δ|, B1, B2,D1,D2]= [0.781, 0.847, 0.250, 0.928, 0.947, 0.168, 0.178]

The transistor is potentially unstable because K < 1 even though |Δ| < 1, B1 > 0, and

B2 > 0. The load and source stability circle centers and radii were:

cL = 2.978∠51.75o , rL = 2.131

cG = 3.098∠162.24o , rG = 2.254

Because bothD1 andD2 are positive, both stability regions will be the portion of the Smith

chart that lies outside the stability circles. For 2 GHz, we find:

[K,μ1, |Δ|, B1, B2,D1,D2]= [1.089, 1.056, 0.103, 1.025, 0.954, 0.201, 0.166]

cL = 2.779∠50.12o , rL = 1.723

cG = 2.473∠−159.36o , rG = 1.421

The transistor is stable at 2 GHz, with both load and source stability circles being com-

pletely outside the unit-circle. ⊓⊔

Problem 14.2 presents an example for which the D2 parameter is negative, so that

the stability regions will be the insides of the stability circles. At one frequency, the

unit-circle is partially overlapping with the stability circle, while at another frequency,

it lies entirely within the stability circle.

14.6 Power Gains

The amplification (or attenuation) properties of the two-port can be deduced by com-

paring the power Pin going into the two-port to the power PL coming out of the two-port

and going into the load. These were given in Eq. (14.2.1) and we rewrite them as:

Pin = 1

2
Re[V∗1 I1]=

1

2
Rin|I1|2 (power into two-port)

PL = 1

2
Re[V∗2 I2]=

1

2
RL|I2|2 (power out of two-port and into load)

(14.6.1)
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where we used V1 = ZinI1, V2 = ZLI2, and defined the real parts of the input and

load impedances by Rin = Re(Zin) and RL = Re(ZL). Using the equivalent circuits of

Fig. 14.4.1, we may write I1, I2 in terms of the generator voltage VG and obtain:

Pin = 1

2

|VG|2Rin

|Zin + ZG|2

PL = 1

2

|Vth|2RL
|Zout + ZL|2

= 1

2

|VG|2RL|Z21|2
∣
∣(Z11 + ZG)(Zout + ZL)

∣
∣2

(14.6.2)

Using the identities of Problem 14.1, PL can also be written in the alternative forms:

PL = 1

2

|VG|2RL|Z21|2
∣
∣(Z22 + ZL)(Zin + ZG)

∣
∣2 =

1

2

|VG|2RL|Z21|2
∣
∣(Z11 + ZG)(Z22 + ZL)−Z12Z21

∣
∣2 (14.6.3)

The maximum power that can be delivered by the generator to a connected load

is called the available power of the generator, PavG, and is obtained when the load is

conjugate-matched to the generator, that is, PavG = Pin when Zin = Z∗G.

Similarly, the available power from the two-port network, PavN, is the maximum

power that can be delivered by the Thévenin-equivalent circuit of Fig. 14.4.1 to a con-

nected load, that is, PavN = PL when ZL = Z∗th = Z∗out. It follows then from Eq. (14.6.2)

that the available powers will be:

PavG = maxPin = |VG|2
8RG

(available power from generator)

PavN = maxPL = |Vth|2
8Rout

(available power from network)

(14.6.4)

Using Eq. (14.4.8), PavN can also be written as:

PavN = |VG|2
8Rout

∣
∣
∣
∣

Z21

Z11 + ZG

∣
∣
∣
∣

2

(14.6.5)

The powers can be expressed completely in terms of the S-parameters of the two-

port and the input and output reflection coefficients. With the help of the identities of

Problem 14.1, we find the alternative expressions for Pin and PL:

Pin = |VG|2
8Z0

(

1− |Γin|2
)|1− ΓG|2

|1− ΓinΓG|2

PL = |VG|2
8Z0

(

1− |ΓL|2
)|1− ΓG|2|S21|2

∣
∣(1− ΓinΓG)(1− S22ΓL)

∣
∣2

= |VG|2
8Z0

(

1− |ΓL|2
)|1− ΓG|2|S21|2

∣
∣(1− ΓoutΓL)(1− S11ΓG)

∣
∣2

= |VG|2
8Z0

(

1− |ΓL|2
)|1− ΓG|2|S21|2

∣
∣(1− S11ΓG)(1− S22ΓL)−S12S21ΓGΓL

∣
∣2

(14.6.6)

Similarly, we have for PavG and PavN:
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PavG = |VG|2
8Z0

|1− ΓG|2
1− |ΓG|2

PavN = |VG|2
8Z0

|1− ΓG|2|S21|2
(

1− |Γout|2
)|1− S11ΓG|2

(14.6.7)

It is evident that PavG, PavN are obtained from Pin, PL by setting Γin = Γ∗G and ΓL =
Γ∗out, which are equivalent to the conjugate-match conditions.

Three widely used definitions for the power gain of the two-port network are the

transducer power gain GT, the available power gain Ga, and the power gain Gp, also

called the operating gain. They are defined as follows:

GT = power out of network

maximum power in
= PL
PavG

(transducer power gain)

Ga = maximum power out

maximum power in
= PavN

PavG

(available power gain)

Gp = power out of network

power into network
= PL
Pin

(operating power gain)

(14.6.8)

Each gain is expressible either in terms of the Z-parameters of the two-port, or in

terms of its S-parameters. In terms of Z-parameters, the transducer gain is given by the

following forms, obtained from the three forms of PL in Eqs. (14.6.2) and (14.6.3):

GT = 4RGRL|Z21|2
∣
∣(Z22 + ZL)(Zin + ZG)

∣
∣2

= 4RGRL|Z21|2
∣
∣(Z11 + ZG)(Zout + ZL)

∣
∣2

= 4RGRL|Z21|2
∣
∣(Z11 + ZG)(Z22 + ZL)−Z12Z21

∣
∣2

(14.6.9)

And, in terms of the S-parameters:

GT = 1− |ΓG|2
|1− ΓinΓG|2

|S21|2 1− |ΓL|2
|1− S22ΓL|2

= 1− |ΓG|2
|1− S11ΓG|2

|S21|2 1− |ΓL|2
|1− ΓoutΓL|2

= (1− |ΓG|2)|S21|2(1− |ΓL|2)
∣
∣(1− S11ΓG)(1− S22ΓL)−S12S21ΓGΓL

∣
∣2

(14.6.10)

Similarly, we have for Ga and Gp:

Ga = RG
Rout

∣
∣
∣
∣

Z21

Z11 + ZG

∣
∣
∣
∣

2

= 1− |ΓG|2
|1− S11ΓG|2

|S21|2 1

1− |Γout|2

Gp = RL
Rin

∣
∣
∣
∣

Z21

Z22 + ZL

∣
∣
∣
∣

2

= 1

1− |Γin|2
|S21|2 1− |ΓL|2

|1− S22ΓL|2

(14.6.11)
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The transducer gain GT is, perhaps, the most representative measure of gain for

the two-port because it incorporates the effects of both the load and generator impe-

dances, whereas Ga depends only on the generator impedance and Gp only on the load

impedance.

If the generator and load impedances are matched to the reference impedance Z0,

so that ZG = ZL = Z0 and ΓG = ΓL = 0, and Γin = S11, Γout = S22, then the power gains

reduce to:

GT = |S21|2 , Ga = |S21|2
1− |S22|2

, Gp = |S21|2
1− |S11|2

(14.6.12)

A unilateral two-port has by definition zero reverse transmission coefficient, that is,

S12 = 0. In this case, the input and output reflection coefficients simplify into:

Γin = S11 , Γout = S22 (unilateral two-port) (14.6.13)

The expressions of the power gains simplify somewhat in this case:

GTu = 1− |ΓG|2
|1− S11ΓG|2

|S21|2 1− |ΓL|2
|1− S22ΓL|2

Gau = 1− |ΓG|2
|1− S11ΓG|2

|S21|2 1

1− |S22|2

Gpu = 1

1− |S11|2
|S21|2 1− |ΓL|2

|1− S22ΓL|2

(unilateral gains) (14.6.14)

For both the bilateral and unilateral cases, the gains Ga, Gp are obtainable from GT
by setting ΓL = Γ∗out and Γin = Γ∗G, respectively, as was the case for PavN and PavG.

The relative power ratios Pin/PavG and PL/PavN measure the mismatching between

the generator and the two-port and between the load and the two-port. Using the defi-

nitions for the power gains, we obtain the input and output mismatch factors:

Min = Pin

PavG

= GT
Gp

= 4RinRG
|Zin + ZG|2

=
(

1− |Γin|2
)(

1− |ΓG|2
)

|1− ΓinΓG|2
(14.6.15)

Mout = PL
PavN

= GT
Ga

= 4RoutRL
|Zout + ZL|2

=
(

1− |Γout|2
)(

1− |ΓL|2
)

|1− ΓoutΓL|2
(14.6.16)

The mismatch factors are always less than or equal to unity (for positive Rin and

Rout.) Clearly, Min = 1 under the conjugate-match condition Zin = Z∗G or Γin = Γ∗G, and

Mout = 1 if ZL = Z∗out or ΓL = Γ∗out. The mismatch factors can also be written in the

following forms, which show more explicitly the mismatch properties:

Min = 1−
∣
∣
∣
∣
∣

Γin − Γ∗G
1− ΓinΓG

∣
∣
∣
∣
∣

2

, Mout = 1−
∣
∣
∣
∣
∣

Γout − Γ∗L
1− ΓoutΓL

∣
∣
∣
∣
∣

2

(14.6.17)

These follow from the identity:

|1− Γ1Γ2|2 − |Γ1 − Γ∗2 |2 =
(

1− |Γ1|2
)(

1− |Γ2|2
)

(14.6.18)
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The transducer gain is maximized when the two-port is simultaneously conjugate

matched, that is, when Γin = Γ∗G and ΓL = Γ∗out. Then, Min = Mout = 1 and the three

gains become equal. The common maximum gain achieved by simultaneous matching

is called the maximum available gain (MAG):

GT,max = Ga,max = Gp,max = GMAG (14.6.19)

Simultaneous matching is discussed in Sec. 14.8. The necessary and sufficient con-

dition for simultaneous matching is K ≥ 1, where K is the Rollett stability factor. It can

be shown that the MAG can be expressed as:

GMAG = |S21|
|S12|

(

K −
√

K2 − 1
)

(maximum available gain) (14.6.20)

The maximum stable gain (MSG) is the maximum value GMAG can have, which is

achievable when K = 1:

GMSG = |S21|
|S12|

(maximum stable gain) (14.6.21)

In the unilateral case, the MAG is obtained either by setting ΓG = Γ∗in = S∗11 and

ΓL = Γ∗out = S∗22 in Eq. (14.6.14), or by a careful limiting process in Eq. (14.6.20), in which

K →∞ so that both the numerator factor K−
√
K2 − 1 and the denominator factor |S12|

tend to zero. With either method, we find the unilateral MAG:

GMAG,u = |S21|2
(

1− |S11|2
)(

1− |S22|2
) = G1|S21|2G2 (unilateral MAG) (14.6.22)

The maximum unilateral input and output gain factors are:

G1 = 1

1− |S11|2
, G2 = 1

1− |S22|2
(14.6.23)

They are the maxima of the input and output gain factors in Eq. (14.6.14) realized

with conjugate matching, that is, with ΓG = S∗11 and ΓL = S∗22. For any other values

of the reflection coefficients (such that |ΓG| < 1 and ΓL| < 1), we have the following

inequalities, which follow from the identity (14.6.18):

1− |ΓG|2
|1− S11ΓG|2

≤ 1

1− |S11|2
,

1− |ΓL|2
|1− S22ΓL|2

≤ 1

1− |S22|2
(14.6.24)

Often two-ports, such as most microwave transistor amplifiers, are approximately

unilateral, that is, the measured S-parameters satisfy |S12| ≪ |S21|. To decide whether

the two-port should be treated as unilateral, a figure of merit is used, which is essentially

the comparison of the maximum unilateral gain to the transducer gain of the actual

device under the same matching conditions, that is, ΓG = S∗11 and ΓL = S∗22.

For these matched values ofΓG, ΓL, the ratio of the bilateral and unilateral transducer

gains can be shown to have the form:

gu = GT
GTu

= 1

|1−U|2 , U = S12S21S
∗
11S

∗
22

(

1− |S11|2
)(

1− |S22|2
) (14.6.25)
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The quantity |U| is known as the unilateral figure of merit. If the relative gain ratio

gu is near unity (typically, within 10 percent of unity), the two-port may be treated as

unilateral.

The MATLAB function sgain computes the transducer, available, and operating

power gains, given the S-parameters and the reflection coefficients ΓG, ΓL. In addition,

it computes the unilateral gains, the maximum available gain, and the maximum stable

gain. It also computes the unilateral figure of merit ratio (14.6.25). It has usage:

Gt = sgain(S,gG,gL); transducer power gain at given ΓG, ΓL
Ga = sgain(S,gG,’a’); available power gain at given ΓG with ΓL = Γ∗out

Gp = sgain(S,gL,’p’); operating power gain at given ΓL with ΓG = Γ∗in

Gmag = sgain(S); maximum available gain (MAG)

Gmsg = sgain(S,’msg’); maximum stable gain (MSG)

Gu = sgain(S,’u’); maximum unilateral gain, Eq. (14.6.22)

G1 = sgain(S,’ui’); maximum unilateral input gain, Eq. (14.6.23)

G2 = sgain(S,’uo’); maximum unilateral output gain, Eq. (14.6.23)

gu = sgain(S,’ufm’); unilateral figure of merit gain ratio, Eq. (14.6.25)

The MATLAB functions gin and gout compute the input and output reflection coef-

ficients from S and ΓG, ΓL. They have usage:

Gin = gin(S,gL); input reflection coefficient, Eq. (14.4.3)

Gout = gout(S,gG); output reflection coefficient, Eq. (14.4.6)

Example 14.6.1: A microwave transistor amplifier uses the Hewlett-Packard AT-41410 NPN

bipolar transistor with the following S-parameters at 2 GHz [1507]:

S11 = 0.61∠165o , S21 = 3.72∠59o , S12 = 0.05∠42o , S22 = 0.45∠−48o

Calculate the input and output reflection coefficients and the various power gains, if the

amplifier is connected to a generator and load with impedances ZG = 10− 20j and ZL =
30+ 40j ohm.

Solution: The following MATLAB code will calculate all the required gains:

Z0 = 50; % normalization impedance

ZG = 10+20j; gG = z2g(ZG,Z0); % ΓG = −0.50+ 0.50j = 0.71∠135o

ZL = 30-40j; gL = z2g(ZL,Z0); % ΓL = −0.41− 0.43j = 0.59∠−133.15o

S = smat([0.61 165 3.72 59 0.05 42 0.45 -48]); % reshape S into matrix

Gin = gin(S,gL); % Γin = 0.54∠162.30o

Gout = gout(S,gG); % Γout = 0.45∠−67.46o

Gt = sgain(S,gG,gL); % GT = 4.71, or, 6.73 dB

Ga = sgain(S,gG,’a’); % Ga = 11.44, or, 10.58 dB

Gp = sgain(S,gL,’p’); % Gp = 10.51, or, 10.22 dB

Gu = sgain(S,’u’); % Gu = 27.64, or, 14.41 dB

G1 = sgain(S,’ui’); % G1 = 1.59, or, 2.02 dB

G2 = sgain(S,’uo’); % G2 = 1.25, or, 0.98 dB
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gu = sgain(S,’ufm’); % gu = 1.23, or, 0.89 dB

Gmag = sgain(S); % GMAG = 41.50, or, 16.18 dB

Gmsg = sgain(S,’msg’); % GMSG = 74.40, or, 18.72 dB

The amplifier cannot be considered to be unilateral as the unilateral figure of merit ratio

gu = 1.23 is fairly large (larger than 10 percent from unity.)

The amplifier is operating at a gain of GT = 6.73 dB, which is far from the maximum value

of GMAG = 16.18 dB. This is because it is mismatched with the given generator and load

impedances.

To realize the optimum gain GMAG the amplifier must ‘see’ certain optimum generator

and load impedances or reflection coefficients. These can be calculated by the MATLAB

function smatch and are found to be:

ΓG = 0.82∠−162.67o ⇒ ZG = g2z(ZG, Z0)= 5.12− 7.54j Ω

ΓL = 0.75∠52.57o ⇒ ZL = g2z(ZL, Z0)= 33.66+ 91.48j Ω

The design of such optimum matching terminations and the function smatch are discussed

in Sec. 14.8. The functions g2z and z2g were discussed in Sec. 11.7 . ⊓⊔

14.7 Generalized S-Parameters and Power Waves

The practical usefulness of the S-parameters lies in the fact that the definitions (14.1.4)

represent forward and backward traveling waves, which can be measured remotely by

connecting a network analyzer to the two-port with transmission lines of characteristic

impedance equal to the normalization impedance Z0. This was depicted in Fig. 14.1.3.

A generalized definition of S-parameters and wave variables can be given by using

in Eq. (14.1.4) two different normalization impedances for the input and output ports.

Anticipating that the two-port will be connected to a generator and load of impedan-

ces ZG and ZL, a particularly convenient choice is to use ZG for the input normalization

impedance and ZL for the output one, leading to the definition of the power waves (as

opposed to traveling waves) [1133–1135,1137]:

a′1 =
V1 + ZGI1

2
√

RG

b′1 =
V1 − Z∗GI1

2
√

RG

a′2 =
V2 − ZLI2

2
√

RL

b′2 =
V2 + Z∗L I2

2
√

RL

(power waves) (14.7.1)

We note that the b-waves involve the complex-conjugates of the impedances. The

quantities RG, RL are the resistive parts of ZG, ZL and are assumed to be positive. These

definitions reduce to the conventional traveling ones if ZG = ZL = Z0.

These “wave” variables can no longer be interpreted as incoming and outgoing waves

from the two sides of the two-port. However, as we see below, they have a nice interpre-

tation in terms of power transfer to and from the two-port and simplify the expressions

for the power gains. Inverting Eqs. (14.7.1), we have:
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V1 = 1
√

RG
(Z∗Ga

′
1 + ZGb′1)

I1 = 1
√

RG
(a′1 − b′1)

V2 = 1
√

RL
(Z∗La

′
2 + ZLb′2)

I2 = 1
√

RL
(b′2 − a′2)

(14.7.2)

The power waves can be related directly to the traveling waves. For example, ex-

pressing Eqs. (14.7.1) and (14.1.5) in matrix form, we have for port-1:

[

a′1
b′1

]

= 1

2
√

RG

[

1 ZG
1 −Z∗G

][

V1

I1

]

,

[

V1

I1

]

= 1
√

Z0

[

Z0 Z0

1 −1

][

a1

b1

]

It follows that:

[

a′1
b′1

]

= 1

2
√

RGZ0

[

1 ZG
1 −Z∗G

][

Z0 Z0

1 −1

][

a1

b1

]

or,

[

a′1
b′1

]

= 1

2
√

RGZ0

[

Z0 + ZG Z0 − ZG
Z0 − Z∗G Z0 + Z∗G

][

a1

b1

]

(14.7.3)

The entries of this matrix can be expressed directly in terms of the reflection coeffi-

cient ΓG. Using the identities of Problem 14.3, we may rewrite Eq. (14.7.3) and its inverse

as follows::

[

a′1
b′1

]

= 1
√

1− |ΓG|2
[

ejφG −ΓGejφG
−Γ∗Ge−jφG e−jφG

][

a1

b1

]

[

a1

b1

]

= 1
√

1− |ΓG|2
[

e−jφG ΓGe
jφG

Γ∗Ge
−jφG ejφG

][

a′1
b′1

] (14.7.4)

where, noting that the quantity |1− ΓG|/(1− ΓG) is a pure phase factor, we defined:

ΓG = ZG − Z0

ZG + Z0

, ejφG = |1− ΓG|
1− ΓG

= 1− Γ∗G
|1− ΓG|

(14.7.5)

Similarly, we have for the power and traveling waves at port-2:

[

a′2
b′2

]

= 1
√

1− |ΓL|2

[

ejφL −ΓLejφL
−Γ∗Le−jφL e−jφL

][

a2

b2

]

[

a2

b2

]

= 1
√

1− |ΓL|2

[

e−jφL ΓLe
jφL

Γ∗Le
−jφL ejφL

][

a′2
b′2

] (14.7.6)

where

ΓL = ZL − Z0

ZL + Z0

, ejφL = |1− ΓL|
1− ΓL

= 1− Γ∗L
|1− ΓL|

(14.7.7)

The generalized S-parameters are the scattering parameters with respect to the

power wave variables, that is,
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[

b′1
b′2

]

=
[

S′11 S′12

S′21 S′22

][

a′1
a′2

]

⇒ b′ = S′a′ (14.7.8)

To relate S′ to the conventional scattering matrix S, we define the following diagonal

matrices:

Γ =
[

ΓG 0

0 ΓL

]

, F =

⎡

⎢
⎢
⎢
⎣

ejφG
√

1− |ΓG|2
0

0
ejφL

√

1− |ΓL|2

⎤

⎥
⎥
⎥
⎦
=
[

FG 0

0 FL

]

(14.7.9)

Using these matrices, it follows from Eqs. (14.7.4) and (14.7.6):

a′1 = FG(a1 − ΓGb1)

a′2 = FL(a2 − ΓLb2)
⇒ a′ = F(a− Γb) (14.7.10)

b′1 = F∗G(b1 − Γ∗Ga1)

b′2 = F∗L (b2 − Γ∗La2)
⇒ b′ = F∗(b− Γ∗a) (14.7.11)

Using b = Sa, we find

a′ = F(a− Γb)= F(I − ΓS)a ⇒ a = (I − ΓS)−1F−1a′

b′ = F∗(S− Γ∗)a = F∗(S− Γ∗)(I − ΓS)−1F−1a′ = S′a′

where I is the 2×2 unit matrix. Thus, the generalized S-matrix is:

S′ = F∗(S− Γ∗)(I − ΓS)−1F−1 (14.7.12)

We note that S′ = S when ZG = ZL = Z0, that is, when ΓG = ΓL = 0. The explicit

expressions for the matrix elements of S′ can be derived as follows:

S′11 =
(S11 − Γ∗G)(1− S22ΓL)+S21S12ΓL

(1− S11ΓG)(1− S22ΓL)−S12S21ΓGΓL
e−2jφG

S′22 =
(S22 − Γ∗L )(1− S11ΓG)+S21S12ΓG

(1− S11ΓG)(1− S22ΓL)−S12S21ΓGΓL
e−2jφL

(14.7.13a)

S′21 =
√

1− |ΓG|2 S21

√

1− |ΓL|2
(1− S11ΓG)(1− S22ΓL)−S12S21ΓGΓL

e−j(φG+φL)

S′12 =
√

1− |ΓL|2 S12

√

1− |ΓG|2
(1− S11ΓG)(1− S22ΓL)−S12S21ΓGΓL

e−j(φL+φG)
(14.7.13b)

The S′11, S
′
22 parameters can be rewritten in terms of the input and output reflection

coefficients by using Eq. (14.13.2) and the following factorization identities:

(S11 − Γ∗G)(1− S22ΓL)+S21S12ΓL = (Γin − Γ∗G)(1− S22ΓL)

(S22 − Γ∗L )(1− S11ΓG)+S21S12ΓG = (Γout − Γ∗L )(1− S11ΓG)

It then follows from Eq. (14.7.13) that:
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S′11 =
Γin − Γ∗G
1− ΓinΓG

e−2jφG , S′22 =
Γout − Γ∗L
1− ΓoutΓL

e−2jφL (14.7.14)

Therefore, the mismatch factors (14.6.17) are recognized to be:

MG = 1− |S′11|2 , ML = 1− |S′22|2 (14.7.15)

The power flow relations (14.2.1) into and out of the two-port are also valid in terms

of the power wave variables. Using Eq. (14.7.2), it can be shown that:

Pin = 1

2
Re[V∗1 I1]=

1

2
|a′1|2 −

1

2
|b′1|2

PL = 1

2
Re[V∗2 I2]=

1

2
|b′2|2 −

1

2
|a′2|2

(14.7.16)

In the definitions (14.7.1), the impedances ZG, ZL are arbitrary normalization param-

eters. However, if the two-port is actually connected to a generator VG with impedance

ZG and a load ZL, then the power waves take particularly simple forms.

It follows from Fig. 14.1.4 thatVG = V1+ZGI1 andV2 = ZLI2. Therefore, definitions

Eq. (14.7.1) give:

a′1 =
V1 + ZGI1

2
√

RG
= VG

2
√

RG

a′2 =
V2 − ZLI2

2
√

RL
= 0

b′2 =
V2 + Z∗L I2

2
√

RL
= ZL + Z∗L

2
√

RL
I2 = 2RL

2
√

RL
I2 =

√

RL I2

(14.7.17)

It follows that the available power from the generator and the power delivered to

the load are given simply by:

PavG = |VG|2
8RG

= 1

2
|a′1|2

PL = 1

2
RL|I2|2 = 1

2
|b′2|2

(14.7.18)

Because a′2 = 0, the generalized scattering matrix gives, b′1 = S′11a
′
1 and b′2 = S′21a

′
1.

The power expressions (14.7.16) then become:

Pin = 1

2
|a′1|2 −

1

2
|b′1|2 =

(

1− |S′11|2
)1

2
|a′1|2 =

(

1− |S′11|2
)

PavG

PL = 1

2
|b′2|2 −

1

2
|a′2|2 =

1

2
|b′2|2 = |S′21|2

1

2
|a′1|2 = |S′21|2PavG

(14.7.19)

It follows that the transducer and operating power gains are:

GT = PL
PavG

= |S′21|2 , Gp = PL
Pin

= |S′21|2
1− |S′11|2

(14.7.20)
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These also follow from the explicit expressions (14.7.13) and Eqs. (14.6.10) and

(14.6.11). We can also express the available power gain in terms of the generalized

S-parameters, that is, Ga = |S′21|2/
(

1− |S′22|2
)

. Thus, we summarize:

GT = |S′21|2 , Ga = |S′21|2
1− |S′22|2

, Gp = |S′21|2
1− |S′11|2

(14.7.21)

When the load and generator are matched to the network, that is, Γin = Γ∗G and

ΓL = Γ∗out, the generalized reflections coefficients vanish, S′11 = S′22 = 0, making all the

gains equal to each other.

14.8 Simultaneous Conjugate Matching

We saw that the transducer, available, and operating power gains become equal to the

maximum available gain GMAG when both the generator and the load are conjugately

matched to the two-port, that is, Γin = Γ∗G and ΓL = Γ∗out. Using Eq. (14.5.8), these

conditions read explicitly:

Γ∗G = S11 + S12S21ΓL
1− S22ΓL

= S11 −ΔΓL
1− S22ΓL

Γ∗L = S22 + S12S21ΓG
1− S22ΓG

= S22 −ΔΓG
1− S11ΓG

(14.8.1)

Assuming a bilateral two-port, Eqs. (14.8.1) can be solved in the two unknowns ΓG, ΓL
(eliminating one of the unknowns gives a quadratic equation for the other.) The resulting

solutions can be expressed in terms of the parameters (14.5.1):

ΓG =
B1 ∓

√

B2
1 − 4|C1|2

2C1

ΓL =
B2 ∓

√

B2
2 − 4|C2|2

2C2

(simultaneous conjugate match) (14.8.2)

where the minus signs are used when B1 > 0 and B2 > 0, and the plus signs, otherwise.

A necessary and sufficient condition for these solutions to have magnitudes |ΓG| < 1

and |ΓL| < 1 is that the Rollett stability factor be greater than unity, K > 1. This is

satisfied when the two-port is unconditionally stable, which implies that K > 1 and

B1 > 0, B2 > 0.

A conjugate match exists also when the two-port is potentially unstable, but with

K > 1. Necessarily, this means that B1 < 0, B2 < 0, and also |Δ| > 1. Such cases are

rare in practice. For example, most microwave transistors have either K > 1 and are

stable, or, they are potentially unstable with K < 1 and |Δ| < 1.

If the two-port is unilateral, S12 = 0, then the two equations (14.8.1) decouple, so

that the optimum conjugately matched terminations are:

ΓG = S∗11 , ΓL = S∗22 (unilateral conjugate match) (14.8.3)
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The MATLAB function smatch implements Eqs. (14.8.2). It works only if K > 1. Its

usage is as follows:

[gG,gL] = smatch(S); % conjugate matched terminations ΓG, ΓL

To realize such optimum conjugately matched terminations, matching networks

must be used at the input and output of the two-port as shown in Fig. 14.8.1.

The input matching network can be thought as being effectively connected to the

impedance Zin = Z∗G at its output terminals. It must transform Zin into the actual

impedance of the connected generator, typically, Z0 = 50 ohm.

The output matching network must transform the actual load impedance, here Z0,

into the optimum load impedance ZL = Z∗out.

Fig. 14.8.1 Input and output matching networks.

The matching networks may be realized in several possible ways, as discussed in

Chap. 13. Stub matching, quarter-wavelength matching, or lumped L-section or Π-

section networks may be used. In designing the matching networks, it proves convenient

to first design the reverse network as mentioned in Sec. 13.13.

Fig. 14.8.2 shows the procedure for designing the output matching network using

a reversed stub matching transformer or a reversed quarter-wave transformer with a

parallel stub. In both cases the reversed network is designed to transform the load

impedance Z∗L into Z0.

Example 14.8.1: A microwave transistor amplifier uses the Hewlett-Packard AT-41410 NPN

bipolar transistor having S-parameters at 2 GHz [1507]:

S11 = 0.61∠165o , S21 = 3.72∠59o , S12 = 0.05∠42o , S22 = 0.45∠−48o

Determine the optimum conjugately matched source and load terminations, and design

appropriate input and output matching networks.

Solution: This is the continuation of Example 14.6.1. The transistor is stable with K = 1.1752

and |Δ| = 0.1086. The function smatch gives:

[ΓG, ΓL]= smatch(S) ⇒ ΓG = 0.8179∠−162.6697o , ΓL = 0.7495∠52.5658o

The corresponding source, load, input, and output impedances are (with Z0 = 50):

ZG = Z∗in = 5.1241− 7.5417j Ω , ZL = Z∗out = 33.6758+ 91.4816j Ω
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Fig. 14.8.2 Two types of output matching networks and their reversed networks..

Fig. 14.8.3 Optimum load and source reflection coefficients.

The locations of the optimum reflection coefficients on the Smith chart are shown in

Fig. 14.8.3. For comparison, the unilateral solutions of Eq. (14.8.3) are also shown.

We consider three types of matching networks: (a) microstrip single-stub matching net-

works with open shunt stubs, shown in Fig. 14.8.4, (b) microstrip quarter-wavelength

matching networks with open λ/8 or 3λ/8 stubs, shown in Fig. 14.8.5, and (c) L-section

matching networks, shown in 14.8.6.

Fig. 14.8.4 Input and output stub matching networks.
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In Fig. 14.8.4, the input stub must transform Zin to Z0. It can be designed with the help of

the function stub1, which gives the two solutions:

dl = stub1(Zin/Z0,’po’)=
[

0.3038 0.4271

0.1962 0.0247

]

We choose the lower one, which has the shortest lengths. Thus, the stub length is d =
0.1962λ and the segment length l = 0.0247λ. Both segments can be realized with mi-

crostrips of characteristic impedance Z0 = 50 ohm. Similarly, the output matching net-

work can be designed by:

dl = stub1(Zout/Z0,’po’)=
[

0.3162 0.1194

0.1838 0.2346

]

Again, we choose the lower solutions, d = 0.1838λ and l = 0.2346λ. The solutions using

shorted shunt stubs are:

stub1(Zin/Z0)=
[

0.0538 0.4271

0.4462 0.0247

]

, stub1(Zout/Z0)=
[

0.0662 0.1194

0.4338 0.2346

]

Using microstrip lines with alumina substrate (ǫr = 9.8), we obtain the following values

for the width-to-height ratio, effective permittivity, and wavelength:

u = w

h
= mstripr(ǫr , Z0)= 0.9711

ǫeff = mstripa(ǫr , u)= 6.5630

λ = λ0√
ǫeff

= 5.8552 cm

where λ0 = 15 cm is the free-space wavelength at 2 GHz. It follows that the actual segment

lengths are d = 1.1486 cm, l = 0.1447 cm for the input network, and d = 1.0763 cm,

l = 1.3734 cm for the output network.

In the quarter-wavelength method shown in Fig. 14.8.5, we use the function qwt2 to carry

out the design of the required impedances of the microstrip segments. We have for the

input and output networks:

[Z1, Z2]= qwt2(Zin, Z0)= [28.4817,−11.0232] Ω

[Z1, Z2]= qwt2(Zout, Z0)= [118.7832,103.8782] Ω

For the input case, we find Z2 = −11.0232 Ω, which means that we should use either a

3λ/8-shorted stub or a λ/8-opened one. We choose the latter. Similarly, for the output

case, we have Z2 = 103.8782 Ω, and we choose a 3λ/8-opened stub. The parameters of

each microstrip segment are:

Z1 = 28.4817 Ω, u = 2.5832, ǫeff = 7.2325, λ = 5.578 cm, λ/4 = 1.394 cm

Z2 = 11.0232 Ω, u = 8.9424, ǫeff = 8.2974, λ = 5.207 cm, λ/8 = 0.651 cm

Z1 = 118.7832 Ω, u = 0.0656, ǫeff = 5.8790, λ = 6.186 cm, λ/4 = 1.547 cm

Z2 = 103.8782 Ω, u = 0.1169, ǫeff = 7.9503, λ = 6.149 cm, 3λ/8 = 2.306 cm
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Fig. 14.8.5 Quarter-wavelength matching networks with λ/8-stubs.

Fig. 14.8.6 Input and output matching with L-sections.

Finally, the designs using L-sections shown in Fig. 14.8.6, can be carried out with the help

of the function lmatch. We have the dual solutions for the input and output networks:

[X1, X2]= lmatch(Z0, Zin,’n’)=
[

16.8955 −22.7058

−16.8955 7.6223

]

[X1, X2]= lmatch(Zout, Z0,’n’)=
[

57.9268 −107.7472

502.4796 7.6223

]

According to the usage of lmatch, the output network transforms Z0 into Z∗out, but that is

equal to ZL as required.

Choosing the first rows as the solutions in both cases, the shunt part X1 will be inductive

and the series part X2, capacitive. At 2 GHz, we find the element values:

L1 = X1

ω
= 1.3445 nH, C1 = − 1

ωX2

= 3.5047 pF

L2 = X1

ω
= 4.6097 nH, C2 = − 1

ωX2

= 0.7386 pF

The output network, but not the input one, also admits a reversed L-section solution:

[X1, X2]= lmatch(Zout, Z0,’r’)=
[

71.8148 68.0353

−71.8148 114.9280

]

The essential MATLAB code used to generate the above results was as follows:

Z0 = 50; f = 2; w=2*pi*f; la0 = 30/f; er = 9.8; % f in GHz

S = smat([0.61 165 3.72 59 0.05 42 0.45 -48]); % S-matrix
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[gG,gL] = smatch(S); % simultaneous conjugate match

smith; % draw Fig. 14.8.3

plot(gG, ’.’); plot(conj(S(1,1)), ’o’);

plot(gL, ’.’); plot(conj(S(2,2)), ’o’);

ZG = g2z(gG,Z0); Zin = conj(ZG);

ZL = g2z(gL,Z0); Zout = conj(ZL);

dl = stub1(Zin/Z0, ’po’); % single-stub design

dl = stub1(Zout/Z0, ’po’);

u = mstripr(er,Z0); % microstrip w/h ratio

eff = mstripa(er,u); % effective permittivity

la = la0/sqrt(eff); % wavelength within microstrip

[Z1,Z2] = qwt2(Zin, Z0); % quarter-wavelength with λ/8 stub

[Z1,Z2] = qwt2(Zout, Z0);

X12 = lmatch(Z0,Zin,’n’); L1 = X12(1,1)/w; C1 = -1/(w * X12(1,2))*1e3;

X12 = lmatch(Zout,Z0,’n’); L2 = X12(1,1)/w; C2 = -1/(w * X12(1,2))*1e3;

X12 = lmatch(Zout,Z0,’r’); % L,C in units of nH and pF

One could replace the stubs with balanced stubs, as discussed in Sec. 13.9, or use Π- or

T-sections instead of L-sections. ⊓⊔

14.9 Power Gain Circles

For a stable two-port, the maximum transducer gain is achieved at single pair of points

ΓG, ΓL. When the gain G is required to be less than GMAG, there will be many possible

pairs ΓG, ΓL at which the gain G is realized. The locus of such points ΓG and ΓL on the

Γ-plane is typically a circle of the form:

|Γ− c| = r (14.9.1)

where c, r are the center and radius of the circle and depend on the desired value of the

gain G.

In practice, several types of such circles are used, such as unilateral, operating, and

available power gain circles, as well as constant noise figure circles, constant SWR circles,

and others.

The gain circles allow one to select appropriate values for ΓG, ΓL that, in addition to

providing the desired gain, also satisfy other requirements, such as striking a balance

between minimizing the noise figure and maximizing the gain.

The MATLAB function sgcirc calculates the stability circles as well as the operating,

available, and unilateral gain circles. Its complete usage is:

[c,r] = sgcirc(S,’s’); % source stability circle

[c,r] = sgcirc(S,’l’); % load stability circle

[c,r] = sgcirc(S,’p’,G); % operating power gain circle

[c,r] = sgcirc(S,’a’,G); % available power gain circle
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[c,r] = sgcirc(S,’ui’,G); % unilateral input gain circle

[c,r] = sgcirc(S,’uo’,G); % unilateral output gain circle

where in the last four cases G is the desired gain in dB.

14.10 Unilateral Gain Circles

We consider only the unconditionally stable unilateral case, which has |S11| < 1 and

|S22| < 1. The dependence of the transducer power gain on ΓG and ΓL decouples and

the value of the gain may be adjusted by separately choosing ΓG and ΓL. We have from

Eq. (14.6.14):

GT = 1− |ΓG|2
|1− S11ΓG|2

|S21|2 1− |ΓL|2
|1− S22ΓL|2

= GG |S21|2GL (14.10.1)

The input and output gain factors GG, GL satisfy the inequalities (14.6.24). Concen-

trating on the output gain factor, the corresponding gain circle is obtained as the locus

of points ΓL that will lead to a fixed value, say GL = G, which necessarily must be less

than the maximum G2 given in Eq. (14.6.23), that is,

1− |ΓL|2
|1− S22ΓL|2

= G ≤ G2 = 1

1− |S22|2
(14.10.2)

Normalizing the gain G to its maximum value g = G/G2 = G
(

1 − |S22|2
)

, we may

rewrite (14.10.2) in the form:

(

1− |ΓL|2
)(

1− |S22|2
)

|1− S22ΓL|2
= g ≤ 1 (14.10.3)

This equation can easily be rearranged into the equation of a circle |ΓL−c| = r, with

center and radius given by:

c = gS∗22

1− (1− g)|S22|2
, r =

√

1− g(1− |S22|2
)

1− (1− g)|S22|2
(14.10.4)

When g = 1 or G = G2, the gain circle collapses onto a single point, that is, the

optimum point ΓL = S∗22. Similarly, we find for the constant gain circles of the input

gain factor:

c = gS∗11

1− (1− g)|S11|2
, r =

√

1− g(1− |S11|2
)

1− (1− g)|S11|2
(14.10.5)

where here, g = G/G1 = G
(

1− |S11|2
)

and the circles are |ΓG − c| = r.
Both sets of c, r satisfy the conditions |c| < 1 and |c| + r < 1, the latter implying

that the circles lie entirely within the unit circle |Γ| < 1, that is, within the Smith chart.

Example 14.10.1: A unilateral microwave transistor has S-parameters:

S11 = 0.8∠120o, S21 = 4∠60o, S12 = 0, S22 = 0.2∠−30o
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The unilateral MAG and the maximum input and output gains are obtained as follows:

GMAG,u = sgain(S,’u’)= 16.66 dB

G1 = sgain(S,’ui’)= 4.44 dB

G2 = sgain(S,’uo’)= 0.18 dB

Most of the gain is accounted for by the factor |S21|2, which is 12.04 dB. The constant input

gain circles for GG = 1,2,3 dB are shown in Fig. 14.10.1. Their centers lie along the ray to

S∗11. For example, the center and radius of the 3-dB case were computed by

[c3, r3]= sgcirc(S,’ui’,3) ⇒ c3 = 0.701∠−120o , r3 = 0.233

Fig. 14.10.1 Unilateral input gain circles.

Because the output does not provide much gain, we may choose the optimum value ΓL =
S∗22 = 0.2∠30o. Then, with any point ΓG along the 3-dB input gain circle the total trans-

ducer gain will be in dB:

GT = GG + |S21|2 +GL = 3+ 12.04+ 0.18 = 15.22 dB

Points along the 3-dB circle are parametrized as ΓG = c3 + r3e
jφ, where φ is any angle.

Choosingφ = arg(S∗11)−πwill correspond to the point on the circle that lies closest to the

origin, that is, ΓG = 0.468∠−120o, as shown in Fig. 14.10.1. The corresponding generator

and load impedances will be:

ZG = 69.21+ 14.42j Ω, ZL = 23.15− 24.02j Ω

The MATLAB code used to generate these circles was:

S = smat([0.8, 120, 4, 60, 0, 0, 0.2, -30]);

[c1,r1] = sgcirc(S,’ui’,1);

[c2,r2] = sgcirc(S,’ui’,2);

[c3,r3] = sgcirc(S,’ui’,3);

smith; smithcir(c1,r1); smithcir(c2,r2); smithcir(c3,r3);

c = exp(-j*angle(S(1,1))); line([0,real(c)], [0,imag(c)]);
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gG = c3 - r3*exp(j*angle(c3));

plot(conj(S(1,1)),’.’); plot(conj(S(2,2)),’.’); plot(gG,’.’);

The input and output matching networks can be designed using open shunt stubs as in

Fig. 14.8.4. The stub lengths are found to be (with Z0 = 50 Ω):

dl = stub1(Z∗G/Z0,’po’)=
[

0.3704 0.3304

0.1296 0.0029

]

dl = stub1(Z∗L /Z0,’po’)=
[

0.4383 0.0994

0.0617 0.3173

]

Choosing the shortest lengths, we have for the input network d = 0.1296λ, l = 0.0029λ,

and for the output network, d = 0.0617λ, l = 0.3173λ. Fig. 14.10.2 depicts the complete

matching circuit. ⊓⊔

Fig. 14.10.2 Input and output stub matching networks.

14.11 Operating and Available Power Gain Circles

Because the transducer power gain GT depends on two independent parameters—the

source and load reflection coefficients—it is difficult to find the simultaneous locus of

points for ΓG, ΓL that will result in a given value for the gain.

If the generator is matched, Γin = Γ∗G, then the transducer gain becomes equal to

the operating gain GT = Gp and depends only on the load reflection coefficient ΓL.

The locus of points ΓL that result in fixed values of Gp are the operating power gain

circles. Similarly, the available power gain circles are obtained by matching the load

end, ΓL = Γ∗out, and varying ΓG to achieve fixed values of the available power gain.

Using Eqs. (14.6.11) and (14.5.8), the conditions for achieving a constant value, say

G, for the operating or the available power gains are:

Gp = 1

1− |Γin|2
|S21|2 1− |ΓL|2

|1− S22ΓL|2
= G, Γ∗G = Γin = S11 −ΔΓL

1− S22ΓL

Ga = 1− |ΓG|2
|1− S11ΓG|2

|S21|2 1

1− |Γout|2
= G, Γ∗L = Γout = S22 −ΔΓG

1− S11ΓG

(14.11.1)
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We consider the operating gain first. Defining the normalized gain g = G/|S21|2,

substituting Γin, and using the definitions (14.5.1), we obtain the condition:

g = 1− |ΓL|2
|1− S22ΓL|2 − |S11 −ΔΓL|2

= 1− |ΓL|2
(|S22|2 − |Δ|2

)|ΓL|2 − (S22 −ΔS∗11)ΓL − (S∗22 −Δ∗S11)Γ
∗
L + 1− |S11|2

= 1− |ΓL|2
D2|ΓL|2 −C2ΓL −C∗2 Γ∗L + 1− |S11|2

This can be rearranged into the form:

|ΓL|2 − gC2

1+ gD2

ΓL − gC∗2
1+ gD2

Γ∗L =
1− g(1− |S11|2

)

1+ gD2

and then into the circle form:

∣
∣
∣
∣
∣
ΓL − gC∗2

1+ gD2

∣
∣
∣
∣
∣

2

= g2|C2|2
(1+ gD2)2

+ 1− g(1− |S11|2
)

1+ gD2

Using the identities (14.5.2) and 1 − |S11|2 = 2K|S12S21| +D2, which follows from

(14.5.1), the right-hand side of the above circle form can be written as:

g2|C2|2
(1+ gD2)2

+ 1− g(1− |S11|2
)

1+ gD2

= g2|S12S21|2 − 2gK|S12S21| + 1

(1+ gD2)2
(14.11.2)

Thus, the operating power gain circle will be |ΓL − c|2 = r2 with center and radius:

c = gC∗2
1+ gD2

, r =
√

g2|S12S21|2 − 2gK|S12S21| + 1

|1+ gD2|
(14.11.3)

The points ΓL on this circle result into the value Gp = G for the operating gain.

Such points can be parametrized as ΓL = c + rejφ, where 0 ≤ φ ≤ 2π. As ΓL traces

this circle, the conjugately matched source coefficient ΓG = Γ∗in will also trace a circle

because Γin is related to ΓL by the bilinear transformation (14.5.8).

In a similar fashion, we find the available power gain circles to be |ΓG − c|2 = r2,

where g = G/|S21|2 and:

c = gC∗1
1+ gD1

, r =
√

g2|S12S21|2 − 2gK|S12S21| + 1

|1+ gD1|
(14.11.4)

We recall from Sec. 14.5 that the centers of the load and source stability circles were

cL = C∗2 /D2 and cG = C∗1 /D1. It follows that the centers of the operating power gain

circles are along the same ray as cL, and the centers of the available gain circles are

along the same ray as cG.
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For an unconditionally stable two-port, the gain G must be 0 ≤ G ≤ GMAG, with

GMAG given by Eq. (14.6.20). It can be shown easily that the quantities under the square

roots in the definitions of the radii r in Eqs. (14.11.3) and (14.11.4) are non-negative.

The gain circles lie inside the unit circle for all such values of G. The radii r vanish

when G = GMAG, that is, the circles collapse into single points corresponding to the

simultaneous conjugate matched solutions of Eq. (14.8.2).

The MATLAB function sgcirc calculates the center and radii c, r of the operating

and available power gain circles. It has usage, where G must be entered in dB:

[c,r] = sgcirc(S,’p’,G); operating power gain circle

[c,r] = sgcirc(S,’a’,G); available power gain circle

Example 14.11.1: A microwave transistor amplifier uses the Hewlett-Packard AT-41410 NPN

bipolar transistor with the following S-parameters at 2 GHz [1507]:

S11 = 0.61∠165o , S21 = 3.72∠59o , S12 = 0.05∠42o , S22 = 0.45∠−48o

Calculate GMAG and plot the operating and available power gain circles for G = 13,14,15

dB. Then, design source and load matching circuits for the case G = 15 dB by choosing

the reflection coefficient that has the smallest magnitude.

Solution: The MAG was calculated in Example 14.6.1, GMAG = 16.18 dB. The gain circles and the

corresponding load and source stability circles are shown in Fig. 14.11.1. The operating

gain and load stability circles were computed and plotted by the MATLAB statements:

[c1,r1] = sgcirc(S,’p’,13); % c1 = 0.4443∠52.56o, r1 = 0.5212

[c2,r2] = sgcirc(S,’p’,14); % c2 = 0.5297∠52.56o, r2 = 0.4205

[c3,r3] = sgcirc(S,’p’,15); % c3 = 0.6253∠52.56o, r3 = 0.2968

[cL,rL] = sgcirc(S,’l’); % cL = 2.0600∠52.56o, rL = 0.9753

smith; smithcir(cL,rL,1.7); % display portion of circle with |ΓL| ≤ 1.7

smithcir(c1,r1); smithcir(c2,r2); smithcir(c3,r3);

Fig. 14.11.1 Operating and available power gain circles.
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The gain circles lie entirely within the unit circle, for example, we have r3+|c3| = 0.9221 <

1, and their centers lie along the ray of cL. As ΓL traces the 15-dB circle, the corresponding

ΓG = Γ∗in traces its own circle, also lying within the unit circle. The following MATLAB code

computes and adds that circle to the above Smith chart plots:

phi = linspace(0,2*pi,361); % equally spaced angles at 1o intervals

gammaL = c3 + r3 * exp(j*phi); % points on 15-dB operating gain circle

gammaG = conj(gin(S,gammaL)); % circle of conjugate matched source points

plot(gammaG);

In particular, the point ΓL on the 15-dB circle that lies closest to the origin is ΓL =
c3 − r3e

j arg c3 = 0.3285∠52.56o. The corresponding matched load will be ΓG = Γ∗in =
0.6805∠−163.88o. These and the corresponding source and load impedances were com-

puted by the MATLAB statements:

gL = c3 - r3*exp(j*angle(c3)); zL = g2z(gL);

gG = conj(gin(S,gL)); zG = g2z(gG);

The source and load impedances normalized to Z0 = 50 ohm are:

zG = ZG
Z0

= 0.1938− 0.1363j , zL = ZL
Z0

= 1.2590+ 0.7361j

The matching circuits can be designed in a variety of ways as in Example 14.8.1. Using

open shunt stubs, we can determine the stub and line segment lengths with the help of

the function stub1:

dl = stub1(z∗G,’po’)=
[

0.3286 0.4122

0.1714 0.0431

]

dl = stub1(z∗L ,’po’)=
[

0.4033 0.0786

0.0967 0.2754

]

In both cases, we may choose the lower solutions as they have shorter total length d + l.
The available power gain circles can be determined in a similar fashion with the help of

the MATLAB statements:

[c1,r1] = sgcirc(S,’a’,13); % c1 = 0.5384∠−162.67o, r1 = 0.4373

[c2,r2] = sgcirc(S,’a’,14); % c2 = 0.6227∠−162.67o, r2 = 0.3422

[c3,r3] = sgcirc(S,’a’,15); % c3 = 0.7111∠−162.67o, r3 = 0.2337

[cG,rG] = sgcirc(S,’s’); % cG = 1.5748∠−162.67o, rG = 0.5162

smith; smithcir(cG,rG); % plot entire source stability circle

smithcir(c1,r1); smithcir(c2,r2); smithcir(c3,r3);

Again, the circles lie entirely within the unit circle. As ΓG traces the 15-dB circle, the

corresponding matched load ΓL = Γ∗out traces its own circle on the Γ-plane. It can be

plotted with:

phi = linspace(0,2*pi,361); % equally spaced angles at 1o intervals

gammaG = c3 + r3 * exp(j*phi); % points on 15-dB available gain circle

gammaL = conj(gout(S,gammaG)); % circle of conjugate matched loads

plot(gammaL);
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In particular, the point ΓG = c3 − r3e
j arg c3 = 0.4774∠−162.67o lies closest to the origin.

The corresponding matched load will have ΓL = Γ∗out = 0.5728∠50.76o. The resulting

normalized impedances are:

zG = ZG
Z0

= 0.3609− 0.1329j , zL = ZL
Z0

= 1.1135+ 1.4704j

and the corresponding stub matching networks will have lengths:

stub1(z∗G,’po’)=
[

0.3684 0.3905

0.1316 0.0613

]

, stub1(z∗L ,’po’)=
[

0.3488 0.1030

0.1512 0.2560

]

The lower solutions have the shortest lengths. For both the operating and available gain

cases, the stub matching circuits will be similar to those in Fig. 14.8.4. ⊓⊔

When the two-port is potentially unstable (but with |S11| < 1 and |S22| < 1,) the

stability circles intersect with the unit-circle, as shown in Fig. 14.5.2. In this case, the

operating and available power gain circles also intersect the unit-circle and at the same

points as the stability circles.

We demonstrate this in the specific case of K < 1, |S11| < 1, |S22| < 1, but with

D2 > 0, an example of which is shown in Fig. 14.11.2. The intersection of an operating

gain circle with the unit-circle is obtained by setting |ΓL| = 1 in the circle equation

|ΓL − c| = r. Writing ΓL = ejθL and c = |c|ejθc , we have:

r2 = |ΓL − c|2 = 1− 2|c| cos(θL − θc)+|c|2 ⇒ cos(θL − θc)= 1+ |c|2 − r2

2|c|
Similarly, the intersection of the load stability circle with the unit-circle leads to the

relationship:

r2
L = |ΓL − cL|2 = 1− 2|cL| cos(θL −θcL)+|cL|2 ⇒ cos(θL −θcL)=

1+ |cL|2 − r2
L

2|cL|

Because c = gC∗2 /(1 + gD2), cL = C∗2 /D2, and D2 > 0, it follows that the phase

angles of c and cL will be equal, θc = θcL . Therefore, in order for the load stability

circle and the gain circle to intersect the unit-circle at the same ΓL = ejθL , the following

condition must be satisfied:

cos(θL − θc)= 1+ |c|2 − r2

2|c| = 1+ |cL|2 − r2
L

2|cL|
(14.11.5)

Using the identities 1 − |S11|2 = B2 − D2 and 1 − |S11|2 =
(|cL|2 − r2

L

)

D2, which

follow from Eqs. (14.5.1) and (14.5.6), we obtain:

1+ |cL|2 − r2
L

2|cL|
= 1+ (B2 −D2)/D2

2|C2|/|D2|
= B2

2|C2|
where we used D2 > 0. Similarly, Eq. (14.11.2) can be written in the form:

r2 = |c|2 + 1− g(1− |S11|2
)

1+ gD2

⇒ |c|2 − r2 = g
(

1− |S11|2
)− 1

1+ gD2

= g(B2 −D2)−1

1+ gD2
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Therefore, we have:

1+ |c|2 − r2

2|c| = 1+ (

g(B2 −D2)−1
)

/(1+ gD2)

2g|C2|/|1+ gD2|
= B2

2|C2|

Thus, Eq. (14.11.5) is satisfied. This condition has two solutions for θL that cor-

respond to the two points of intersection with the unit-circle. When D2 > 0, we have

arg c = argC∗2 = − argC2. Therefore, the two solutions for ΓL = ejθL will be:

ΓL = ejθL , θL = − arg(C2)± acos

(
B2

2|C2|
)

(14.11.6)

Similarly, the points of intersection of the unit-circle and the available gain circles

and source stability circle are:

ΓG = ejθG , θG = − arg(C1)± acos

(
B1

2|C1|
)

(14.11.7)

Actually, these expressions work also when D2 < 0 or D1 < 0.

Example 14.11.2: The microwave transistor Hewlett-Packard AT-41410 NPN is potentially un-

stable at 1 GHz with the following S-parameters [1507]:

S11 = 0.6∠−163o , S21 = 7.12∠86o , S12 = 0.039∠35o , S22 = 0.50∠−38o

Calculate GMSG and plot the operating and available power gain circles for G = 20,21,22

dB. Then, design source and load matching circuits for the 22-dB case by choosing the

reflection coefficients that have the smallest magnitudes.

Solution: The MSG computed from Eq. (14.6.21) is GMSG = 22.61 dB. Fig. 14.11.2 depicts the

operating and available power gain circles as well as the load and source stability circles.

The stability parameters are: K = 0.7667, μ1 = 0.8643, |Δ| = 0.1893,D1 = 0.3242,D2 =
0.2142. The computations and plots are done with the following MATLAB code:†

S = smat([0.60, -163, 7.12, 86, 0.039, 35, 0.50, -38]); % S-parameters

[K,mu,D,B1,B2,C1,C2,D1,D2] = sparam(S); % stability parameters

Gmsg = db(sgain(S,’msg’)); % GMSG = 22.61 dB

% operating power gain circles:

[c1,r1] = sgcirc(S,’p’,20); % c1 = 0.6418∠50.80o, r1 = 0.4768

[c2,r2] = sgcirc(S,’p’,21); % c2 = 0.7502∠50.80o, r2 = 0.4221

[c3,r3] = sgcirc(S,’p’,22); % c3 = 0.8666∠50.80o, r3 = 0.3893

% load and source stability circles:

[cL,rL] = sgcirc(S,’l’); % cL = 2.1608∠50.80o, rL = 1.2965

[cG,rG] = sgcirc(S,’s’); % cG = 1.7456∠171.69o, rG = 0.8566

smith; smithcir(cL,rL,1.5); smithcir(cG,rG,1.5); % plot Smith charts

smithcir(c1,r1); smithcir(c2,r2); smithcir(c3,r3); % plot gain circles

gL = c3 - r3*exp(j*angle(c3)); % ΓL of smallest magnitude

gG = conj(gin(S,gL)); % corresponding matched ΓG
plot(gL,’.’); plot(gG,’.’);

†The function db converts absolute scales to dB. The function ab converts from dB to absolute units.
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Fig. 14.11.2 Operating and available power gain circles.

% available power gain circles:

[c1,r1] = sgcirc(S,’a’,20); % c1 = 0.6809∠171.69o, r1 = 0.4137

[c2,r2] = sgcirc(S,’a’,21); % c2 = 0.7786∠171.69o, r2 = 0.3582

[c3,r3] = sgcirc(S,’a’,22); % c3 = 0.8787∠171.69o, r3 = 0.3228

figure;

smith; smithcir(cL,rL,1.5); smithcir(cG,rG,1.5);

smithcir(c1,r1); smithcir(c2,r2); smithcir(c3,r3);

gG = c3 - r3*exp(j*angle(c3)); % ΓG of smallest magnitude

gL = conj(gout(S,gG)); % corresponding matched ΓL
plot(gL,’.’); plot(gG,’.’);

Because D1 > 0 and D2 > 0, the stability regions are the portions of the unit-circle that

lie outside the source and load stability circles. We note that the operating gain circles

intersect the unit-circle at exactly the same points as the load stability circle, and the

available gain circles intersect it at the same points as the source stability circle.

The value of ΓL on the 22-dB operating gain circle that lies closest to the origin is ΓL =
c3 − r3e

j arg c3 = 0.4773∠50.80o and the corresponding matched source is ΓG = Γ∗in =
0.7632∠167.69o. We note that both ΓL and ΓG lie in their respective stability regions.

For the 22-dB available gain circle (also denoted by c3, r3), the closest ΓG to the origin will

be ΓG = c3− r3e
j arg c3 = 0.5559∠171.69o with a corresponding matched load ΓL = Γ∗out =

0.7147∠45.81o. Again, both ΓL, ΓG lie in their stable regions.

Once the ΓG, ΓL have been determined, the corresponding matching input and output

networks can be designed with the methods of Example 14.8.1. ⊓⊔

14.12 Noise Figure Circles

Every device is a source of internally generated noise. The noise entering the device and

the internal noise must be added to obtain the total input system noise. If the device is

an amplifier, the total system noise power will be amplified at the output by the gain of

the device. If the output load is matched, this gain will be the available gain.
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The internally generated noise is quantified in practice either by the effective noise

temperature Te, or by the noise figure F of the device. The internal noise power is given

by Pn = kTeB, where k is the Boltzmann constant and B the bandwidth in Hz. These

concepts are discussed further in Sec. 16.8. The relationship betweenTe and F is defined

in terms of a standard reference temperature T0 = 290 K (degrees Kelvin):

F = 1+ Te
T0

(14.12.1)

The noise figure is usually quoted in dB, FdB = 10 log10 F. Because the available gain

of a two-port depends on the source impedance ZG, or the source reflection coefficient

ΓG, so will the noise figure.

The optimum source impedance ZGopt corresponds to the minimum noise figure

Fmin that can be achieved by the two-port. For other values of ZG, the noise figure F is

greater than Fmin and is given by [117–120]:

F = Fmin + Rn
RG|ZGopt|2

|ZG − ZGopt|2 (14.12.2)

where RG = Re(ZG) and Rn is an equivalent noise resistance. We note that F = Fmin

when ZG = ZGopt. Defining the normalized noise resistance rn = Rn/Z0, where Z0 =
50 ohm, we may write Eq. (14.12.2) in terms of the corresponding source reflection

coefficients:

F = Fmin + 4rn
|ΓG − ΓGopt|2

|1+ ΓGopt|2
(

1− |ΓG|2
) (14.12.3)

The parameters Fmin, rn, and ΓGopt characterize the noise properties of the two-port

and are usually known.

In designing low-noise microwave amplifiers, one would want to achieve the mini-

mum noise figure and the maximum gain. Unfortunately, the optimum source reflection

coefficient ΓGopt does not necessarily correspond to the maximum available gain.

The noise figure circles and the available gain circles are useful tools that allow one

to obtain a balance between low noise and high gain designs. The noise figure circles

are the locus of points ΓG that correspond to fixed values of F. They are obtained by

rewriting Eq. (14.12.3) as the equation of a circle |ΓG − c|2 = r2. We write Eq. (14.12.3)

in the form:

|ΓG − ΓGopt|2
1− |ΓG|2

= N , where N = (F − Fmin)|1+ ΓGopt|2
4rn

(14.12.4)

which can be rearranged into the circle equation:

∣
∣
∣
∣ΓG −

ΓGopt

N + 1

∣
∣
∣
∣

2

= N2 +N(1− |ΓGopt|2
)

(N + 1)2

Thus, the center and radius of the noise figure circle are:

c = ΓGopt

N + 1
, r =

√

N2 +N(1− |ΓGopt|2
)

N + 1
(14.12.5)



14.12. Noise Figure Circles 703

The MATLAB function nfcirc implements Eq. (14.12.5). Its inputs are the noise

parameters Fmin, rn, ΓGopt, and the desired value of F in dB, and its outputs are c, r:

[c,r] = nfcirc(F,Fmin,rn,gGopt); % noise figure circles

The function nfig implements Eq. (14.12.3). Its inputs are Fmin, rn, ΓGopt, and a

vector of values of ΓG, and its output is the corresponding vector of values of F:

F = nfig(Fmin, rn, gGopt, gG); % calculate noise figure F in dB

Example 14.12.1: The microwave transistor of Example 14.11.1 has the following noise param-

eters at 2 GHz [1507]: Fmin = 1.6 dB, rn = 0.16, and ΓGopt = 0.26∠172o.

Determine the matched load ΓLopt corresponding to ΓGopt and calculate the available gain.

Then, plot the noise figure circles for F = 1.7,1.8,1.9,2.0 dB.

For the 1.8-dB noise figure circle, determine ΓG, ΓL that correspond to the maximum pos-

sible available gain and design appropriate input and output matching networks.

Solution: The conjugate matched load corresponding to ΓGopt is:

ΓLopt = Γ∗out =
[

S22 −ΔΓGopt

1− S11ΓGopt

]∗
= 0.4927∠52.50o

The value of the available gain at ΓGopt isGa,opt = 13.66 dB. This is to be compared with the

MAG of 16.18 dB determined in Example 14.11.1. To increase the available gain, we must

also increase the noise figure. Fig. 14.12.1 shows the locations of the optimum reflection

coefficients, as well as several noise figure circles.

The MATLAB code for generating this graph was:†

Fig. 14.12.1 Noise figure circles.

S = smat([0.61, 165, 3.72, 59, 0.05, 42, 0.45, -48]);

Fmin = 1.6; rn = 0.16; gGopt = p2c(0.26, 172);

†The function p2c converts from phasor form to cartesian complex form, and the function c2p, from

cartesian to phasor form.

704 14. S-Parameters

Gmag = db(sgain(S,’mag’)); % maximum available gain

Gaopt = db(sgain(S,gGopt,’a’)) % available gain at ΓGopt

gLopt = conj(gout(S,gGopt)); % matched load

[c1,r1] = nfcirc(1.7,Fmin,rn,gGopt); % noise figure circles

[c2,r2] = nfcirc(1.8,Fmin,rn,gGopt);

[c3,r3] = nfcirc(1.9,Fmin,rn,gGopt);

[c4,r4] = nfcirc(2.0,Fmin,rn,gGopt);

smith; plot([gGopt, gLopt],’.’);

smithcir(c1,r1); smithcir(c2,r2); smithcir(c3,r3); smithcir(c4,r4);

The larger the noise figure F, the larger the radius of its circle. As F increases, so does

the available gain. But as the gain increases, the radius of its circle decreases. Thus, for a

fixed value of F, there will be a maximum value of the available gain corresponding to that

gain circle that has the smallest radius and is tangent to the noise figure circle.

In the extreme case of the maximum available gain, the available gain circle collapses

to a point—the simultaneous conjugate matched point ΓG = 0.8179∠−162.67o— with a

corresponding noise figure of F = 4.28 dB. These results can be calculated by the MATLAB

statements:

gG = smatch(S);

F = nfig(Fmin, rn, gopt, gG);

Thus, we see that increasing the gain comes at the price of increasing the noise figure.

As ΓG traces the F = 1.8 dB circle, the available gain Ga varies as shown in Fig. 14.12.2.

Points around this circle can be parametrized as ΓG = c2 + r2e
jφ, with 0 ≤ φ ≤ 2π.

Fig. 14.12.2 plots Ga versus the angle φ. We note that the gain varies between the limits

12.22 ≤ Ga ≤ 14.81 dB.

0 90 180 270 360
12

13

14

15

G
a
  

(d
B

)

φ  (degrees)

Available Gain for F = 1.8 dB

Fig. 14.12.2 Variation of available gain around the noise figure circle F = 1.8 dB.

The maximum value, Ga = 14.81 dB, is reached when ΓG = 0.4478∠−169.73o, with a

resulting matched load ΓL = Γ∗out = 0.5574∠52.50o. The two points ΓG, ΓL, as well as the
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Fig. 14.12.3 Maximum available gain for given noise figure.

Ga = 14.81 dB gain circle, which is tangential to the 1.8-dB noise figure circle, are shown

in Fig. 14.12.3.

The following MATLAB code performs these calculations and plots:

phi = linspace(0,2*pi,721); % angle in 1/2o increments

gG = c2 + r2*exp(j*phi); % ΓG around the c2, r2 circle

G = db(sgain(S,gG,’a’)); % available gain in dB

plot(phi*180/pi, G);

[Ga,i] = max(G); % maximum available gain

gammaG = gG(i); % ΓG for maximum gain

gammaL = conj(gout(S,gammaG)); % matched load ΓL

[ca,ra] = sgcirc(S,’a’,Ga); % available gain circle

smith; smithcir(c2,r2); smithcir(ca,ra);

plot([gammaG,gammaL],’.’);

The maximum gain and the point of tangency with the noise figure circle are determined by

direct search, that is, evaluating the gain around the 1.8-dB noise figure circle and finding

where it reaches a maximum.

The input and output stub matching networks can be designed with the help of the function

stub1. The normalized source and load impedances are:

zG = 1+ ΓG
1− ΓG

= 0.3840− 0.0767j , zL = 1+ ΓL
1− ΓL

= 1.0904+ 1.3993j

The stub matching networks have lengths:

stub1(z∗G,’po’)=
[

0.3749 0.3977

0.1251 0.0738

]

, stub1(z∗L ,’po’)=
[

0.3519 0.0991

0.1481 0.2250

]

The lower solutions have shorter total lengths d+ l. The implementation of the matching

networks with microstrip lines will be similar to that in Fig. 14.8.4. ⊓⊔
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If the two-port is potentially unstable, one must be check that the resulting solutions

for ΓG, ΓL both lie in their respective stability regions. Problems 14.6 and 14.7 illustrate

the design of such potentially unstable low noise microwave amplifiers.

14.13 Problems

14.1 Using the relationships (14.4.3) and (14.4.6), derive the following identities:

(Z11 + ZG)(Z22 + ZL)−Z12Z21 =
(Z22 + ZL)(Zin + ZG)= (Z11 + ZG)(Zout + ZL)

(14.13.1)

(1− S11ΓG)(1− S22ΓL)−S12S21ΓGΓL =
(1− S22ΓL)(1− ΓinΓG)= (1− S11ΓG)(1− ΓoutΓL)

(14.13.2)

Using Eqs. (14.4.4) and (14.4.5), show that:

Z21

Z22 + ZL
= S21

1− S22ΓL

1− ΓL
1− Γin

,
Z21

Z11 + ZG
= S21

1− S11ΓG

1− ΓG
1− Γout

(14.13.3)

2Z0

Zin + ZG
= (1− Γin)(1− ΓG)

1− ΓinΓG
,

2Z0

Zout + ZL
= (1− Γout)(1− ΓL)

1− ΓoutΓL
(14.13.4)

Finally, for the real part RL = Re(ZL), show that:

ZL = Z0

1+ ΓL
1− ΓL

⇒ RL = Z0

1− |ΓL|2
|1− ΓL|2

(14.13.5)

14.2 Computer Experiment. The Hewlett-Packard ATF-10136 GaAs FET transistor has the follow-

ing S-parameters at 4 GHz and 8 GHz [1507]:

S11 = 0.54∠−120o , S21 = 3.60∠61o , S12 = 0.137∠31o , S22 = 0.22∠−49o

S11 = 0.60∠87o , S21 = 2.09∠−32o , S12 = 0.21∠−36o , S22 = 0.32∠−48o

Determine the stability parameters, stability circles, and stability regions at the two frequen-

cies.

14.3 Derive the following relationships, where RG = Re(ZG):

Z0 + ZG
2
√

RGZ0

= 1
√

1− |ΓG|2
|1− ΓG|
1− ΓG

,
Z0 − ZG
2
√

RGZ0

= − ΓG
√

1− |ΓG|2
|1− ΓG|
1− ΓG

14.4 Derive Eqs. (14.7.13) relating the generalized S-parameters of power waves to the conven-

tional S-parameters.

14.5 Derive the expression Eq. (14.6.20) for the maximum available gain GMAG, and show that it

is the maximum of all three gains, that is, transducer, available, and operating gains.

14.6 Computer Experiment. The microwave transistor of Example 14.11.2 has the following noise

parameters at a frequency of 1 GHz [1507]: Fmin = 1.3 dB, rn = 0.16, and ΓGopt = 0.06∠49o.

Determine the matched load ΓLopt corresponding to ΓGopt and calculate the available gain.

Then, plot the noise figure circles for F = 1.4,1.5,1.6 dB.

For the 1.5-dB noise figure circle, determine the values of ΓG, ΓL that correspond to the

maximum possible available gain.

Design microstrip stub matching circuits for the computed values of ΓG, ΓL.



14.13. Problems 707

14.7 Computer Experiment. The Hewlett-Packard ATF-36163 pseudomorphic high electron mo-

bility transistor (PHEMT) has the following S- and noise parameters at 6 GHz [1507]:

S11 = 0.75∠−131o , S21 = 3.95∠55o , S12 = 0.13∠−12o , S22 = 0.27∠−116o

Fmin = 0.66 dB, rn = 0.15, ΓGopt = 0.55∠88o

Plot the F = 0.7,0.8,0.9 dB noise figure circles. On the 0.7-dB circle, determine the source

reflection coefficient ΓG that corresponds to maximum available gain, and then determine

the corresponding matched load coefficient ΓL.

Design microstrip stub matching circuits for the computed values of ΓG, ΓL.

14.8 Computer Experiment. In this experiment, you will carry out two low-noise microwave am-

plifier designs, including the corresponding input and output matching networks. The first

design fixes the noise figure and finds the maximum gain that can be used. The second

design fixes the desired gain and finds the minimum noise figure that may be achieved.

The Hewlett-Packard Agilent ATF-34143 PHEMT transistor is suitable for low-noise ampli-

fiers in cellular/PCS base stations, low-earth-orbit and multipoint microwave distribution

systems, and other low-noise applications.

At 2 GHz, its S-parameters and noise-figure data are as follows, for biasing conditions of

VDS = 4 V and IDS = 40 mA:

S11 = 0.700∠−150o , S12 = 0.081∠19o

S21 = 6.002∠73o , S22 = 0.210∠−150o

Fmin = 0.22 dB, rn = 0.09, ΓGopt = 0.66∠67o

a. At 2 GHz, the transistor is potentially unstable. Calculate the stability parameters

K,μ,Δ,D1,D2. Calculate the MSG in dB.

Draw a basic Smith chart and place on it the source and load stability circles (display

only a small portion of each circle outside the Smith chart.)

Then, determine the parts of the Smith chart that correspond to the source and load

stability regions.

b. For the given optimum reflection coefficient ΓGopt, calculate the corresponding load

reflection coefficient ΓLopt assuming a matched load.

Place the two points ΓGopt, ΓLopt on the above Smith chart and determine whether they

lie in their respective stability regions.

c. Calculate the available gain Ga,opt in dB that corresponds to ΓGopt.

Add the corresponding available gain circle to the above Smith chart. (Note that the

source stability circle and the available gain circles intersect the Smith chart at the

same points.)

d. Add to your Smith chart the noise figure circles corresponding to the noise figure

values of F = 0.25,0.30,0.35 dB.

For the case F = 0.35 dB, calculate and plot the available gain Ga in dB as ΓG traces

the noise-figure circle. Determine the maximum value of Ga and the corresponding

value of ΓG.

Place on your Smith chart the available gain circle corresponding to this maximum Ga.

Place also the corresponding point ΓG, which should be the point of tangency between

the gain and noise figure circles.
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Calculate and place on the Smith chart the corresponding load reflection coefficient

ΓL = Γ∗out. Verify that the two points ΓG, ΓL lie in their respective stability regions.

In addition, for comparison purposes, place on your Smith chart the available gain

circles corresponding to the values Ga = 15 and 16 dB.

e. The points ΓG and ΓL determined in the previous question achieve the maximum gain

for the given noise figure of F = 0.35 dB.

Design input and output stub matching networks that match the amplifier to a 50-ohm

generator and a 50-ohm load. Use “parallel/open” microstrip stubs having 50-ohm

characteristic impedance and alumina substrate of relative permittivity of ǫr = 9.8.

Determine the stub lengths d, l in units ofλ, the wavelength inside the microstrip lines.

Choose always the solution with the shortest total length d+ l.
Determine the effective permittivity ǫeff of the stubs, the stub wavelength λ in cm, and

the width/height ratio, w/h. Then, determine the stub lengths d, l in cm.

Finally, make a schematic of your final design that shows both the input and output

matching networks (as in Fig.10.8.3.)

f. The above design sets F = 0.35 dB and finds the maximum achievable gain. Carry out

an alternative design as follows. Start with a desired available gain of Ga = 16 dB and

draw the corresponding available gain circle on your Smith chart.

As ΓG traces the portion of this circle that lies inside the Smith chart, compute the

corresponding noise figure F. (Points on the circle can be parametrized by ΓG = c +
rejφ, but you must keep only those that have |ΓG| < 1.)

Find the minimum among these values of F in dB and calculate the corresponding

value of ΓG. Calculate the corresponding matched ΓL.

Add to your Smith chart the corresponding noise figure circle and place on it the points

ΓG and ΓL.

g. Design the appropriate stub matching networks as in part 14.8.
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Radiation Fields

15.1 Currents and Charges as Sources of Fields

Here we discuss how a given distribution of currents and charges can generate and

radiate electromagnetic waves. Typically, the current distribution is localized in some

region of space (for example, currents on a wire antenna.) The current source generates

electromagnetic fields, which can propagate to far distances from the source location.

It proves convenient to work with the electric and magnetic potentials rather than the

E and H fields themselves. Basically, two of Maxwell’s equations allow us to introduce

these potentials; then, the other two, written in terms of these potentials, take a simple

wave-equation form. The two Maxwell equations,

∇∇∇ · B = 0, ∇∇∇× E = −∂B

∂t
(15.1.1)

imply the existence of the magnetic and electric potentials A(r, t) andϕ(r, t), such that

the fields E and B are obtainable by

E = −∇∇∇ϕ− ∂A

∂t

B =∇∇∇× A

(15.1.2)

Indeed, the divergenceless of B implies the existence of A, such that B = ∇∇∇ × A.

Then, Faraday’s law can be written as

∇∇∇× E = −∂B

∂t
= −∇∇∇× ∂A

∂t
⇒ ∇∇∇× (

E+ ∂A

∂t

) = 0

Thus, the quantity E+ ∂A/∂t is curl-less and can be represented as the gradient of

a scalar potential, that is, E+ ∂A/∂t = −∇∇∇ϕ.

The potentials A andϕ are not uniquely defined. For example, they may be changed

by adding constants to them. Even more freedom is possible, known as gauge invariance

of Maxwell’s equations. Indeed, for any scalar function f(r, t), the following gauge

transformation leaves E and B invariant:
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ϕ′ =ϕ− ∂f
∂t

A′ = A+∇∇∇f
(gauge transformation) (15.1.3)

For example, we have for the electric field:

E′ = −∇∇∇ϕ′ − ∂A′

∂t
= −∇∇∇(ϕ− ∂f

∂t

)− ∂

∂t

(

A+∇∇∇f) = −∇∇∇ϕ− ∂A

∂t
= E

This freedom in selecting the potentials allows us to impose some convenient con-

straints between them. In discussing radiation problems, it is customary to impose the

Lorenz condition:†

∇∇∇ · A+ 1

c2

∂ϕ

∂t
= 0 (Lorenz condition) (15.1.4)

We will also refer to it as Lorenz gauge or radiation gauge. Under the gauge transfor-

mation (15.1.3), we have:

∇∇∇ · A′ + 1

c2

∂ϕ′

∂t
= (∇∇∇ · A+ 1

c2

∂ϕ

∂t

)− ( 1

c2

∂2f

∂t2
−∇2f

)

Therefore, if A,ϕ did not satisfy the constraint (15.1.4), the transformed potentials

A′,ϕ′ could be made to satisfy it by an appropriate choice of the function f , that is, by

choosing f to be the solution of the inhomogeneous wave equation:

1

c2

∂2f

∂t2
−∇2f =∇∇∇ · A+ 1

c2

∂ϕ

∂t

Using Eqs. (15.1.2) and (15.1.4) into the remaining two of Maxwell’s equations,

∇∇∇ · E = 1

ǫ
ρ, ∇∇∇× B = μJ+ 1

c2

∂E

∂t
(15.1.5)

we find,

∇∇∇ · E =∇∇∇ · (−∇∇∇ϕ− ∂A

∂t

) = −∇2ϕ− ∂

∂t
(∇∇∇ · A)= −∇2ϕ− ∂

∂t

(− 1

c2

∂ϕ

∂t

)

= 1

c2

∂2ϕ

∂t2
−∇2ϕ

and, similarly,

∇∇∇× B− 1

c2

∂E

∂t
=∇∇∇× (∇∇∇× A)− 1

c2

∂

∂t

(−∇∇∇ϕ− ∂A

∂t

)

=∇∇∇× (∇∇∇× A)+∇∇∇( 1

c2

∂ϕ

∂t

)+ 1

c2

∂2A

∂t2

†Almost universally wrongly attributed to H. A. Lorentz instead of L. V. Lorenz. See Refs. [74–80] for the

historical roots of scalar and vector potentials and gauge transformations.
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=∇∇∇× (∇∇∇× A)−∇∇∇(∇∇∇ · A)+ 1

c2

∂2A

∂t2

= 1

c2

∂2A

∂t2
−∇2A

where we used the identity∇∇∇×(∇∇∇×A)=∇∇∇(∇∇∇·A)−∇2A. Therefore, Maxwell’s equations

(15.1.5) take the equivalent wave-equation forms for the potentials:

1

c2

∂2ϕ

∂t2
−∇2ϕ = 1

ǫ
ρ

1

c2

∂2A

∂t2
−∇2A = μJ

(wave equations) (15.1.7)

To summarize, the densities ρ, J may be thought of as the sources that generate the

potentials ϕ,A, from which the fields E,B may be computed via Eqs. (15.1.2).

The Lorenz condition is compatible with Eqs. (15.1.7) and implies charge conserva-

tion. Indeed, we have from (15.1.7)

( 1

c2

∂2

∂t2
−∇2

)(∇∇∇ · A+ 1

c2

∂ϕ

∂t

) = μ∇∇∇ · J+ 1

ǫc2

∂ρ

∂t
= μ(∇∇∇ · J+ ∂ρ

∂t

)

where we used μǫ = 1/c2. Thus, the Lorenz condition (15.1.4) implies the charge con-

servation law:

∇∇∇ · J+ ∂ρ
∂t

= 0 (15.1.8)

15.2 Retarded Potentials

The main result that we would like to show here is that if the source densities ρ, J are

known, the causal solutions of the wave equations (15.1.7) are given by:

ϕ(r, t) =
∫

V

ρ
(

r′, t − R
c

)

4πǫR
d3r′

A(r, t) =
∫

V

μJ
(

r′, t − R
c

)

4πR
d3r′

(retarded potentials) (15.2.1)

where R = |r− r′| is the distance from the field (observation) point r to the source point

r′, as shown in Fig. 15.2.1. The integrations are over the localized volume V in which

the source densities ρ, J are non-zero.

In words, the potentialϕ(r, t) at a field point r at time t is obtainable by superimpos-

ing the fields due to the infinitesimal charge ρ(r′, t′)d3r′ that resided within the volume

element d3r′ at time instant t′, which is R/c seconds earlier than t, that is, t′ = t−R/c.
Thus, in accordance with our intuitive notions of causality, a change at the source

point r′ is not felt instantaneously at the field point r, but takes R/c seconds to get

there, that is, it propagates with the speed of light. Equations (15.2.1) are referred to
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Fig. 15.2.1 Retarded potentials generated by a localized current/charge distribution.

as the retarded potentials because the sources inside the integrals are evaluated at the

retarded time t′ = t −R/c.
To prove (15.2.1), we consider first the solution to the following scalar wave equation

driven by a time-dependent point source located at the origin:

1

c2

∂2u

∂t2
−∇2u = f(t)δ(3)(r) (15.2.2)

where f(t) is an arbitrary function of time and δ(3)(r) is the 3-dimensional delta func-

tion. We show below that the causal solution of Eq. (15.2.2) is:†

u(r, t)= f(t′)
4πr

=
f
(

t − r
c

)

4πr
= f(t − r

c

)

g(r), where g(r)= 1

4πr
(15.2.3)

with t′ = t − r/c and r = |r|. The function g(r) is recognized as the Green’s function

for the electrostatic Coulomb problem and satisfies:

∇∇∇g = −r̂
1

4πr2
= −r̂

g

r
, ∇2g = −δ(3)(r) (15.2.4)

where r̂ = r/r is the radial unit vector. We note also that because f(t − r/c) depends

on r only through its t-dependence, we have:

∂

∂r
f(t − r/c)= −1

c

∂

∂t
f(t − r/c)= −1

c
ḟ

It follows that∇∇∇f = −r̂ ḟ/c and

∇∇∇2f = −(∇∇∇ · r̂)
ḟ

c
− 1

c
r̂ ·∇∇∇ḟ = −(∇∇∇ · r̂)

ḟ

c
− 1

c
r̂ · (−r̂

f̈

c

) = −2ḟ

cr
+ 1

c2
f̈ (15.2.5)

where we used the result∇∇∇ · r̂ = 2/r.‡ Using Eqs. (15.2.3)–(15.2.5) into the identity:

∇2u = ∇2(fg) = 2∇∇∇f ·∇∇∇g+ g∇2f + f∇2g

†The anticausal, or time-advanced, solution is u(r, t)= f(t + r/c)g(r).
‡Indeed,∇∇∇ · r̂ =∇∇∇ · (r/r)= (∇∇∇ · r)/r + r · (−r̂/r2)= 3/r − 1/r = 2/r.
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we obtain,

∇2u = 2
(−r̂

ḟ

c

) · (−r̂
g

r

)− 2ḟ

cr
g+ 1

c2
f̈g− f(t − r

c
)δ(3)(r)

The first two terms cancel and the fourth term can be written as f(t)δ(3)(r) because

the delta function forces r = 0. Recognizing that the third term is

1

c2

∂2u

∂t2
= 1

c2
f̈g

we have,

∇2u = 1

c2

∂2u

∂t2
− f(t)δ(3)(r)

which shows Eq. (15.2.2). Next, we shift the point source to location r′, and find the

solution to the wave equation:

1

c2

∂2u

∂t2
−∇2u = f(r′, t)δ(3)(r− r′) ⇒ u(r, t)= f(r′, t −R/c)

4πR
(15.2.6)

where R = |r − r′| and we have allowed the function f to also depend on r′. Note that

here r′ is fixed and the field point r is variable.

Using linearity, we may form now the linear combination of several such point

sources located at various values of r′ and get the corresponding linear combination

of solutions. For example, the sum of two sources will result in the sum of solutions:

f(r′1, t)δ
(3)(r− r′1)+f(r′2, t)δ(3)(r− r′2) ⇒ f(r′1, t −R1/c)

4πR1

+ f(r
′
2, t −R2/c)

4πR2

where R1 = |r− r′1|, R2 = |r− r′2|. More generally, integrating over the whole volume V

over which f(r′, t) is nonzero, we have for the sum of sources:

f(r, t)=
∫

V
f(r′, t)δ(3)(r− r′)d3r′

and the corresponding sum of solutions:

u(r, t)=
∫

V

f(r′, t −R/c)
4πR

d3r′ (15.2.7)

where R = |r− r′|. Thus, this is the causal solution to the general wave equation:

1

c2

∂2u

∂t2
−∇2u = f(r, t) (15.2.8)

The retarded potentials (15.2.1) are special cases of Eq. (15.2.7), applied for f(r, t)=
ρ(r, t)/ǫ and f(r, t)= μJ(r, t).
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15.3 Harmonic Time Dependence

Since we are primarily interested in single-frequency waves, we will Fourier transform

all previous results. This is equivalent to assuming a sinusoidal time dependence ejωt

for all quantities. For example,

ϕ(r, t)=ϕ(r)ejωt , ρ(r, t)= ρ(r)ejωt , etc.

Then, the retarded solutions (15.2.1) become:

ϕ(r)ejωt =
∫

V

ρ(r′)ejω(t−
R
c )

4πǫR
d3r′

Canceling a common factor ejωt from both sides, we obtain for the phasor part of the

retarded potentials, where R = |r− r′|:

ϕ(r) =
∫

V

ρ(r′)e−jkR

4πǫR
d3r′

A(r) =
∫

V

μJ(r′)e−jkR

4πR
d3r′

, where k = ω

c
(15.3.1)

The quantity k represents the free-space wavenumber and is related to the wave-

length via k = 2π/λ. An alternative way to obtain Eqs. (15.3.1) is to start with the wave

equations and replace the time derivatives by ∂t → jω. Equations (15.1.7) become then

the Helmholtz equations:

∇2ϕ+ k2ϕ = −1

ǫ
ρ

∇2A+ k2A = −μJ

(15.3.2)

Their solutions may be written in the convolutional form:†

ϕ(r) =
∫

V

1

ǫ
ρ(r′)G(r− r′)d3r′

A(r) =
∫

V
μJ(r′)G(r− r′)d3r′

(15.3.3)

where G(r) is the Green’s function for the Helmholtz equation:

∇2G+ k2G = −δ(3)(r) , G(r)= e−jkr

4πr
(15.3.4)

Replacing ∂/∂t by jω, the Lorenz condition (15.1.4) takes the form:

∇∇∇ · A+ jωμǫϕ = 0 (15.3.5)

†The integrals in (15.3.1) or (15.3.3) are principal-value integrals, that is, the limits as δ → 0 of the

integrals over V − Vδ(r), where Vδ(r) is an excluded small sphere of radius δ centered about r. See

Appendix D and Refs. [1330,495,507,634] and [138–142] for the properties of such principal value integrals.
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Similarly, the electric and magnetic fields (15.1.2) become:

E = −∇∇∇ϕ− jωA

H = 1

μ
∇∇∇× A

(15.3.6)

With the help of the Lorenz condition the E-field can be expressed completely in

terms of the vector potential. Solving (15.3.5) for the scalar potential,ϕ = −∇∇∇·A/jωμǫ,
and substituting in (15.3.6), we find

E = 1

jωμǫ
∇∇∇(∇∇∇ · A)−jωA = 1

jωμǫ

[∇∇∇(∇∇∇ · A)+k2A
]

where we usedω2μǫ =ω2/c2 = k2. To summarize, with A(r) computed from Eq. (15.3.1),

the E,H fields are obtained from:

E = 1

jωμǫ

[∇∇∇(∇∇∇ · A)+k2A
]

H = 1

μ
∇∇∇× A

(15.3.7)

An alternative way of expressing the electric field is:

E = 1

jωμǫ

[∇∇∇× (∇∇∇× A)−μJ
]

(15.3.8)

This is Ampère’s law solved for E. When applied to a source-free region of space,

such as in the radiation zone, (15.3.8) simplifies into:

E = 1

jωμǫ
∇∇∇× (∇∇∇× A) (15.3.9)

The fields E,H can also be expressed directly in terms of the sources ρ, J. Indeed,

replacing the solutions (15.3.3) into Eqs. (15.3.6) or (15.3.7), we obtain:

E =
∫

V

[−jωμJG+ 1

ǫ
ρ∇∇∇′G]dV′ = 1

jωǫ

∫

V

[

(J ·∇∇∇′)∇∇∇′G+ k2JG
]

dV′

H =
∫

V
J×∇∇∇′GdV′

(15.3.10)

Here, ρ, J stand for ρ(r′), J(r′). The gradient operator∇∇∇ acts inside the integrands

only onG and because that depends on the difference r−r′, we can replace the gradient

with∇∇∇G(r− r′)= −∇∇∇′G(r− r′). Also, we denoted d3r′ by dV′.
In obtaining (15.3.10), we had to interchange the operator∇∇∇ and the integrals over

V. When r is outside the volume V—as is the case for most of our applications—then,

such interchanges are valid. When r lies within V, then, interchanging single∇∇∇’s is still

valid, as in the first expression for E and for H. However, in interchanging double∇∇∇’s,
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additional source terms arise. For example, using Eq. (D.8) of Appendix D, we find by

interchanging the operator∇∇∇×∇∇∇× with the integral for A in Eq. (15.3.8):

E = 1

jωǫ

[∇∇∇×∇∇∇×
∫

V
JGdV′ − J

] = 1

jωǫ

[2

3
J+ PV

∫

V
∇∇∇×∇∇∇× (JG)dV′ − J

]

where “PV” stands for “principal value.” Because∇∇∇ does not act on J(r′), we have:

∇∇∇×∇∇∇× (JG)=∇∇∇× (∇∇∇G× J)= (J ·∇∇∇)∇∇∇G− J∇2G = (J ·∇∇∇′)∇∇∇′G+ k2JG

where in the last step, we replaced∇∇∇ by −∇∇∇′ and ∇2G = −k2G. It follows that:

E = 1

jωǫ

[

PV

∫

V

[

(J ·∇∇∇′)∇∇∇′G+ k2JG
]

dV′ − 1

3
J

]

, (r lies in V) (15.3.11)

In Sec. 18.10, we consider Eqs. (15.3.10) further in connection with Huygens’s prin-

ciple and vector diffraction theory.

Next, we present three illustrative applications of the techniques discussed in this

section: (a) Determining the fields of linear wire antennas, (b) The fields produced by

electric and magnetic dipoles, and (c) the Ewald-Oseen extinction theorem and the mi-

croscopic origin of the refractive index. Then, we go on in Sec. 15.7 to discuss the

simplification of the retarded potentials (15.3.3) for radiation problems.

15.4 Fields of a Linear Wire Antenna

Eqs. (15.3.7) simplify considerably in the special practical case of a linear wire antenna,

that is, a thin cylindrical antenna. Figure 15.4.1 shows the geometry in the case of a

z-directed antenna of finite length with a current I(z′) flowing on it.

The assumption that the radius of the wire is much smaller than its length means ef-

fectively that the current density J(r′)will be z-directed and confined to zero transverse

dimensions, that is,

J(r′)= ẑ I(z′)δ(x′)δ(y′) (current on thin wire antenna) (15.4.1)

In the more realistic case of an antenna of finite radius a, the current density will

be confined to flow on the cylindrical surface of the antenna, that is, at radial distance

ρ = a. Assuming cylindrical symmetry, the current density will be:

J(r′)= ẑ I(z′)δ(ρ′ − a) 1

2πa
(15.4.2)

This case is discussed in more detail in Chap. 22. In both cases, integrating the

current density over the transverse dimensions of the antenna gives the current:

∫

J(x′, y′, z′)dx′dy′ =
∫

J(ρ′,φ′, z′)ρ′dρ′dφ′ = ẑ I(z′)

Because of the cylindrical symmetry of the problem, the use of cylindrical coordi-

nates is appropriate, especially in determining the fields near the antenna (cylindrical

coordinates are reviewed in Sec. 15.8.) On the other hand, that the radiated fields at
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Fig. 15.4.1 Thin wire antenna.

far distances from the antenna are best described in spherical coordinates. This is so

because any finite current source appears as a point from far distances.

Inserting Eq. (15.4.1) into Eq. (15.3.1), it follows that the vector potential will be z-

directed and cylindrically symmetric. We have,

A(r) =
∫

V

μJ(r′)e−jkR

4πR
d3r′ = ẑ

μ

4π

∫

V
I(z′)δ(x′)δ(y′)

e−jkR

R
dx′dy′dz′

= ẑ
μ

4π

∫

L
I(z′)

e−jkR

R
dz′

where R = |r− r′| =
√

ρ2 + (z− z′)2, as shown in Fig. 15.4.1. The z′-integration is over

the finite length of the antenna. Thus, A(r)= ẑAz(ρ, z), with

Az(ρ, z)= μ

4π

∫

L
I(z′)

e−jkR

R
dz′ , R =

√

ρ2 + (z− z′)2 (15.4.3)

This is the solution of the z-component of the Helmholtz equation (15.3.2):

∇2Az + k2Az = −μI(z)δ(x)δ(y)

Because of the cylindrical symmetry, we can set ∂/∂φ = 0. Therefore, the gradient

and Laplacian operators are ∇∇∇ = ρ̂ρρ∂ρ + ẑ∂z and ∇2 = ρ−1∂ρ(ρ∂ρ)+∂2
z. Thus, the

Helmholtz equation can be written in the form:

1

ρ
∂ρ(ρ∂ρAz)+∂2

zAz + k2Az = −μI(z)δ(x)δ(y)

Away from the antenna, we obtain the homogeneous equation:

1

ρ
∂ρ(ρ∂ρAz)+∂2

zAz + k2Az = 0 (15.4.4)

Noting that∇∇∇ · A = ∂zAz, we have from the Lorenz condition:
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ϕ = − 1

jωμǫ
∂zAz (scalar potential of wire antenna) (15.4.5)

The z-component of the electric field is from Eq. (15.3.7):

jωμǫEz = ∂z(∇∇∇ · A)+k2Az = ∂2
zAz + k2Az

and the radial component:

jωμǫEρ = ∂ρ(∇∇∇ · A)= ∂ρ∂zAz

Using B =∇∇∇×A = (ρ̂ρρ∂ρ+ ẑ∂z)×(ẑAz)= (ρ̂ρρ× ẑ)∂ρAz = −φ̂φφ∂ρAz, it follows that

the magnetic field has only a φ-component given by Bφ = −∂ρAz. To summarize, the

non-zero field components are all expressible in terms of Az as follows:

jωμǫEz = ∂2
zAz + k2Az

jωμǫEρ = ∂ρ∂zAz
μHφ = −∂ρAz

(fields of a wire antenna) (15.4.6)

Using Eq. (15.4.4), we may re-express Ez in the form:

jωμǫEz = − 1

ρ
∂ρ(ρ∂ρAz)= μ 1

ρ
∂ρ(ρHφ) (15.4.7)

This is, of course, equivalent to the z-component of Ampère’s law. In fact, an even

more convenient way to construct the fields is to use the first of Eqs. (15.4.6) to construct

Ez and then integrate Eq. (15.4.7) to getHφ and then use the ρ-component of Ampère’s

law to get Eρ. The resulting system of equations is:

jωμǫEz = ∂2
zAz + k2Az

∂ρ(ρHφ) = jωǫρEz
jωǫEρ = −∂zHφ

(15.4.8)

In Chap. 22, we use (15.4.6) to obtain the Hallén and Pocklington integral equations

for determining the current I(z) on a linear antenna, and solve them numerically. In

Chap. 23, we use (15.4.8) under the assumption that the current I(z) is sinusoidal to

determine the near fields, and use them to compute the self and mutual impedances

between linear antennas. The sinusoidal assumption for the current allows us to find

Ez, and hence the rest of the fields, without having to find Az first!

15.5 Fields of Electric and Magnetic Dipoles

Finding the fields produced by time-varying electric dipoles has been historically impor-

tant and has served as a prototypical example for radiation problems.
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We consider a point dipole located at the origin, in vacuum, with electric dipole

moment p. Assuming harmonic time dependence ejωt, the corresponding polarization

(dipole moment per unit volume) will be: P(r)= pδ(3)(r). We saw in Eq. (1.3.18) that

the corresponding polarization current and charge densities are:

J = ∂P

∂t
= jωP , ρ = −∇∇∇ · P (15.5.1)

Therefore,

J(r)= jωpδ(3)(r) , ρ(r)= −p ·∇∇∇δ(3)(r) (15.5.2)

Because of the presence of the delta functions, the integrals in Eq. (15.3.3) can be

done trivially, resulting in the vector and scalar potentials:

A(r) = μ0

∫

jωpδ(3)(r′)G(r− r′)dV′ = jωμ0 pG(r)

ϕ(r) = − 1

ǫ0

∫
[

p ·∇∇∇′δ(3)(r′)]G(r− r′)dV′ = − 1

ǫ0

p ·∇∇∇G(r)
(15.5.3)

where the integral forϕwas done by parts. Alternatively,ϕ could have been determined

from the Lorenz-gauge condition∇∇∇ · A+ jωμ0ǫ0ϕ = 0.

The E,H fields are computed from Eq. (15.3.6), or from (15.3.7), or away from the

origin from (15.3.9). We find, where k2 =ω2/c2
0 =ω2μ0ǫ0 :

E(r) = 1

ǫ0

∇∇∇× [∇∇∇G(r)×p
] = 1

ǫ0

[

k2 p+ (p ·∇∇∇)∇∇∇]G(r)

H(r) = jω∇∇∇G(r)×p

(15.5.4)

for r �= 0. The Green’s function G(r) and its gradient are:

G(r)= e−jkr

4πr
, ∇∇∇G(r)= −r̂

(

jk+ 1

r

)

G(r)= −r̂
(

jk+ 1

r

)e−jkr

4πr

where r = |r| and r̂ is the radial unit vector r̂ = r/r. Inserting these into Eq. (15.5.4), we

obtain the more explicit expressions:

E(r) = 1

ǫ0

(

jk+ 1

r

)
[

3r̂(r̂ · p)−p

r

]

G(r)+ k
2

ǫ0

r̂× (p× r̂)G(r)

H(r) = jω(

jk+ 1

r

)

(p× r̂)G(r)

(15.5.5)

If the dipole is moved to location r0, so that P(r)= pδ(3)(r− r0), then the fields are

still given by Eqs. (15.5.4) and (15.5.5), with the replacement G(r)→ G(R) and r̂ → R̂,

where R = r− r0.

Eqs. (15.5.5) describe both the near fields and the radiated fields. The limitω = 0 (or

k = 0) gives rise to the usual electrostatic dipole electric field, decreasing like 1/r3. On

the other hand, as we discuss in Sec. 15.7, the radiated fields correspond to the terms

decreasing like 1/r. These are (with η0 =
√

μ0/ǫ0):
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E rad(r) = k2

ǫ0

r̂× (p× r̂)G(r)= k2

ǫ0

r̂× (p× r̂)
e−jkr

4πr

H rad(r) = jω jk(p× r̂)G(r)= k2

η0ǫ0

(r̂× p)
e−jkr

4πr

(15.5.6)

They are related by η0H rad = r̂ × E rad, which is a general relationship for radia-

tion fields. The same expressions can also be obtained quickly from Eq. (15.5.4) by the

substitution rule∇∇∇ → −jkr̂, discussed in Sec. 15.10.

The near-field, non-radiating, terms in (15.5.5) that drop faster than 1/r are im-

portant in the new area of near-field optics [530–550]. Nanometer-sized dielectric tips

(constructed from a tapered fiber) act as tiny dipoles that can probe the evanescent

fields from objects, resulting in a dramatic increase (by factors of ten) of the resolution

of optical microscopy beyond the Rayleigh diffraction limit and down to atomic scales.

A magnetic dipole at the origin, with magnetic dipole moment m, will be described

by the magnetization vector M = mδ(3)(r). According to Sec. 1.3, the corresponding

magnetization current will be J =∇∇∇×M =∇∇∇δ(3)(r)×m. Because∇∇∇· J = 0, there is no

magnetic charge density, and hence, no scalar potentialϕ. The vector potential will be:

A(r)= μ0

∫

∇∇∇′δ(3)(r′)×mG(r− r′)dV′ = μ0∇∇∇G(r)×m (15.5.7)

It then follows from Eq. (15.3.6) that:

E(r) = −jωμ0∇∇∇G(r)×m

H(r) =∇∇∇× [∇∇∇G(r)×m
] = [

k2 m+ (m ·∇∇∇)∇∇∇]G(r)
(15.5.8)

which become explicitly,

E(r) = jωμ0

(

jk+ 1

r

)

(r̂×m)G(r)

H(r) = (

jk+ 1

r

)
[

3r̂(r̂ ·m)−m

r

]

G(r)+k2 r̂× (m× r̂)G(r)

(15.5.9)

The corresponding radiation fields are:

E rad(r) = jωμ0 jk(r̂×m)G(r)= η0k
2(m× r̂)

e−jkr

4πr

H rad(r) = k2 r̂× (m× r̂)G(r)= k2 r̂× (m× r̂)
e−jkr

4πr

(15.5.10)

We note that the fields of the magnetic dipole are obtained from those of the electric

dipole by the duality transformations E → H, H → −E, ǫ0 → μ0, μ0 → ǫ0, η0 → 1/η0, and

p → μ0 m, that latter following by comparing the terms P and μ0M in the constitutive

relations (1.3.16). Duality is discussed in more detail in Sec. 18.2.

The electric and magnetic dipoles are essentially equivalent to the linear and loop

Hertzian dipole antennas, respectively, which are discussed in sections 17.2 and 17.8.

Problem 15.4 establishes the usual results p = Q d for a pair of charges ±Q separated

by a distance d, and m = ẑ IS for a current loop of area S.
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Example 15.5.1: We derive explicit expressions for the real-valued electric and magnetic fields

of an oscillating z-directed dipole p(t)= p ẑ cosωt. And also derive and plot the electric

field lines at several time instants. This problem has an important history, having been

considered first by Hertz in 1889 in a paper reprinted in [58].

Restoring the ejωt factor in Eq. (15.5.5) and taking real parts, we obtain the fields:

EEE(r) = p[k sin(kr −ωt)+ cos(kr −ωt)
r

]3r̂(r̂ · ẑ)−ẑ

4πǫ0r2
+ pk2 r̂× (ẑ× r̂)

4πǫ0r
cos(kr −ωt)

HHH(r) = pω[−k cos(kr −ωt)+ sin(kr −ωt)
r

]
[

ẑ× r̂

4πr

]

In spherical coordinates, we have ẑ = r̂ cosθ−θ̂θθ sinθ. This gives 3 r̂(r̂· ẑ)−ẑ = 2 r̂ cosθ+
θ̂θθ sinθ, r̂× (ẑ× r̂)= −θ̂θθ sinθ, and ẑ× r̂ = φ̂φφ sinθ. Therefore, the non-zero components

of EEE andHHH are Er ,Eφ and Hφ :

Er(r) = p
[

k sin(kr −ωt)+ cos(kr −ωt)
r

]
[

2 cosθ

4πǫ0r2

]

Eθ(r) = p
[

k sin(kr −ωt)+ cos(kr −ωt)
r

]
[

sinθ

4πǫ0r2

]

− pk2 sinθ

4πǫ0r
cos(kr −ωt)

Hφ(r) = pω
[−k cos(kr −ωt)+ sin(kr −ωt)

r

]
[

sinθ

4πr

]

By definition, the electric field is tangential to its field lines. A small displacement dr along

the tangent to a line will be parallel toEEE at that point. This implies that dr×EEE = 0, which

can be used to determine the lines. Because of the azimuthal symmetry in the φ variable,

we may look at the field lines that lie on the xz-plane (that is, φ = 0). Then, we have:

dr×EEE = (r̂dr + θ̂θθr dθ)×(r̂Er + θ̂θθEθ)= φ̂φφ(drEθ − r dθEr)= 0 ⇒ dr

dθ
= rEr
Eθ

This determines r as a function of θ, giving the polar representation of the line curve. To

solve this equation, we rewrite the electric field in terms of the dimensionless variables

u = kr and δ =ωt, defining E0 = pk3/4πǫ0:

Er = E0

2 cosθ

u2

[

sin(u− δ)+ cos(u− δ)
u

]

Eθ = −E0

sinθ

u

[

cos(u− δ)− cos(u− δ)
u2

− sin(u− δ)
u

]

We note that the factors within the square brackets are related by differentiation:

Q(u) = sin(u− δ)+ cos(u− δ)
u

Q′(u) = dQ(u)

du
= cos(u− δ)− cos(u− δ)

u2
− sin(u− δ)

u

Therefore, the fields are:

Er = E0

2 cosθ

u2
Q(u) , Eθ = −E0

sinθ

u
Q′(u)

722 15. Radiation Fields

It follows that the equation for the lines in the variable u will be:

du

dθ
= uEr
Eθ

= −2 cotθ

[

Q(u)

Q′(u)

]

⇒ d

dθ

[

lnQ(u)
] = −2 cotθ = − d

dθ

[

ln sin2 θ
]

which gives:
d

dθ
ln
[

Q(u)sin2 θ
] = 0 ⇒ Q(u)sin2 θ = C

where C is a constant. Thus, the electric field lines are given implicitly by:

[

sin(u− δ)+ cos(u− δ)
u

]

sin2 θ =
[

sin(kr −ωt)+ cos(kr −ωt)
kr

]

sin2 θ = C
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Fig. 15.5.1 Electric field lines of oscillating dipole at successive time instants.

Ideally, one should solve for r in terms of θ. Because this is not possible in closed form,

we prefer to think of the lines as a contour plot at different values of the constant C. The

resulting graphs are shown in Fig. 15.5.1. They were generated at the four time instants

t = 0, T/8, T/4, and 3T/8, where T is the period of oscillation, T = 2π/ω. The x, z

distances are in units of λ and extend to 1.5λ. The dipole is depicted as a tiny z-directed

line at the origin. The following MATLAB code illustrates the generation of these plots:

rmin = 1/8; rmax = 1.6; % plot limits in wavelengths λ

Nr = 61; Nth = 61; N = 6; % meshpoints and number of contour levels

t = 1/8; d = 2*pi*t; % time instant t = T/8

[r,th] = meshgrid(linspace(rmin,rmax,Nr), linspace(0,pi,Nth));
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u = 2*pi*r; % r is in units of λ

z = r.*cos(th); x = r.*sin(th); % cartesian coordinates in units of λ

C = (cos(u-d)./u + sin(u-d)) .* sin(th).^2; % contour levels

contour([-x; x], [z; z], [C; C], N); % right and left-reflected contours with N levels

We observe how the lines form closed loops originating at the dipole. The loops eventually

escape the vicinity of the dipole and move outwards, pushing away the loops that are ahead

of them. In this fashion, the field gets radiated away from its source. The MATLAB file

dipmovie.m generates a movie of the evolving field lines lasting from t = 0 to t = 8T. ⊓⊔

15.6 Ewald-Oseen Extinction Theorem

The reflected and transmitted fields of a plane wave incident on a dielectric were deter-

mined in Chapters 5 and 7 by solving the wave equations in each medium and matching

the solutions at the interface by imposing the boundary conditions.

Although this approach yields the correct solutions, it hides the physics. From the

microscopic point of view, the dielectric consists of polarizable atoms or molecules,

each of which is radiating in vacuum in response to the incident field and in response

to the fields radiated by the other atoms. The total radiated field must combine with

the incident field so as to generate the correct transmitted field. This is the essence of

the Ewald-Oseen extinction theorem [493–529]. The word “extinction” refers to the can-

cellation of the incident field inside the dielectric. It is interesting to note that Feynman

had implicitly used this cancellation condition in his intuitive derivation of the Fresnel

reflection coefficients for oblique incidence [514]. This point was recently emphasized

and developed further by Reali [529].

Let E(r) be the incident field, E rad(r) the total radiated field, and E ′(r) the trans-

mitted field in the dielectric. Then, the theorem states that (for r inside the dielectric):

E rad(r)= E ′(r)−E(r) ⇒ E ′(r)= E(r)+E rad(r) (15.6.1)

We will follow a simplified approach to the extinction theorem as in Refs. [514–528]

and in particular [528]. We assume that the incident field is a uniform plane wave, with

TE or TM polarization, incident obliquely on a planar dielectric interface, as shown in

Fig. 15.6.1. The incident and transmitted fields will have the form:

E(r)= E0 e
−j k·r , E ′(r)= E ′0 e

−j k′·r (15.6.2)

The expected relationships between the transmitted and incident waves were sum-

marized in Eqs. (7.7.1)–(7.7.5). We will derive the same results from the present ap-

proach. The incident wave vector is k = kx ẑ + kz ẑ with k = ω/c0 = ω
√
ǫ0μ0, and

satisfies k · E0 = 0. For the transmitted wave, we will find that k′ = kx ẑ+ k′z ẑ satisfies

k′ · E ′0 = 0 and k′ = ω/c = ω√ǫμ0 = kn, so that c = c0/n, where n is the refractive

index of the dielectric, n = √

ǫ/ǫ0.

The radiated field is given by Eq. (15.3.10), where J is the current due to the polariza-

tion P, that is, J = Ṗ = jωP. Although there is no volume polarization charge density,†

†ρ = −∇∇∇ · P vanishes for the type of plane-wave solutions that we consider here.
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Fig. 15.6.1 Elementary dipole at r′ contributes to the local field at r.

there may be a surface polarization density ρs = n̂ ·P on the planar dielectric interface.

Because n̂ = −ẑ, we will have ρs = −ẑ ·P = −Pz. Such density is present only in the TM

case [528]. The corresponding volume term in Eq. (15.3.10) will collapse into a surface

integral. Thus, the field generated by the densities J, ρs will be:

E rad(r)= −jωμ0

∫

V
J(r′)G(r− r′)dV′ + 1

ǫ0

∫

S
ρs(r

′)∇∇∇′G(r− r′)dS′

where G(r)= e−jkr/4πr is the vacuum Green’s function having k =ω/c0, and V is the

right half-space z ≥ 0, and S, the xy-plane. Replacing J, ρs in terms of the polarization

and writing∇∇∇′G = −∇∇∇G, and moving∇∇∇ outside the surface integral, we have:

E rad(r)=ω2μ0

∫

V
P(r′)G(r− r′)dV′ + 1

ǫ0

∇∇∇
∫

S
Pz(r

′)G(r− r′)dS′ (15.6.3)

We assume that the polarization P(r′) is induced by the total field inside the di-

electric, that is, we set P(r′)= ǫ0χE ′(r′), where χ is the electric susceptibility. Setting

k2 =ω2μ0ǫ0, Eq. (15.6.3) becomes:

E rad(r)= k2 χ

∫

V
E ′(r′)G(r− r′)dV′ + χ∇∇∇

∫

S
E′z(r

′)G(r− r′)dS′ (15.6.4)

Evaluated at points r on the left of the interface (z < 0), E rad(r) should generate

the reflected field. Evaluated within the dielectric (z ≥ 0), it should give Eq. (15.6.1),

resulting in the self-consistency condition:

k2 χ

∫

V
E ′(r′)G(r− r′)dV′ + χ∇∇∇

∫

S
E′z(r

′)G(r− r′)dS′ = E ′(r)−E(r) (15.6.5)

Inserting Eq. (15.6.2), we obtain the condition:

k2 χE ′0

∫

V
e−j k′·r′G(r− r′)dV′ +χE′z0∇∇∇

∫

S
e−j k′·r′G(r− r′)dS′ = E ′0 e

−j k′·r − E0 e
−j k·r

The vector k′ = k′x x̂ + k′z ẑ may be assumed to have k′x = kx, which is equivalent

to Snel’s law. This follows easily from the phase matching of the ejkxx factors in the
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above equation. Then, the integrals over S and V can be done easily using Eqs. (D.14)

and (D.16) of Appendix D, with (D.14) being evaluated at z′ = 0 and z ≥ 0:

∫

V
e−j k′·r′G(r− r′)dV′ = e−j k′·r

k′2 − k2
− e−j k·r

2kz(k
′
z − kz)

∫

S
e−j k′·r′G(r− r′)dS′ = e−j k·r

2jkz
⇒ ∇∇∇

∫

S
e−j k′·r′G(r− r′)dS′ = −ke−j k·r

2kz

(15.6.6)

The self-consistency condition reads now:

k2 χE ′0

[

e−j k′·r

k′2 − k2
− e−j k·r

2kz(k
′
z − kz)

]

− χE′z0

ke−j k·r

2kz
= E ′0 e

−j k′·r − E0 e
−j k·r

Equating the coefficients of like exponentials, we obtain the two conditions:

k2 χ

k′2 − k2
E ′0 = E ′0 ⇒ k2 χ

k′2 − k2
= 1 ⇒ k′2 = k2(1+ χ)= k2n2 (15.6.7)

k2 χ

2kz(k
′
z − kz)

E ′0 +
χk

2kz
E′z0 = E0 (15.6.8)

The first condition implies that k′ = kn, wheren = √

1+ χ = √

ǫ/ǫ0. Thus, the phase

velocity within the dielectric is c = c0/n. Replacing χ = (k′2 − k2)/k2 = (k′2z − k2
z)/k

2,

we may rewrite Eq. (15.6.8) as:

k′2z − k2
z

2kz(k
′
z − kz)

E ′0 +
(k′2z − k2

z)k

2kz k2
E′z0 = E0 , or,

E ′0 +
k

k2
(k′z − kz)E′z0 =

2kz
k′z + kz

E0 (15.6.9)

This implies immediately the transversality condition for the transmitted field, that

is, k′ · E ′0 = 0. Indeed, using k · E0 = 0 for the incident field, we find:

k · E ′0 +
k · k

k2
(k′z − kz)E′z0 =

2kz
k′z + kz

k · E0 = 0 ⇒ k · E ′0 + (k′z − kz)E′z0 = 0

or, explicitly, kxE
′
x0 + kzE′z0 + (k′z − kz)E′z0 = kxE′x0 + k′zE′z0 = k′ · E ′0 = 0. Replacing

(k′z − kz)E′z0 = −k · E ′0 in Eq. (15.6.9) and using the BAC-CAB rule, we obtain:

E ′0 −
k

k2
(k · E ′0)=

2kz
k′z + kz

E0 ⇒ k× (E ′0 × k)

k2
= 2kz
k′z + kz

E0 (15.6.10)

It can be shown that Eq. (15.6.10) is equivalent to the transmission coefficient results

summarized in Eqs. (7.7.1)–(7.7.5), for both the TE and TM cases (see also Problem 7.6

and the identities in Problem 7.5.) The transmitted magnetic field H ′(r)= H ′
0 e

−j k′·r

may be found from Faraday’s law∇∇∇× E ′ = −jωμ0 H ′, which reads ωμ0 H ′
0 = k′ × E ′0.

Next, we look at the reflected field. For points r lying to the left of the interface

(z ≤ 0), the evaluation of the integrals (15.6.6) gives according to Eqs. (D.14) and (D.16),
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where (D.14) is evaluated at z′ = 0 and z ≤ 0:

∫

V
e−j k′·r′G(r− r′)dV′ = − e−j k−·r

2kz(k
′
z + kz)

∫

S
e−j k′·r′G(r− r′)dS′ = e−j k−·r

2jkz
⇒ ∇∇∇

∫

S
e−j k′·r′G(r− r′)dS′ = −k− e−j k−·r

2kz

where k− denotes the reflected wave vector, k− = kx x̂ − kz ẑ. It follows that the total

radiated field will be:

E rad(r)= k2 χE ′0

[

− e−j k−·r

2kz(k
′
z + kz)

]

− k− χE′z0

2kz
e−j k−·r = E−0e

−j k−·r

where the overall coefficient E−0 can be written in the form:

E−0 = − k2 χ

2kz(k
′
z + kz)

E ′0 −
k− χE′z0

2kz
= kz − k′z

2kz

[

E ′0 +
k−(k′z + kz)E′z0

k2

]

where we set χ = (k′2z −k2
z)/k

2. Noting the identity k− ·E ′0+ (k′z+kz)E′z0 = k′ ·E ′0 = 0

and k− · k− = k2, we finally find:

E−0 = kz − k′z
2kz

[

E ′0 −
k−(k− · E ′0)

k2

]

⇒ k− × (E ′0 × k−)
k2

= 2kz
kz − k′z

E−0 (15.6.11)

It can be verified that (15.6.11) is equivalent to the reflected fields as given by

Eqs. (7.7.1)–(7.7.5) for the TE and TM cases. We note also that k− · E−0 = 0.

The conventional boundary conditions are a consequence of this approach. For ex-

ample, Eqs. (15.6.10) and (15.6.11) imply the continuity of the tangential components of

the E-field. Indeed, we find by adding:

E0 + E−0 = E ′0 +
χE′z0

2kz
(k− k−)= E ′0 + χ ẑE′z0

which implies that ẑ× (E0 + E−0)= ẑ× E ′0.

In summary, the radiated fields from the polarizable atoms cause the cancellation of

the incident vacuum field throughout the dielectric and conspire to generate the correct

transmitted field that has phase velocity c = c0/n. The reflected wave does not originate

just at the interface but rather it is the field radiated backwards by the atoms within the

entire body of the dielectric.

Next, we discuss another simplified approach based on radiating dipoles [519]. It

has the additional advantage that it leads to the Lorentz-Lorenz or Clausius-Mossotti

relationship between refractive index and polarizability. General proofs of the extinction

theorem may be found in [493–513] and [634].

The dielectric is viewed as a collection of dipoles pi at locations ri. The dipole mo-

ments are assumed to be induced by a local (or effective) electric field E loc(r) through

pi = αǫ0E loc(ri), where α is the polarizability.† The field radiated by the jth dipole pj
is given by Eq. (15.5.4), where G(r) is the vacuum Green’s function:

Ej(r)= 1

ǫ0

∇∇∇×∇∇∇× [

pjG(r− rj)
]

†Normally, the polarizability is defined as the quantity α′ = αǫ0.
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The field at the location of the ith dipole due to all the other dipoles will be:

E rad(ri)=
∑

j �=i
Ej(ri)= 1

ǫ0

∑

j �=i
∇∇∇i ×∇∇∇i ×

[

pjG(ri − rj)
]

(15.6.12)

where∇∇∇i is with respect to ri. Passing to a continuous description, we assumeN dipoles

per unit volume, so that the polarization density will be P(r′)= N p(r′)= Nαǫ0E loc(r
′).

Then, Eq. (15.6.12) is replaced by the (principal-value) integral:

E rad(r)= 1

ǫ0

∫

V

[

∇∇∇×∇∇∇× [

P(r′)G(r− r′)
]
]

r′ �=r
dV′ (15.6.13)

Using Eq. (D.7) of Appendix D, we rewrite:

E rad(r)= 1

ǫ0

∇∇∇×∇∇∇×
∫

V
P(r′)G(r− r′)dV′ − 2

3ǫ0

P(r) (15.6.14)

and in terms of the local field (Nα is dimensionless):

E rad(r)= Nα∇∇∇×∇∇∇×
∫

V
E loc(r

′)G(r− r′)dV′ − 2

3
NαE loc(r) (15.6.15)

According to the Ewald-Oseen extinction requirement, the radiated field must can-

cel the incident field E(r) while generating the local field E loc(r), that is, E rad(r)=
E loc(r)−E(r). This leads to the self-consistency condition:

Nα∇∇∇×∇∇∇×
∫

V
E loc(r

′)G(r− r′)dV′ − 2

3
NαE loc(r)= E loc(r)−E(r) (15.6.16)

Assuming a plane-wave solution E loc(r)= E ′1 e−j k′·r, we obtain:

Nα∇∇∇×∇∇∇× E ′1

∫

V
e−j k′·rG(r− r′)dV′ − 2

3
NαE ′1 e

−j k′·r = E ′1 e
−j k′·r − E0 e

−j k·r

For r within the dielectric, we find as before:

Nα∇∇∇×∇∇∇× E ′1

[

e−j k′·r

k′2 − k2
− e−j k·r

2kz(k
′
z − kz)

]

− 2

3
NαE ′1 e

−j k′·r = E ′1 e
−j k′·r − E0 e

−j k·r

Nα∇∇∇×∇∇∇× E ′1

[

e−j k′·r

k′2 − k2
− e−j k·r

2kz(k
′
z − kz)

]

= (

1+ 2

3
Nα

)

E ′1 e
−j k′·r − E0 e

−j k·r

Performing the∇∇∇ operations, we have:

Nα

[

k′ × (E ′1 × k′)
k′2 − k2

e−j k′·r − k× (E ′1 × k)

2kz(k
′
z − kz)

e−j k·r
]

= (

1+ 2

3
Nα

)

E ′1 e
−j k′·r − E0 e

−j k·r

Equating the coefficients of the exponentials, we obtain the two conditions:

Nα
k′ × (E ′1 × k′)
k′2 − k2

= (

1+ 2

3
Nα

)

E ′1 (15.6.17)

Nα
k× (E ′1 × k)

2kz(k
′
z − kz)

= E0 (15.6.18)
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The first condition implies immediately that k′·E ′1 = 0, therefore, using the BAC-CAB

rule, the condition reads:

Nαk′2

k′2 − k2
E ′1 =

(

1+ 2

3
Nα

)

E ′1 ⇒ Nαk′2

k′2 − k2
= 1+ 2

3
Nα (15.6.19)

Setting k′ = kn, Eq. (15.6.19) implies the Lorentz-Lorenz formula:

Nαn2

n2 − 1
= 1+ 2

3
Nα ⇒ n2 − 1

n2 + 2
= 1

3
Nα (15.6.20)

We must distinguish between the local field E loc(r) and the measured or observed

field E ′(r), the latter being a “screened” version of the former. To find their relationship,

we define the susceptibility by χ = n2 − 1 and require that the polarization P(r) be

related to the observed field by the usual relationship P = ǫ0χE ′. Using the Lorentz-

Lorenz formula and P = Nαǫ0 E loc, we find the well-known relationship [634]:

E loc = E ′ + P

3ǫ0

(15.6.21)

From NαE loc = P/ǫ0 = χE ′, we have NαE ′1 = χE ′0. Then, the second condition

(15.6.18) may be expressed in terms of E ′0:

χk× (E ′0 × k)

2kz(k
′
z − kz)

= E0 ⇒ k× (E ′0 × k)

k2
= 2kz
k′z + kz

E0 (15.6.22)

which is identical to Eq. (15.6.10). Thus, the self-consistent solution for E ′(r) is identical

to that found previously.

Finally, we obtain the reflected field by evaluating Eq. (15.6.13) at points r to the left

of the interface. In this case, there is no 2P/3ǫ0 term in (15.6.14) and we have:

E rad(r) = Nα∇∇∇×∇∇∇×
∫

V
E loc(r

′)G(r− r′)dV′ = χ∇∇∇×∇∇∇×
∫

V
E ′(r′)G(r− r′)dV′

= χ∇∇∇×∇∇∇× E ′0

∫

V
e−j k′·r′ G(r− r′)dV′ = χ∇∇∇×∇∇∇× E ′0

[

− e−j k−·r

2k(k
′
z + kz)

]

= −χk− × (E ′0 × k−)
2kz(k

′
z + kz)

e−j k−·r = kz − k′z
2kz

k− × (E ′0 × k−)
k2

e−j k−·r = E−0 e
−j k−·r

which agrees with Eq. (15.6.11).

15.7 Radiation Fields

The retarded solutions (15.3.3) for the potentials are quite general and apply to any

current and charge distribution. Here, we begin making a number of approximations

that are relevant for radiation problems. We are interested in fields that have radiated

away from their current sources and are capable of carrying power to large distances

from the sources.
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The far-field approximation assumes that the field point r is very far from the current

source. Here, “far” means much farther than the typical spatial extent of the current

distribution, that is, r≫ r′. Because r′ varies only over the current source we can state

this condition as r ≫ l, where l is the typical extent of the current distribution (for

example, for a linear antenna, l is its length.) Fig. 15.7.1 shows this approximation.

Fig. 15.7.1 Far-field approximation.

As shown in Fig. 15.7.1, at far distances the sides PP′ and PQ of the triangle PQP′ are

almost equal. But the side PQ is the difference OP−OQ. Thus,R ≃ r−r̂·r′ = r−r′ cosψ,

where ψ is the angle between the vectors r and r′.
A better approximation may be obtained with the help of the small-x Taylor series

expansion
√

1+ x ≃ 1+ x/2− x2/8. Expanding R in powers of r′/r, and keeping terms

up to second order, we obtain:

R = |r− r′| =
√

r2 − 2rr′ cosψ+ r′2 = r
√

1− 2
r′

r
cosψ+ r

′2

r2

≃ r
(

1− r
′

r
cosψ+ r′2

2r2
− 1

8

(−2
r′

r
cosψ+ r

′2

r2

)2

)

≃ r(1− r
′

r
cosψ+ r′2

2r2
− r′2

2r2
cos2ψ)

)

or, combining the last two terms:

R = r − r′ cosψ+ r
′2

2r
sin2ψ, for r≫ r′ (15.7.2)

Thus, the first-order approximation is R = r − r′ cosψ = r − r̂ · r′. Using this

approximation in the integrands of Eqs. (15.3.1), we have:

ϕ(r)≃
∫

V

ρ(r′)e−jk(r−r̂·r′)

4πǫ(r − r̂ · r′)
d3r′

Replacing R = r − r̂ · r′ ≃ r in the denominator, but not in the exponent, we obtain

the far-field approximation to the solution:
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ϕ(r)= e−jkr

4πǫr

∫

V
ρ(r′)ejk r̂·r′ d3r′

BecauseR is approximated differently in the denominator and the exponent, it might

be argued that we are not making a consistent approximation. Indeed, for multipole

expansions, it is not correct to ignore the r̂·r′ term from the denominator. However, the

procedure is correct for radiation problems, and generates those terms that correspond

to propagating waves.

What about the second-order approximation terms? We have dropped them from

both the exponent and the denominator. Because in the exponent they are multiplied

by k, in order to justify dropping them, we must require in addition to r ≫ r′ that

kr′2/r ≪ 1, or in terms of the wavelength: r ≫ 2πr′2/λ. Replacing 2r′ by the typical

size l of the current source,† we have r≫ πl2/2λ. By convention [115], we replace this

with r≫ 2l2/λ. Thus, we may state the far-field conditions as:

r≫ l and r≫ 2l2

λ
(far-field conditions) (15.7.3)

These conditions define the so-called far-field or Fraunhofer radiation region. They

are easily satisfied for many practical antennas (such as the half-wave dipole) because l

is typically of the same order of magnitude as λ, in which case the second condition is

essentially equivalent to the first. This happens also when l > λ. When l≪ λ, the first

condition implies the second.

The distance r = 2l2/λ is by convention [115] the dividing line between the far-field

(Fraunhofer) region, and the near-field (Fresnel) region, as shown in Fig. 15.7.2. The far-

field region is characterized by the property that the angular distribution of radiation

is independent of the distance r.

Fig. 15.7.2 Far-field and near-field radiation zones.

Can the first-order term kr̂ · r′ also be ignored from the exponent? This would

require that kr′ ≪ 1, or that r′ ≪ λ. Thus, it can be ignored for electrically “short”

†We envision a sphere of diameter 2r′ = l enclosing the antenna structure.
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antennas, that is, l≪ λ, or equivalently in the long wavelength or low-frequency limit.

The Hertzian dipole is such an antenna example.

Defining the wavenumber vector k to be in the direction of the field vector r and

having magnitude k, that is, k = kr̂, we may summarize the far-field approximation to

the retarded single-frequency potentials as follows:

ϕ(r) = e−jkr

4πǫr

∫

V
ρ(r′)ej k·r′ d3r′

A(r) = μe−jkr

4πr

∫

V
J(r′)ej k·r′ d3r′

, k = kr̂ (15.7.4)

In these expressions, the radial dependence on r has been separated from the angular

(θ,φ)-dependence, which is given by the integral factors. Since these factors play an

important role in determining the directional properties of the radiated fields, we will

denote them by the special notation:

Q(k) =
∫

V
ρ(r′)ej k·r′ d3r′

F(k) =
∫

V
J(r′)ej k·r′ d3r′ (radiation vector)

(15.7.5)

The first is also called the charge form-factor, and the second, the radiation vector.

They are recognized to be the 3-dimensional spatial Fourier transforms of the charge

and current densities. These quantities depend onω or k and the directional unit vector

r̂ which is completely defined by the spherical coordinate angles θ,φ. Therefore, when-

ever appropriate, we will indicate only the angular dependence in these quantities by

writing them as Q(θ,φ),F(θ,φ). In terms of this new notation, the far-field radiation

potentials are:

ϕ(r) = e−jkr

4πǫr
Q(θ,φ)

A(r) = μe−jkr

4πr
F(θ,φ)

(radiation potentials) (15.7.6)

15.8 Radial Coordinates

The far-field solutions of Maxwell’s equations and the directional patterns of antenna

systems are best described in spherical coordinates.

The definitions of cartesian, cylindrical, and spherical coordinate systems are re-

viewed in Fig. 15.8.1 and are discussed further in Appendix E. The coordinates rep-

resenting the vector r are, respectively, (x, y, z), (ρ,φ, z), and (r,θ,φ) and define

orthogonal unit vectors in the corresponding directions, as shown in the figure.

The relationships between coordinate systems can be obtained by viewing the xy-

plane and zρ-plane, as shown in Fig. 15.8.2. The relationships between cartesian and
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Fig. 15.8.1 Cartesian, cylindrical, and spherical coordinates.

cylindrical coordinates are:

x = ρ cosφ

y = ρ sinφ

ρ̂ρρ = x̂ cosφ+ ŷ sinφ

φ̂φφ = −x̂ sinφ+ ŷ cosφ
(15.8.1)

Fig. 15.8.2 Spherical coordinates viewed from xy-plane and zρ-plane.

Similarly, the relationships of cylindrical to spherical coordinates are:

ρ = r sinθ

z = r cosθ

r̂ = ẑ cosθ+ ρ̂ρρ sinθ

θ̂θθ = −ẑ sinθ+ ρ̂ρρ cosθ

ẑ = r̂ cosθ− θ̂θθ sinθ

ρ̂ρρ = r̂ sinθ+ θ̂θθ cosθ
(15.8.2)

The relationships between cartesian and spherical coordinates are obtained from

(15.8.2) by replacing ρ and ρ̂ρρ in terms of Eq. (15.8.1), for example,

x = ρ cosφ = (r sinθ)cosφ = r sinθ cosφ

r̂ = ρ̂ρρ sinθ+ ẑ cosθ = (x̂ cosφ+ ŷ sinφ)sinθ+ ẑ cosθ
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The resulting relationships are:

x = r sinθ cosφ

y = r sinθ sinφ

z = r cosθ

r̂ = x̂ cosφ sinθ+ ŷ sinφ sinθ+ ẑ cosθ

θ̂θθ = x̂ cosφ cosθ+ ŷ sinφ cosθ− ẑ sinθ

φ̂φφ = −x̂ sinφ+ ŷ cosφ

(15.8.3)

Note again that the radial unit vector r̂ is completely determined by the polar and

azimuthal angles θ,φ. Infinitesimal length increments in each of the spherical unit-

vector directions are defined by:

dlr = dr , dlθ = rdθ , dlφ = r sinθdφ (spherical lengths) (15.8.4)

The gradient operator∇∇∇ in spherical coordinates is:

∇∇∇ = r̂
∂

∂lr
+ θ̂θθ ∂

∂lθ
+ φ̂φφ ∂

∂lφ
= r̂

∂

∂r
+ θ̂θθ1

r

∂

∂θ
+ φ̂φφ 1

r sinθ

∂

∂φ
(15.8.5)

The lengths dlθ and dlφ correspond to infinitesimal displacements in the θ̂θθ and φ̂φφ

directions on the surface of a sphere of radius r, as shown in Fig. 15.8.3. The surface

element dS = r̂dS on the sphere is defined by dS = dlθ dlφ, or,

dS = r2 sinθdθdφ (15.8.6)

The corresponding infinitesimal solid angle dΩ subtended by the dθ,dφ cone is:

dS = r2dΩ ⇒ dΩ = dS

r2
= sinθdθdφ (15.8.7)

The solid angle subtended by the whole sphere is in units of steradians:

Ωsphere =
∫ π

0
sinθdθ

∫ 2π

0
dφ = 4π

15.9 Radiation Field Approximation

In deriving the field intensities E and H from the far-field potentials (15.7.6), we must

make one final approximation and keep only the terms that depend on r like 1/r, and

ignore terms that fall off faster, e.g., like 1/r2. We will refer to fields with 1/r dependence

as radiation fields.

The justification for this approximation is shown in Fig. 15.9.1. The power radiated

into a solid angle dΩ will flow through the surface area dS and will be given by dP =
PrdS, where Pr is the radial component of the Poynting vector. Replacing dS in terms

of the solid angle and Pr in terms of the squared electric field, we have:

dP = PrdS =
(

1

2η
|E|2

)

(r2dΩ)

Thus, if the amount of power in the solid angle dΩ is to propagate away without

attenuation with distance r, then the electric field must be such that |E|2r2 ∼ const, or

that |E| ∼ 1/r; similarly, |H| ∼ 1/r. Any terms in E,H that fall off faster than 1/r will

not be capable of radiating power to large distances from their current sources.
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Fig. 15.8.3 Solid angle defined by angles θ,φ.

Fig. 15.9.1 Power radiated into solid angle dΩ.

15.10 Computing the Radiation Fields

At far distances from the localized current J, the radiation fields can be obtained from

Eqs. (15.3.9) by using the radiation vector potential A of Eq. (15.7.6). In computing the

curl of A, we may ignore any terms that fall off faster than 1/r:

∇∇∇× A =∇∇∇×
(

μe−jkr

4πr
F

)

=
(

r̂
∂

∂r
+ angular derivatives

)

×
(

μe−jkr

4πr
F

)

= −jk(r̂× F)

(

μe−jkr

4πr

)

+O
(

1

r2

)

= −j k× A+O
(

1

r2

)

The “angular derivatives” arise from the θ,φ derivatives in the gradient as per

Eq. (15.8.5). These derivatives act on F(θ,φ), but because they already have a 1/r

factor in them and the rest of A has another 1/r factor, these terms will go down like

1/r2. Similarly, when we compute the derivative ∂r[e
−jkr/r] we may keep only the

derivative of the numerator because the rest goes down like 1/r2.

Thus, we arrive at the useful rule that to order 1/r, the gradient operator∇∇∇, whenever

it acts on a function of the form f(θ,φ)e−jkr/r, can be replaced by:

∇∇∇ −→ −j k = −jk r̂ (15.10.1)

Applying the rule again, we have:
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∇∇∇× (∇∇∇× A)= −j k× (−j k× A)= (k× A)×k = k2(r̂× A)×r̂ =ω2μǫ(r̂× A)×r̂

Noting that ωμ = ckμ = k√μ/ǫ = kη and using Eq. (15.3.9), we finally find:

E = −jkη e
−jkr

4πr
(r̂× F)×r̂

H = −jk e
−jkr

4πr
r̂× F

(radiation fields) (15.10.2)

Moreover, we recognize that:

E = ηH× r̂, H = 1

η
r̂× E and

|E|
|H| = η (15.10.3)

We note the similarity to uniform plane waves and emphasize the following properties:

1. {E, H, r̂} form a right-handed vector system.

2. E is always parallel to the transverse part F⊥ of the radiation vector F.

3. H is always perpendicular to the radiation vector F.

4. dc current sources (ω = k = 0) will not radiate.

Fig. 15.10.1 Electric and magnetic fields radiated by a current source.

Figure 15.10.1 illustrates some of these remarks. The radiation vector may be de-

composed in general into a radial part Fr = r̂Fr and a transverse part F⊥. In fact, this

decomposition is obtained from the identity:

F = r̂(r̂ · F)+(r̂× F)×r̂ = r̂Fr + F⊥

Resolving F along the spherical coordinate unit vectors, we have:

F = r̂Fr + θ̂θθFθ + φ̂φφFφ

r̂× F = φ̂φφFθ − θ̂θθFφ

F⊥ = (r̂× F)×r̂ = θ̂θθFθ + φ̂φφFφ
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Thus, only Fθ and Fφ contribute to the fields:

E = −jkη e
−jkr

4πr

[

θ̂θθFθ + φ̂φφFφ
]

H = −jk e
−jkr

4πr

[

φ̂φφFθ − θ̂θθFφ
]

(radiation fields) (15.10.4)

Recognizing that r̂× F = r̂× F⊥, we can also write compactly:

E = −jkη e
−jkr

4πr
F⊥

H = −jk e
−jkr

4πr
r̂× F⊥

(radiation fields) (15.10.5)

In general, the radiation vector will have both Fθ and Fφ components, depending on

the nature of the current distribution J. However, in practice there are three important

cases that stand out:

1. Only Fθ is present. This includes all linear antennas and arrays. The z-axis is

oriented in the direction of the antenna, so that the radiation vector only has r

and θ components.

2. Only Fφ is present. This includes loop antennas with the xy-plane chosen as the

plane of the loop.

3. Both Fθ and Fφ are present, but they are carefully chosen to have the phase rela-

tionship Fφ = ±jFθ, so that the resulting electric field will be circularly polarized.

This includes helical antennas used in space communications.

15.11 Problems

15.1 First, prove the differential identity:

∇∇∇′ · [J(r′)ej k·r′] = j k · J(r′)ej k·r′ − jωρ(r′)ej k·r′

Then, prove the integral identity:

k ·
∫

V
J(r′)ej k·r′ d3r′ =ω

∫

V
ρ(r′)ej k·r′ d3r′

Assume that the charge and current densities are localized within the finite volume V. Fi-

nally, show that the charge form-factor Q and radiation vector F are related by:

r̂ · F = cQ

15.2 Using similar techniques as in the previous problem, prove the following general property,

valid for any scalar function g(r), where V is the volume over which J, ρ are non-zero:

∫

V
J(r′)·∇∇∇′g(r′)d3r′ = jω

∫

V
g(r′)ρ(r′)d3r′
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15.3 It is possible to obtain the fields generated by the source densities ρ, J by working directly

with Maxwell’s equations without introducing the scalar and vector potentials φ,A. Start

with the monochromatic Maxwell’s equations

∇∇∇× E = −jωμH , ∇∇∇×H = J+ jωǫE , ∇∇∇ · E = 1

ǫ
ρ , ∇∇∇ ·H = 0

Show that E,H satisfy the following Helmholtz equations:

(∇2 + k2
)

E = jωμJ+ 1

ǫ
∇∇∇ρ , (∇2 + k2

)

H = −∇∇∇× J

Show that their solutions are obtained with the help of the Green’s function (15.3.4):

E =
∫

V

[−jωμJG− 1

ǫ
(∇∇∇′ρ)G]dV′

H =
∫

V

[∇∇∇′ × J
]

GdV′

Although these expressions and Eqs. (15.3.10) look slightly different, they are equivalent.

Explain in what sense this is true.

15.4 The electric and magnetic dipole moments of charge and current volume distributions ρ, J

are defined by:

p =
∫

V
rρ(r)dV , m = 1

2

∫

V
r× J(r)dV

Using these definitions and the integral property of Eq. (C.41) of Appendix C, show that for

two charges ±Q separated by distance d, and for a current I flowing on a closed planar loop

of arbitrary shape and area S lying on the xy-plane, the quantities p,m are given by:

p = Q d

m = ẑ I S

15.5 By performing an inverse Fourier time transform on Eq. (15.5.5), show that the fields pro-

duced by an arbitrary time-varying dipole at the origin, P(r, t)= p(t)δ(3)(r), are given by:

E(r, t) = 1

ǫ0

( 1

c0

∂

∂t
+ 1

r

)

[

3r̂
(

r̂ · p(tr)
)− p(tr)

r

]

1

4πr
− 1

ǫ0c
2
0

r̂× (p̈(tr)× r̂)
1

4πr

H(r, t) = ∂

∂t

( 1

c0

∂

∂t
+ 1

r

)(

p(tr)× r̂
) 1

4πr

where tr = t − r/c0 is the retarded time and the time-derivatives act only on p(tr). Show

also that the radiated fields are (with η0 =
√

μ0/ǫ0):

E rad(r, t) = μ0 r̂× (r̂× p̈(tr))
1

4πr
= η0 H rad(r, t)× r̂

H rad(r, t) = μ0

η0

(

p̈(tr)× r̂
) 1

4πr

15.6 Assume that the dipole of the previous problem is along the z-direction, p(t)= ẑp(t). In-

tegrating the Poynting vectorPPP = E rad ×H rad over a sphere of radius r, show that the total

radiated power from the dipole is given by:

Prad(r, t)= η0

6πc2
0

p̈2(tr)
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15.7 Define a 3×3 matrix J(a) such that the operation J(a)b represents the cross-product a×b.

Show that:

J(a)=

⎡

⎢
⎣

0 −az ay
az 0 −ax

−ay ax 0

⎤

⎥
⎦

Show that J(a) is a rank-2 matrix with eigenvalues λ = 0 and λ = ±j|a|, where a is assumed

to be real-valued. Show that the eigenvectors corresponding to the non-zero eigenvalues are

given by e = f̂∓j ĝ, where f̂, ĝ are real-valued unit vectors such that {̂f, ĝ, â} is a right-handed

vector system (like {x̂, ŷ, ẑ}), here, â = a/|a|. Show that e · e = 0 and e∗ · e = 2.

A radiator consists of electric and magnetic dipoles p,m placed at the origin. Assuming

harmonic time dependence and adding the radiation fields of Eqs. (15.5.6) and (15.5.10),

show that the total radiated fields can be expressed in terms of the 6×6 matrix operation:

[

E(r)

η0H(r)

]

= −η0 k
2 e

−jkr

4πr

[

J2(r̂) J(r̂)

−J(r̂) J2(r̂)

][

c0 p

m

]

Show that J(r̂) satisfies the matrix equation J3(r̂)+J(r̂)= 0. Moreover, show that its eigen-

values are λ = 0 and λ = ±j and that the eigenvectors belonging to the two nonzero eigen-

values are given in terms of the polar unit vectors by e = θ̂θθ∓ j φ̂φφ.

Because the matrix J(r̂) is rank-defective, so is the above 6×6 matrix, reflecting the fact

that the radiation fields can only have two polarization states. However, it has been shown

recently [1178] that in a multiple-scattering environment, such as wireless propagation in

cities, the corresponding 6×6 matrix becomes a full-rank matrix (rank 6) allowing the tripling

of the channel capacity over the standard dual-polarization transmission.



16

Transmitting and Receiving Antennas

16.1 Energy Flux and Radiation Intensity

The flux of electromagnetic energy radiated from a current source at far distances is

given by the time-averaged Poynting vector, calculated in terms of the radiation fields

(15.10.4):

PPP = 1

2
Re(E×H∗)= 1

2

(

−jkη e
−jkr

4πr

)(

jk
ejkr

4πr

)

Re
[

(θ̂θθFθ + φ̂φφFφ)×(φ̂φφF∗θ − θ̂θθF∗φ)
]

Noting that θ̂θθ× φ̂φφ = r̂, we have:

(θ̂θθFθ + φ̂φφFφ)×(φ̂φφF∗θ − θ̂θθF∗φ)= r̂
(|Fθ|2 + |Fφ|2

) = r̂
∣
∣F⊥(θ,φ)

∣
∣2

Therefore, the energy flux vector will be:

PPP = r̂Pr = r̂
ηk2

32π2r2

∣
∣F⊥(θ,φ)

∣
∣2

(16.1.1)

Thus, the radiated energy flows radially away from the current source and attenu-

ates with the square of the distance. The angular distribution of the radiated energy is

described by the radiation pattern factor:

∣
∣F⊥(θ,φ)

∣
∣2 =

∣
∣Fθ(θ,φ)

∣
∣2 +

∣
∣Fφ(θ,φ)

∣
∣2

(16.1.2)

With reference to Fig. 15.9.1, the power dP intercepting the area element dS = r2dΩ

defines the power per unit area, or the power density of the radiation:

dP

dS
= dP

r2dΩ
= Pr = ηk2

32π2r2

∣
∣F⊥(θ,φ)

∣
∣2

(power density) (16.1.3)

The radiation intensity U(θ,φ) is defined to be the power radiated per unit solid

angle, that is, the quantity dP/dΩ = r2dP/dS = r2Pr :

U(θ,φ)= dP

dΩ
= r2Pr = ηk2

32π2

∣
∣F⊥(θ,φ)

∣
∣2

(radiation intensity) (16.1.4)
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The total radiated power is obtained by integrating Eq. (16.1.4) over all solid angles

dΩ = sinθdθdφ, that is, over 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π :

Prad =
∫ π

0

∫ 2π

0
U(θ,φ)dΩ (total radiated power) (16.1.5)

A useful concept is that of an isotropic radiator—a radiator whose intensity is the

same in all directions. In this case, the total radiated power Prad will be equally dis-

tributed over all solid angles, that is, over the total solid angle of a sphere Ωsphere = 4π

steradians, and therefore, the isotropic radiation intensity will be:

UI =
(
dP

dΩ

)

I
= Prad

Ωsphere

= Prad

4π
= 1

4π

∫ π

0

∫ 2π

0
U(θ,φ)dΩ (16.1.6)

Thus, UI is the average of the radiation intensity over all solid angles. The corre-

sponding power density of such an isotropic radiator will be:

(
dP

dS

)

I
= UI
r2
= Prad

4πr2
(isotropic power density) (16.1.7)

16.2 Directivity, Gain, and Beamwidth

The directive gain of an antenna system towards a given direction (θ,φ) is the radiation

intensity normalized by the corresponding isotropic intensity, that is,

D(θ,φ)= U(θ,φ)

UI
= U(θ,φ)

Prad/4π
= 4π

Prad

dP

dΩ
(directive gain) (16.2.1)

It measures the ability of the antenna to direct its power towards a given direction.

The maximum value of the directive gain, Dmax, is called the directivity of the antenna

and will be realized towards some particular direction, say (θ0,φ0). The radiation

intensity will be maximum towards that direction, Umax = U(θ0,φ0), so that

Dmax = Umax

UI
(directivity) (16.2.2)

The directivity is often expressed in dB,† that is,DdB = 10 log10Dmax. Re-expressing

the radiation intensity in terms of the directive gain, we have:

dP

dΩ
= U(θ,φ)= D(θ,φ)UI = PradD(θ,φ)

4π
(16.2.3)

and for the power density in the direction of (θ,φ):

dP

dS
= dP

r2dΩ
= PradD(θ,φ)

4πr2
(power density) (16.2.4)

†The term “dBi” is often used as a reminder that the directivity is with respect to the isotropic case.
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Comparing with Eq. (16.1.7), we note that if the amount of power PradD(θ,φ) were

emitted isotropically, then Eq. (16.2.4) would be the corresponding isotropic power den-

sity. Therefore, we will refer to PradD(θ,φ) as the effective isotropic power, or the

effective radiated power (ERP) towards the (θ,φ)-direction.

In the direction of maximum gain, the quantity PradDmax will be referred to as the

effective isotropic radiated power (EIRP). It defines the maximum power density achieved

by the antenna:

(
dP

dS

)

max
= PEIRP

4πr2
, where PEIRP = PradDmax (16.2.5)

Usually, communicating antennas—especially highly directive ones such as dish

antennas—are oriented to point towards the maximum directive gain of each other.

A related concept is that of the power gain, or simply the gain of an antenna. It is

defined as in Eq. (16.2.1), but instead of being normalized by the total radiated power, it

is normalized to the total power PT accepted by the antenna terminals from a connected

transmitter, as shown in Fig. 16.2.1:

G(θ,φ)= U(θ,φ)

PT/4π
= 4π

PT

dP

dΩ
(power gain) (16.2.6)

We will see in Sec. 16.4 that the power PT delivered to the antenna terminals is at

most half the power produced by the generator—the other half being dissipated as heat

in the generator’s internal resistance.

Moreover, the power PT may differ from the power radiated, Prad, because of several

loss mechanisms, such as ohmic losses of the currents flowing on the antenna wires or

losses in the dielectric surrounding the antenna.

Fig. 16.2.1 Power delivered to an antenna versus power radiated.

The definition of power gain does not include any reflection losses arising from

improper matching of the transmission line to the antenna input impedance [115]. The

efficiency factor of the antenna is defined by:

e = Prad

PT
⇒ Prad = ePT (16.2.7)

In general, 0 ≤ e ≤ 1. For a lossless antenna the efficiency factor will be unity and

Prad = PT. In such an ideal case, there is no distinction between directive and power

gain. Using Eq. (16.2.7) in (16.2.1), we find G = 4πU/PT = e4πU/Prad, or,
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G(θ,φ)= eD(θ,φ) (16.2.8)

The maximum gain is related to the directivity by Gmax = eDmax. It follows that

the effective radiated power can be written as PradD(θ,φ)= PTG(θ,φ), and the EIRP,

PEIRP = PradDmax = PTGmax.

The angular distribution functions we defined thus far, that is, G(θ,φ), D(θ,φ),

U(θ,φ) are all proportional to each other. Each brings out a different aspect of the

radiating system. In describing the angular distribution of radiation, it proves conve-

nient to consider it relative to its maximal value. Thus, we define the normalized power

pattern, or normalized gain by:

g(θ,φ)= G(θ,φ)

Gmax

(normalized gain) (16.2.9)

Because of the proportionality of the various angular functions, we have:

g(θ,φ)= G(θ,φ)

Gmax

= D(θ,φ)

Dmax

= U(θ,φ)

Umax

=
∣
∣F⊥(θ,φ)

∣
∣2

|F⊥|2max

(16.2.10)

Writing PTG(θ,φ)= PTGmax g(θ,φ), we have for the power density:

dP

dS
= PTGmax

4πr2
g(θ,φ)= PEIRP

4πr2
g(θ,φ) (16.2.11)

This form is useful for describing communicating antennas and radar. The normal-

ized gain is usually displayed in a polar plot with polar coordinates (ρ,θ) such that

ρ = g(θ), as shown in Fig. 16.2.2. (This figure depicts the gain of a half-wave dipole

antenna given by g(θ)= cos2(0.5π cosθ)/ sin2 θ.) The 3-dB, or half-power, beamwidth

is defined as the difference ΔθB = θ2 − θ1 of the 3-dB angles at which the normalized

gain is equal to 1/2, or, −3 dB.

Fig. 16.2.2 Polar and regular plots of normalized gain versus angle.

The MATLAB functions dbp, abp, dbz, abz given in Appendix I allow the plotting of

the gain in dB or in absolute units versus the polar angle θ or the azimuthal angle φ.

Their typical usage is as follows:

dbp(theta, g, rays, Rm, width); % polar gain plot in dB

abp(theta, g, rays, width); % polar gain plot in absolute units

dbz(phi, g, rays, Rm, width); % azimuthal gain plot in dB

abz(phi, g, rays, width); % azimuthal gain plot in absolute units



16.2. Directivity, Gain, and Beamwidth 743

Example 16.2.1: A TV station is transmitting 10 kW of power with a gain of 15 dB towards a

particular direction. Determine the peak and rms value of the electric field E at a distance

of 5 km from the station.

Solution: The gain in absolute units will be G = 10GdB/10 = 1015/10 = 31.62. It follows that the

radiated EIRP will be PEIRP = PTG = 10× 31.62 = 316.2 kW. The electric field at distance

r = 5 km is obtained from Eq. (16.2.5):

dP

dS
= PEIRP

4πr2
= 1

2η
E2 ⇒ E = 1

r

√

ηPEIRP

2π

This gives E = 0.87 V/m. The rms value is Erms = E/
√

2 = 0.62 V/m. ⊓⊔

Another useful concept is that of the beam solid angle of an antenna. The definition

is motivated by the case of a highly directive antenna, which concentrates all of its

radiated power Prad into a small solid angle ΔΩ, as illustrated in Fig. 16.2.3.

Fig. 16.2.3 Beam solid angle and beamwidth of a highly directive antenna.

The radiation intensity in the direction of the solid angle will be:

U = ΔP

ΔΩ
= Prad

ΔΩ
(16.2.12)

where ΔP = Prad by assumption. It follows that: Dmax = 4πU/Prad = 4π/ΔΩ, or,

Dmax = 4π

ΔΩ
(16.2.13)

Thus, the more concentrated the beam, the higher the directivity. Although (16.2.13)

was derived under the assumption of a highly directive antenna, it may be used as the

definition of the beam solid angle for any antenna, that is,

ΔΩ = 4π

Dmax

(beam solid angle) (16.2.14)

Using Dmax = Umax/UI and Eq. (16.1.6), we have

ΔΩ = 4πUI
Umax

= 1

Umax

∫ π

0

∫ 2π

0
U(θ,φ)dΩ , or,

ΔΩ =
∫ π

0

∫ 2π

0
g(θ,φ)dΩ (beam solid angle) (16.2.15)
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where g(θ,φ) is the normalized gain of Eq. (16.2.10). Writing Prad = 4πUI, we have:

ΔΩ = Prad

Umax

⇒ Umax = Prad

ΔΩ
(16.2.16)

This is the general case of Eq. (16.2.12). We can also write:

Prad = UmaxΔΩ (16.2.17)

This is convenient for the numerical evaluation of Prad. To get a measure of the

beamwidth of a highly directive antenna, we assume that the directive gain is equal to

its maximum uniformly over the entire solid angle ΔΩ in Fig. 16.2.3, that is, D(θ,φ)=
Dmax, for 0 ≤ θ ≤ ΔθB/2. This implies that the normalized gain will be:

g(θ,φ)=
{

1, if 0 ≤ θ ≤ ΔθB/2
0, if ΔθB/2 < θ ≤ π

Then, it follows from the definition (16.2.15) that:

ΔΩ =
∫ ΔθB/2

0

∫ 2π

0
dΩ =

∫ ΔθB/2

0

∫ 2π

0
sinθdθdφ = 2π

(

1− cos
ΔθB

2

)

(16.2.18)

Using the approximation cosx ≃ 1− x2/2, we obtain for small beamwidths:

ΔΩ = π

4
(ΔθB)

2 (16.2.19)

and therefore the directivity can be expressed in terms of the beamwidth:

Dmax = 16

Δθ2
B

(16.2.20)

Example 16.2.2: Find the beamwidth in degrees of a lossless dish antenna with gain of 15

dB. The directivity and gain are equal in this case, therefore, Eq. (16.2.20) can be used

to calculate the beamwidth: ΔθB =
√

16/D, where D = G = 1015/10 = 31.62. We find

ΔθB = 0.71 rads, or ΔθB = 40.76o.

For an antenna with 40 dB gain/directivity, we would have D = 104 and find ΔθB =
0.04 rads = 2.29o. ⊓⊔

Example 16.2.3: A satellite in a geosynchronous orbit of 36,000 km is required to have com-

plete earth coverage. What is its antenna gain in dB and its beamwidth? Repeat if the

satellite is required to have coverage of an area equal the size of continental US.

Solution: The radius of the earth is R = 6400 km. Looking down from the satellite the earth

appears as a flat disk of area ΔS = πR2. It follows that the subtended solid angle and the

corresponding directivity/gain will be:

ΔΩ = ΔS

r2
= πR2

r2
⇒ D = 4π

ΔΩ
= 4r2

R2

With r = 36,000 km and R = 6400 km, we find D = 126.56 and in dB, DdB = 10 log10D

= 21.02 dB. The corresponding beamwidth will be ΔθB =
√

16/D = 0.36 rad = 20.37o.
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For the continental US, the coast-to-coast distance of 3000 mi, or 4800 km, translates to an

area of radius R = 2400 km, which leads to D = 900 and DdB = 29.54 dB. The beamwidth

is in this case ΔθB = 7.64o.

Viewing the earth as a flat disk overestimates the required angle ΔθB for earth coverage.

Looking down from a satellite at a height r, the angle between the vertical and the tangent

to the earth’s surface is given by sinθ = R/(r + R), which gives for r = 36,000 km,

θ = 8.68o. The subtended angle will be then ΔθB = 2θ = 0.303 rad = 17.36o. It follows

that the required antenna gain should be G = 16/Δθ2
B = 174.22 = 22.41 dB. The flat-disk

approximation is more accurate for smaller areas on the earth’s surface that lie directly

under the satellite. ⊓⊔

Example 16.2.4: The radial distance of a geosynchronous orbit can be calculated by equating

centripetal and gravitational accelerations, and requiring that the angular velocity of the

satellite corresponds to the period of 1 day, that is,ω = 2π/T, where T = 24 hr = 86 400

sec. Let m be the mass of the satellite and M⊕ the mass of the earth (see Appendix A):

GmM⊕
r2

=mω2r =m
(

2π

T

)2

r ⇒ r =
(

GM⊕T2

4π2

)1/3

The distance r is measured from the Earth’s center. The corresponding height from the

surface of the Earth is h = r−R. For the more precise value ofR = 6378 km, the calculated

values are:
r = 42 237 km = 26 399 mi

h = 35 860 km = 22 414 mi

16.3 Effective Area

When an antenna is operating as a receiving antenna, it extracts a certain amount of

power from an incident electromagnetic wave. As shown in Fig. 16.3.1, an incident wave

coming from a far distance may be thought of as a uniform plane wave being intercepted

by the antenna.

Fig. 16.3.1 Effective area of an antenna.

The incident electric field sets up currents on the antenna. Such currents may be

represented by a Thévenin-equivalent generator, which delivers power to any connected

receiving load impedance.

The induced currents also re-radiate an electric field (referred to as the scattered

field), which interferes with the incident field causing a shadow region behind the an-

tenna, as shown in Fig. 16.3.1.
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The total electric field outside the antenna will be the sum of the incident and re-

radiated fields. For a perfectly conducting antenna, the boundary conditions are that the

tangential part of the total electric field vanish on the antenna surface. In Chap. 22, we

apply these boundary conditions to obtain and solve Hallén’s and Pocklington’s integral

equations satisfied by the induced current.

The power density of the incident wave at the location of the receiving antenna can

be expressed in terms of the electric field of the wave, Pinc = E2/2η.

The effective area or effective aperture A of the antenna is defined to be that area

which when intercepted by the incident power densityPinc gives the amount of received

power PR available at the antenna output terminals [115]:

PR = APinc (16.3.1)

For a lossy antenna, the available power at the terminals will be somewhat less than

the extracted radiated power Prad, by the efficiency factor PR = ePrad. Thus, we may

also define the maximum effective aperture Am as the area which extracts the power

Prad from the incident wave, that is, Prad = AmPinc. It follows that:

A = eAm (16.3.2)

The effective area depends on the direction of arrival (θ,φ) of the incident wave.

For all antennas, it can be shown that the effective area A(θ,φ) is related to the power

gain G(θ,φ) and the wavelength λ = c/f as follows:

G(θ,φ)= 4πA(θ,φ)

λ2
(16.3.3)

Similarly, because G(θ,φ)= eD(θ,φ), the maximum effective aperture will be re-

lated to the directive gain by:

D(θ,φ)= 4πAm(θ,φ)

λ2
(16.3.4)

In practice, the quoted effective area A of an antenna is the value corresponding to

the direction of maximal gain Gmax. We write in this case:

Gmax = 4πA

λ2
(16.3.5)

Similarly, we have for the directivity Dmax = 4πAm/λ
2. Because Dmax is related to

the beam solid angle by Dmax = 4π/ΔΩ, it follows that

Dmax = 4π

ΔΩ
= 4πAm

λ2
⇒ AmΔΩ = λ2 (16.3.6)

Writing λ = c/f , we may express Eq. (16.3.5) in terms of frequency:

Gmax = 4πf2A

c2
(16.3.7)
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The effective area is not equal to the physical area of an antenna. For example, linear

antennas do not even have any characteristic physical area. For dish or horn antennas,

on the other hand, the effective area is typically a fraction of the physical area (about

55–65 percent for dishes and 60–80 percent for horns.) For example, if the dish has a

diameter of d meters, then we have:

A = ea 1

4
πd2 (effective area of dish antenna) (16.3.8)

where ea is the aperture efficiency factor, typically ea = 0.55–0.65. Combining Eqs.

(16.3.5) and (16.3.8), we obtain:

Gmax = ea
(
πd

λ

)2

(16.3.9)

Antennas fall into two classes: fixed-area antennas, such as dish antennas, for

which A is independent of frequency, and fixed-gain antennas, such as linear antennas,

for which G is independent of frequency. For fixed-area antennas, the gain increases

quadratically with f . For fixed-gain antennas, A decreases quadratically with f .

Example 16.3.1: Linear antennas are fixed-gain antennas. For example, we will see in Sec. 17.1

that the gains of a (lossless) Hertzian dipole, a halfwave dipole, and a monopole antenna

are the constants:

Ghertz = 1.5, Gdipole = 1.64, Gmonopole = 3.28

Eq. (16.3.5) gives the effective areas A = Gλ2/4π:

Ahertz = 0.1194λ2, Adipole = 0.1305λ2, Amonopole = 0.2610λ2

In all cases the effective area is proportional to λ2 and decreases with f2. In the case of the

commonly used monopole antenna, the effective area is approximately equal to a rectangle

of sides λ and λ/4, the latter being the physical length of the monopole. ⊓⊔

Example 16.3.2: Determine the gain in dB of a dish antenna of diameter of 0.5 m operating at

a satellite downlink frequency of 4 GHz and having 60% aperture efficiency. Repeat if the

downlink frequency is 11 GHz. Repeat if the diameter is doubled to 1 m.

Solution: The effective area and gain of a dish antenna with diameter d is:

A = ea 1

4
πd2 ⇒ G = 4πA

λ2
= ea

(
πd

λ

)2

= ea
(
πfd

c

)2

The calculated gains G in absolute and dB units are in the four cases:

d = 0.5 m d = 1 m

f = 4 GHz 263 = 24 dB 1052 = 30 dB

f = 11 GHz 1990 = 33 dB 7960 = 39 dB

Doubling the diameter (or the frequency) increases the gain by 6 dB, or a factor of 4.

Conversely, if a dish antenna is to have a desired gain G (for example, to achieve a desired

beamwidth), the above equation can be solved for the required diameter d in terms of G

and f . ⊓⊔
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The beamwidth of a dish antenna can be estimated by combining the approximate ex-

pression (16.2.20) with (16.3.5) and (16.3.8). Assuming a lossless antenna with diameter

d and 100% aperture efficiency, and taking Eq. (16.2.20) literally, we have:

Gmax = 4πA

λ2
=
(
πd

λ

)2

= Dmax = 16

Δθ2
B

Solving for ΔθB, we obtain the expression in radians and in degrees:

ΔθB = 4

π

λ

d
= 1.27

λ

d
, ΔθB = 73o λ

d
(16.3.10)

Thus, the beamwidth depends inversely on the antenna diameter. In practice, quick

estimates of the 3-dB beamwidth in degrees are obtained by replacing Eq. (16.3.10) by

the formula [1351]:

ΔθB = 1.22
λ

d
= 70o λ

d
(3-dB beamwidth of dish antenna) (16.3.11)

The constant 70o represents only a rough approximation (other choices are in the

range 65–75o.) Solving for the ratio d/λ = 1.22/ΔθB (here, ΔθB is in radians), we may

express the maximal gain inversely with Δθ2
B as follows:

Gmax = ea
(
πd

λ

)2

= eaπ
2(1.22)2

Δθ2
B

For a typical aperture efficiency of 60%, this expression can be written in the following

approximate form, with ΔθB given in degrees:

Gmax = 30 000

Δθ2
B

(16.3.12)

Equations (16.3.11) and (16.3.12) must be viewed as approximate design guidelines,

or rules of thumb [1351], for the beamwidth and gain of a dish antenna.

Example 16.3.3: For the 0.5-m antenna of the previous example, estimate its beamwidth for

the two downlink frequencies of 4 GHz and 11 GHz.

The operating wavelengths are in the two cases: λ = 7.5 cm and λ = 2.73 cm. Using

Eq. (16.3.11), we find ΔθB = 10.5o and ΔθB = 3.8o. ⊓⊔
Example 16.3.4: A geostationary satellite at height of 36,000 km is required to have earth cov-

erage. Using the approximate design equations, determine the gain in dB and the diameter

of the satellite antenna for a downlink frequency of 4 GHz. Repeat for 11 GHz.

Solution: This problem was considered in Example 16.2.3. The beamwidth angle for earth cov-

erage was found to be ΔθB = 17.36o. From Eq. (16.3.11), we find:

d = λ 70o

ΔθB
= 7.5

70o

17.36o
= 30 cm

From Eq. (16.3.12), we find:

G = 30 000

Δθ2
B

= 30 000

17.362
= 100 = 20 dB

For 11 GHz, we find d = 11 cm, and G remains the same. ⊓⊔
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In Eqs. (16.2.20) and (16.3.12), we implicitly assumed that the radiation pattern was

independent of the azimuthal angle φ. When the pattern is not azimuthally symmetric,

we may define two orthogonal polar directions parametrized, say, by angles θ1 and θ2,

as shown in Fig. 16.3.2.

Fig. 16.3.2 Half-power beamwidths in two principal polar directions.

In this case dΩ = dθ1 dθ2 and we may approximate the beam solid angle by the

product of the corresponding 3-dB beamwidths in these two directions, ΔΩ = Δθ1Δθ2.

Then, the directivity takes the form (with the angles in radians and in degrees):

Dmax = 4π

ΔΩ
= 4π

Δθ1Δθ2

= 41 253

Δθo
1Δθ

o
2

(16.3.13)

Equations (16.3.12) and (16.3.13) are examples of a more general expression that

relates directivity or gain to the 3-dB beamwidths for aperture antennas [1227,1239]:

Gmax = p

Δθ1Δθ2

(16.3.14)

where p is a gain-beamwidth constant whose value depends on the particular aperture

antenna. We will see several examples of this relationship in Chapters 18 and 19. Prac-

tical values of p fall in the range 25 000–35 000 (with the beamwidth angles in degrees.)

16.4 Antenna Equivalent Circuits

To a generator feeding a transmitting antenna as in Fig. 16.2.1, the antenna appears as

a load. Similarly, a receiver connected to a receiving antenna’s output terminals will ap-

pear to the antenna as a load impedance. Such simple equivalent circuit representations

of transmitting and receiving antennas are shown in Fig. 16.4.1, where in both cases V

is the equivalent open-circuit Thévenin voltage.

In the transmitting antenna case, the antenna is represented by a load impedance

ZA, which in general will have both a resistive and a reactive part, ZA = RA + jXA.

The reactive part represents energy stored in the fields near the antenna, whereas the

resistive part represents the power losses which arise because (a) power is radiated

away from the antenna and (b) power is lost into heat in the antenna circuits and in the

medium surrounding the antenna.

The generator has its own internal impedance ZG = RG + jXG. The current at the

antenna input terminals will be Iin = V/(ZG+ZA), which allows us to determine (a) the

total power Ptot produced by the generator, (b) the power PT delivered to the antenna

terminals, and (c) the power PG lost in the generator’s internal resistance RG. These are:
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Fig. 16.4.1 Circuit equivalents of transmitting and receiving antennas.

Ptot = 1

2
Re(VI∗in)=

1

2

|V|2(RG +RA)
|ZG + ZA|2

PT = 1

2
|Iin|2RA = 1

2

|V|2RA
|ZG + ZA|2

, PG = 1

2
|Iin|2RG = 1

2

|V|2RG
|ZG + ZA|2

(16.4.1)

It is evident that Ptot = PT+PG. A portion of the power PT delivered to the antenna

is radiated away, say an amount Prad, and the rest is dissipated as ohmic losses, say

Pohm. Thus, PT = Prad + Pohm. These two parts can be represented conveniently by

equivalent resistances by writing RA = Rrad + Rohm, where Rrad is referred to as the

radiation resistance. Thus, we have,

PT = 1

2
|Iin|2RA = 1

2
|Iin|2Rrad + 1

2
|Iin|2Rohm = Prad + Pohm (16.4.2)

The efficiency factor of Eq. (16.2.7) is evidently:

e = Prad

PT
= Rrad

RA
= Rrad

Rrad +Rohm

To maximize the amount of power PT delivered to the antenna (and thus minimize

the power lost in the generator’s internal resistance), the load impedance must satisfy

the usual conjugate matching condition:

ZA = Z∗G ⇔ RA = RG, XA = −XG

In this case, |ZG + ZA|2 = (RG + RA)2+(XG +XA)2= 4R2
G, and it follows that the

maximum power transferred to the load will be one-half the total—the other half being

lost in RG, that is,

PT,max = 1

2
Ptot = |V|2

8RG
(16.4.3)

In the notation of Chap. 14, this is the available power from the generator. If the

generator and antenna are mismatched, we have:

PT = |V|2
8RG

4RARG
|ZA + ZG|2

= PT,max

(

1− |Γgen|2
)

, Γgen =
ZA − Z∗G
ZA + ZG

(16.4.4)
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Eq. (16.4.3) is often written in terms of the rms value of the source, that is, Vrms =
|V|/√2, which leads to PT,max = V2

rms/4RG.

The case of a receiving antenna is similar. The induced currents on the antenna can

be represented by a Thévenin-equivalent generator (the open-circuit voltage at the an-

tenna output terminals) and an internal impedanceZA. A consequence of the reciprocity

principle is that ZA is the same whether the antenna is transmitting or receiving.

The current into the load is IL = V/(ZA + ZL), where the load impedance is ZL =
RL + jXL. As before, we can determine the total power Ptot produced by the generator

(i.e., intercepted by the antenna) and the power PR delivered to the receiving load:

Ptot = 1

2
Re(VI∗L )=

1

2

|V|2(RL +RA)
|ZL + ZA|2

, PR = 1

2
|IL|2RL = 1

2

|V|2RL
|ZL + ZA|2

(16.4.5)

Under conjugate matching, ZL = Z∗A, we find the maximum power delivered to the load:

PR,max = |V|2
8RA

(16.4.6)

If the load and antenna are mismatched, we have:

PR = |V|2
8RA

4RARL
|ZL + ZA|2

= PR,max

(

1− |Γload|2
)

, Γload =
ZL − Z∗A
ZL + ZA

(16.4.7)

It is tempting to interpret the power dissipated in the internal impedance of the

Thévenin circuit of the receiving antenna (that is, in ZA) as representing the amount

of power re-radiated or scattered by the antenna. However, with the exception of the

so-called minimum-scattering antennas, such interpretation is not correct.

The issue has been discussed by Silver [21] and more recently in Refs. [1203–1206].

See also Refs. [1179–1202] for further discussion of the transmitting, receiving, and

scattering properties of antennas.

16.5 Effective Length

The polarization properties of the electric field radiated by an antenna depend on the

transverse component of the radiation vector F⊥ according to Eq. (15.10.5):

E = −jkη e
−jkr

4πr
F⊥ = −jkη e

−jkr

4πr
(Fθ θ̂θθ+ Fφ φ̂φφ)

The vector effective length, or effective height of a transmitting antenna is defined

in terms of F⊥ and the input current to the antenna terminals Iin as follows [1171]:†

h = −F⊥
Iin

(effective length) (16.5.1)

In general, h is a function of θ,φ. The electric field is, then, written as:

E = jkη e
−jkr

4πr
Iin h (16.5.2)

†Often, it is defined with a positive sign h = F⊥/Iin.
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The definition of h is motivated by the case of a z-directed Hertzian dipole antenna,

which can be shown to have h = l sinθθ̂θθ. More generally, for a z-directed linear antenna

with current I(z), it follows from Eq. (17.1.5) that:

h(θ)= h(θ)θ̂θθ , h(θ)= sinθ
1

Iin

∫ l/2

−l/2
I(z′)ejkz

′ cosθdz′ (16.5.3)

As a consequence of the reciprocity principle, it can be shown [1171] that the open-

circuit voltage V at the terminals of a receiving antenna is given in terms of the effective

length and the incident field E i by:

V = E i · h (16.5.4)

The normal definition of the effective area of an antenna and the resultG = 4πA/λ2

depend on the assumptions that the receiving antenna is conjugate-matched to its load

and that the polarization of the incident wave matches that of the antenna.

The effective length helps to characterize the degree of polarization mismatch that

may exist between the incident field and the antenna. To see how the gain-area relation-

ship must be modified, we start with the definition (16.3.1) and use (16.4.5):

A(θ,φ)= PR
Pinc

=
1

2
RL|IL|2
1

2η
|Ei|2

= ηRL|V|2
|ZL + ZA|2|Ei|2

= ηRL|Ei · h|2
|ZL + ZA|2|Ei|2

Next, we define the polarization and load mismatch factors by:

epol = |E i · h|2
|E i|2 |h|2

eload = 4RLRA
|ZL + ZA|2

= 1− |Γload|2 , where Γload =
ZL − Z∗A
ZL + ZA

(16.5.5)

The effective area can be written then in the form:

A(θ,φ)= η|h|2
4RA

eload epol (16.5.6)

On the other hand, using (16.1.4) and (16.4.1), the power gain may be written as:

G(θ,φ)= 4πU(θ,φ)

PT
=

4π
ηk2|F⊥|2

32π2

1

2
RA|Iin|2

= πη|h|2
λ2RA

⇒ η|h|2
4RA

= λ2

4π
G(θ,φ)

Inserting this in Eq. (16.5.6), we obtain the modified area-gain relationship [1172]:

A(θ,φ)= eload epol
λ2

4π
G(θ,φ) (16.5.7)

Assuming that the incident field originates at some antenna with its own effective

length hi, then E i will be proportional to hi and we may write the polarization mismatch

factor in the following form:

epol = |hi · h|2
|hi|2 |h|2

= |ĥi · ĥ|2 , where ĥi = hi

|hi|
, ĥ = h

|h|
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When the load is conjugate-matched, we have eload = 1, and when the incident field

has matching polarization with the antenna, that is, ĥi = ĥ
∗

, then, epol = 1.

16.6 Communicating Antennas

The communication between a transmitting and a receiving antenna can be analyzed

with the help of the concept of gain and effective area. Consider two antennas oriented

towards the maximal gain of each other and separated by a distance r, as shown in

Fig. 16.6.1.

Fig. 16.6.1 Transmitting and receiving antennas.

Let {PT, GT,AT} be the power, gain, and effective area of the transmitting antenna,

and {PR, GR,AR} be the same quantities for the receiving antenna. In the direction of

the receiving antenna, the transmitting antenna has PEIRP = PTGT and establishes a

power density at distance r:

PT = dPT
dS

= PEIRP

4πr2
= PTGT

4πr2
(16.6.1)

From the incident power density PT, the receiving antenna extracts power PR given

in terms of the effective area AR as follows:

PR = ARPT = PTGTAR
4πr2

(Friis formula) (16.6.2)

This is known as the Friis formula for communicating antennas and can be written in

several different equivalent forms. Replacing GT in terms of the transmitting antenna’s

effective area AT, that is, GT = 4πAT/λ
2, Eq. (16.6.2) becomes:

PR = PTATAR
λ2r2

(16.6.3)

A better way of rewriting Eq. (16.6.2) is as a product of gain factors. Replacing

AR = λ2GR/4π, we obtain:

PR = PTGTGRλ
2

(4πr)2
(16.6.4)
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The effect of the propagation path, which causes PR to attenuate with the square of

the distance r, can be quantified by defining the free-space loss and gain by

Lf =
(

4πr

λ

)2

, Gf = 1

Lf
=
(
λ

4πr

)2

(free-space loss and gain) (16.6.5)

Then, Eq. (16.6.4) can be written as the product of the transmit and receive gains

and the propagation loss factor:

PR = PTGT
(
λ

4πr

)2

GR = PTGT 1

Lf
GR = PTGTGfGR (16.6.6)

Such a gain model for communicating antennas is illustrated in Fig. 16.6.1. An ad-

ditional loss factor, Gother = 1/Lother, may be introduced, if necessary, representing

other losses, such as atmospheric absorption and scattering. It is customary to express

Eq. (16.6.6) additively in dB, where (PR)dB= 10 log10 PR, (GT)dB= 10 log10GT, etc.:

(PR)dB= (PT)dB+(GT)dB−(Lf)dB+(GR)dB (16.6.7)

Example 16.6.1: A geosynchronous satellite is transmitting a TV signal to an earth-based sta-

tion at a distance of 40,000 km. Assume that the dish antennas of the satellite and the

earth station have diameters of 0.5 m and 5 m, and aperture efficiencies of 60%. If the satel-

lite’s transmitter power is 6 W and the downlink frequency 4 GHz, calculate the antenna

gains in dB and the amount of received power.

Solution: The wavelength at 4 GHz is λ = 7.5 cm. The antenna gains are calculated by:

G = ea
(
πd

λ

)2

⇒ Gsat = 263.2 = 24 dB, Gearth = 26320 = 44 dB

Because the ratio of the earth and satellite antenna diameters is 10, the corresponding

gains will differ by a ratio of 100, or 20 dB. The satellite’s transmitter power is in dB,

PT = 10 log10(6)= 8 dBW, and the free-space loss and gain:

Lf =
(

4πr

λ

)2

= 4× 1019 ⇒ Lf = 196 dB, Gf = −196 dB

It follows that the received power will be in dB:

PR = PT +GT − Lf +GR = 8+ 24− 196+ 44 = −120 dBW ⇒ PR = 10−12 W

or, PR = 1 pW (pico-watt). Thus, the received power is extremely small. ⊓⊔

When the two antennas are mismatched in their polarization with a mismatch factor

epol = |ĥR · ĥT|2, and the receiving antenna is mismatched to its load with eload =
1−|Γload|2, then the Friis formula (16.6.2) is still valid, but replacingAR using Eq. (16.5.7),

leads to a modified form of Eq. (16.6.4):

PR = PTGTGRλ
2

(4πr)2
|ĥR · ĥT|2

(

1− |Γload|2
)

(16.6.8)
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16.7 Antenna Noise Temperature

We saw in the above example that the received signal from a geosynchronous satellite

is extremely weak, of the order of picowatts, because of the large free-space loss which

is typically of the order of 200 dB.

To be able to detect such a weak signal, the receiving system must maintain a noise

level that is lower than the received signal. Noise is introduced into the receiving system

by several sources.

In addition to the desired signal, the receiving antenna picks up noisy signals from

the sky, the ground, the weather, and other natural or man-made noise sources. These

noise signals, coming from different directions, are weighted according to the antenna

gain and result into a weighted average noise power at the output terminals of the

antenna. For example, if the antenna is pointing straight up into the sky, it will still

pick up through its sidelobes some reflected signals as well as thermal noise from the

ground. Ohmic losses in the antenna itself will be another source of noise.

The antenna output is sent over a feed line (such as a waveguide or transmission

line) to the receiver circuits. The lossy feed line will attenuate the signal further and

also introduce its own thermal noise.

The output of the feed line is then sent into a low-noise-amplifier (LNA), which pre-

amplifies the signal and introduces only a small amount of thermal noise. The low-noise

nature of the LNA is a critical property of the receiving system.

The output of the LNA is then passed on to the rest of the receiving system, consisting

of downconverters, IF amplifiers, and so on. These subsystems will also introduce their

own gain factors and thermal noise.

Such a cascade of receiver components is depicted in Fig. 16.7.1. The sum total of

all the noises introduced by these components must be maintained at acceptably low

levels (relative to the amplified desired signal.)

Fig. 16.7.1 Typical receiving antenna system.

The average power N (in Watts) of a noise source within a certain bandwidth of B

Hz can be quantified by means of an equivalent temperature T defined through:

N = kTB (noise power within bandwidth B) (16.7.1)

where k is Boltzmann’s constant k = 1.3803×10−23 W/Hz K and T is in degrees Kelvin.

The temperature T is not necessarily the physical temperature of the source, it only

provides a convenient way to express the noise power. (For a thermal source, T is

indeed the physical temperature.) Eq. (16.7.1) is commonly expressed in dB as:

NdB = TdB + BdB + kdB (16.7.2)
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where TdB = 10 log10T, BdB = 10 log10 B, and kdB = 10 log10 k is Boltzmann’s constant

in dB: kdB = −228.6 dB. Somewhat incorrectly, but very suggestively, the following units

are used in practice for the various terms in Eq. (16.7.2):

dB W = dB K+ dB Hz+ dB W/Hz K

The bandwidth B depends on the application. For example, satellite transmissions

of TV signals require a bandwidth of about 30 MHz. Terrestrial microwave links may

have B of 60 MHz. Cellular systems may have B of the order of 30 kHz for AMPS or 200

kHz for GSM.

Example 16.7.1: Assuming a 30-MHz bandwidth, we give below some examples of noise powers

and temperatures and compute the corresponding signal-to-noise ratio S/N, relative to a

1 pW reference signal (S = 1 pW).

T TdB N = kTB NdB S/N

50 K 17.0 dBK 0.0207 pW −136.8 dBW 16.8 dB

100 K 20.0 dBK 0.0414 pW −133.8 dBW 13.8 dB

200 K 23.0 dBK 0.0828 pW −130.8 dBW 10.8 dB

290 K 24.6 dBK 0.1201 pW −129.2 dBW 9.2 dB

500 K 27.0 dBK 0.2070 pW −126.8 dBW 6.8 dB

1000 K 30.0 dBK 0.4141 pW −123.8 dBW 3.8 dB

2400 K 33.8 dBK 1.0000 pW −120.0 dBW 0.0 dB

The last example shows that 2400 K corresponds to 1 pW noise. ⊓⊔

The average noise powerNant at the antenna terminals is characterized by an equiv-

alent antenna noise temperature Tant, such that Nant = kTantB.

The temperatureTant represents the weighted contributions of all the radiating noise

sources picked up by the antenna through its mainlobe and sidelobes. The value of Tant

depends primarily on the orientation and elevation angle of the antenna, and what the

antenna is looking at.

Example 16.7.2: An earth antenna looking at the sky “sees” a noise temperature Tant of the

order of 30–60 K. Of that, about 10 K arises from the mainlobe and sidelobes pointing

towards the sky and 20–40 K from sidelobes pointing backwards towards the earth [5,1219–

1223]. In rainy weather, Tant might increase by 60 K or more.

The sky noise temperature depends on the elevation angle of the antenna. For example,

at an elevations of 5o, 10o, and 30o, the sky temperature is about 20 K, 10 K, and 4 K at 4

GHz, and 25 K, 12 K, and 5 K at 6 GHz [1219]. ⊓⊔

Example 16.7.3: The noise temperature of the earth viewed from space, such as from a satellite,

is about 254 K. This is obtained by equating the sun’s energy that is absorbed by the earth

to the thermal radiation from the earth [1219]. ⊓⊔

Example 16.7.4: For a base station cellular antenna looking horizontally, atmospheric noise

temperature contributes about 70–100 K at the cellular frequency of 1 GHz, and man-made

noise contributes another 10–120 K depending on the area (rural or urban). The total value

of Tant for cellular systems is in the range of 100–200 K [1224,1225]. ⊓⊔
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In general, a noise source in some direction (θ,φ) will be characterized by an ef-

fective noise temperature T(θ,φ), known as the brightness temperature, such that the

radiated noise power in that direction will be N(θ,φ)= kT(θ,φ)B. The antenna tem-

peratureTant will be given by the average over all such sources weighted by the receiving

gain of the antenna:

Tant = 1

ΔΩ

∫ π

0

∫ 2π

0
T(θ,φ)g(θ,φ)dΩ (16.7.3)

where ΔΩ is the beam solid angle of the antenna. It follows from Eq. (16.2.15) that ΔΩ

serves as a normalization factor for this average:

ΔΩ =
∫ π

0

∫ 2π

0
g(θ,φ)dΩ (16.7.4)

Eq. (16.7.3) can also be written in the following equivalent forms, in terms of the

directive gain or the effective area of the antenna:

Tant = 1

4π

∫ π

0

∫ 2π

0
T(θ,φ)D(θ,φ)dΩ = 1

λ2

∫ π

0

∫ 2π

0
T(θ,φ)A(θ,φ)dΩ

As an example of Eq. (16.7.3), we consider the case of a point source, such as the

sun, the moon, a planet, or a radio star. Then, Eq. (16.7.3) gives:

Tant = Tpoint

gpointΔΩpoint

ΔΩ

where gpoint andΔΩpoint are the antenna gain in the direction of the source and the small

solid angle subtended by the source. If the antenna’s mainlobe is pointing towards that

source then, gpoint = 1.

As another example, consider the case of a spatially extended noise source, such as

the sky, which is assumed to have a constant temperature Text over its angular width.

Then, Eq. (16.7.3) becomes:

Tant = Text
ΔΩext

ΔΩ
, where ΔΩext =

∫

ext
g(θ,φ)dΩ

The quantity ΔΩext is the portion of the antenna’s beam solid angle occupied by the

extended source.

As a third example, consider the case of an antenna pointing towards the sky and

picking up the atmospheric sky noise through its mainlobe and partly through its side-

lobes, and also picking up noise from the ground through the rest of its sidelobes. As-

suming the sky and ground noise temperatures are uniform over their spatial extents,

Eq. (16.7.3) will give approximately:

Tant = Tsky

ΔΩsky

ΔΩ
+Tground

ΔΩground

ΔΩ

where ΔΩsky and ΔΩground are the portions of the beam solid angle occupied by the sky

and ground:

ΔΩsky =
∫

sky
g(θ,φ)dΩ , ΔΩground =

∫

ground
g(θ,φ)dΩ
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Assuming that the sky and ground beam solid angles account for the total beam

solid angle, we have

ΔΩ = ΔΩsky +ΔΩground

The sky and ground beam efficiency ratios may be defined by:

esky =
ΔΩsky

ΔΩ
, eground =

ΔΩground

ΔΩ
, esky + eground = 1

Then, the antenna noise temperature can be written in the form:

Tant = eskyTsky + egroundTground (16.7.5)

Example 16.7.5: At 4 GHz and elevation angle of 30o, the sky noise temperature is about 4 K.

Assuming a ground temperature of 290 K and that 90% of the beam solid angle of an earth-

based antenna is pointing towards the sky and 10% towards the ground, we calculate the

effective antenna temperature:

Tant = eskyTsky + egroundTground = 0.9× 4+ 0.1× 290 = 32.6 K

If the beam efficiency towards the sky changes to 85%, then esky = 0.85, eground = 0.15 and

we find Tant = 46.9 K. ⊓⊔

The mainlobe and sidelobe beam efficiencies of an antenna represent the proportions

of the beam solid angle occupied by the mainlobe and sidelobe of the antenna. The

corresponding beam solid angles are defined by:

ΔΩ =
∫

tot
g(θ,φ)dΩ =

∫

main
g(θ,φ)dΩ+

∫

side
g(θ,φ)dΩ = ΔΩmain +ΔΩside

Thus, the beam efficiencies will be:

emain = ΔΩmain

ΔΩ
, eside = ΔΩside

ΔΩ
, emain + eside = 1

Assuming that the entire mainlobe and a fraction, say α, of the sidelobes point

towards the sky, and therefore, a fraction (1 − α) of the sidelobes will point towards

the ground, we may express the sky and ground beam solid angles as follows:

ΔΩsky = ΔΩmain +αΔΩside

ΔΩground = (1−α)ΔΩside

or, in terms of the efficiency factors:

esky = emain +αeside = emain +α(1− emain)

eground = (1−α)eside = (1−α)(1− emain)

Example 16.7.6: Assuming an 80% mainlobe beam efficiency and that half of the sidelobes

point towards the sky and the other half towards the ground, we have emain = 0.8 and

α = 0.5, which lead to the sky beam efficiency esky = 0.9. ⊓⊔
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16.8 System Noise Temperature

In a receiving antenna system, the signal-to-noise ratio at the receiver must take into

account not only the noise picked up by the antenna, and quantified by Tant, but also all

the internal noises introduced by the various components of the receiver.

Every device, passive or active, is a source of noise generated internally. Such noise

may be modeled as an internal noise source acting at the input of the device, as shown

in Fig. 16.8.1. (Alternatively, the noise source can be added at the output, but the input

convention is more common.)

Fig. 16.8.1 Noise model of a device.

The amount of added noise power is expressed in terms of the effective noise tem-

perature Te of the device:

Ne = kTeB (effective internal noise) (16.8.1)

The sum of Ne and the noise power of the input signal Nin will be the total noise

power, or the system noise power at the input to the device. If the input noise is expressed

in terms of its own noise temperature, Nin = kTinB, we will have:

Nsys = Nin +Ne = k(Tin +Te)B = kTsysB (total input noise) (16.8.2)

where we introduced the system noise temperature† at the device input:

Tsys = Tin +Te (system noise temperature) (16.8.3)

If the device has power gain G,‡ then the noise power at the output of the device

and its equivalent temperature, Nout = kToutB, can be expressed as follows:

Nout = G(Nin +Ne)= GNsys

Tout = G(Tin +Te)= GTsys

(16.8.4)

One interpretation of the system noise powerNsys = kTsysB is that it represents the

required input power to an equivalent noiseless system (with the same gain) that will

produce the same output power as the actual noisy system.

If a desired signal with noise power Sin is also input to the device, then the signal

power at the output will be Sout = GSin. The system signal-to-noise ratio is defined to be

the ratio of the input signal power to total system noise power:

†Also called the operating noise temperature.
‡More precisely, G is the available power gain of the device, in the notation of Sec. 14.6.
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SNRsys = Sin

Nsys

= Sin

kTsysB
= Sin

k(Tin +Te)B
(system SNR) (16.8.5)

The SNR is the same whether it is measured at the input or the output of the device;

indeed, multiplying numerator and denominator by G and using (16.8.4), we have:

SNRsys = Sin

Nsys

= Sout

Nout

(16.8.6)

A related concept is that of the noise figure of the device, which also characterizes

the internally generated noise. It is related to the effective noise temperature Te by:

F = 1+ Te
T0

⇔ Te = (F − 1)T0 (16.8.7)

where T0 is the standardized constant temperature T0 = 290 K.

The device of Fig. 16.8.1 can be passive or active. The case of a passive attenuator,

such as a lossy transmission line or waveguide connecting the antenna to the receiver,

deserves special treatment.

In this case, the gain G will be less than unity G < 1, representing a power loss.

For a line of length l and attenuation constant α (nepers per meter), we will have G =
e−2αl. The corresponding loss factor will be L = G−1 = e2αl. If αl ≪ 1, we can write

approximately G = 1− 2αl and L = 1+ 2αl.

If the physical temperature of the line is Tphys then, from either the input or output

end, the line will appear as a thermal noise source of power kTphysB. Therefore, the

condition Nin = Nout = kTphysB implies that kTphysB = Gk(Tphys +Te)B, which gives:

Te = 1

G
(1−G)Tphys = (L− 1)Tphys (attenuator) (16.8.8)

If the physical temperature is Tphys = T0 = 290 K, then, by comparing to Eq. (16.8.7)

it follows that the noise figure of the attenuator will be equal to its loss:

Te = (L− 1)T0 = (F − 1)T0 ⇒ F = L = 1

G

When the input to the attenuator is an external noise source of power Nin = kTinB,

the system noise temperature at the input and at the output of the attenuator will be:

Tsys = Tin +Te = Tin + (L− 1)Tphys

Tout = GTsys = GTin + (1−G)Tphys = 1

L
Tin +

(

1− 1

L

)

Tphys

(16.8.9)

The last equation can be expressed in terms of the input and output powers Nin =
kTinB and Nout = kToutB:

Nout = 1

L
Nin +

(

1− 1

L

)

kTphysB (16.8.10)
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Thus, the input power is attenuated as expected, but the attenuator also adds its

own thermal noise power. More generally, if the input power arises from signal plus

noise Pin = Sin +Nin, the power at the output will be Pout = Sout +Nout = GSin +Nout:

Pout = 1

L
Pin +

(

1− 1

L

)

kTphysB (16.8.11)

When two or more devices are cascaded, each will contribute its own internal noise.

Fig. 16.8.2 shows two such devices with available power gains G1 and G2 and effec-

tive noise temperatures T1 and T2. The cascade combination can be replaced by an

equivalent device with gain G1G2 and effective noise temperature T12.

Fig. 16.8.2 Equivalent noise model of two cascaded devices.

The equivalent temperature T12 can be determined by superposition. The internal

noise power added by the first device, N1 = kT1B, will go through the gains G1 and

G2 and will contribute an amount G1G2N1 to the output. The noise generated by the

second device, N2 = kT2B, will contribute an amount G2N2. The sum of these two

powers will be equivalent to the amount contributed to the output by the combined

system, G1G2N12 = G1G2kT12B. Thus,

G1G2kT12B = G1G2kT1B+G2kT2B ⇒ G1G2T12 = G1G2T1 +G2T2

It follows that:

T12 = T1 + 1

G1

T2 (equivalent noise temperature) (16.8.12)

If G1 is a large gain, G1 ≫ 1, then the contribution of the second device is reduced

drastically. On the other hand, if the first device is an attenuator, such as a transmission

line, then the contribution of T2 will be amplified because G1 < 1.

According to Eqs. (16.8.3) and (16.8.4), the system noise temperatures at the overall

input, at the output of G1, and at the overall output will be:

Tsys = Tsa = Tin +T12 = Tin +T1 + 1

G1

T2

Tsb = G1Tsa = G1(Tin +T1)+T2

Tout = G2Tsb = G1G2Tsys = G1G2(Tin +T1)+G2T2

(16.8.13)
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The system SNR will be:

SNRsys = Sin

kTsysB
= Sin

k(Tin +T12)B

The signal powers at points a, b, and at the output will be Sa = Sin, Sb = G1Sa,

and Sout = G2Sb = G1G2Sa. It follows from Eq. (16.8.13) that the system SNR will be

the same, regardless of whether it is referred to the point a, the point b, or the overall

output:

SNRsys = SNRa = SNRb = SNRout

For three cascaded devices, shown in Fig. 16.8.3, any pair of two consecutive ones can

be replaced by its equivalent, according to Eq. (16.8.12). For example, the first two can be

replaced by T12 and then combined with T3 to give the overall equivalent temperature:

T12 = T1 + 1

G1

T2 , T123 = T12 + 1

G1G2

T3

Fig. 16.8.3 Equivalent noise temperatures of three cascaded devices.

Alternatively, we can replace the last two with an equivalent temperature T23 and

then combine with the first to get:

T23 = T2 + 1

G2

T3 , T123 = T1 + 1

G1

T23

From either point of view, we obtain the equivalent temperature:

T123 = T1 + 1

G1

T2 + 1

G1G2

T3 (16.8.14)

The system SNR will be:

SNRsys = Sin

kTsysB
= Sin

k(Tin +T123)B

It is invariant with respect to its reference point:

SNRsys = SNRa = SNRb = SNRc = SNRout
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When expressed in terms of noise figures, Eqs. (16.8.12) and (16.8.14) are also known

as Friis’s formulas [1212], for example, defining the equivalent noise figure as F123 =
1+T123/T0, we have:

F123 = F1 + F2 − 1

G1

+ F3 − 1

G1G2

(16.8.15)

We apply now these results to the antenna receiver shown in Fig. 16.7.1, identifying

the three cascaded components as the feed line, the LNA amplifier, and the rest of the

receiver circuits. The corresponding noise temperatures are Tfeed, TLNA, and Trec. The

effective noise temperature Teff of the combined system will be:

Teff = Tfeed + 1

Gfeed

TLNA + 1

GfeedGLNA

Trec (16.8.16)

Using Eq. (16.8.8), we may replace Tfeed in terms of the physical temperature:

Teff = 1

Gfeed

(1−Gfeed)Tphys + 1

Gfeed

TLNA + 1

GfeedGLNA

Trec (16.8.17)

The input noise temperatureTin to this combined system is the antenna temperature

Tant. It follows that system noise temperature, referred to either the antenna output

terminals (point a), or to the LNA input (point b), will be:

Tsys = Tsa = Tant +Teff = Tant +
(

1

Gfeed

− 1

)

Tphys + 1

Gfeed

TLNA + 1

GfeedGLNA

Trec

Tsb = GfeedTsa = GfeedTant + (1−Gfeed)Tphys +TLNA + 1

GLNA

Trec

The importance of a high-gain low-noise amplifier is evident from Eq. (16.8.17). The

high value of GLNA will minimize the effect of the remaining components of the receiver

system, while the small value of TLNA will add only a small amount of noise. Typical

values of TLNA can range from 20 K for cooled amplifiers to 100 K at room temperatures.

The feed line can have a major impact. If the line is too lossy or too long, the quantity

Gfeed = e−2αl will be small, or 1/Gfeed large, contributing a significant amount to the

system noise temperature. Often, the LNA is mounted before the feed line, near the focal

point of the receiving antenna, so that the effect of the feed line will be suppressed by

the factor GLNA.

Similar benefits arise in base station antennas for wireless communications, where

high-gain amplifiers can be placed on top of the antenna towers, instead of at the base

station, which can be fairly far from the towers [1225]. Cable losses in such applications

can be in the range 2–4 dB (with gain factors Gf = 0.63–0.40.)

The signal to system-noise ratio of the receiving system (referred to point a of

Fig. 16.7.1) will be the ratio of the received power PR to the system noiseNsys = kTsysB.

Using the Friis formula (for power transmission), we have:

SNR = PR
Nsys

= PR
kTsysB

= (PTGT) 1

Lf

(

GR
Tsys

)

1

kB
(16.8.18)
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This ratio is also called the carrier-to-system-noise ratio and is denoted byC/N. For a

given transmitting EIRP, PTGT, the receiver performance depends critically on the ratio

GR/Tsys, referred to as the G/T ratio of the receiving antenna, or the figure of merit. It

is usually measured in dB/K. In dB, Eq. (16.8.18) reads as:

(SNR)dB= (PTGT)dB−(Lf)dB+
(

GR
Tsys

)

dB

− kdB − BdB (16.8.19)

The receiver SNR can be also be referred to LNA input (point b). The G/T ratio will

not change in value, but it will be the ratio of the signal gain after the feed line divided

by the system temperature Tsb, that is,

SNR = (PTGT) 1

Lf

(

GR
Tsys

)

1

kB
= (PTGT) 1

Lf

(
GRGfeed

Tsb

)
1

kB
(16.8.20)

Example 16.8.1: Typical earth-based antennas for satellite communications have G/T ratios

of the order of 40 dB/K, whereas satellite receiving antennas can have G/T = −7 dB/K or

less. The negative sign arises from the smaller satellite antenna gain and the much higher

temperature, since the satellite is looking down at a warm earth. ⊓⊔

Example 16.8.2: Consider a receiving antenna system as shown in Fig. 16.7.1, with antenna

temperature of 40 K, feed line loss of 0.1 dB, feed line physical temperature of 290 K, LNA

gain and effective noise temperature of 50 dB and 80 K. The rest of the receiver circuits

have effective noise temperature of 2000 K.

Assuming the receiving antenna has a gain of 45 dB, calculate the system noise temperature

and the G/T ratio at point a and point b of Fig. 16.7.1. Repeat if the feed line loss is 1 dB.

Solution: The feed line has gain Gfeed = 10−0.1/10 = 10−0.01 = 0.9772, and the LNA has GLNA

= 1050/10 = 105. Thus, the system noise temperature at point a will be:

Tsys = Tant +
(

1

Gfeed

− 1

)

Tphys + 1

Gfeed

TLNA + 1

GfeedGLNA

Trec

= 40+
(

1

10−0.01
− 1

)

290+ 80

10−0.01
+ 2000

10−0.01 · 105

= 40+ 6.77+ 81.87+ 0.02 = 128.62 K = 21.09 dBK

At point b, we have Tsb = GfeedTsys = 0.9772 × 128.62 = 125.69 K = 20.99 dBK. The

G/T ratio will be at point a, GR/Tsys = 45 − 21.09 = 23.91 dB/K. At point b the gain is

GRGfeed = 45− 0.1 = 44.9 dB, and therefore, G/T = GRGfeed/Tsb = 44.9− 20.99 = 23.91

dB/K, which is the same as at point a.

For a feed line loss of 1 dB, we find Tsys = 215.80 K = 23.34 dB. The corresponding G/T

ratio will be 45− 23.34 = 21.66 dB. ⊓⊔

Example 16.8.3: Suppose the LNA were to be placed in front of the feed line of the above

example. Calculate the system noise temperature in this case when the feed line loss is

0.1 dB and 1 dB.
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Solution: Interchanging the roles of the feed line and the LNA in Eq. (16.8.16), we have for the

system noise temperature:

Tsys = Tant +TLNA + 1

GLNA

Tfeed + 1

GfeedGLNA

Trec

WithGfeed = 10−0.1/10 = 0.9772, we findTfeed = 6.75 K, and withGfeed = 10−1/10 = 0.7943,

Tfeed = 75.1 K. Because of the large LNA gain, the value of Tsys will be essentially equal to

Tant +TLNA; indeed, we find in the two cases:

Tsys = 120.0205 K and Tsys = 120.0259 K

The G/T will be 45− 10 log10(120)= 20.8 dB/K. ⊓⊔

16.9 Data Rate Limits

The system SNR limits the data rate between the two antennas. According to Shannon’s

theorem, the maximum data rate (in bits/sec) that can be achieved is:

C = B log2(1+ SNR) (Shannon’s channel capacity) (16.9.1)

where SNR is in absolute units. For data rates R ≤ C, Shannon’s theorem states that

there is an ideal coding scheme that would guarantee error-free transmission.

In a practical digital communication system, the bit-error probability or bit-error rate

(BER), Pe, is small but not zero. The key performance parameter from which Pe can be

calculated is the ratio Eb/N0, where Eb is the energy per bit and N0 is the system noise

spectral density N0 = kTsys.

The functional relationship between Pe and Eb/N0 depends on the particular digital

modulation scheme used. For example, in binary and quadrature phase-shift keying

(BPSK and QPSK), Pe and its inverse are given by [1222]:

Pe = 1

2
erfc

(√

Eb
N0

)

⇔
Eb
N0

= [

erfinv(1− 2Pe)
]2

(16.9.2)

where erfc(x) is the complementary error function, and erf(x) and erfinv(x) are the

error function and its inverse as defined in MATLAB:

erfc(x)= 1− erf(x)= 2√
π

∫∞

x
e−t

2

dt , y = erf(x) ⇔ x = erfinv(y) (16.9.3)

The relationships (16.9.2) are plotted in Fig. 16.9.1. The left graph also shows the

ideal Shannon limit Eb/N0 = ln 2 = 0.6931 ≡ −1.5917 dB, which is obtained by taking

the limit of Eq. (16.9.1) for infinite bandwidth.

If Tb is the time it takes to transmit one bit, then the data rate will be R = 1/Tb, and

the required power, P = Eb/Tb = EbR. It follows that the SNR will be:

SNR = P

Nsys

= P

kTsysB
= Eb
N0

R

B
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Fig. 16.9.1 Pe versus Eb/N0, and its inverse, for a BPSK system.

Using the small-x expansion, log2(1+x)≃ x/ ln 2, Shannon’s condition for error-free

transmission becomes in the limit B→∞:

R ≤ C = B log2

(

1+ Eb
N0

R

B

)

→ B
EbR

N0B ln 2
= R

ln 2

Eb
N0

⇒ Eb
N0

≥ ln 2 = −1.5917 dB

For a pair of communicating antennas, the received power will be related to the

energy per bit by PR = Eb/Tb = EbR. Using Friis’s formula, we find:

R
Eb
N0

= PR
N0

= PEIRPGf GR

kTsys

= (PTGT) GR
kTsys

(
λ

4πr

)2

(16.9.4)

which may be solved for the maximum achievable data rate (in bits/sec):

R = 1

Eb/N0

PEIRPGf GR

kTsys

= 1

Eb/N0

(PTGT)
GR
kTsys

(
λ

4πr

)2

(16.9.5)

An overall gain factor, Gother = 1/Lother, may be introduced representing other

losses, such as atmospheric losses.

Example 16.9.1: The Voyager spacecrafts (launched in 1977) have antenna diameter and aper-

ture efficiency of d = 3.66 m (12 ft) and ea = 0.6. The operating frequency is f = 8.415

GHz and the transmitter power PT = 18 W. Assuming the same efficiency for the 70-m re-

ceiving antenna at NASA’s deep-space network at Goldstone, CA, we calculate the antenna

gains using the formula G = ea(πd/λ)2, with λ = c/f = 0.0357 m:

GT = 47.95 dB, GR = 73.58 dB, PT = 12.55 dBW

Assuming a system noise temperature of Tsys = 25 K = 13.98 dBK for the receiving

antenna, we find for the noise spectral density N0 = kTsys = −214.62 dBW/Hz, where we

used k = −228.6 dB. Assuming a bit-error rate of Pe = 5×10−3, we find from Eq. (16.9.2)

the required ratio Eb/N0 = 3.317 = 5.208 dB.

Voyager 1 was at Jupiter in 1979, at Saturn in 1980, and at Neptune in 1989. In 2002 it was

at a distance of about r = 12×109 km. It is expected to be at r = 22×109 km in the year
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2020. We calculate the corresponding free-space gain Gf = (λ/4πr)2 and the expected

data rates R from Eq. (16.9.5), where r is in units of 109 km:

location r Gf (dB) R (dB) R (bits/sec)

Jupiter 0.78 −288.78 49.72 93,724

Saturn 1.43 −294.05 44.45 27,885

Neptune 4.50 −304.01 34.50 2,816

2002 12.00 −312.53 25.98 396

2020 22.00 −317.79 20.71 118

where we assumed an overall loss factor of Gother = −5 dB. More information on the

Voyager mission and NASA’s deep-space network antennas can be obtained from the web

sites [1514] and [1515]. ⊓⊔

16.10 Satellite Links

Consider an earth-satellite-earth system, as shown in Fig. 16.10.1. We wish to establish

the total link budget and signal to system-noise ratio between the two earth antennas

communicating via the satellite.

Fig. 16.10.1 Uplink and downlink in satellite communications.

In a geosynchronous satellite system, the uplink/downlink frequencies fu, fd are

typically 6/4 GHz or 14/11 GHz. The distances ru, rd are of the order of 40000 km. Let

λu = c/fu and λd = c/fd be the uplink/downlink wavelengths. The free-space gain/loss

factors will be from Eq. (16.6.5):

Gfu = 1

Lfu
=
(
λu

4πru

)2

, Gfd = 1

Lfd
=
(
λd

4πrd

)2

(16.10.1)

The satellite has an on-board amplifier with gain G, which could be as high as 100–

120 dB. Using Friis formula in its gain form, Eq. (16.6.6), the link equations for the uplink,

the satellite amplification, and the downlink stages can be written as follows:

PEIRP = PTEGTE (EIRP of transmitting earth antenna)

PRS = PTEGTEGfuGRS (received power by satellite antenna)

PTS = GPRS (transmitted power by satellite antenna)

PRE = PTSGTSGfdGRE (received power by earth antenna)
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Expressing PRE in terms of PTE, we have:

PRE = PRSGGTSGfdGRE = PTEGTEGfuGRSGGTSGfdGRE (16.10.2)

or, showing the free-space loss factors explicitly:

PRE = PTEGTEGRSGGTSGRE
(
λu

4πru

)2 ( λd
4πrd

)2

(16.10.3)

Because there are two receiving antennas, there will be two different system noise

temperatures, say TRS and TRE, for the satellite and earth receiving antennas. They

incorporate the antenna noise temperatures as well as the receiver components. The

corresponding figures of merit will be the quantities GRS/TRS and GRE/TRE. We may

define the uplink and downlink SNR’s as the signal-to-system-noise ratios for the indi-

vidual antennas:

SNRu = PRS
kTRSB

, SNRd = PRE
kTREB

(16.10.4)

The system noise TRS generated by the receiving satellite antenna will get amplified

by G and then transmitted down to the earth antenna, where it will contribute to the

system noise temperature. By the time it reaches the earth antenna it will have picked

up the gain factors GGTSGfdGRE. Thus, the net system noise temperature measured

at the receiving earth antenna will be:

Tsys = TRE +GGTSGfdGRETRS (16.10.5)

The SNR of the total link will be therefore,

SNRtot = PRE
kTsysB

(16.10.6)

SNR−1
tot =

k(TRE +GGTSGfdGRETRS)B
PRE

= kTREB

PRE
+ kGGTSGfdGRE TRSB

PRE

= kTREB

PRE
+ kGGTSGfdGRETRSB

GGTSGfdGREPRS
= kTREB

PRE
+ kTRSB

PRS
= SNR−1

d + SNR−1
u

where we used Eq. (16.10.2). It follows that:

SNRtot = 1

SNR−1
u + SNR−1

d

(16.10.7)

This is also written in the form:

(
C

N

)

tot
= 1
(
C

N

)−1

u
+
(
C

N

)−1

d
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Example 16.10.1: As an example of a link budget calculation, assume the following data: The

uplink/downlink distances are 36000 km. The uplink/downlink frequencies are 6/4 GHz.

The diameters of the earth and satellite antennas are 15 m and 0.5 m with 60% aperture

efficiencies. The earth antenna transmits power of 1 kW and the satellite transponder

gain is 90 dB. The satellite receiving antenna is looking down at an earth temperature of

300 K and has a noisy receiver of effective noise temperature of 2700 K, whereas the earth

receiving antenna is looking up at a sky temperature of 50 K and uses a high-gain LNA

amplifier of 80 K (feedline losses may be ignored.) The bandwidth is 30 MHz.

The uplink and downlink wavelengths are λu = 0.05 m and λd = 0.075 m, corresponding

to 6 and 4 GHz. The up and down free-space gains and losses are:

Gfu = −Lfu = −199.13 dB, Gfd = −Lfd = −195.61 dB

The antenna gains are calculated to be:

GTE = 57.27 dB, GRS = 27.72 dB, GTS = 24.20 dB, GRE = 53.75 dB

With PTE = 1 kW = 30 dBW, the EIRP of the transmitting earth antenna will be: PEIRP

= 30+ 57.27 = 87.27 dBW. The power received by the satellite antenna will be:

PRS = 87.27− 199.13+ 27.72 = −84.14 dBW

After boosting this up by the transponder gain of 90 dB, the power transmitted down to

the receiving earth antenna will be:

PTS = 90− 84.14 = 5.86 dBW

The EIRP of the transmitting satellite antenna will be (PTSGTS)dB= 5.86+ 24.20 = 30.06

dBW. The downlink power received by the earth antenna will be:

PRE = 30.06− 195.61+ 53.75 = −111.80 dBW

The system noise temperatures are: TRS = 300 + 2700 = 3000 K and TRE = 50 + 80 =
130 K, and in dBK: TRS = 34.77 and TRE = 21.14. The 30 MHz bandwidth is in dB: BdB =
10 log10(30×106)= 74.77 dB Hz. Using the Boltzmann constant k in dB, kdB = −228.6, we

calculate the receiver system noise powers in dB, using N = kdB +TdB + BdB:

NRS = −228.6+ 34.77+ 74.77 = −119.06 dBW

NRE = −228.6+ 21.14+ 74.77 = −132.69 dBW

It follows that the G/T ratios and system SNR’s for the receiving antennas will be:

(G/T)u= GRS −TRS = 27.72− 34.77 = −7.05 dB/K

(G/T)d= GRE −TRE = 53.75− 21.14 = 32.61 dB/K

SNRu = PRS −NRS = −84.14+ 119.06 = 34.92 dB = 3103.44

SNRd = PRE −NRE = −111.80+ 132.69 = 20.89 dB = 122.72

The overall system SNR is calculated from Eq. (16.10.7) using absolute units:

SNRtot = 1

SNR−1
u + SNR−1

d

= 1

(3103.44)−1+(122.72)−1
= 118.05 = 20.72 dB

The overall SNR is essentially equal to the downlink SNR. ⊓⊔
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16.11 Radar Equation

Another example of the application of the concepts of gain and effective area and the

use of Friis formulas is radar. Fig. 16.11.1 shows a radar antenna, which illuminates a

target at distance r in the direction of its maximal gain. The incident wave on the target

will be reflected and a portion of it will be intercepted back at the antenna.

Fig. 16.11.1 Radar antenna and target.

The concept of radar cross section σ provides a measure of the effective area of the

target and the re-radiated power. If the radar antenna transmits power PT with gainGT,

the power density of the transmitted field at the location of the target will be:

PT = PTGT
4πr2

(16.11.1)

From the definition of σ, the power intercepted by the target and re-radiated is:

Ptarget = σPT = PTGTσ

4πr2
(16.11.2)

By definition of the radar cross section, the power Ptarget will be re-radiated isotropically

and establish a power density back at the location of the radar antenna:

Ptarget =
Ptarget

4πr2
= PTGTσ

(4πr2)2
(16.11.3)

The amount of power received by the radar antenna will be given in terms of its

effective area AR as follows:

PR = ARPtarget = PTGTARσ

(4π)2r4
(radar equation) (16.11.4)

This is also known as Friis’ formula. Using AR = AT and GT = 4πAT/λ
2, we may

express Eq. (16.11.4) in the alternative forms:

PR =
PTA

2
Tσ

4πλ2r4
= PTG

2
Tλ

2σ

(4π)3r4
= PTG2

T

(
λ

4πr

)4 (
4πσ

λ2

)

(16.11.5)

Introducing the equivalent target gain corresponding to the radar cross section, that

is, Gσ = 4πσ/λ2, we may also write Eq. (16.11.5) as the product of gains:

PR = PTG2
TG

2
fGσ (16.11.6)
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Fig. 16.11.2 Gain model of radar equation.

Fig. 16.11.2 shows this gain model. There are two free-space paths and two antenna

gains, acting as transmit and receive gains.

The minimum detectable received power, PR,min, defines the maximum distance rmax

at which the target can be detected:

PR,min = PTGTARσ

(4π)2r4
max

Solving for rmax, we obtain:

rmax =
[

PTGTATσ

(4π)2PR,min

]1/4

(radar range) (16.11.7)

If the target is not in the direction of maximal gain GT of the antenna, but in some

other direction, say (θ,φ), then the maximal gain GT in Eq. (16.11.5) must be replaced

with GTg(θ,φ), where g(θ,φ) is the antenna’s normalized gain. The received power

can be expressed then as:

PR =
PTG

2
Tg

2(θ,φ)λ2σ

(4π)3r4
(16.11.8)

In ground-based air search radars trying to detect approaching aircraft flying at a

fixed height h, the power received by the radar can be made to be independent of the

distance r, within a certain distance range, by choosing the gain g(θ,φ) appropriately.

As shown in Fig. 16.11.3, the height h is related to r by h = r cosθ.

Fig. 16.11.3 Secant antenna gain.

If the gain is designed to have the secant-squared shape g(θ,φ)= K/ cos2 θ, where

K is a constant, then the power will become independent of r. Indeed,

PR =
PTG

2
Tg

2(θ,φ)λ2σ

(4π)3r4
= PTG

2
TK

2λ2σ

(4π)3r4 cos4 θ
= PTG

2
TK

2λ2σ

(4π)3h4
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The secant behavior is not valid over all polar angles θ, but only over a certain range,

such as 0 ≤ θ ≤ θmax, where θmax corresponds to the maximum range of the radar

rmax = h/ cosθmax. The desired secant shape can be achieved by appropriate feeds of

the radar dish antenna, or by an antenna array with properly designed array factor. In

Sec. 21.5, we present such a design for an array.

16.12 Problems

16.1 In an earth-satellite-earth communication system, the uplink/downlink distances are 36000

km. The uplink/downlink frequencies are 6/4 GHz. The diameters of the earth and satellite

antennas are 20 m and 1 m with 60% aperture efficiencies. The transmitting earth antenna

transmits power of 1.5 kW. The satellite transponder gain is 85 dB. The satellite receiving

antenna is looking down at an earth temperature of 290K and has a noisy receiver of ef-

fective noise temperature of 3000K, whereas the earth receiving antenna is looking up at a

sky temperature of 60K and uses a high-gain LNA amplifier of noise temperature of 100K

(feedline losses may be ignored.) The bandwidth is 30 MHz.

a. Calculate all antenna gains in dB.

b. Calculate the uplink and downlink free-space losses in dB.

c. Calculate the amount of power received by the satellite in dBW. Calculate the uplink

signal to noise ratio in dB.

d. Calculate the power received by the receiving earth antenna in dBW and the downlink

signal to noise ratio.

e. Finally, calculate the total system signal to noise ratio in dB.

16.2 The Voyager spacecraft is currently transmitting data to earth from a distance of 12 billion

km. Its antenna diameter and aperture efficiency are 3.66 m and 60 %. The operating fre-

quency is 8.415 GHz and Voyager’s transmitter power is 18 W. Assume the same aperture

efficiency for the 70-m receiving antenna at NASA’s deep-space network at Goldstone, CA.

a. Calculate the spacecraft’s and earth’s antenna gains in dB. Calculate also the free-space

loss in dB.

b. Calculate the achievable communication data rate in bits/sec between Voyager and

earth using QPSK modulation and assuming the following: an overall transmission

loss factor of 5 dB, a system noise temperature of 25 K, an energy-per-bit to noise-

spectral-density ratio of Eb/N0 = 3.317 = 5.208 dB, which for QPSK corresponds to a

bit-error probability of Pe = 5×10−3.

16.3 A satellite to earth downlink (shown below) is operating at a carrier frequency of f Hertz

using QPSK modulation and achieving a bit rate of R bits/sec with a bit error probability of

Pe. With the LNA absent, the receiving earth antenna is connected directly to a noisy receiver

with equivalent noise temperature of Trec. Both antennas are dishes.
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a. A low-noise amplifier of very high gainGLNA and low noise temperatureTLNA is inserted

between the earth antenna and the receiver. Show that the presence of the LNA allows

the link to be operated (with the same error probability Pe) at the higher bit rate:

Rnew = R Ta +Trec

Ta +TLNA

where Ta is the earth antenna noise temperature, and TLNA ≪ Trec.

b. The equation in part (a) is an approximation. Derive the exact form of that equation

and discuss the nature of the approximation that was made.

c. How would the expression in part (a) change if, in addition to the assumptions of part

(a), the operating frequency f were to be doubled? Explain your reasoning. How would

(a) change if the transmitter power PT were to double? If the distance r were to double?

d. With the LNA present, and assuming that the bit rate R, error probability Pe, and f ,

PT , r remain the same, show that the diameter d of the earth antenna can be lowered

to the following value without affecting performance:

dnew = d
√

Ta +TLNA

Ta +Trec

where the same approximation was made as in part (a).

16.4 A satellite to earth link (shown below) is operating at the carrier frequency of 4 GHz. The

data link employs QPSK modulation and achieves a bit-error-rate probability of Pe = 10−6.

The satellite has transmitter power of 20 W and uses a dish antenna that has a diameter of

0.5 m and aperture efficiency of 0.6. The earth antenna has diameter of 2 m, efficiency of

0.6, and antenna noise temperature of 80 K. The satellite antenna is at a distance of 40,000

km from the earth antenna.

The output of the receiving antenna is connected to a high-gain low noise amplifier with gain

of 40 dB and equivalent noise temperature of 200 K. The output of the LNA is connected to

an RF amplifier with equivalent noise temperature of 1800 K.

For QPSK modulation, we have the relationship Pe = erfc
(√

Eb/N0

)

/2 with inverse Eb/N0 =
[erfinv(1 − 2Pe)]

2. The following equation provides an excellent approximation to this

inverse relationship over the range of 10−8 ≤ Pe ≤ 10−3:

Eb
N0

= −2.1969 log10(Pe)−1.8621

where Eb/N0 is in absolute units.

a. Calculate the achievable communication data rate R in megabits/sec.

b. If the LNA is removed, the performance of the system will deteriorate. In an attempt to

keep the data rate the same as in part (a), the satellite transmitter power is increased

to 80 W. Calculate the deteriorated value of the bit-error-rate Pe in this case.
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16.5 A satellite to earth downlink (shown below) is operating at the carrier frequency of 4 GHz.

The distance between the two antennas is r = 40 000 km. The bit error probability is Pe =
10−5 using QPSK modulation.

For QPSK modulation, we have the following relationship between the bit-error-probability

and Eb/N0 ratio, expressed in terms of the MATLAB functions erfc and erfinv:

Pe = 1

2
erfc

(√

Eb
N0

)

⇔
Eb
N0

= [

erfinv(1− 2Pe)
]2

The satellite has transmitter power of 20 W and uses a dish antenna that has a diameter of

0.5 m and aperture efficiency of 0.6. The earth antenna has diameter of 5 m, efficiency of

0.6, and antenna noise temperature of 50 K. The output of the antenna is connected to an

RF amplifier with equivalent noise temperature of 2000 K.

a. Assuming that no LNA is used, calculate the system noise temperature Tsys at the

output of the receiving antenna, the received power PR in picowatts, and the maximum

achievable data rate in Mb/sec.

b. It is desired to improved the performance of this system tenfold, that is, to increase

the maximum achievable data rate in Mb/sec by a factor of 10. To this end, a low-noise

amplifier of 40-dB gain is inserted as shown. Determine the noise temperature of the

LNA that would guarantee such a performance improvement.

c. What is the maximum noise temperature of the LNA that can achieve such a 10-fold

improvement, and at what LNA gain is it achieved?

16.6 A radar with EIRP of Pradar = PTGT is trying to detect an aircraft of radar cross section σ.

The aircraft is at a distance r from the radar and tries to conceal itself by jamming the radar

with an on-board jamming antenna of EIRP of Pjammer = PJGJ . Assume that both the radar

and the jamming antennas are pointing in their direction of maximal gains.

a. Derive an expression of the signal-to-jammer ratio S/J, where S represents the power

received from the target back at the radar antenna according to the radar equation,

and J represents the power from the jamming antenna received by the radar antenna.

Express the ratio in terms of Pradar, Pjammer, r, and σ.

b. If detectability of the target in the presence of jamming requires at least a 0-dB signal-

to-jammer ratio (that is, S/J ≥ 1), show that the maximum detectable distance is:

r =
√

PTGT
PJGJ

σ

4π

16.7 The Arecibo Observatory in Puerto Rico has a gigantic dish antenna of diameter of 1000 ft

(304.8 m). It transmits power of 2.5 MW at a frequency of 430 MHz.

a. Assuming a 60 percent effective area, what is its gain in dB?

b. What is its beamwidth in degrees?

c. If used as a radar and the minimum detectable received power is −130 dBW, what is

its maximum range for detecting a target of radar cross-section of 1 m2?
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Linear and Loop Antennas

17.1 Linear Antennas

The radiation angular pattern of antennas is completely determined by the transverse

component F⊥ = θ̂θθFθ + φ̂φφFφ of the radiation vector F, which in turn is determined by

the current density J. Here, we consider some examples of current densities describing

various antenna types, such as linear antennas, loop antennas, and linear arrays.

For linear antennas, we may choose the z-axis to be along the direction of the an-

tenna. Assuming an infinitely thin antenna, the current density will have the form:

J(r)= ẑ I(z)δ(x)δ(y) (thin linear antenna) (17.1.1)

where I(z) is the current distribution along the antenna element. It is shown in Sec. 22.4

that I(z) satisfies approximately the Helmholtz equation along the antenna:

d2I(z)

dz2
+ k2I(z)= 0 (17.1.2)

Some examples of current distributions I(z) are as follows:

I(z)= Ilδ(z) Hertzian dipole

I(z)= I Uniform line element

I(z)= I(1− 2|z|/l) Small linear dipole

I(z)= I sin
(

k(l/2− |z|)) Standing-wave antenna

I(z)= I cos(kz) Half-wave antenna (l = λ/2)

I(z)= Ie−jkz Traveling-wave antenna

where l is the length of the antenna element and the expressions are assumed to be valid

for −l/2 ≤ z ≤ l/2, so that the antenna element straddles the xy-plane.
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The Hertzian dipole, uniform line element, and small linear dipole examples do not

satisfy Eq. (17.1.2), except when the antenna length is electrically short, that is, l≪ λ.

For loop antennas, we may take the loop to lie on the xy-plane and be centered at the

origin. Again, we may assume a thin wire. For a circular loop of radius a, the current

flows azimuthally. The corresponding current density can be expressed in cylindrical

coordinates r = (ρ,φ, z) as:

J(r)= φ̂φφIδ(ρ− a)δ(z) (circular loop) (17.1.3)

The delta functions confine the current on the ρ = a circle on the xy-plane. We will

discuss loop antennas in Sec. 17.8.

Antenna arrays may be formed by considering a group of antenna elements, such as

Hertzian or half-wave dipoles, arranged in particular geometrical configurations, such

as along a particular direction. Some examples of antenna arrays that are made up from

identical antenna elements are as follows:

J(r) = ẑ
∑

n

anI(z)δ(x− xn)δ(y) array along x-direction

J(r) = ẑ
∑

n

anI(z)δ(y − yn)δ(x) array along y-direction

J(r) = ẑ
∑

n

anI(z− zn)δ(x)δ(y) array along z-direction

J(r) = ẑ
∑

mn

amnI(z)δ(x− xm)δ(y − yn) 2D planar array

The weights an, amn are chosen appropriately to achieve desired directivity proper-

ties for the array. We discuss arrays in Sec. 20.1.

It is evident now from Eq. (17.1.1) that the radiation vector F will have only a z-

component. Indeed, we have from the definition Eq. (15.7.5):

F =
∫

V
J(r′)ej k·r′ d3r′ = ẑ

∫

I(z′)δ(x′)δ(y′)ej(kxx
′+kyy′+kzz′)dx′dy′dz′

The x′ and y′ integrations are done trivially, whereas the z′ integration extends over

the length l of the antenna. Thus,

F = ẑFz = ẑ

∫ l/2

−l/2
I(z′)ejkzz

′
dz′

Using Eq. (15.8.3), the wave vector k can be resolved in cartesian components as:

k = k r̂ = x̂k cosφ sinθ+ ŷk sinφ sinθ+ ẑk cosθ = x̂kx + ŷky + ẑkz

Thus,

kx = k cosφ sinθ

ky = k sinφ sinθ

kz = k cosθ

(17.1.4)
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It follows that the radiation vector Fz will only depend on the polar angle θ:

Fz(θ)=
∫ l/2

−l/2
I(z′)ejkzz

′
dz′ =

∫ l/2

−l/2
I(z′)ejkz

′ cosθdz′ (17.1.5)

Using Eq. (15.8.2) we may resolve ẑ into its spherical coordinates and identify the

radial and transverse components of the radiation vector:

F = ẑFz = (r̂ cosθ− θ̂θθ sinθ)Fz(θ)= r̂Fz(θ)cosθ− θ̂θθFz(θ)sinθ

Thus, the transverse component of F will be have only a θ-component:

F⊥(θ)= θ̂θθFθ(θ)= −θ̂θθFz(θ)sinθ

It follows that the electric and magnetic radiation fields (15.10.5) generated by a

linear antenna will have the form:

E = θ̂θθEθ = θ̂θθ jkη e
−jkr

4πr
Fz(θ)sinθ

H = φ̂φφHφ = φ̂φφjk e
−jkr

4πr
Fz(θ)sinθ

(17.1.6)

The fields are omnidirectional, that is, independent of the azimuthal angle φ. The

factor sinθ arises from the cartesian to spherical coordinate transformation, whereas

the factor Fz(θ) incorporates the dependence on the assumed current distribution I(z).

The radiation intensity U(θ,φ) has θ-dependence only and is given by Eq. (16.1.4):

U(θ)= ηk2

32π2
|Fz(θ)|2 sin2 θ (radiation intensity of linear antenna) (17.1.7)

To summarize, the radiated fields, the total radiated power, and the angular distri-

bution of radiation from a linear antenna are completely determined by the quantity

Fz(θ) defined in Eq. (17.1.5).

17.2 Hertzian Dipole

The simplest linear antenna example is the Hertzian dipole that has a current distri-

bution I(z)= Ilδ(z) corresponding to an infinitesimally small antenna located at the

origin. Eq. (17.1.5) yields:

Fz(θ)=
∫ l/2

−l/2
I(z′)ejkzz

′
dz′ =

∫ l/2

−l/2
Ilδ(z′)ejkz

′ cosθdz′ = Il

Thus, Fz is a constant independent of θ. The radiation intensity is obtained from

Eq. (17.1.7):

U(θ)= ηk2

32π2
|Il|2 sin2 θ
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Its maximum occurs at θ = π/2, that is, broadside to the antenna:

Umax = ηk2

32π2
|Il|2

It follows that the normalized power gain will be:

g(θ)= U(θ)

Umax

= sin2 θ (Hertzian dipole gain) (17.2.1)

The gain g(θ) is plotted in absolute and dB units in Fig. 17.2.1. Note that the 3-dB

or half-power circle intersects the gain curve at 45o angles. Therefore, the half-power

beam width (HPBW) will be 90o—not a very narrow beam. We note also that there is no

radiated power along the direction of the antenna element, that is, the z-direction, or

θ = 0.
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Fig. 17.2.1 Gain of Hertzian dipole in absolute and dB units.

In these plots, the gain was computed by the function dipole and plotted with abp

and dbp. For example the left figure was generated by:

[g, th, c] = dipole(0, 200);

abp(th, g, 45);

Next, we calculate the beam solid angle from:

ΔΩ =
∫ π

0

∫ 2π

0
g(θ) sinθdθdφ = 2π

∫ π

0
g(θ) sinθdθ = 2π

∫ π

0
sin3 θdθ , or,

ΔΩ = 8π

3

It follows that the directivity will be:

Dmax = 4π

ΔΩ
= 4π

8π/3
= 1.5 ≡ 1.76 dB
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The total radiated power is then found from Eq. (16.2.17):

Prad = UmaxΔΩ = ηk2

32π2
|Il|2 8π

3
= ηk2|Il|2

12π
(17.2.2)

Because of the proportionality to |I|2, we are led to define the radiation resistance

of the antenna, Rrad, as the resistance that would dissipate the same amount of power

as the power radiated, that is, we define it through:

Prad = 1

2
Rrad|I|2 (17.2.3)

Comparing the two expressions for Prad, we find:

Rrad = ηk2l2

6π
= 2πη

3

(
l

λ

)2

(17.2.4)

where we replaced k = 2π/λ. Because we assumed an infinitesimally small antenna,

l≪ λ, the radiation resistance will be very small.

A related antenna example is the finite Hertzian, or uniform line element, which has

a constant current I flowing along its entire length l, that is, I(z)= I, for−l/2 ≤ z ≤ l/2.

We can write I(z)more formally with the help of the unit-step function u(z) as follows:

I(z)= I [u(z+ l/2)−u(z− l/2)]

The Hertzian dipole may be thought of as the limiting case of this example in the limit

l → 0. Indeed, multiplying and dividing by l, and using the property that the derivative

of the unit-step is u′(z)= δ(z), we have

I(z)= Il u(z+ l/2)−u(z− l/2)
l

→ Il
du(z)

dz
= Ilδ(z)

and we must assume, of course, that the product Il remains finite in that limit.

17.3 Standing-Wave Antennas

A very practical antenna is the center-fed standing-wave antenna, and in particular, the

half-wave dipole whose length is l = λ/2. The current distribution along the antenna

length is assumed to be a standing wave, much like the case of an open-ended parallel

wire transmission line. Indeed, as suggested by the figure below, the center-fed dipole

may be thought of as an open-ended transmission line whose ends have been bent up

and down. The current distribution is:

I(z)= I sin
(

k(l/2− |z|)) (standing-wave antenna) (17.3.1)
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Defining the half-length h = l/2, the radiation vector z-component Fz(θ) is:

Fz(θ)=
∫ h

−h
I sin

(

k(l/2− |z′|))ejkz′ cosθdz′ = 2I

k

cos(kh cosθ)− cos(kh)

sin2 θ

Inserting Fz(θ) into Eq. (17.1.7), and canceling some common factors, we obtain:

U(θ)= η|I|2
8π2

∣
∣
∣
∣

cos(kh cosθ)− cos(kh)

sinθ

∣
∣
∣
∣

2

(17.3.2)

It follows that the normalized power gain g(θ) will have a similar form:

g(θ)= cn
∣
∣
∣
∣

cos(kh cosθ)− cos(kh)

sinθ

∣
∣
∣
∣

2

(normalized gain) (17.3.3)

where cn is a normalization constant chosen to make the maximum of g(θ) equal to

unity. Depending on the value of l, this maximum may not occur at θ = π/2.

In the limit l→ 0, we obtain the gain of the Hertzian dipole, g(θ)= sin2 θ. For small

values of l, we obtain the linear-current case. Indeed, using the approximation sinx ≃ x,
the current (17.3.1) becomes:

I(z)= Ik
(
l

2
− |z|

)

, − l
2
≤ z ≤ l

2

For a general dipole of length l, the current at the input terminals of the antenna is

not necessarily equal to the peak amplitude I. Indeed, setting z = 0 in (17.3.1) we have:

Iin = I(0)= I sin(kl/2)= I sinkh (17.3.4)

The radiation resistance may be defined either in terms of the peak current or in

terms of the input current through the definitions:

Prad = 1

2
Rpeak|I|2 = 1

2
Rin|Iin|2 ⇒ Rin =

Rpeak

sin2 kh
(17.3.5)

When l is a half-multiple of λ, the input and peak currents are equal and the two defi-

nitions of the radiation resistance are the same. But when l is a multiple of λ, Eq. (17.3.4)

gives zero for the input current, which would imply an infinite input resistance Rin. In

practice, the current distribution is only approximately sinusoidal and the input current

is not exactly zero.

The input impedance of an antenna has in general both a resistive part Rin and a

reactive part Xin, so that Zin = Rin + jXin. The relevant theory is discussed in Sec. 23.3.

Assuming a sinusoidal current, Zin can be computed by Eq. (23.3.10), implemented by

the MATLAB function imped:

Zin = imped(l,a); % input impedance of standing-wave antenna

where l, a are the length and radius of the antenna in units ofλ. For example, a half-wave

dipole (l = λ/2) with zero radius has Zin = imped(0.5,0)= 73.1+ j 42.5 Ω.

For l ≫ a, the input resistance remains largely independent of the radius a. The

reactance has a stronger dependence on a. Fig. 17.3.1 shows a plot of Rin andXin versus
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Fig. 17.3.1 Input impedance of standing-wave dipole antenna.

the antenna length l plotted over the interval 0.3λ ≤ l ≤ 0.7λ, for the three choices of

the radius: a = 0, a = 0.0005λ, and a = 0.005λ.

We observe that the reactance Xin vanishes for lengths that are a little shorter than

l = λ/2. Such antennas are called resonant antennas in analogy with a resonant RLC

circuit whose input impedance Z = R+ j(ωL− 1/ωC) has a vanishing reactance at its

resonant frequency ω = 1/
√
LC.

For the three choices of the radius a, we find the following resonant lengths and

corresponding input resistances:

a = 0, l = 0.4857λ, Rin = 67.2 Ω

a = 0.0005λ, l = 0.4801λ, Rin = 65.0 Ω

a = 0.005λ, l = 0.4681λ, Rin = 60.5 Ω

An analytical expression for the peak and input radiation resistances can be obtained

by integrating the radiation intensity (17.3.2) over all solid angles to get the total radiated

power:

Prad =
∫

U(θ)dΩ =
∫ π

0

∫ 2π

0
U(θ)sinθdθdφ = 2π

∫ π

0
U(θ)sinθdθ

= η|I|2
4π

∫ π

0

(

cos(kh cosθ)− cos(kh)
)2

sinθ
dθ

Comparing with (17.3.5), we obtain the peak resistance:

Rpeak = η

2π

∫ π

0

(

cos(kh cosθ)− cos(kh)
)2

sinθ
dθ

Using the trigonometric identity,

(

cos(kh cosθ)− cos(kh)
)2

= 1

2

(

cos(2kh cosθ)− cos(2kh)
)− 2

(

cos(kh cosθ)− cos(kh)
)

coskh
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the above integral can be expressed as a sum of two integrals of the form:

∫ π

0

cos(α cosθ)− cosα

sinθ
dθ = Si(2α)sinα−Cin(2α)cosα

which is derived in Appendix F. This leads to the integral:

∫ π

0

(

cos(kh cosθ)− cos(kh)
)2

sinθ
dθ =

Cin(kl)+1

2
coskl

[

2Cin(kl)−Cin(2kl)
]+ 1

2
sinkl

[

Si(2kl)−2Si(kl)
]

(17.3.6)

and to the radiation resistance:

Rpeak = η

2π

[

Cin(kl)+1

2
coskl

[

2Cin(kl)−Cin(2kl)
]+ 1

2
sinkl

[

Si(2kl)−2Si(kl)
]
]

(17.3.7)

which agrees with Eq. (23.3.21) derived by a different method. The radiation resistance

Rpeak also determines the directivity of the dipole antenna. Using (17.3.3) for the nor-

malized gain, we find the beam solid angle:

ΔΩ =
∫ π

0

∫ 2π

0
g(θ)dΩ = 2πcn

∫ π

0

(

cos(kh cosθ)− cos(kh)
)2

sinθ
dθ = 2πcn

2πRpeak

η

which leads to the directivity-impedance relationship:

Dmax = 4π

ΔΩ
= 1

cn

η

πRpeak

(17.3.8)

The normalization constant cn is equal to unity for a half-wave dipole; for other

antenna lengths, it may be computed numerically.

The MATLAB function dipdir calculates cn, the directivity Dmax, the angle θmax at

which the directivity is maximum (the angle 180−θmax also corresponds to Dmax), and

the radiation resistance Rpeak. It has usage:

[Rpeak,Dmax,thmax,cn] = dipdir(L) % standing-wave dipole of length L

The radiation resistance is computed from Eq. (17.3.7) with the help of the sine and

cosine integral functions Si(x) and Cin(x), and Dmax is computed from (17.3.8).

The table below shows some representative values, with the corresponding angular

patterns shown in Fig. 17.4.2.

l/λ Rpeak (Ω) Dmax Dmax (dB) θmax cn
0.50 73.08 1.64 2.15 90.00o 1.0000

0.75 185.68 1.88 2.75 90.00o 0.3431

1.00 198.95 2.41 3.82 90.00o 0.2500

1.25 106.46 3.28 5.16 90.00o 0.3431

1.50 105.42 2.23 3.48 42.57o 0.5109

1.75 229.94 2.37 3.75 50.94o 0.2200

2.00 259.45 2.53 4.03 57.42o 0.1828

2.25 143.48 3.07 4.87 62.28o 0.2723

2.50 120.68 3.06 4.86 32.22o 0.3249
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17.4 Half-Wave Dipole

The half-wave dipole corresponding to l = λ/2, or kl = π, is one of the most common

antennas. In this case, the current distribution along the antenna takes the form:

I(z)= I cos(kz) (half-wave dipole) (17.4.1)

with −λ/4 ≤ z ≤ λ/4. The normalized gain is:

g(θ)= cos2(0.5π cosθ)

sin2 θ
(half-wave dipole gain) (17.4.2)

Note that the maximum does occur at θ = π/2 and the normalization constant is

cn = 1. Fig. 17.4.1 shows the gain in absolute and dB units. The 3-dB or half-power

circle intersects the gain at an angle of θ3dB = 50.96o, which leads to a half-power beam

width of HPBW = 180o − 2θ3dB = 78.08o, that is, somewhat narrower than the Hertzian

dipole.
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Fig. 17.4.1 Gain of half-wave dipole in absolute and dB units.

Because sin(kl/2)= 1, sin(kl)= 0, and cos(kl)= −1, Eq. (17.3.7) reduces to:

Rin = Rpeak = η

4π
Cin(2kl)= η

4π
Cin(2π)= 73.0790 ohm

The directivity is found from (17.3.8) with cn = 1:

Dmax = η

πRpeak

= 1.64 ≡ 2.15 dB

In practice, the value Rin = 73 ohm can be matched easily to the characteristic

impedance of the feed line. For arbitrary values of the length l, the following example

MATLAB code used to calculate the gain function g(θ), as well as the constant cn and

the beam solid angle, is as follows:
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N = 200; % divide [0,pi] in N angle bins

dth = pi / N; % bin width

th = (1:N-1) * dth; % excludes th=0

g = ((cos(pi*L*cos(th)) - cos(pi*L)) ./ sin(th)).^2;

th = [0, th]; % N equally-spaced angles in [0,pi)

g = [0, g]; % avoids division by 0

cn = 1 / max(g);

g = cn * g; % normalized to unity maximum

Om = 2 * pi * sum(g .* sin(th)) * dth; % beam solid angle

where the beam solid angle is computed by the approximation to the integral:

ΔΩ = 2π

∫ π

0
g(θ)sinθdθ ≃ 2π

N−1∑

i=0

g(θi)sinθi Δθ

where Δθ = π/N and θi = iΔθ, i = 0,1, . . . ,N − 1. These operations are carried out

by the functions dipole and dmax. For example, the right graph in Fig. 17.4.1 and Dmax

and ΔΩ were generated by the MATLAB code:

[g, th, c] = dipole(0.5, 200);

dbp(th, g, 45, 12);

[D, Omega] = dmax(th, g);

Gauss-Legendre quadrature integration also produces accurate results. For exam-

ple, assuming the normalization constant cn is known, the following code fragment

integrates the gain function (17.3.3) to compute the beam solid angle:

G = inline(’(cos(pi*L*cos(th)) - cos(pi*L)).^2./sin(th).^2’, ’L’,’th’);

[w,th] = quadrs([0,pi/2,pi],32); % use 32 points in the subintervals [0,π/2] and [π/2,π]

DOm = cn * 2*pi* w’*(G(L,th).*sin(th)); % find ΔΩ = 7.6581 for L = 0.5

Fig. 17.4.2 shows the gains of a variety of dipoles of different lengths. The corre-

sponding directivities are indicated on each plot.

17.5 Monopole Antennas

A monopole antenna is half of a dipole antenna placed on top of a ground plane, as

shown in Fig. 17.5.1. Assuming the plane is infinite and perfectly conducting, the

monopole antenna will be equivalent to a dipole whose lower half is the image of the

upper half.

Thus, the radiation pattern (in the upper hemisphere) will be identical to that of a

dipole. Because the fields are radiated only in the upper hemisphere, the total radiated

power will be half that of a dipole, and hence the corresponding radiation resistance

will also be halved:

Pmonopole = 1

2
Pdipole , Rmonopole = 1

2
Rdipole

Similarly, the directivity doubles because the isotropic radiation intensity in the de-

nominator of Eq. (16.2.2) becomes half its dipole value:

Dmonopole = 2Ddipole



17.5. Monopole Antennas 785

 0
o

 180
o

 90
o

90
o

θθ

45
o

135
o

45
o

135
o

−3−6−9

dB

l = 0.50λ,  D = 2.15 dB
 0

o

 180
o

 90
o

90
o

θθ

45
o

135
o

45
o

135
o

−3−6−9

dB

l = 0.75λ,  D = 2.75 dB
 0

o

 180
o

 90
o

90
o

θθ

45
o

135
o

45
o

135
o

−3−6−9

dB

l = 1.00λ,  D = 3.82 dB

 0
o

 180
o

 90
o

90
o

θθ

45
o

135
o

45
o

135
o

−3−6−9

dB

l = 1.25λ,  D = 5.16 dB
 0

o

 180
o

 90
o

90
o

θθ

45
o

135
o

45
o

135
o

−3−6−9

dB

l = 1.50λ,  D = 3.48 dB
 0

o

 180
o

 90
o

90
o

θθ

45
o

135
o

45
o

135
o

−3−6−9

dB

l = 1.75λ,  D = 3.75 dB

 0
o

 180
o

 90
o

90
o

θθ

45
o

135
o

45
o

135
o

−3−6−9

dB

l = 2.00λ,  D = 4.03 dB
 0

o

 180
o

 90
o

90
o

θθ

45
o

135
o

45
o

135
o

−3−6−9

dB

l = 2.25λ,  D = 4.87 dB
 0

o

 180
o

 90
o

90
o

θθ

45
o

135
o

45
o

135
o

−3−6−9

dB

l = 2.50λ,  D = 4.86 dB

Fig. 17.4.2 Standing-wave dipole antenna patterns and directivities.

The quarter-wave monopole antenna whose length is λ/4 is perhaps the most widely

used antenna. For AM transmitting antennas operating in the 300 m or 1 MHz band, the

antenna height will be large, λ/4 = 75 m, requiring special supporting cables.

In mobile applications in the 30 cm or 1 GHz band, the antenna length will be fairly

small, λ/4 = 7.5 cm. The roof of a car plays the role of the conducting plane in this

case.

We note also in Fig. 17.4.2 that the l = 1.25λ = 10λ/8 dipole has the largest gain. It

can be used as a monopole in mobile applications requiring higher gains. Such antennas

are called 5/8-wave monopoles because their length is l/2 = 5λ/8.
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Fig. 17.5.1 Quarter-wave monopole above ground plane and the equivalent half-wave dipole.

17.6 Traveling-Wave Antennas

The standing-wave antenna current may be thought of as the linear superposition of a

forward and a backward moving current. For example, the half-wave dipole current can

be written in the form:

I(z)= I cos(kz)= I

2

(

e−jkz + ejkz)

The backward-moving component may be eliminated by terminating the linear an-

tenna at an appropriate matched load resistance, as shown in Fig. 17.6.1. The resulting

antenna is called a traveling-wave antenna or a Beverage antenna. The current along its

length has the form:

I(z)= Ie−jkz , 0 ≤ z ≤ l (17.6.1)

The corresponding radiation vector becomes:

F = ẑ

∫ l

0
Ie−jkz

′
ejk cosθz′dz′ = ẑ

I

jk

1− e−jkl(1−cosθ)

1− cosθ
(17.6.2)

The transverse θ-component is:

Fθ(θ)= −Fz(θ)sinθ = − I

jk
sinθ

1− e−2πjL(1−cosθ)

1− cosθ
≡ − I

jk
F(θ) (17.6.3)

where as before, L = l/λ and kl = 2πl/λ = 2πL. The radiation intensity, given by

Eq. (16.1.4) or (17.1.7), becomes now:

U(θ)= η|I|2
32π2

|F(θ)|2 = η|I|2
8π2

∣
∣
∣
∣
∣

sinθ sin
(

πL(1− cosθ)
)

1− cosθ

∣
∣
∣
∣
∣

2

(17.6.4)

Fig. 17.6.1 Traveling-wave antenna with matched termination.
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Therefore, the normalized power gain will be:

g(θ)= cn
∣
∣
∣
∣
∣

sinθ sin
(

πL(1− cosθ)
)

1− cosθ

∣
∣
∣
∣
∣

2

(17.6.5)

where cn is a normalization constant. Fig. 17.6.2 shows the power gains and directivities

for the cases l = 5λ and l = 10λ, or L = 5 and L = 10.
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Fig. 17.6.2 Traveling-wave antenna gain examples.

The MATLAB function traveling calculates the gain (17.6.5). For example, the left

graph in Fig. 17.6.2 was generated by the MATLAB code:

[g, th, c, th0] = traveling(5, 400);

dbp(th, g, 45, 12);

addray(90-th0,’-’); addray(90+th0,’-’);

The longer the length l, the more the main lobes tilt towards the traveling direction

of the antenna. The main lobes occur approximately at the polar angle (in radians) [5–7]:

θ0 = arccos

(

1− 0.371λ

l

)

= arccos

(

1− 0.371

L

)

(17.6.6)

For the two examples of Fig. 17.6.2, this expression gives for L = 5 and L = 10,

θ0 = 22.2o and θ0 = 15.7o. As L increases, the angle θ0 tends to zero.

There are other antenna structures that act as traveling-wave antennas, as shown

in Fig. 17.6.3. For example, a waveguide with a long slit along its length will radiate

continuously along the slit. Another example is a corrugated conducting surface along

which a surface wave travels and gets radiated when it reaches the discontinuity at the

end of the structure.

In all of these examples, the radiation pattern has an angular dependence similar to

that of a linear antenna with a traveling-wave current of the form:

I(z)= Ie−jβz = Ie−jpkz , 0 ≤ z ≤ l (17.6.7)
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Fig. 17.6.3 Surface-wave and leaky-wave antennas.

where β is the wavenumber along the guiding structure and p = β/k = c/vphase is

the ratio of the speed of light in vacuum to the phase velocity along the guide. The

corresponding radiation power pattern will now have the form:

g(θ)= cn
∣
∣
∣
∣
∣

sinθ sin
(

πL(p− cosθ)
)

p− cosθ

∣
∣
∣
∣
∣

2

(17.6.8)

For long lengths L (and for p < 1), it peaks along the direction θ0 = arccos(p).

Note that p can take the values: (a) p > 1 (slow waves), as in the case of the corrugated

plane structure or the case of a Beverage antenna wrapped in a dielectric, (b) p < 1 (fast

waves), as in the case of the leaky waveguide, where p =
√

1−ω2
c/ω2 , and (c) p = 1,

for the Beverage antenna.

17.7 Vee and Rhombic Antennas

A vee antenna consists of two traveling-wave antennas forming an angle 2α with each

other, as shown in Fig. 17.7.1. It may be constructed by opening up the matched ends

of a transmission line at an angle of 2α (each of the terminating resistances is RL/2 for

a total of RL.)

Fig. 17.7.1 Traveling-wave vee antenna with l = 5λ, θ0 = 22.2o, and α = 0.85θ0 = 18.9o.

By choosing the angle α to be approximately equal to the main lobe angle θ0 of

Eq. (17.6.6), the two inner main lobes align with each other along the middle direction

and produce a stronger main lobe, thus increasing the directivity of the antenna. The

outer main lobes will also be present, but smaller.

The optimum angle α of the arms of the vee depends on the length l and is related

to main lobe angle θ0 via α = aθ0, where the factor a typically falls in the range
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a = 0.80–1.00. Figure 17.7.2 shows the optimum angle factor a that corresponds to

maximum directivity (in the plane of the vee) as a function of the length l.
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Optimum Angle Factor

l/λ

a

Fig. 17.7.2 Optimum angle factor as a function of antenna length.

Figure 17.7.3 shows the actual power patterns for the cases l = 5λ and l = 10λ. The

main lobe angles were θ0 = 22.2o and θ0 = 15.7o. The optimum vee angles were found

to be approximately (see Fig. 17.7.2), α = 0.85θ0 = 18.9o and α = 0.95θ0 = 14.9o, in

the two cases.
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Fig. 17.7.3 Traveling-wave vee antenna gains in dB.

The combined radiation pattern can be obtained with the help of Fig. 17.7.4. Let

ẑ1 and ẑ2 be the two unit vectors along the two arms of the vee, and let θ1, θ2 be the

two polar angles of the observation point P with respect to the directions ẑ1, ẑ2. The

assumed currents along the two arms have opposite amplitudes and are:

I1(z1)= Ie−jkz1 , I2(z2)= −Ie−jkz2 , for 0 ≤ z1, z2 ≤ l
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Fig. 17.7.4 Radiation vectors of traveling-wave vee antenna.

Applying the result of Eq. (17.6.2), the radiation vectors of the two arms will be:

F1 = ẑ1

∫ l

0
Ie−jkz

′
1ejk cosθ1z

′
1dz′1 = ẑ1

I

jk

1− e−jkl(1−cosθ1)

1− cosθ1

F2 = −ẑ2

∫ l

0
Ie−jkz

′
2ejk cosθ2z

′
2dz′2 = −ẑ2

I

jk

1− e−jkl(1−cosθ2)

1− cosθ2

Therefore, the θ-components will be as in Eq. (17.6.3):

F1θ = − I

jk
F(θ1) , F2θ = I

jk
F(θ2)

where the function F(θ) was defined in Eq. (17.6.3). From Fig. 17.7.4, we may express

θ1, θ2 in terms of the polar angle θ with respect to the z-axis as:

θ1 = θ−α, θ2 = θ+α

Adding the θ-components, we obtain the resultant:

Fθ = F1θ + F2θ = I

jk

[

F(θ2)−F(θ1)
] = I

jk

[

F(θ+α)−F(θ−α)]

Thus, the radiation intensity will be:

U(θ)= ηk2

32π2
|Fθ(θ)|2 = η|I|2

32π2

∣
∣F(θ+α)−F(θ−α)

∣
∣2

and the normalized power pattern:

g(θ)= cn
∣
∣F(θ+α)−F(θ−α)

∣
∣2

(17.7.1)

This is the gain plotted in Fig. 17.7.3 and can be computed by the MATLAB function

vee. Finally, we consider briefly a rhombic antenna made up of two concatenated vee

antennas, as shown in Fig. 17.7.5. Now the two inner main lobes of the first vee (lobes

a,b) and the two outer lobes of the second vee (lobes c, d) align with each other, thus

increasing the directivity of the antenna system.

The radiation vectors F3 and F4 of arms 3 and 4 may be obtained by noting that

these arms are the translations of arms 1 and 2, and therefore, the radiation vectors are

changed by the appropriate translational phase shift factors, as discussed in Sec. 20.2.
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Fig. 17.7.5 Traveling-wave rhombic antenna.

Arm-3 is the translation of arm-1 by the vector d2 = l ẑ2 and arm-4 is the translation

of arm-2 by the vector d1 = l ẑ1. Thus, the corresponding radiation vectors will be:

F3 = −ejk·d2F1 , F4 = −ejk·d1F2 (17.7.2)

where the negative signs arise because the currents in those arms have opposite signs

with their parallel counterparts. The phase shift factors are:

ejk·d2 = ejkl̂r·ẑ2 = ejkl cosθ2 , ejk·d1 = ejkl̂r·ẑ1 = ejkl cosθ1

It follows that the θ-components of F3 and F4 are:

F3θ = −ejkl cosθ2F1θ = I

jk
ejkl cosθ2F(θ1)

F4θ = −ejkl cosθ1F2θ = − I

jk
ejkl cosθ1F(θ2)

Thus, the resultant θ-component will be:

Fθ = F1θ + F2θ + F3θ + F4θ = I

jk

[

F(θ2)−F(θ1)+ejkl cosθ2F(θ1)−ejkl cosθ1F(θ2)
]

The corresponding normalized power pattern will be:

g(θ)= cn
∣
∣F(θ+α)−F(θ−α)+ejkl cos(θ+α)F(θ−α)−ejkl cos(θ−α)F(θ+α)

∣
∣2

Figure 17.7.6 shows the power gain g(θ) for the cases L = 5 and L = 10. The

optimum vee angle in both cases was found to be α = θ0, that is, α = 22.2o and

α = 15.7o. The function rhombic may be used to evaluate this expression.

17.8 Loop Antennas

Figure 17.8.1 shows a circular and a square loop antenna. The feed points are not

shown. The main oversimplifying assumption here is that the current is constant around

the loop. We will mainly consider the case when the dimension of the loop (e.g., its

circumference) is small relative to the wavelength.
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Fig. 17.7.6 Rhombic antenna gains in dB.

For such small loops, the radiation pattern turns out to be independent of the shape

of the loop and the radiation vector takes the simple form:

F = jm× k (17.8.1)

where m is the loop’s magnetic moment defined with respect to Fig. 17.8.1 as follows:

m = ẑ IS , (magnetic moment) (17.8.2)

where S is the area of the loop. Writing k = k r̂ and noting that ẑ× r̂ = φ̂φφ sinθ, we have:

F = jm× k = jmk sinθφ̂φφ ≡ Fφ(θ)φ̂φφ (17.8.3)

Fig. 17.8.1 Circular and square loop antennas.
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Thus, F is fully transverse to r̂, so that F⊥ = F. It follows from Eq. (15.10.4) that the

produced radiation fields will be:

E = φ̂φφEφ = −jkη e
−jkr

4πr
Fφ φ̂φφ = ηmk2 sinθ

e−jkr

4πr
φ̂φφ

H = θ̂θθHθ = jk e
−jkr

4πr
Fφ θ̂θθ = −mk2 sinθ

e−jkr

4πr
θ̂θθ

(17.8.4)

The radiation intensity of Eq. (16.1.4) is in this case:

U(θ,φ)= ηk2

32π2
|Fφ|2 = ηk4|m|2

32π2
sin2 θ (loop intensity) (17.8.5)

Thus, it has the same sin2 θ angular dependence, normalized power gain, and direc-

tivity as the Hertzian dipole. We may call such small loop antennas “Hertzian loops”,

referring to their infinitesimal size. The total radiated power can be computed as in

Sec. 17.2. We have:

Prad = UmaxΔΩ = ηk4|m|2
32π2

8π

3
= ηk4|m|2

12π

Replacing m by IS, we may obtain the loop’s radiation resistance from the definition:

Prad = 1

2
Rrad|I|2 = ηk4|IS|2

12π
⇒ Rrad = ηk4S2

6π

Comparing Eq. (17.8.4) to the Hertzian dipole, the loop’s electric field is in the φ-

direction, whereas the Hertzian dipole’s is in the θ-direction. The relative amplitudes

of the electric fields are:

E
dipole

θ

E
loop

φ

= j Il
mk

If we choose Il = mk, then the electric fields are off by a 90o-degree phase. If

such a Hertzian dipole and loop are placed at the origin, the produced net electric field

will be circularly polarized. We note finally that the loop may have several turns, thus

increasing its radiation resistance and radiated power. For a loop with n turns, we must

make the replacement m→ nm.

17.9 Circular Loops

Next, we consider the circular loop in more detail, and derive Eq. (17.8.3). Assuming an

infinitely thin wire loop of radius a, the assumed current density can be expressed in

cylindrical coordinates as in Eq. (17.1.3):

J(r′)= I φ̂φφ′δ(ρ′ − a)δ(z′)

The radiation vector will be:

F =
∫

V
J(r′)ejk·r

′
d3r′ =

∫

I φ̂φφ
′
ejk·r

′
δ(ρ′ − a)δ(z′)ρ′dρ′dφ′dz′ (17.9.1)
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Using Eq. (15.8.2), we have:

k · r′ = k(ẑ cosθ+ ρ̂ρρ sinθ)·(z′ẑ′ + ρ′ρ̂ρρ′)
= kz′ cosθ+ kρ′ sinθ(ρ̂ρρ′ · ρ̂ρρ)
= kz′ cosθ+ kρ′ sinθ cos(φ′ −φ)

where we set ρ̂ρρ′ · ρ̂ρρ = cos(φ′−φ), as seen in Fig. 17.8.1. The integration in Eq. (17.9.1)

confines r′ to the xy-plane and sets ρ′ = a and z′ = 0. Thus, we have in the integrand:

k · r′ = ka sinθ cos(φ′ −φ)

Then, the radiation vector (17.9.1) becomes:

F = Ia
∫ 2π

0
φ̂φφ
′
ejka sinθ cos(φ′−φ)dφ′ (17.9.2)

We note in Fig. 17.8.1 that the unit vector φ̂φφ
′
varies in direction withφ′. Therefore, it

proves convenient to express it in terms of the unit vectors φ̂φφ,ρ̂ρρ of the fixed observation

point P. Resolving φ̂φφ
′

into the directions φ̂φφ,ρ̂ρρ, we have:

φ̂φφ
′ = φ̂φφ cos(φ′ −φ)−ρ̂ρρ sin(φ′ −φ)

Changing integration variables from φ′ to ψ = φ′ −φ, we write Eq. (17.9.2) as:

F = Ia
∫ 2π

0
(φ̂φφ cosψ− ρ̂ρρ sinψ)ejka sinθ cosψdψ

The second term is odd in ψ and vanishes. Thus,

F = Iaφ̂φφ
∫ 2π

0
cosψejka sinθ cosψdψ (17.9.3)

Using the integral representation of the Bessel function J1(x),

J1(x)= 1

2πj

∫ 2π

0
cosψejx cosψdψ

we may replace the ψ-integral by 2πjJ1(ka sinθ) and write Eq. (17.9.3) as:

F = Fφφ̂φφ = 2πj IaJ1(ka sinθ)φ̂φφ (17.9.4)

This gives the radiation vector for any loop radius. If the loop is electrically small,

that is, ka≪ 1, we may use the first-order approximation J1(x)≃ x/2, to get

F = Fφφ̂φφ = 2πj Ia
1

2
ka sinθφ̂φφ = jIπa2k sinθφ̂φφ (17.9.5)

which agrees with Eq. (17.8.3), with m = IS = Iπa2.
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17.10 Square Loops

The square loop of Fig. 17.8.1 may be thought of as four separate linear antennas repre-

senting the four sides. Assuming that each side is a Hertzian dipole and that the sides

are at distances ±l/2 from the origin, we can write the current densities of the sides

1,2,3,4 as follows:

J1(r) = ŷ Il δ(x− l/2)δ(y)δ(z)
J2(r) = −x̂ Il δ(x)δ(y − l/2)δ(z)
J3(r) = −ŷ Il δ(x+ l/2)δ(y)δ(z)
J4(r) = x̂ Il δ(x)δ(y + l/2)δ(z)

The currents on the parallel sides 1 and 3 combine to give:

J1(r)+J3(r)= −Il2 ŷ

[
δ(x+ l/2)−δ(x− l/2)

l

]

δ(y)δ(z)

where we multiplied and divided by a factor of l. In the limit of small l, we may replace

the quantity in the bracket by the derivative δ′(x) of the delta function δ(x):

J1(r)+J3(r)= −Il2 ŷδ′(x)δ(y)δ(z)

Similarly, we find for sides 2 and 4:

J2(r)+J4(r)= Il2 x̂δ(x)δ′(y)δ(z)

Thus, the net current density of all sides is:

J(r)= Il2[x̂δ(x)δ′(y)−ŷδ′(x)δ(y)
]

δ(z) (17.10.1)

The corresponding radiation vector will be:

F = Il2
∫
[

x̂δ(x′)δ′(y′)−ŷδ′(x′)δ(y′)
]

δ(z′)ej(kxx
′+kyy′+kzz′)dx′dy′dz′

The delta-function integrations can be done easily yielding:

F = Il2(−jkyx̂+ jkxŷ)

Using Eq. (17.1.4), we obtain

F = jIl2k sinθ(−x̂ sinφ+ ŷ cosφ)= jIl2k sinθφ̂φφ (17.10.2)

which agrees with Eq. (17.8.3), with m = IS = Il2.
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17.11 Dipole and Quadrupole Radiation

The radiation vector F of a current/charge distribution can be evaluated approximately

by expanding the exponential ejk·r
′

to successive powers of k :

F =
∫

V
J(r′)ejk·r

′
d3r′ =

∫

V

[

1+ jk · r′ + 1

2!
(jk · r′)2+· · · ]J(r′)d3r′

=
∫

V
J(r′)d3r′

︸ ︷︷ ︸

elec. dipole

+
∫

V
j(k · r′)J(r′)d3r′

︸ ︷︷ ︸

magn. dipole & elec. quadrupole

+· · · (17.11.1)

The first term is the electric dipole radiation term and corresponds to the Hertzian

dipole antenna. The second term incorporates both the magnetic dipole (corresponding

to a Hertzian loop antenna) and the electric quadrupole terms.

Higher multipoles arise from the higher-order terms in the above expansion. A sys-

tematic discussion of all multipole radiation terms requires the use of spherical har-

monics.

Keeping only a few terms in the above expansion is a good approximation to F pro-

vided kr′ ≪ 1, or l ≪ λ, where l is the typical dimension of the current source. In

general, any radiating system will emit radiation of various multipole types.

The electric dipole and electric quadrupole moments of a charge distribution are de-

fined in terms of the following first- and second-order moments of the charge density:

p =
∫

V
r′ρ(r′)d3r′ (electric dipole moment) (17.11.2)

Dij =
∫

V
r′ir

′
jρ(r

′)d3r′ (electric quadrupole moment) (17.11.3)

The identity of Problem 15.2 is useful here in manipulating the successive expansion

terms of F. Applying the identity with the two choices: g(r′)= r′i and g(r′)= r′ir′j , we

obtain the relationships:

∫

V
Ji d

3r′ = jω
∫

V
r′iρ(r

′)d3r′ = jωpi
∫

V
(r′iJj + r′jJi)d3r′ = jω

∫

V
r′ir

′
jρ(r

′)d3r′ = jωDij
(17.11.4)

Thus, the lowest-order term in Eq. (17.11.1) is the electric dipole:

∫

V
J(r′)d3r′ = jωp = Fel

In the second term of Eq. (17.11.1), we may apply the vectorial identity:

(k · r′)J = 1

2
(r′ × J)×k+ 1

2

[

(k · r′)J+ (k · J)r′]

and in integrated form:

∫

V
(k · r′)Jd3r′ = 1

2

∫

V
(r′ × J)×kd3r′ + 1

2

∫

V

[

(k · r′)J+ (k · J)r′]d3r′ (17.11.5)
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The magnetic moment of a current distribution is defined in general by

m = 1

2

∫

V
r′ × J(r′)d3r′ (magnetic moment) (17.11.6)

Therefore, the first term in Eq. (17.11.5) may be written as m × k. With the help of

the second identity of Eq. (17.11.4), the last term of (17.11.5) may be written in terms of

the quadrupole matrix D acting on the vector k. We have then for the second term in

the expansion (17.11.1):

∫

V
j(k · r′)Jd3r′ = jm× k− 1

2
ωDk = Fmag + Fquad (17.11.7)

Thus, the three lowest-order terms of F are:

F = Fel + Fmag + Fquad = jωp+ jm× k− 1

2
ωDk (17.11.8)

We briefly discuss each term. For a Hertzian dipole antenna with J(r′)= ẑ Il δ3(r′),
only the first term of (17.11.8) is non-zero and is the same as that of Sec. 17.2:

Fel =
∫

V
J(r′)d3r′ = ẑ Il = jωp

The relationship Il = jωp may be understood by thinking of the Hertzian dipole as

two opposite time-varying charges ±q separated by a distance l (along the z-direction),

so that p = ql. It follows that jωp = ṗ = q̇l = Il.
The result p = qlmay also be applied to the case of an accelerated charge. Now q is

constant but l varies with time. We have ṗ = ql̇ = qv and p̈ = qv̇ = qa, where a is the

acceleration a = v̇. For harmonic time dependence, we have (jω)2p = qa. The total

radiated power from a dipole was obtained in Eq. (17.2.2). Setting k2|Il|2 = k2|qv|2 =
q2ω2|v|2/c2 = q2|a|2/c2, we can rewrite Eq. (17.2.2) in the form:

P = ηq2|a|2
12πc2

= ηq2a2
rms

6πc2

where arms = |a|/√2 is the rms value of the acceleration. This is Larmor’s classical

expression for the radiated power from a nonrelativistic accelerated charge.

For a Hertzian loop, only the magnetic moment term is present in F. We may verify

the result that m = ẑ IS using the definition (17.11.6). Indeed, for a circular loop:

m = 1

2

∫

r′ × [

I φ̂φφ
′
δ(ρ′ − a)δ(z′)]ρ′dρ′dφ′dz′

The integrations over z′ and ρ′ force z′ = 0 and ρ′ = a, and therefore, r′ = aρ̂ρρ′.
Noting that ρ̂ρρ′×φ̂φφ′ = ẑ and that theφ′-integration contributes a factor of 2π, we obtain:

m = 1

2
aρ̂ρρ′ × φ̂φφ′ Ia2π = ẑ I(πa2)

Similarly, inserting Eq. (17.10.1) into (17.11.6), we find for the square loop:

m = 1

2

∫

(x x̂+ y ŷ+ z ẑ)×[Il2(x̂δ(x)δ′(y)−ŷδ′(x)δ(y)
)

δ(z)
]

dxdydz = ẑ Il2
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For the electric quadrupole term, the matrixD is sometimes replaced by its traceless

version defined by

Qij = 3Dij − δijtr(D)=
∫

V

(

3r′ir
′
j − δij r′ · r′

)

ρ(r′)d3r′ ⇒ Q = 3D− I tr(D)

so that tr(Q)= 0. In this case, the vector Dk may be expressed as

Dk = 1

3
Qk+ 1

3
tr(D)k

The second term may be ignored because it does not contribute to the radiation

fields, which depend only on the part of F transverse to k. Thus, without loss of gener-

ality we may also write:

F = jωp+ jm× k− 1

6
ωQk

The electric and magnetic dipoles have angular gain patterns that are identical to

the Hertzian dipole and Hertzian loop antennas, that is, sin2 θ. The quadrupole term,

on the other hand, can have a complicated angular pattern as can be seen by expressing

the vector Qk = kQr̂ explicitly in terms of the angles θ,φ:

Qr̂ =

⎡

⎢
⎣

Qxx Qxy Qxz
Qyx Qyy Qyz
Qzx Qzy Qzz

⎤

⎥
⎦

⎡

⎢
⎣

sinθ cosφ

sinθ sinφ

cosθ

⎤

⎥
⎦

17.12 Problems

17.1 Computer Experiment—Dipoles. Reproduce the results and graphs of Fig. 17.4.2, and calcu-

late the corresponding directivities in dB.

17.2 Derive Eq. (17.3.7) for the input resistance of a dipole antenna.

17.3 Derive Eq. (17.6.6) for the tilt angle of a traveling wave antenna by reducing the problem to

that of finding the maximum of the function sin2(πx)/x in the interval [0,1].

17.4 Computer Experiment–Traveling Wave Antennas. Reproduce the results and graphs of Fig. 17.6.2.
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Radiation from Apertures

18.1 Field Equivalence Principle

The radiation fields from aperture antennas, such as slots, open-ended waveguides,

horns, reflector and lens antennas, are determined from the knowledge of the fields

over the aperture of the antenna.

The aperture fields become the sources of the radiated fields at large distances. This

is a variation of the Huygens-Fresnel principle, which states that the points on each

wavefront become the sources of secondary spherical waves propagating outwards and

whose superposition generates the next wavefront.

Let Ea,Ha be the tangential fields over an aperture A, as shown in Fig. 18.1.1. These

fields are assumed to be known and are produced by the sources to the left of the screen.

The problem is to determine the radiated fields E(r),H(r) at some far observation point.

The radiated fields can be computed with the help of the field equivalence principle

[1287–1293,1344], which states that the aperture fields may be replaced by equivalent

electric and magnetic surface currents, whose radiated fields can then be calculated using

the techniques of Sec. 15.10. The equivalent surface currents are:

J s = n̂×Ha

Jms = −n̂× Ea

(electric surface current)

(magnetic surface current)
(18.1.1)

where n̂ is a unit vector normal to the surface and on the side of the radiated fields.

Thus, it becomes necessary to consider Maxwell’s equations in the presence of mag-

netic currents and derive the radiation fields from such currents.

The screen in Fig. 18.1.1 is an arbitrary infinite surface over which the tangential

fields are assumed to be zero. This assumption is not necessarily consistent with the

radiated field solutions, that is, Eqs. (18.4.9). A consistent calculation of the fields to

the right of the aperture plane requires knowledge of the fields over the entire aperture

plane (screen plus aperture.)

However, for large apertures (with typical dimension much greater than a wave-

length), the approximation of using the fields Ea,Ha only over the aperture to calculate

the radiation patterns is fairly adequate, especially in predicting the main-lobe behavior

of the patterns.
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Fig. 18.1.1 Radiated fields from an aperture.

The screen can also be a perfectly conducting surface, such as a ground plane, on

which the aperture opening has been cut. In reflector antennas, the aperture itself is

not an opening, but rather a reflecting surface. Fig. 18.1.2 depicts some examples of

screens and apertures: (a) an open-ended waveguide over an infinite ground plane, (b)

an open-ended waveguide radiating into free space, and (c) a reflector antenna.

Fig. 18.1.2 Examples of aperture planes.

There are two alternative forms of the field equivalence principle, which may be used

when only one of the aperture fields Ea or Ha is available. They are:

J s = 0

Jms = −2(n̂× Ea)
(perfect electric conductor) (18.1.2)

J s = 2(n̂×Ha)

Jms = 0
(perfect magnetic conductor) (18.1.3)

They are appropriate when the screen is a perfect electric conductor (PEC) on which

Ea = 0, or when it is a perfect magnetic conductor (PMC) on which Ha = 0. On the

aperture, both Ea and Ha are non-zero.
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Using image theory, the perfect electric (magnetic) conducting screen can be elimi-

nated and replaced by an image magnetic (electric) surface current, doubling its value

over the aperture. The image field causes the total tangential electric (magnetic) field to

vanish over the screen.

If the tangential fields Ea,Ha were known over the entire aperture plane (screen plus

aperture), the three versions of the equivalence principle would generate the same radi-

ated fields. But because we consider Ea,Ha only over the aperture, the three versions

give slightly different results.

In the case of a perfectly conducting screen, the calculated radiation fields (18.4.10)

using the equivalent currents (18.1.2) are consistent with the boundary conditions on

the screen.

We provide a justification of the field equivalence principle (18.1.1) in Sec. 18.10 using

vector diffraqction theory and the Stratton-Chu and Kottler formulas. The modified

forms (18.1.2) and (18.1.3) are justified in Sec. 18.17 where we derive them in two ways:

one, using the plane-wave-spectrum representation, and two, using the Franz formulas

in conjuction with the extinction theorem discussed in Sec. 18.11, and discuss also their

relationship to Rayleigh-Sommerfeld diffraction theory of Sec. 18.16.

18.2 Magnetic Currents and Duality

Next, we consider the solution of Maxwell’s equations driven by the ordinary electric

charge and current densities ρ, J, and in addition, by the magnetic charge and current

densities ρm, Jm.

Although ρm, Jm are fictitious, the solution of this problem will allow us to identify

the equivalent magnetic currents to be used in aperture problems, and thus, establish

the field equivalence principle. The generalized form of Maxwell’s equations is:

∇∇∇×H = J+ jωǫE

∇∇∇ · E = 1

ǫ
ρ

∇∇∇× E = −Jm − jωμH

∇∇∇ ·H = 1

μ
ρm

(18.2.1)

There is now complete symmetry, or duality, between the electric and the magnetic

quantities. In fact, it can be verified easily that the following duality transformation

leaves the set of four equations invariant :

E −→ H

H −→ −E

ǫ −→ μ

μ −→ ǫ

J −→ Jm
ρ −→ ρm

Jm −→ −J

ρm −→ −ρ

A −→ Am

ϕ −→ ϕm

Am −→ −A

ϕm −→ −ϕ
(duality) (18.2.2)

where ϕ,A and ϕm,Am are the corresponding scalar and vector potentials introduced

below. These transformations can be recognized as a special case (for α = π/2) of the

following duality rotations, which also leave Maxwell’s equations invariant:
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[

E ′ ηJ ′ ηρ′

ηH ′ J ′m ρ′m

]

=
[

cosα sinα

− sinα cosα

][

E ηJ ηρ

ηH Jm ρm

]

(18.2.3)

Under the duality transformations (18.2.2), the first two of Eqs. (18.2.1) transform

into the last two, and conversely, the last two transform into the first two.

A useful consequence of duality is that if one has obtained expressions for the elec-

tric field E, then by applying a duality transformation one can generate expressions for

the magnetic field H. We will see examples of this property shortly.

The solution of Eq. (18.2.1) is obtained in terms of the usual scalar and vector po-

tentials ϕ,A, as well as two new potentials ϕm,Am of the magnetic type:

E = −∇∇∇ϕ− jωA− 1

ǫ
∇∇∇× Am

H = −∇∇∇ϕm − jωAm + 1

μ
∇∇∇× A

(18.2.4)

The expression for H can be derived from that of E by a duality transformation of

the form (18.2.2). The scalar and vector potentials satisfy the Lorenz conditions and

Helmholtz wave equations:

∇∇∇ · A+ jωǫμϕ = 0

∇2ϕ+ k2ϕ = −ρ
ǫ

∇2A+ k2A = −μ J

and

∇∇∇ · Am + jωǫμϕm = 0

∇2ϕm + k2ϕm = −ρm
μ

∇2Am + k2Am = −ǫ Jm

(18.2.5)

The solutions of the Helmholtz equations are given in terms of G(r− r′)= e−jk|r−r′|

4π|r− r′| :

ϕ(r) =
∫

V

1

ǫ
ρ(r′)G(r− r′)dV′,

A(r) =
∫

V
μ J(r′)G(r− r′)dV′,

ϕm(r) =
∫

V

1

μ
ρm(r

′)G(r− r′)dV′

Am(r) =
∫

V
ǫ Jm(r

′)G(r− r′)dV′
(18.2.6)

where V is the volume over which the charge and current densities are nonzero. The

observation point r is taken to be outside this volume. Using the Lorenz conditions, the

scalar potentials may be eliminated in favor of the vector potentials, resulting in the

alternative expressions for Eq. (18.2.4):

E = 1

jωμǫ

[∇∇∇(∇∇∇ · A)+k2A
]− 1

ǫ
∇∇∇× Am

H = 1

jωμǫ

[∇∇∇(∇∇∇ · Am)+k2Am

]+ 1

μ
∇∇∇× A

(18.2.7)

These may also be written in the form of Eq. (15.3.9):

E = 1

jωμǫ

[∇∇∇× (∇∇∇× A)−μ J]−1

ǫ
∇∇∇× Am

H = 1

jωμǫ

[∇∇∇× (∇∇∇× Am)−ǫ Jm]+
1

μ
∇∇∇× A

(18.2.8)
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Replacing A,Am in terms of Eq. (18.2.6), we may express the solutions (18.2.7) di-

rectly in terms of the current densities:

E = 1

jωǫ

∫

V

[

k2JG+ (J ·∇∇∇′)∇∇∇′G− jωǫ Jm ×∇∇∇′G
]

dV′

H = 1

jωμ

∫

V

[

k2JmG+ (Jm ·∇∇∇′)∇∇∇′G+ jωμ J×∇∇∇′G]dV′
(18.2.9)

Alternatively, if we also use the charge densities, we obtain from (18.2.4):

E =
∫

V

[−jωμ JG+ ρ
ǫ
∇∇∇′G− Jm ×∇∇∇′G

]

dV′

H =
∫

V

[−jωǫ JmG+
ρm
μ
∇∇∇′G+ J×∇∇∇′G]dV′

(18.2.10)

18.3 Radiation Fields from Magnetic Currents

The radiation fields of the solutions (18.2.7) can be obtained by making the far-field

approximation, which consists of the replacements:

e−jk|r−r′|

4π|r− r′| ≃
e−jkr

4πr
ejk·r

′
and ∇∇∇ ≃ −jk (18.3.1)

where k = kr̂. Then, the vector potentials of Eq. (18.2.6) take the simplified form:

A(r)= μ e
−jkr

4πr
F(θ,φ) , Am(r)= ǫ e

−jkr

4πr
Fm(θ,φ) (18.3.2)

where the radiation vectors are the Fourier transforms of the current densities:

F(θ,φ) =
∫

V
J(r′)ejk·r

′
dV′

Fm(θ,φ) =
∫

V
Jm(r

′)ejk·r
′
dV′

(radiation vectors) (18.3.3)

Setting J = Jm = 0 in Eq. (18.2.8) because we are evaluating the fields far from the

current sources, and using the approximation ∇∇∇ = −jk = −jkr̂, and the relationship

k/ǫ =ωη, we find the radiated E and H fields:

E = −jω[

r̂× (A× r̂)−η r̂× Am

] = −jk e
−jkr

4πr
r̂× [

ηF× r̂− Fm
]

H = − jω
η

[

η r̂× (Am × r̂)+r̂× A
] = − jk

η

e−jkr

4πr
r̂× [

ηF+ Fm × r̂
]

(18.3.4)

These generalize Eq. (15.10.2) to magnetic currents. As in Eq. (15.10.3), we have:

H = 1

η
r̂× E (18.3.5)
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Noting that r̂× (F× r̂)= θ̂θθFθ + φ̂φφFφ and r̂× F = φ̂φφFθ − θ̂θθFφ, and similarly for Fm,

we find for the polar components of Eq. (18.3.4):

E = −jk e
−jkr

4πr

[

θ̂θθ(ηFθ + Fmφ)+φ̂φφ(ηFφ − Fmθ)
]

H = − jk
η

e−jkr

4πr

[−θ̂θθ(ηFφ − Fmθ)+φ̂φφ(ηFθ + Fmφ)
]

(18.3.6)

The Poynting vector is given by the generalization of Eq. (16.1.1):

PPP = 1

2
Re(E×H∗)= r̂

k2

32π2ηr2

[|ηFθ + Fmφ|2 + |ηFφ − Fmθ|2
] = r̂Pr (18.3.7)

and the radiation intensity:

U(θ,φ)= dP

dΩ
= r2Pr = k2

32π2η

[|ηFθ + Fmφ|2 + |ηFφ − Fmθ|2
]

(18.3.8)

18.4 Radiation Fields from Apertures

For an aperture antenna with effective surface currents given by Eq. (18.1.1), the volume

integrations in Eq. (18.2.9) reduce to surface integrations over the aperture A:

E = 1

jωǫ

∫

A

[

(J s ·∇∇∇′)∇∇∇′G+ k2J sG− jωǫ Jms ×∇∇∇′G
]

dS′

H = 1

jωμ

∫

A

[

(Jms ·∇∇∇′)∇∇∇′G+ k2JmsG+ jωμ J s ×∇∇∇′G
]

dS′
(18.4.1)

and, explicitly in terms of the aperture fields shown in Fig. 18.1.1:

E = 1

jωǫ

∫

A

[

(n̂×Ha)·∇∇∇′(∇∇∇′G)+k2(n̂×Ha)G+ jωǫ(n̂× Ea)×∇∇∇′G
]

dS′

H = 1

jωμ

∫

A

[−(n̂× Ea)·∇∇∇′(∇∇∇′G)−k2(n̂× Ea)G+ jωμ(n̂×Ha)×∇∇∇′G
]

dS′

(18.4.2)

These are known as Kottler’s formulas [1291–1296,1286,1297–1301]. We derive them

in Sec. 18.12. The equation for H can also be obtained from that of E by the application

of a duality transformation, that is, Ea → Ha, Ha → −Ea and ǫ→ μ, μ→ ǫ.

In the far-field limit, the radiation fields are still given by Eq. (18.3.6), but now the

radiation vectors are given by the two-dimensional Fourier transform-like integrals over

the aperture:

F(θ,φ) =
∫

A
J s(r

′)ejk·r
′
dS′ =

∫

A
n̂×Ha(r

′)ejk·r
′
dS′

Fm(θ,φ) =
∫

A
Jms(r

′)ejk·r
′
dS′ = −

∫

A
n̂× Ea(r

′)ejk·r
′
dS′

(18.4.3)



18.4. Radiation Fields from Apertures 805

Fig. 18.4.1 Radiation fields from an aperture.

Fig. 18.4.1 shows the polar angle conventions, where we took the origin to be some-

where in the middle of the aperture A.

The aperture surface A and the screen in Fig. 18.1.1 can be arbitrarily curved. How-

ever, a common case is to assume that they are both flat. Then, Eqs. (18.4.3) become

ordinary 2-d Fourier transform integrals. Taking the aperture plane to be the xy-plane

as in Fig. 18.1.1, the aperture normal becomes n̂ = ẑ, and thus, it can be taken out of

the integrands. Setting dS′ = dx′dy′, we rewrite Eq. (18.4.3) in the form:

F(θ,φ) =
∫

A
J s(r

′)ejk·r
′
dx′dy′ = ẑ×

∫

A
Ha(r

′)ejk·r
′
dx′dy′

Fm(θ,φ) =
∫

A
Jms(r

′)ejk·r
′
dx′dy′ = −ẑ×

∫

A
Ea(r

′)ejk·r
′
dx′dy′

(18.4.4)

where ejk·r
′ = ejkxx

′+jkyy′ and kx = k cosφ sinθ, ky = k sinφ sinθ. It proves conve-

nient then to introduce the two-dimensional Fourier transforms of the aperture fields:

f(θ,φ)=
∫

A
Ea(r

′)ejk·r
′
dx′dy′ =

∫

A
Ea(x

′, y′)ejkxx
′+jkyy′ dx′dy′

g(θ,φ)=
∫

A
Ha(r

′)ejk·r
′
dx′dy′ =

∫

A
Ha(x

′, y′)ejkxx
′+jkyy′ dx′dy′

(18.4.5)

Then, the radiation vectors become:

F(θ,φ) = ẑ× g(θ,φ)

Fm(θ,φ) = −ẑ× f(θ,φ)
(18.4.6)

Because Ea,Ha are tangential to the aperture plane, they can be resolved into their

cartesian components, for example, Ea = x̂Eax + ŷEay. Then, the quantities f,g can be

resolved in the same way, for example, f = x̂ fx + ŷ fy. Thus, we have:
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F = ẑ× g = ẑ× (x̂gx + ŷgy)= ŷgx − x̂gy

Fm = −ẑ× f = −ẑ× (x̂ fx + ŷ fy)= x̂ fy − ŷ fx
(18.4.7)

The polar components of the radiation vectors are determined as follows:

Fθ = θ̂θθ · F = θ̂θθ · (ŷgx − x̂gy)= gx sinφ cosθ− gy cosφ cosθ

where we read off the dot products (θ̂θθ · x̂) and (θ̂θθ · ŷ) from Eq. (15.8.3). The remaining

polar components are found similarly, and we summarize them below:

Fθ = − cosθ(gy cosφ− gx sinφ)

Fφ = gx cosφ+ gy sinφ

Fmθ = cosθ(fy cosφ− fx sinφ)

Fmφ = −(fx cosφ+ fy sinφ)

(18.4.8)

It follows from Eq. (18.3.6) that the radiated E-field will be:

Eθ = jk e
−jkr

4πr

[

(fx cosφ+ fy sinφ)+η cosθ(gy cosφ− gx sinφ)
]

Eφ = jk e
−jkr

4πr

[

cosθ(fy cosφ− fx sinφ)−η(gx cosφ+ gy sinφ)
]

(18.4.9)

The radiation fields resulting from the alternative forms of the field equivalence

principle, Eqs. (18.1.2) and (18.1.3), are obtained from Eq. (18.4.9) by removing the g- or

the f -terms and doubling the remaining term. We have for the PEC case:

Eθ = 2jk
e−jkr

4πr

[

fx cosφ+ fy sinφ
]

Eφ = 2jk
e−jkr

4πr

[

cosθ(fy cosφ− fx sinφ)
]

(18.4.10)

and for the PMC case:

Eθ = 2jk
e−jkr

4πr

[

η cosθ(gy cosφ− gx sinφ)
]

Eφ = 2jk
e−jkr

4πr

[−η(gx cosφ+ gy sinφ)
]

(18.4.11)

In all three cases, the radiated magnetic fields are obtained from:

Hθ = − 1

η
Eφ , Hφ = 1

η
Eθ (18.4.12)

We note that Eq. (18.4.9) is the average of Eqs. (18.4.10) and (18.4.11). Also, Eq. (18.4.11)

is the dual of Eq. (18.4.10). Indeed, using Eq. (18.4.12), we obtain the following H-

components for Eq. (18.4.11), which can be derived from Eq. (18.4.10) by the duality

transformation Ea → Ha or f → g , that is,
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Hθ = 2jk
e−jkr

4πr

[

gx cosφ+ gy sinφ
]

Hφ = 2jk
e−jkr

4πr

[

cosθ(gy cosφ− gx sinφ)
]

(18.4.13)

At θ = 90o, the components Eφ, Hφ become tangential to the aperture screen. We

note that because of the cosθ factors, Eφ (resp. Hφ) will vanish in the PEC (resp. PMC)

case, in accordance with the boundary conditions.

18.5 Huygens Source

The aperture fields Ea,Ha are referred to as Huygens source if at all points on the

aperture they are related by the uniform plane-wave relationship:

Ha = 1

η
n̂× Ea (Huygens source) (18.5.1)

where η is the characteristic impedance of vacuum.

For example, this is the case if a uniform plane wave is incident normally on the

aperture plane from the left, as shown in Fig. 18.5.1. The aperture fields are assumed to

be equal to the incident fields, Ea = Einc and Ha = Hinc, and the incident fields satisfy

Hinc = ẑ× Einc/η.

Fig. 18.5.1 Uniform plane wave incident on an aperture.

The Huygens source condition is not always satisfied. For example, if the uniform

plane wave is incident obliquely on the aperture, then η must be replaced by the trans-

verse impedance ηT, which depends on the angle of incidence and the polarization of

the incident wave as discussed in Sec. 7.2.

Similarly, if the aperture is the open end of a waveguide, then ηmust be replaced by

the waveguide’s transverse impedance, such as ηTE or ηTM, depending on the assumed

waveguide mode. On the other hand, if the waveguide ends are flared out into a horn

with a large aperture, then Eq. (18.5.1) is approximately valid.

808 18. Radiation from Apertures

The Huygens source condition implies the same relationship for the Fourier trans-

forms of the aperture fields, that is, (with n̂ = ẑ)

g = 1

η
n̂× f ⇒ gx = − 1

η
fy , gy = 1

η
fx (18.5.2)

Inserting these into Eq. (18.4.9) we may express the radiated electric field in terms

of f only. We find:

Eθ = jk e
−jkr

2πr

1+ cosθ

2

[

fx cosφ+ fy sinφ
]

Eφ = jk e
−jkr

2πr

1+ cosθ

2

[

fy cosφ− fx sinφ
]

(18.5.3)

The factor (1+cosθ)/2 is known as an obliquity factor. The PEC case of Eq. (18.4.10)

remains unchanged for a Huygens source, but the PMC case becomes:

Eθ = jk e
−jkr

2πr
cosθ

[

fx cosφ+ fy sinφ
]

Eφ = jk e
−jkr

2πr

[

fy cosφ− fx sinφ
]

(18.5.4)

We may summarize all three cases by the single formula:

Eθ = jk e
−jkr

2πr
cθ
[

fx cosφ+ fy sinφ
]

Eφ = jk e
−jkr

2πr
cφ

[

fy cosφ− fx sinφ
]

(fields from Huygens source) (18.5.5)

where the obliquity factors are defined in the three cases:

[

cθ
cφ

]

= 1

2

[

1+ cosθ

1+ cosθ

]

,

[

1

cosθ

]

,

[

cosθ

1

]

(obliquity factors) (18.5.6)

We note that the first is the average of the last two. The obliquity factors are equal to

unity in the forward direction θ = 0o and vary little for near-forward angles. Therefore,

the radiation patterns predicted by the three methods are very similar in their mainlobe

behavior.

In the case of a modified Huygens source that replaces η by ηT, Eqs. (18.5.5) retain

their form. The aperture fields and their Fourier transforms are now assumed to be

related by:

Ha = 1

ηT
ẑ× Ea ⇒ g = 1

ηT
ẑ× f (18.5.7)

Inserting these into Eq. (18.4.9), we obtain the modified obliquity factors :

cθ = 1

2
[1+K cosθ] , cφ = 1

2
[K + cosθ] , K = η

ηT
(18.5.8)
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18.6 Directivity and Effective Area of Apertures

For any aperture, given the radiation fields Eθ, Eφ of Eqs. (18.4.9)–(18.4.11), the corre-

sponding radiation intensity is:

U(θ,φ)= dP

dΩ
= r2Pr = r2 1

2η

[|Eθ|2 + |Eφ|2
] = r2 1

2η
|E(θ,φ)|2 (18.6.1)

Because the aperture radiates only into the right half-space 0 ≤ θ ≤ π/2, the total

radiated power and the effective isotropic radiation intensity will be:

Prad =
∫ π/2

0

∫ 2π

0
U(θ,φ)dΩ , UI = Prad

4π
(18.6.2)

The directive gain is computed by D(θ,φ)= U(θ,φ)/UI, and the normalized gain

by g(θ,φ)= U(θ,φ)/Umax. For a typical aperture, the maximum intensity Umax is

towards the forward direction θ = 0o. In the case of a Huygens source, we have:

U(θ,φ)= k2

8π2η

[

c2
θ|fx cosφ+ fy sinφ|2 + c2

φ|fy cosφ− fx sinφ|2] (18.6.3)

Assuming that the maximum is towards θ = 0o, then cθ = cφ = 1, and we find for

the maximum intensity:

Umax = k2

8π2η

[|fx cosφ+ fy sinφ|2 + |fy cosφ− fx sinφ|2]θ=0

= k2

8π2η

[|fx|2 + |fy|2
]

θ=0 =
k2

8π2η
|f |2max

where |f|2max =
[|fx|2 + |fy|2

]

θ=0. Setting k = 2π/λ, we have:

Umax = 1

2λ2η
|f |2max (18.6.4)

It follows that the normalized gain will be:

g(θ,φ)=
c2
θ|fx cosφ+ fy sinφ|2 + c2

φ|fy cosφ− fx sinφ|2
|f |2max

(18.6.5)

In the case of Eq. (18.4.9) with cθ = cφ = (1+ cosθ)/2, this simplifies further into:

g(θ,φ)= c2
θ

|fx|2 + |fy|2
|f |2max

=
(

1+ cosθ

2

)2 |f(θ,φ)|2
|f |2max

(18.6.6)

The square root of the gain is the (normalized) field strength:

|E(θ,φ)|
|E |max

=
√

g(θ,φ) =
(

1+ cosθ

2

) |f(θ,φ)|
|f |max

(18.6.7)

The power computed by Eq. (18.6.2) is the total power that is radiated outwards from

a half-sphere of large radius r. An alternative way to compute Prad is to invoke energy
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conservation and compute the total power that flows into the right half-space through

the aperture. Assuming a Huygens source, we have:

Prad =
∫

A
Pz dS′ = 1

2

∫

A
ẑ · Re

[

Ea ×H∗a
]

dS′ = 1

2η

∫

A
|Ea(r′)|2dS′ (18.6.8)

Because θ = 0 corresponds to kx = ky = 0, it follows from the Fourier transform

definition (18.4.5) that:

|f|2max =
∣
∣
∣
∣

∫

A
Ea(r

′)ejk·r
′
dS′

∣
∣
∣
∣

2

kx=ky=0

=
∣
∣
∣
∣

∫

A
Ea(r

′)dS′
∣
∣
∣
∣

2

Therefore, the maximum intensity is given by:

Umax = 1

2λ2η
|f |2max =

1

2λ2η

∣
∣
∣
∣

∫

A
Ea(r

′)dS′
∣
∣
∣
∣

2

(18.6.9)

Dividing (18.6.9) by (18.6.8), we find the directivity:

Dmax = 4π
Umax

Prad

= 4π

λ2

∣
∣
∣
∣

∫

A
Ea(r

′)dS′
∣
∣
∣
∣

2

∫

A
|Ea(r′)|2dS′

= 4πAeff

λ2
(directivity) (18.6.10)

It follows that the maximum effective area of the aperture is:

Aeff =

∣
∣
∣
∣

∫

A
Ea(r

′)dS′
∣
∣
∣
∣

2

∫

A
|Ea(r′)|2dS′

≤ A (effective area) (18.6.11)

and the aperture efficiency :

ea = Aeff

A
=

∣
∣
∣
∣

∫

A
Ea(r

′)dS′
∣
∣
∣
∣

2

A

∫

A
|Ea(r′)|2dS′

≤ 1 (aperture efficiency) (18.6.12)

The inequalities in Eqs. (18.6.11) and (18.6.12) can be thought of as special cases of

the Cauchy-Schwarz inequality. It follows that equality is reached whenever Ea(r
′) is

uniform over the aperture, that is, independent of r′.
Thus, uniform apertures achieve the highest directivity and have effective areas equal

to their geometrical areas.

Because the integrand in the numerator of ea depends both on the magnitude and the

phase of Ea, it proves convenient to separate out these effects by defining the aperture

taper efficiency or loss, eatl, and the phase error efficiency or loss, epel, as follows:

eatl =

∣
∣
∣
∣

∫

A
|Ea(r′)|dS′

∣
∣
∣
∣

2

A

∫

A
|Ea(r′)|2dS′

, epel =

∣
∣
∣
∣

∫

A
Ea(r

′)dS′
∣
∣
∣
∣

2

∣
∣
∣
∣

∫

A
|Ea(r′)|dS′

∣
∣
∣
∣

2 (18.6.13)

so that ea becomes the product:

ea = eatl epel (18.6.14)
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18.7 Uniform Apertures

In uniform apertures, the fields Ea,Ha are assumed to be constant over the aperture

area. Fig. 18.7.1 shows the examples of a rectangular and a circular aperture. For con-

venience, we will assume a Huygens source.

Fig. 18.7.1 Uniform rectangular and circular apertures.

The field Ea can have an arbitrary direction, with constant x- and y-components,

Ea = x̂E0x + ŷE0y. Because Ea is constant, its Fourier transform f(θ,φ) becomes:

f(θ,φ)=
∫

A
Ea(r

′)ejk·r
′
dS′ = Ea

∫

A
ejk·r

′
dS′ ≡ Af(θ,φ)Ea (18.7.1)

where we introduced the normalized scalar quantity:

f(θ,φ)= 1

A

∫

A
ejk·r

′
dS′ (uniform-aperture pattern) (18.7.2)

The quantity f(θ,φ) depends on the assumed geometry of the aperture and it, alone,

determines the radiation pattern. Noting that the quantity |Ea| cancels out from the

ratio in the gain (18.6.7) and that f(0,φ)= (1/A)
∫

A dS
′ = 1, we find for the normalized

gain and field strengths:

|E(θ,φ)|
|E |max

=
√

g(θ,φ) =
(

1+ cosθ

2

)

|f(θ,φ)| (18.7.3)

18.8 Rectangular Apertures

For a rectangular aperture of sides a,b, the area integral (18.7.2) is separable in the x-

and y-directions:

f(θ,φ)= 1

ab

∫ a/2

−a/2

∫ b/2

−b/2
ejkxx

′+jkyy′ dx′dy′ = 1

a

∫ a/2

−a/2
ejkxx

′
dx′ · 1

b

∫ b/2

−b/2
ejkyy

′
dy′

where we placed the origin of the r′ integration in the middle of the aperture. The above

integrals result in the sinc-function patterns:
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f(θ,φ)= sin(kxa/2)

kxa/2

sin(kyb/2)

kyb/2
= sin(πvx)

πvx

sin(πvy)

πvy
(18.8.1)

where we defined the quantities vx, vy :

vx = 1

2π
kxa = 1

2π
ka sinθ cosφ = a

λ
sinθ cosφ

vy = 1

2π
kyb = 1

2π
kb sinθ sinφ = b

λ
sinθ sinφ

(18.8.2)

The pattern simplifies along the two principal planes, the xz- and yz-planes, corre-

sponding to φ = 0o and φ = 90o. We have:

f(θ,0o) = sin(πvx)

πvx
= sin

(

(πa/λ)sinθ
)

(πa/λ)sinθ

f(θ,90o) = sin(πvy)

πvy
= sin

(

(πb/λ)sinθ
)

(πb/λ)sinθ

(18.8.3)

Fig. 18.8.1 shows the three-dimensional pattern of Eq. (18.7.3) as a function of the

independent variables vx, vy, for aperture dimensions a = 8λ and b = 4λ. The x, y

separability of the pattern is evident. The essential MATLAB code for generating this

figure was (note MATLAB’s definition of sinc(x)= sin(πx)/(πx)):

−8
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Fig. 18.8.1 Radiation pattern of rectangular aperture (a = 8λ, b = 4λ).

a = 8; b = 4;

[theta,phi] = meshgrid(0:1:90, 0:9:360);

theta = theta*pi/180; phi = phi*pi/180;

vx = a*sin(theta).*cos(phi);

vy = b*sin(theta).*sin(phi);

E = abs((1 + cos(theta))/2 .* sinc(vx) .* sinc(vy));
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surfl(vx,vy,E);

shading interp; colormap(gray(16));

As the polar angles vary over 0 ≤ θ ≤ 90o and 0 ≤ φ ≤ 360o, the quantities vx and

vy vary over the limits −a/λ ≤ vx ≤ a/λ and −b/λ ≤ vy ≤ b/λ. In fact, the physically

realizable values of vx, vy are those that lie in the ellipse in the vxvy-plane:

v2
x

a2
+ v

2
y

b2
≤ 1

λ2
(visible region) (18.8.4)

The realizable values of vx, vy are referred to as the visible region. The graph in

Fig. 18.8.1 restricts the values of vx, vy within that region.

The radiation pattern consists of a narrow mainlobe directed towards the forward

direction θ = 0o and several sidelobes.

We note the three characteristic properties of the sinc-function patterns: (a) the 3-

dB width in v-space is Δvx = 0.886 (the 3-dB wavenumber is vx = 0.443); (b) the first

sidelobe is down by about 13.26 dB from the mainlobe and occurs at vx = 1.4303; and

(c) the first null occurs at vx = 1. See Sec. 20.7 for the proof of these results.

The 3-dB width in angle space can be obtained by linearizing the relationship vx =
(a/λ)sinθ about θ = 0o, that is, Δvx = (a/λ)Δθ cosθ

∣
∣
θ=0 = aΔθ/λ. Thus, Δθ =

λΔvx/a. This ignores also the effect of the obliquity factor. It follows that the 3-dB

widths in the two principal planes are (in radians and in degrees):

Δθx = 0.886
λ

a
= 50.76o λ

a
, Δθy = 0.886

λ

b
= 50.76o λ

b
(18.8.5)

The 3-dB angles are θx = Δθx/2 = 25.4o λ/a and θy = Δθy/2 = 25.4o λ/b.

Fig. 18.8.2 shows the two principal radiation patterns of Eq. (18.7.3) as functions of

θ, for the case a = 8λ, b = 4λ. The obliquity factor was included, but it makes essen-

tially no difference near the mainlobe and first sidelobe region, ultimately suppressing

the response at θ = 90o by a factor of 0.5.

The 3-dB widths are shown on the graphs. The first sidelobes occur at the angles

θa = asin(1.4303λ/a)= 10.30o and θb = asin(1.4303λ/b)= 20.95o.

For aperture antennas, the gain is approximately equal to the directivity because the

losses tend to be very small. The gain of the uniform rectangular aperture is, therefore,

G ≃ D = 4π(ab)/λ2. Multiplying G by Eqs. (18.8.5), we obtain the gain-beamwidth

product p = GΔθxΔθy = 4π(0.886)2= 9.8646 rad2 = 32 383 deg2. Thus, we have an

example of the general formula (16.3.14) (with the angles in radians and in degrees):

G = 9.8646

ΔθxΔθy
= 32 383

Δθo
xΔθ

o
y

(18.8.6)

18.9 Circular Apertures

For a circular aperture of radius a, the pattern integral (18.7.2) can be done conveniently

using cylindrical coordinates. The cylindrical symmetry implies that f(θ,φ) will be

independent of φ.
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Fig. 18.8.2 Radiation patterns along the two principal planes (a = 8λ, b = 4λ).

Therefore, for the purpose of computing the integral (18.7.2), we may setφ = 0. We

have then k · r′ = kxx′ = kρ′ sinθ cosφ′. Writing dS′ = ρ′dρ′dφ′, we have:

f(θ)= 1

πa2

∫ a

0

∫ 2π

0
ejkρ

′ sinθ cosφ′ρ′ dρ′dφ′ (18.9.1)

Theφ′- and ρ′-integrations can be done using the following integral representations

for the Bessel functions J0(x) and J1(x) [1449]:

J0(x)= 1

2π

∫ 2π

0
ejx cosφ′ dφ′ and

∫ 1

0
J0(xr)r dr = J1(x)

x
(18.9.2)

Then Eq. (18.9.1) gives:

f(θ)= 2
J1(ka sinθ)

ka sinθ
= 2

J1(2πu)

2πu
, u = 1

2π
ka sinθ = a

λ
sinθ (18.9.3)

This is the well-known Airy pattern [634] for a circular aperture. The function f(θ)

is normalized to unity at θ = 0o, because J1(x) behaves like J1(x)≃ x/2 for small x.

Fig. 18.9.1 shows the three-dimensional field pattern (18.7.3) as a function of the in-

dependent variables vx = (a/λ)sinθ cosφ and vy = (a/λ)sinθ sinφ, for an aperture

radius of a = 3λ. The obliquity factor was not included as it makes little difference

near the main lobe. The MATLAB code for this graph was implemented with the built-in

function besselj:

a = 3;

[theta,phi] = meshgrid(0:1:90, 0:9:360);

theta = theta*pi/180; phi = phi*pi/180;

vx = a*sin(theta).*cos(phi);

vy = a*sin(theta).*sin(phi);

u = a*sin(theta);

E = ones(size(u));

i = find(u);
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Fig. 18.9.1 Radiation pattern of circular aperture (a = 3λ).

E(i) = abs(2*besselj(1,2*pi*u(i))./(2*pi*u(i)));

surfl(vx,vy,E);

shading interp; colormap(gray(16));

The visible region is the circle on the vxvy-plane:

v2
x + v2

y ≤
a2

λ2
(18.9.4)

The mainlobe/sidelobe characteristics of f(θ) are as follows. The 3-dB wavenumber

is u = 0.2572 and the 3-dB width in u-space is Δu = 2×0.2572 = 0.5144. The first null

occurs at u = 0.6098 so that the first-null width is Δu = 2×0.6098 = 1.22. The first

sidelobe occurs at u = 0.8174 and its height is |f(u)| = 0.1323 or 17.56 dB below the

mainlobe. The beamwidths in angle space can be obtained from Δu = a(Δθ)/λ, which

gives for the 3-dB and first-null widths in radians and degrees:

Δθ3dB = 0.5144
λ

a
= 29.47o λ

a
, Δθnull = 1.22

λ

a
= 70o λ

a
(18.9.5)

The 3-dB angle is θ3dB = Δθ3dB/2 = 0.2572λ/a = 14.74o λ/a and the first-null

angle θnull = 0.6098λ/a. Fig. 18.9.2 shows the radiation pattern of Eq. (18.7.3) as a

function of θ, for the case a = 3λ. The obliquity factor was included.

The graph shows the 3-dB width and the first sidelobe, which occurs at the angleθa =
asin(0.817λ/a)= 15.8o. The first null occurs at θnull = asin(0.6098λ/a)= 11.73o,

whereas the approximation θnull = 0.6098λ/a gives 11.65o.

The gain-beamwidth product is p = G(Δθ3dB)
2= [

4π(πa2)/λ2
]

(0.514λ/a)2=
4π2(0.5144)2= 10.4463 rad2 = 34 293 deg2. Thus, in radians and degrees:

G = 10.4463

(Δθ3dB)2
= 34 293

(Δθo
3dB)

2
(18.9.6)
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Fig. 18.9.2 Radiation pattern of circular aperture (a = 3λ).

The first-null angle θnull = 0.6098λ/a is the so-called Rayleigh diffraction limit for

the nominal angular resolution of optical instruments, such as microscopes and tele-

scopes. It is usually stated in terms of the diameter D = 2a of the optical aperture:

Δθ = 1.22
λ

D
= 70o λ

D
(Rayleigh limit) (18.9.7)

18.10 Vector Diffraction Theory

In this section, we provide a justification of the field equivalence principle (18.1.1) and

Kottler’s formulas (18.4.2) from the point of view of vector diffraction theory. We also

discuss the Stratton-Chu and Franz formulas. A historical overview of this subject is

given in [1300,1301].

In Sec. 18.2, we worked with the vector potentials and derived the fields due to

electric and magnetic currents radiating in an unbounded region. Here, we consider the

problem of finding the fields in a volumeV bounded by a closed surface S and an infinite

spherical surface S∞, as shown in Fig. 18.10.1.

The solution of this problem requires that we know the current sources within V

and the electric and magnetic fields tangential to the surface S. The fields E1,H1 and

current sources inside the volume V1 enclosed by S have an effect on the outside only

through the tangential fields on the surface.

We start with Maxwell’s equations (18.2.1), which include both electric and magnetic

currents. This will help us identify the effective surface currents and derive the field

equivalence principle.

Taking the curls of both sides of Ampère’s and Faraday’s laws and using the vector

identity∇∇∇×(∇∇∇×E)=∇∇∇(∇∇∇·E)−∇2E, we obtain the following inhomogeneous Helmholtz

equations (which are duals of each other):
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Fig. 18.10.1 Fields outside a closed surface S.

∇2E+ k2E = jωμ J+ 1

ǫ
∇∇∇ρ+∇∇∇× Jm

∇2H+ k2H = jωǫ Jm +
1

μ
∇∇∇ρm −∇∇∇× J

(18.10.1)

We recall that the Green’s function for the Helmholtz equation is:

∇′2G+ k2G = −δ(3)(r− r′) , G(r− r′)= e−jk|r−r′|

4π|r− r′| (18.10.2)

where ∇∇∇′ is the gradient with respect to r′. Applying Green’s second identity given by

Eq. (C.27) of Appendix C, we obtain:

∫

V

[

G∇′2E− E∇′2G]dV′ = −
∮

S+S∞

[

G
∂E

∂n′
− E

∂G

∂n′

]

dS′ ,
∂

∂n′
= n̂ ·∇∇∇′

where G and E stand for G(r− r′) and E(r′) and the integration is over r′. The quantity

∂/∂n′ is the directional derivative along n̂. The negative sign in the right-hand side

arises from using a unit vector n̂ that is pointing into the volume V.

The integral over the infinite surface is taken to be zero. This may be justified more

rigorously [1293] by assuming that E and H behave like radiation fields with asymptotic

form E → const.e−jkr/r and H → r̂ × E/η.† Thus, dropping the S∞ term, and adding

and subtracting k2GE in the left-hand side, we obtain:

∫

V

[

G(∇′2E+ k2E)−E (∇′2G+ k2G)
]

dV′ = −
∮

S

[

G
∂E

∂n′
− E

∂G

∂n′

]

dS′ (18.10.3)

Using Eq. (18.10.2), the second term on the left may be integrated to give E(r):

−
∫

V
E(r′) (∇′2G+ k2G)dV′ =

∫

V
E(r′)δ(3)(r− r′)dV′ = E(r)

where we assumed that r lies in V. This integral is zero if r lies in V1 because then r′

can never be equal to r. For arbitrary r, we may write:

†The precise conditions are: r|E| → const. and r|E− ηH× r̂| → 0 as r →∞.
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∫

V
E(r′)δ(3)(r− r′)dV′ = uV(r)E(r)=

⎧

⎨

⎩

E(r), if r ∈ V
0, if r �∈ V (18.10.4)

where uV(r) is the characteristic function of the volume region V:†

uV(r)=
⎧

⎨

⎩

1, if r ∈ V
0, if r �∈ V (18.10.5)

We may now solve Eq. (18.10.3) for E(r). In a similar fashion, or, performing a duality

transformation on the expression for E(r), we also obtain the corresponding magnetic

field H(r). Using (18.10.1), we have:

E(r) =
∫

V

[

−jωμG J− 1

ǫ
G∇∇∇′ρ−G∇∇∇′ × Jm

]

dV′ +
∮

S

[

E
∂G

∂n′
−G ∂E

∂n′

]

dS′

H(r) =
∫

V

[

−jωǫG Jm −
1

μ
G∇∇∇′ρm +G∇∇∇′ × J

]

dV′ +
∮

S

[

H
∂G

∂n′
−G ∂H

∂n′

]

dS′

(18.10.6)

Because of the presence of the particular surface term, we will refer to these as

the Kirchhoff diffraction formulas. Eqs. (18.10.6) can be transformed into the so-called

Stratton-Chu formulas [1291–1296,1286,1297–1301]:‡

E(r)=
∫

V

[

−jωμG J+ ρ
ǫ
∇∇∇′G− Jm ×∇∇∇′G

]

dV′

+
∮

S

[−jωμG(n̂×H)+(n̂ · E)∇∇∇′G+ (n̂× E)×∇∇∇′G]dS′

H(r)=
∫

V

[

−jωǫG Jm +
ρm
μ
∇∇∇′G+ J×∇∇∇′G

]

dV′

+
∮

S

[

jωǫG(n̂× E)+(n̂ ·H)∇∇∇′G+ (n̂×H)×∇∇∇′G]dS′

(18.10.7)

The proof of the equivalence of (18.10.6) and (18.10.7) is rather involved. Problem

18.4 breaks down the proof into its essential steps.

Term by term comparison of the volume and surface integrals in (18.10.7) yields the

effective surface currents of the field equivalence principle:∗

J s = n̂×H , Jms = −n̂× E (18.10.8)

Similarly, the effective surface charge densities are:

ρs = ǫ n̂ · E , ρms = μ n̂ ·H (18.10.9)

†Technically [1299], one must set uV(r)= 1/2, if r lies on the boundary of V, that is, on S.
‡See [1288,1294,1300,1301] for earlier work by Larmor, Tedone, Ignatowski, and others.
∗Initially derived by Larmor and Love [1300,1301], and later developed fully by Schelkunoff [1287,1289].
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Eqs. (18.10.7) may be transformed into the Kottler formulas [1291–1296,1286,1297–

1301], which eliminate the charge densities ρ,ρm in favor of the currents J, Jm :

E(r)= 1

jωǫ

∫

V

[

k2JG+ (J ·∇∇∇′)∇∇∇′G− jωǫ Jm ×∇∇∇′G
]

dV′

+ 1

jωǫ

∮

S

[

k2G(n̂×H)+((n̂×H)·∇∇∇′)∇∇∇′G+ jωǫ(n̂× E)×∇∇∇′G]dS′

H(r)= 1

jωμ

∫

V

[

k2JmG+ (Jm ·∇∇∇′)∇∇∇′G+ jωμ J×∇∇∇′G
]

dV′

+ 1

jωμ

∮

S

[−k2G(n̂× E)−((n̂× E)·∇∇∇′)∇∇∇′G+ jωμ(n̂×H)×∇∇∇′G]dS′

(18.10.10)

The steps of the proof are outlined in Problem 18.5.

A related problem is to consider a volume V bounded by the surface S, as shown in

Fig. 18.10.2. The fields inside V are still given by (18.10.7), with n̂ pointing again into

the volume V. If the surface S recedes to infinity, then (18.10.10) reduce to (18.2.9).

Fig. 18.10.2 Fields inside a closed surface S.

Finally, the Kottler formulas may be transformed into the Franz formulas [1296,1286,1297–

1299], which are essentially equivalent to Eq. (18.2.8) amended by the vector potentials

due to the equivalent surface currents:

E(r) = 1

jωμǫ

[∇∇∇× (∇∇∇× (A+ A s)
)− μ J

]− 1

ǫ
∇∇∇× (Am + Ams)

H(r) = 1

jωμǫ

[∇∇∇× (∇∇∇× (Am + Ams)
)− ǫ Jm

]+ 1

μ
∇∇∇× (A+ A s)

(18.10.11)

where A and Am were defined in Eq. (18.2.6). The new potentials are defined by:

A s(r) =
∮

S
μ J s(r

′)G(r− r′)dS′ =
∮

S
μ
[

n̂×H(r′)
]

G(r− r′)dS′

Ams(r) =
∮

S
ǫ Jms(r

′)G(r− r′)dS′ = −
∮

S
ǫ
[

n̂× E(r′)
]

G(r− r′)dS′
(18.10.12)

Next, we specialize the above formulas to the case where the volume V contains

no current sources (J = Jm = 0), so that the E,H fields are given only in terms of the

surface integral terms.
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This happens if we choose S in Fig. 18.10.1 such that all the current sources are

inside it, or, if in Fig. 18.10.2 we choose S such that all the current sources are outside

it, then, the Kirchhoff, Stratton-Chu, Kottler, and Franz formulas simplify into:

E(r) =
∮

S

[

E
∂G

∂n′
−G ∂E

∂n′

]

dS′

=
∮

S

[−jωμG(n̂×H )+(n̂ · E )∇∇∇′G+ (n̂× E )×∇∇∇′G]dS′

= 1

jωǫ

∮

S

[

k2G(n̂×H )+((n̂×H )·∇∇∇′)∇∇∇′G+ jωǫ(n̂× E )×∇∇∇′G]dS′

= 1

jωǫ
∇∇∇× (∇∇∇×

∮

S
G(n̂×H )dS′

)+∇∇∇×
∮

S
G(n̂× E )dS′

(18.10.13)

H(r) =
∮

S

[

H
∂G

∂n′
−G ∂H

∂n′

]

dS′

=
∮

S

[

jωǫG(n̂× E )+(n̂ ·H )∇∇∇′G+ (n̂×H )×∇∇∇′G]dS′

= 1

jωμ

∮

S

[−k2G(n̂× E )−((n̂× E )·∇∇∇′)∇∇∇′G+ jωμ(n̂×H )×∇∇∇′G]dS′

= − 1

jωμ
∇∇∇× (∇∇∇×

∮

S
G(n̂× E )dS′

)+∇∇∇×
∮

S
G(n̂×H )dS′

(18.10.14)

where the last equations are the Franz formulas with A = Am = 0.

Fig. 18.10.3 illustrates the geometry of the two cases. Eqs. (18.10.13) and (18.10.14)

represent the vectorial formulation of the Huygens-Fresnel principle, according to which

the tangential fields on the surface can be considered to be the sources of the fields away

from the surface.

Fig. 18.10.3 Current sources are outside the field region.

18.11 Extinction Theorem

In all of the equivalent formulas for E(r),H(r), we assumed that r lies within the volume

V. The origin of the left-hand sides in these formulas can be traced to Eq. (18.10.4), and
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therefore, if r is not in V but is within the complementary volume V1, then the left-hand

sides of all the formulas are zero. This does not mean that the fields inside V1 are

zero—it only means that the sum of the terms on the right-hand sides are zero.

To clarify these remarks, we consider an imaginary closed surface S dividing all

space in two volumes V1 and V, as shown in Fig. 18.11.1. We assume that there are

current sources in both regions V and V1. The surface S1 is the same as S but its unit

vector n̂1 points intoV1, so that n̂1 = −n̂. Applying (18.10.10) to the volumeV, we have:

Fig. 18.11.1 Current sources may exist in both V and V1.

1

jωǫ

∮

S

[

k2G(n̂×H)+((n̂×H)·∇∇∇′)∇∇∇′G+ jωǫ(n̂× E)×∇∇∇′G]dS′

+ 1

jωǫ

∫

V

[

k2JG+ (J ·∇∇∇′)∇∇∇′G− jωǫ Jm ×∇∇∇′G
]

dV′ =
⎧

⎨

⎩

E(r), if r ∈ V
0, if r ∈ V1

The vanishing of the right-hand side when r is in V1 is referred to as an extinction

theorem.† Applying (18.10.10) to V1, and denoting by E1,H1 the fields in V1, we have:

1

jωǫ

∮

S1

[

k2G(n̂1 ×H1)+
(

(n̂1 ×H1)·∇∇∇′
)∇∇∇′G+ jωǫ(n̂1 × E1)×∇∇∇′G

]

dS′

+ 1

jωǫ

∫

V1

[

k2JG+ (J ·∇∇∇′)∇∇∇′G− jωǫ Jm ×∇∇∇′G
]

dV′ =
⎧

⎨

⎩

0, if r ∈ V
E1(r), if r ∈ V1

Because n̂1 = −n̂, and on the surface E1 = E and H1 = H, we may rewrite:

− 1

jωǫ

∮

S

[

k2G(n̂×H)+((n̂×H)·∇∇∇′)∇∇∇′G+ jωǫ(n̂× E)×∇∇∇′G]dS′

+ 1

jωǫ

∫

V1

[

k2JG+ (J ·∇∇∇′)∇∇∇′G− jωǫ Jm ×∇∇∇′G
]

dV′ =
⎧

⎨

⎩

0, if r ∈ V
E1(r), if r ∈ V1

Adding up the two cases and combining the volume integrals into a single one, we obtain:

1

jωǫ

∫

V+V1

[

(J ·∇∇∇′)∇∇∇′G+ k2GJ− jωǫ Jm ×∇∇∇′G
]

dV′ =
⎧

⎨

⎩

E(r), if r ∈ V
E1(r), if r ∈ V1

This is equivalent to Eq. (18.2.9) in which the currents are radiating into unbounded

space. We can also see how the sources within V1 make themselves felt on the outside

only through the tangential fields at the surface S, that is, for r ∈ V :

†In fact, it can be used to prove the Ewald-Oseen extinction theorem that we considered in Sec. 15.6.
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1

jωǫ

∫

V1

[

k2JG+ (J ·∇∇∇′)∇∇∇′G− jωǫ Jm ×∇∇∇′G
]

dV′

= 1

jωǫ

∮

S

[

k2G(n̂×H)+((n̂×H)·∇∇∇′)∇∇∇′G+ jωǫ(n̂× E)×∇∇∇′G]dS′

18.12 Vector Diffraction for Apertures

The Kirchhoff diffraction integral, Stratton-Chu, Kottler, and Franz formulas are equiv-

alent only for a closed surface S.

If the surface is open, as in the case of an aperture, the four expressions in (18.10.13)

and in (18.10.14) are no longer equivalent. In this case, the Kottler and Franz formulas

remain equal to each other and give the correct expressions for the fields, in the sense

that the resulting E(r) and H(r) satisfy Maxwell’s equations [1288,1286,1300,1301].

For an open surface S bounded by a contour C, shown in Fig. 18.12.1, the Kottler

and Franz formulas are related to the Stratton-Chu and the Kirchhoff diffraction integral

formulas by the addition of some line-integral correction terms [1294]:

E(r)= 1

jωǫ

∫

S

[

k2G(n̂×H )+((n̂×H )·∇∇∇′)∇∇∇′G+ jωǫ(n̂× E )×∇∇∇′G]dS′

= 1

jωǫ
∇∇∇× (∇∇∇×

∫

S
G(n̂×H )dS′

)+∇∇∇×
∫

S
G(n̂× E )dS′

=
∫

S

[−jωμG(n̂×H )+(n̂ · E )∇∇∇′G+ (n̂× E )×∇∇∇′G]dS′ − 1

jωǫ

∮

C
(∇∇∇′G)H · dl

=
∫

S

[

E
∂G

∂n′
−G ∂E

∂n′

]

dS′ −
∮

C
GE× dl− 1

jωǫ

∮

C
(∇∇∇′G)H · dl

(18.12.1)

H(r)= 1

jωμ

∫

S

[−k2G(n̂× E )−((n̂× E )·∇∇∇′)∇∇∇′G+ jωμ(n̂×H )×∇∇∇′G]dS′

= − 1

jωμ
∇∇∇× (∇∇∇×

∫

S
G(n̂× E )dS′

)+∇∇∇×
∫

S
G(n̂×H )dS′

=
∫

S

[

jωǫG(n̂× E )+(n̂ ·H )∇∇∇′G+ (n̂×H )×∇∇∇′G]dS′ + 1

jωμ

∮

C
(∇∇∇′G)E · dl

= −
∫

S

[

H
∂G

∂n′
−G ∂H

∂n′

]

dS′ −
∮

C
GH× dl+ 1

jωμ

∮

C
(∇∇∇′G)E · dl

(18.12.2)

The proof of the equivalence of these expressions is outlined in Problems 18.7 and

18.8. The Kottler-Franz formulas (18.12.1) and (18.12.2) are valid for points off the

aperture surface S. The formulas are not consistent for points on the aperture. However,

they have been used very successfully in practice to predict the radiation patterns of

aperture antennas.

The line-integral correction terms have a minor effect on the mainlobe and near

sidelobes of the radiation pattern. Therefore, they can be ignored and the diffracted



18.13. Fresnel Diffraction 823

Fig. 18.12.1 Aperture surface S bounded by contour C.

field can be calculated by any of the four alternative formulas, Kottler, Franz, Stratton-

Chu, or Kirchhoff integral—all applied to the open surface S.

18.13 Fresnel Diffraction

In Sec. 18.4, we looked at the radiation fields arising from the Kottler-Franz formulas,

where we applied the Fraunhofer approximation in which only linear phase variations

over the aperture were kept in the propagation phase factor e−jkR. Here, we consider

the intermediate case of Fresnel approximation in which both linear and quadratic phase

variations are retained.

We discuss the classical problem of diffraction of a spherical wave by a rectangular

aperture, a slit, and a straight-edge using the Kirchhoff integral formula. The case of a

plane wave incident on a conducting edge is discussed in Problem 18.11 using the field-

equivalence principle and Kottler’s formula and more accurately, in Sec. 18.15, using

Sommerfeld’s exact solution of the geometrical theory of diffraction. These examples

are meant to be an introduction to the vast subject of diffraction.

In Fig. 18.13.1, we consider a rectangular aperture illuminated from the left by a point

source radiating a spherical wave. We take the origin to be somewhere on the aperture

plane, but eventually we will take it to be the point of intersection of the aperture plane

and the line between the source and observation points P1 and P2.

The diffracted field at point P2 may be calculated from the Kirchhoff formula applied

to any of the cartesian components of the field:

E =
∫

S

[

E1
∂G

∂n′
−G ∂E1

∂n′

]

dS′ (18.13.1)

where E1 is the spherical wave from the source point P1 evaluated at the aperture point

P′, and G is the Green’s function from P′ to P2:

E1 = A1
e−jkR1

R1

, G = e−jkR2

4πR2

(18.13.2)

whereA1 is a constant. If r1 and r2 are the vectors pointing from the origin to the source

and observation points, then we have for the distance vectors R1 and R2:
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Fig. 18.13.1 Fresnel diffraction through rectangular aperture.

R1 = r1 − r′ , R1 = |r1 − r′| =
√

r2
1 − 2r1 · r′ + r′ · r′

R2 = r2 − r′ , R2 = |r2 − r′| =
√

r2
2 − 2r2 · r′ + r′ · r′

(18.13.3)

Therefore, the gradient operator∇∇∇′ can be written as follows when it acts on a function

of R1 = |r1 − r′| or a function of R2 = |r2 − r′|:

∇∇∇′ = −R̂1
∂

∂R1

, ∇∇∇′ = −R̂2
∂

∂R2

where R̂1 and R̂2 are the unit vectors in the directions of R1 and R2. Thus, we have:

∂E1

∂n′
= n̂ ·∇∇∇′E1 = −n̂ · R̂1

∂E1

∂R1

= (n̂ · R̂1)

(

jk+ 1

R1

)

A1
e−jkR1

R1

∂G

∂n′
= n̂ ·∇∇∇′G = −n̂ · R̂2

∂G

∂R2

= (n̂ · R̂2)

(

jk+ 1

R2

)
e−jkR2

4πR2

(18.13.4)

Dropping the 1/R2 terms, we find for the integrand of Eq. (18.13.1):

E1
∂G

∂n′
−G ∂E1

∂n′
= jkA1

4πR1R2

[

(n̂ · R̂2)−(n̂ · R̂1)
]

e−jk(R1+R2)

Except in the phase factor e−jk(R1+R2), we may replace R1 ≃ r1 and R2 ≃ r2, that is,

E1
∂G

∂n′
−G ∂E1

∂n′
= jkA1

4πr1r2

[

(n̂ · r̂2)−(n̂ · r̂1)
]

e−jk(R1+R2) (18.13.5)

Thus, we have for the diffracted field at point P2:

E = jkA1

4πr1r2

[

(n̂ · r̂2)−(n̂ · r̂1)
]
∫

S
e−jk(R1+R2) dS′ (18.13.6)
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The quantity
[

(n̂ · r̂2)−(n̂ · r̂1)
]

is an obliquity factor. Next, we set r = r1 + r2 and

define the ”free-space” field at the point P2:

E0 = A1
e−jk(r1+r2)

r1 + r2

= A1
e−jkr

r
(18.13.7)

If the origin were the point of intersection between the aperture plane and the line

P1P2, then E0 would represent the field received at point P2 in the unobstructed case

when the aperture and screen are absent.

The ratio D = E/E0 may be called the diffraction coefficient and depends on the

aperture and the relative geometry of the points P1, P2:

D = E

E0

= jk

4πF

[

(n̂ · r̂2)−(n̂ · r̂1)
]
∫

S
e−jk(R1+R2−r1−r2) dS′ (18.13.8)

where we defined the “focal length” between r1 and r2:

1

F
= 1

r1

+ 1

r2

⇒ F = r1r2

r1 + r2

(18.13.9)

The Fresnel approximation is obtained by expanding R1 and R2 in powers of r′ and

keeping only terms up to second order. We rewrite Eq. (18.13.3) in the form:

R1 = r1

√

1− 2r̂1 · r′

r1

+ r′ · r′

r2
1

, R2 = r2

√

1− 2r̂2 · r′

r2

+ r′ · r′

r2
2

Next, we apply the Taylor series expansion up to second order:

√
1+ x = 1+ 1

2
x− 1

8
x2

This gives the approximations of R1, R2, and R1 +R2 − r1 − r2:

R1 = r1 − r̂1 · r′ + 1

2r1

[

r′ · r′ − (r̂1 · r′)2
]

R2 = r2 − r̂2 · r′ + 1

2r2

[

r′ · r′ − (r̂2 · r′)2
]

R1 +R2 − r1 − r2 = −(r̂1 + r̂2)·r′ + 1

2

[(
1

r1

+ 1

r2

)

r′ · r′ − (r̂1 · r′)2

r1

− (r̂2 · r′)2

r2

]

To simplify this expression, we now assume that the origin is the point of intersection

of the line of sight P1P2 and the aperture plane. Then, the vectors r1 and r2 are anti-

parallel and so are their unit vectors r̂1 = −r̂2. The linear terms cancel and the quadratic

ones combine to give:

R1+R2−r1−r2 = 1

2F

[

r′ ·r′−(r̂2 ·r′)2
] = 1

2F

∣
∣r′− r̂2(r

′ · r̂2)
∣
∣2 = 1

2F
b′ ·b′ (18.13.10)

where we defined b′ = r′ − r̂2(r
′ · r̂2), which is the perpendicular vector from the point

P′ to the line-of-sight P1P2, as shown in Fig. 18.13.1.
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It follows that the Fresnel approximation of the diffraction coefficient for an arbitrary

aperture will be given by:

D = E

E0

= jk(n̂ · r̂2)

2πF

∫

S
e−jk(b

′·b′)/(2F) dS′ (18.13.11)

A further simplification is obtained by assuming that the aperture plane is the xy-

plane and that the line P1P2 lies on the yz plane at an angle θ with the z-axis, as shown

in Fig. 18.13.2.

Fig. 18.13.2 Fresnel diffraction by rectangular aperture.

Then, we have r′ = x′x̂ + y′ŷ, n̂ = ẑ, and r̂2 = ẑ cosθ + ŷ sinθ. It follows that

n̂ · r̂2 = cosθ, and the perpendicular distance b′ · b′ becomes:

b′ · b′ = r′ · r′ − (r̂′ · r̂2)
2= x′2 + y′2 − (y′ sinθ)2= x′2 + y′2 cos2 θ

Then, the diffraction coefficient (18.13.11) becomes:

D = jk cosθ

2πF

∫ x2

−x1

∫ y2

−y1
e−jk(x

′2+y′2 cos2 θ)/2F dx′dy′ (18.13.12)

where we assumed that the aperture limits are (with respect to the new origin):

−x1 ≤ x′ ≤ x2 , −y1 ≤ y′ ≤ y2

The end-points y1, y2 are shown in Fig. 18.13.2. The integrals may be expressed

in terms of the Fresnel functions C(x), S(x), and F(x)= C(x)−jS(x) discussed in

Appendix F. There, the complex function F(x) is defined by:

F(x)= C(x)−jS(x)=
∫ x

0
e−j(π/2)u

2

du (18.13.13)
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We change integration variables to the normalized Fresnel variables:

u =
√

k

πF
x′ , v =

√

k

πF
y′ cosθ (18.13.14)

where b′ = y′ cosθ is the perpendicular distance from P′ to the line P1P2, as shown in

Fig. 18.13.2. The corresponding end-points are:

ui =
√

k

πF
xi , vi =

√

k

πF
yi cosθ =

√

k

πF
bi , i = 1,2 (18.13.15)

Note that the quantities b1 = y1 cosθ and b2 = y2 cosθ are the perpendicular

distances from the edges to the line P1P2. Since dudv = (k cosθ/πF)dx′dy′, we

obtain for the diffraction coefficient:

D = j

2

∫ u2

−u1

e−jπu
2/2 du

∫ v2

−v1

e−jπv
2/2 dv = j

2

[F(u2)−F(−u1)
][F(v2)−F(−v1)

]

Noting that F(x) is an odd function and that j/2 = 1/(1− j)2, we obtain:

D = E

E0

= F(u1)+F(u2)

1− j
F(v1)+F(v2)

1− j (rectangular aperture) (18.13.16)

The normalization factors (1−j) correspond to the infinite aperture limit u1, u2, v1,

v2 → ∞, that is, no aperture at all. Indeed, since the asymptotic value of F(x) is

F(∞)= (1− j)/2, we have:

F(u1)+F(u2)

1− j
F(v1)+F(v2)

1− j −→ F(∞)+F(∞)
1− j

F(∞)+F(∞)
1− j = 1

In the case of a long slit along the x-direction, we only take the limit u1, u2 →∞:

D = E

E0

= F(v1)+F(v2)

1− j (diffraction by long slit) (18.13.17)

18.14 Knife-Edge Diffraction

The case of straight-edge or knife-edge diffraction is obtained by taking the limit y2 →
∞, or v2 → ∞, which corresponds to keeping the lower edge of the slit. In this limit

F(v2)→F(∞)= (1− j)/2. Denoting v1 by v, we have:

D(v)= 1

1− j
(

F(v)+1− j
2

)

, v =
√

k

πF
b1 (18.14.1)

Positive values of v correspond to positive values of the clearance distance b1, plac-

ing the point P2 in the illuminated region, as shown in Fig. 18.14.1. Negative values of

v correspond to b1 < 0, placing P2 in the geometrical shadow region behind the edge.

The magnitude-square |D|2 represents the intensity of the diffracted field relative

to the intensity of the unobstructed field. Since |1− j|2 = 2, we find:
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Fig. 18.14.1 Illuminated and shadow regions in straight-edge diffraction.

|D(v)|2 = |E|2
|E0|2

= 1

2

∣
∣
∣
∣F(v)+

1− j
2

∣
∣
∣
∣

2

(18.14.2)

or, in terms of the real and imaginary parts of F(v):

|D(v)|2 = 1

2

[(

C(v)+1

2

)2

+
(

S(v)+1

2

)2
]

(18.14.3)

The quantity |D(v)|2 is plotted versus v in Fig. 18.14.2. At v = 0, corresponding to

the line P1P2 grazing the top of the edge, we haveF(0)= 0, D(0)= 1/2, and |D(0)|2 =
1/4 or a 6 dB loss. The first maximum in the illuminated region occurs at v = 1.2172

and has the value |D(v)|2 = 1.3704, or a gain of 1.37 dB.
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Fig. 18.14.2 Diffraction coefficient in absolute and dB units.

The asymptotic behavior of D(v) for v → ±∞ is obtained from Eq. (F.4). We have

for large positive x:

F(±x)→ ±
(

1− j
2

+ j

πx
e−jπx

2/2

)



18.14. Knife-Edge Diffraction 829

This implies that:

D(v)=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

1− 1− j
2πv

e−jπv
2/2, for v → +∞

−1− j
2πv

e−jπv
2/2, for v → −∞

(18.14.4)

We may combine the two expressions into one with the help of the unit-step function

u(v) by writing D(v) in the following form, which defines the asymptotic diffraction

coefficient d(v):

D(v)= u(v)+d(v)e−jπv2/2 (18.14.5)

where u(v)= 1 for v ≥ 0 and u(v)= 0 for v < 0.

With u(0)= 1, this definition requires d(0)= D(0)−v(0)= 0.5 − 1 = −0.5. But if

we define u(0)= 0.5, as is sometimes done, then, d(0)= 0. The asymptotic behavior of

D(v) can now be expressed in terms of the asymptotic behavior of d(v):

d(v)= −1− j
2πv

, for v → ±∞ (18.14.6)

In the illuminated region D(v) tends to unity, whereas in the shadow region it de-

creases to zero with asymptotic dB attenuation or loss:

L = −10 log10

∣
∣d(v)

∣
∣2 = 10 log10

(

2π2v2
)

, as v → −∞ (18.14.7)

The MATLAB function diffr calculates the diffraction coefficient (18.14.1) at any

vector of values of v. It has usage:

D = diffr(v); % knife-edge diffraction coefficient D(v)

For values v ≤ 0.7, the diffraction loss can be approximated very well by the follow-

ing function [1308]:

L = −10 log10

∣
∣D(v)

∣
∣2 = 6.9+ 20 log10

(√

(v+ 0.1)2+1− v− 0.1

)

(18.14.8)

Example 18.14.1: Diffraction Loss over Obstacles. The propagation path loss over obstacles and

irregular terrain is usually determined using knife-edge diffraction. Fig. 18.14.3 illustrates

the case of two antennas communicating over an obstacle. For small angles θ, the focal

length F is often approximated in several forms:

F = r1r2

r1 + r2

≃ d1d2

d1 + d2

≃ l1l2
l1 + l2

These approximations are valid typically when d1, d2 are much greater than λ and the

height h of the obstacle, typically, at least ten times greater. The clearance distance can

be expressed in terms of the heights:

b1 = y1 cosθ =
(
h1d2 + h2d1

d1 + d2

− h
)

cosθ
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Fig. 18.14.3 Communicating antennas over an obstacle.

The distance b1 can also be expressed approximately in terms of the subtended anglesα1,

α2, and α, shown in Fig. 18.14.3:

b1 ≃ l1α1 ≃ l2α2 ⇒ b1 =
√

l1l2α1α2 (18.14.9)

and in terms of α, we have:

α1 = αl2
l1 + l2

, α2 = αl1
l1 + l2

⇒ b1 = αF ⇒ v = α
√

2F

λ
(18.14.10)

The case of multiple obstacles has been studied using appropriate modifications of the

knife-edge diffraction problem and the geometrical theory of diffraction [1309–1324]. ⊓⊔

Example 18.14.2: Fresnel Zones. Consider two antennas separated by a distance d and an ob-

stacle at distance z from the midpoint with clearance b, as shown below. Fresnel zones and

the corresponding Fresnel zone ellipsoids help answer the question of what the minimum

value of the clearance b should be for efficient communication between the antennas.
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Diffraction Coefficient in dB

exact       

asymptotic  

extrema     

fresnel zone

The diffraction coefficient D(v) and its asymptotic form were given in Eqs. (18.14.1) and

(18.14.4), that is,

D(v)= 1

1− j
(

F(v)+1− j
2

)

, v =
√

k

πF
b =

√

2

λF
b , F = d1d2

d1 + d2

(18.14.11)
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and for positive and large clearance b, or equivalently, for large positive v,

Das(v)= 1− 1− j
2πv

e−jπv
2/2 = 1− 1√

2πv
e−jπ(v

2/2+1/4) (18.14.12)

As can be seen in the above figure on the right, the diffraction coefficients D(v) and

Das(v) agree closely even for small values of v. Therefore, the extrema can be obtained

from the asymptotic form. They correspond to the values of v that cause the exponential

in (18.14.12) to take on its extremal values of±1, that is, the v’s that satisfy v2/2+1/4 = n,

with integer n, or:

vn =
√

2n− 0.5 , n = 1,2, . . . (18.14.13)

The corresponding values of D(v), shown on the figure with black dots, are given by

Das(vn)= 1− 1√
2πvn

e−jπn = 1− 1√
2πvn

(−1)n (18.14.14)

An alternative set of v’s, also corresponding to alternating almost extremum values, are

those that define the conventional Fresnel zones, that is,

un =
√

2n , n = 1,2, . . . (18.14.15)

These are indicated by open circles on the graph. The corresponding D(v) values are:

Das(un)= 1− e−jπ/4√
2πun

(−1)n (18.14.16)

For clearances b that correspond to v’s that are too small, i.e., v < 0.5, the diffraction

coefficient D(v) becomes too small, impeding efficient communication. The smallest ac-

ceptable clearance b is taken to correspond to the first maximum of D(v), that is, v = v1

or more simply v = u1 =
√

2.

The locus of points (b, z) corresponding to a fixed value of v, and hence to a fixed value

of the diffraction coefficient D(v), form an ellipsoid. This can be derived from (18.14.11)

by setting d1 = d/2+ z and d2 = d/2− z, that is,

v =
√

2

λF
b ⇒ b2 = λF

2
v2 = λ(d2/4− z2)

2d
v2 , because F = d1d2

d1 + d2

= d2/4− z2

d

which can be rearranged into the equation of an ellipse:

(
8

v2λd

)

b2 +
(

4

d2

)

z2 = 1

For v = u1 =
√

2, this defines the first Fresnel zone ellipse, which gives the minimum

acceptable clearance for a given distance z:

(
4

λd

)

b2 +
(

4

d2

)

z2 = 1 (18.14.17)

If the obstacle is at midpoint (z = 0), the minimum clearance becomes:

b = 1

2

√

λd (18.14.18)
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For example, for a distance of d = 1 km, using a cell phone frequency of f = 1 GHz,

corresponding to wavelength λ = 30 cm, we find b =
√
λd/2 = 8.66 meters.

A common interpetation and derivation of Fresnel zones is to consider the path difference

between the rays following the straight path connecting the two antennas and the path

getting scattered from the obstacle, that is, Δl = l1 + l2 − d. From the indicated triangles,

and assuming that b≪ d1 and b≪ d2, we find:

l1 =
√

d2
1 + b2 ≃ d1 + b2

2d1

, l2 =
√

d2
2 + b2 ≃ d2 + b2

2d2

which leads to the following path length Δl, expressed in terms of v:

Δl = l1 + l2 − d = b2

2

(
1

d1

+ 1

d2

)

= b2

2F
= λ

4
v2

The corresponding phase difference between the two paths, e−jkΔl, will be then:

e−jkΔl = e−jπv2/2 (18.14.19)

which has the same form as in the diffraction coefficient Das(v). The values v = un =√
2n will make the path difference a multiple of λ/2, that is, Δl = nλ/2, resulting in the

alternating phase e−jkΔl = (−1)n.

The discrepancy between the choices vn and un arises from using D(v) to find the alter-

nating maxima, versus using the plain phase (18.14.19). ⊓⊔

The Fresnel approximation is not invariant under shifting the origin. Our choice of

origin above is not convenient because it depends on the observation point P2. If we

choose a fixed origin, such as the point O in Fig. 18.14.4, then, we must determine the

corresponding Fresnel coefficient.

Fig. 18.14.4 Fresnel diffraction by straight edge.

We assume that the points P1, P2 lie on the yz plane and take P2 to lie in the shadow

region. The angles θ1, θ2 may be chosen to be positive or negative to obtain all possible

locations of P1, P2 relative to the screen.
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The diffraction coefficient is still given by Eq. (18.13.8) but with r1, r2 replaced by

the distances l1, l2. The unit vectors towards P1 and P2 are:

l̂1 = −ẑ cosθ1 − ŷ sinθ1 , l̂2 = ẑ cosθ2 − ŷ sinθ2 (18.14.20)

Since r′ = x′x̂+ y′ŷ and n̂ = ẑ, we find:

l̂1 · r′ = −y′ sinθ1 , l̂2 · r′ = −y′ sinθ2 , n̂ · l̂1 = − cosθ1 , n̂ · l̂2 = cosθ2

The quadratic approximation for the lengths R1, R2 gives, then:

R1 +R2 − l1 − l2 = −(̂l1 + l̂2)·r′ + 1

2

[(
1

l1
+ 1

l2

)

(r′ · r′)− (̂l1 · r′)2

l1
− (̂l2 · r′)2

l2

]

= y′(sinθ1 + sinθ2)+
(

1

l1
+ 1

l2

)
x′2

2
+
(

cos2 θ1

l1
+ cos2 θ2

l2

)

y′2

2

= 1

2F
x′2 + 1

2F′
[

y′2 + 2F′y′(sinθ1 + sinθ2)
]

= 1

2F
x′2 + 1

2F′
(y′ + y0)

2− 1

2F′
y2

0

where we defined the focal lengths F,F′ and the shift y0:

1

F
= 1

l1
+ 1

l2
,

1

F′
= cos2 θ1

l1
+ cos2 θ2

l2
, y0 = F′(sinθ1 + sinθ2) (18.14.21)

Using these approximations in Eq. (18.13.6) and replacing r1, r2 by l1, l2, we find:

E = jkA1e
−jk(l1+l2)

4πl1l2

[

(n̂ · l̂2)−(n̂ · l̂1)
]
∫

S
e−jk(R1+R2−l1−l2) dS′

= jkA1e
−k(l1+l2)

4πl1l2
(cosθ1 + cosθ2)e

jky2
0/2F

′
∫

e−jkx
′2/2F−jk(y′+y0)

2/2F′ dx′dy′

The x′-integral is over the range −∞ < x′ < ∞ and can be converted to a Fresnel

integral with the change of variables u = x′
√

k/(πF):

∫∞

−∞
e−jkx

′2/2F dx′ =
√

πF

k

∫∞

−∞
e−jπu

2/2 du =
√

πF

k
(1− j)

The y′-integral is over the upper-half of the xy-plane, that is, 0 ≤ y′ < ∞. Defining

the Fresnel variables u = (y′ + y0)
√

k/(πF′) and v = y0

√

k/(πF′), we find:

∫∞

0
e−jk(y

′+y0)
2/2F′ dy′ =

√

πF′

k

∫∞

v
e−jπu

2/2 du =
√

πF′

k
(1− j)D(−v)

where the function D(v) was defined in Eq. (18.14.1). Putting all the factors together,

we may write the diffracted field at the point P2 in the form:

E = Eedge
e−jkl2
√

l2

Dedge (straight-edge diffraction) (18.14.22)
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where we set ky2
0/2F

′ = πv2/2 and defined the incident field Eedge at the edge and the

overall edge-diffraction coefficient Dedge by:

Eedge = A1
e−jkl1

l1
, Dedge =

√

FF′

l2

(
cosθ1 + cosθ2

2

)

ejπv
2/2D(−v) (18.14.23)

The second factor (e−jkl2/
√

l2) in (18.14.22) may be interpreted as a cylindrical wave

emanating from the edge as a result of the incident field Eedge. The third factor Dedge is

the angular gain of the cylindrical wave. The quantity v may be written as:

v =
√

k

πF′
y0 =

√

kF′

π
(sinθ1 + sinθ2) (18.14.24)

Depending on the sign and relative sizes of the angles θ1 and θ2, it follows that

v > 0 when P2 lies in the shadow region, and v < 0 when it lies in the illuminated

region. For large positive v, we may use Eq. (18.14.4) to obtain the asymptotic form of

the edge-diffraction coefficient Dedge:

Dedge =
√

FF′

l2

cosθ1 + cosθ2

2
ejπv

2/2 1− j
2πv

e−jπv
2/2 =

√

FF′

l2

cosθ1 + cosθ2

2

1− j
2πv

Writing
√

F/l2 =
√

l1/(l1 + l2) and replacing v from Eq. (18.14.24), the
√
F′ factor

cancels and we obtain:

Dedge =
√

l1
l1 + l2

(1− j)(cosθ1 + cosθ2)

4
√
πk(sinθ1 + sinθ2)

(18.14.25)

This expression may be simplified further by defining the overall diffraction angle

θ = θ1 + θ2, as shown in Fig. 18.14.4 and using the trigonometric identity:

cosθ1 + cosθ2

sinθ1 + sinθ2

= cot

(
θ1 + θ2

2

)

Then, Eq. (18.14.25) may be written in the form:

Dedge =
√

l1
l1 + l2

(1− j)
4
√
πk

cot
θ

2
(18.14.26)

The asymptotic diffraction coefficient is obtained from Eqs. (18.14.25) or (18.14.26)

by taking the limit l1 →∞, which gives
√

l1/(l1 + l2)→ 1. Thus,

Dedge = (1− j)(cosθ1 + cosθ2)

4
√
πk(sinθ1 + sinθ2)

= (1− j)
4
√
πk

cot
θ

2
(18.14.27)

Eqs. (18.14.26) and (18.14.27) are equivalent to those given in [1300].

The two choices for the origin lead to two different expressions for the diffracted

fields. However, the expressions agree near the forward direction, θ ≃ 0. It is easily

verified that both Eq. (18.14.1) and (18.14.26) lead to the same approximation for the

diffracted field:

E = Eedge
e−jkl2
√

l2

√

l1
l1 + l2

1− j
2
√
πkθ

(18.14.28)
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18.15 Geometrical Theory of Diffraction

Geometrical theory of diffraction is an extension of geometrical optics [1309–1324]. It

views diffraction as a local edge effect. In addition to the ordinary rays of geometrical

optics, it postulates the existence of “diffracted rays” from edges. The diffracted rays

can reach into shadow regions, where geometrical optics fails.

An incident ray at an edge generates an infinity of diffracted rays emanating from the

edge having different angular gains given by a diffraction coefficient Dedge. An example

of such a diffracted ray is given by Eq. (18.14.22).

The edge-diffraction coefficient Dedge depends on (a) the type of the incident wave,

such as plane wave, or spherical, (b) the type and local geometry of the edge, such as a

knife-edge or a wedge, and (c) the directions of the incident and diffracted rays.

The diffracted field and coefficient are usually taken to be in their asymptotic forms,

like those of Eq. (18.15.26). The asymptotic forms are derived from certain exactly

solvable canonical problems, such as a conducting edge, a wedge, and so on.

The first and most influential of all such problems was Sommerfeld’s solution of a

plane wave incident on a conducting half-plane [1286], and we discuss it below.

Fig. 18.15.1 shows a plane wave incident at an angle α on the conducting plane

occupying half of the xz-plane for x ≥ 0. The plane of incidence is taken to be the xy-

plane. Because of the cylindrical symmetry of the problem, we may assume that there

is no z-dependence and that the fields depend only on the cylindrical coordinates ρ,φ.

Fig. 18.15.1 Plane wave incident on conducting half-plane.

Two polarizations may be considered: TE, in which the electric field is E = ẑEz, and

TM, which has H = ẑHz. Using cylindrical coordinates defined in Eq. (E.2) of Appendix

E, and setting ∂/∂z = 0, Maxwell’s equations reduce in the two cases into:

(TE) ∇2Ez + k2Ez = 0, Hρ = − 1

jωμ

1

ρ

∂Ez
∂φ

, Hφ = 1

jωμ

∂Ez
∂ρ

(TM) ∇2Hz + k2Hz = 0, Eρ = 1

jωǫ

1

ρ

∂Hz
∂φ

, Eφ = − 1

jωǫ

∂Hz
∂ρ

(18.15.1)
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where k2 =ω2μǫ, and the two-dimensional∇∇∇2 is in cylindrical coordinates:

∇2 = 1

ρ

∂

∂ρ

(

ρ
∂

∂ρ

)

+ 1

ρ2

∂2

∂φ2
(18.15.2)

The boundary conditions require that the tangential electric field be zero on both

sides of the conducting plane, that is, for φ = 0 and φ = 2π. In the TE case, the

tangential electric field is Ez, and in the TM case, Ex = Eρ cosφ − Eφ sinφ = Eρ =
(1/jωǫρ)(∂Hz/∂φ), for φ = 0,2π. Thus, the boundary conditions are:

(TE) Ez = 0, for φ = 0 and φ = 2π

(TM)
∂Hz
∂φ

= 0, for φ = 0 and φ = 2π
(18.15.3)

In Fig. 18.15.1, we assume that 0 ≤ α ≤ 90o and distinguish three wedge regions

defined by the half-plane and the directions along the reflected and transmitted rays:

reflection region (AOB): 0 ≤ φ ≤ π−α
transmission region (BOC): π−α ≤ φ ≤ π+α
shadow region (COA): π+α ≤ φ ≤ 2π

(18.15.4)

The case when 90o ≤ α ≤ 180o is shown in Fig. 18.15.2, in which α has been

redefined to still be in the range 0 ≤ α ≤ 90o. The three wedge regions are now:

reflection region (AOB): 0 ≤ φ ≤ α
transmission region (BOC): α ≤ φ ≤ 2π−α
shadow region (COA): 2π−α ≤ φ ≤ 2π

(18.15.5)

Fig. 18.15.2 Plane wave incident on conducting half-plane.

We construct the Sommerfeld solution in stages. We start by looking for solutions

of the Helmholtz equation∇2U+k2U = 0 that have the factored form: U = ED, where

E is also a solution, but a simple one, such as that of the incident plane wave. Using the

differential identities of Appendix C, we have:

∇2U + k2U = D(∇2E + k2E
)+ E∇2D+ 2∇∇∇E ·∇∇∇D
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Thus, the conditions ∇2U + k2U = 0 and ∇2E + k2E = 0 require:

E∇2D+ 2∇∇∇E ·∇∇∇D = 0 ⇒ ∇2D+ 2(∇∇∇ lnE)·∇∇∇D = 0 (18.15.6)

If we assume that E is of the form E = ejf , where f is a real-valued function, then,

equating to zero the real and imaginary parts of ∇2E + k2E = 0, we find for f :

∇2E + k2E = E(k2 −∇∇∇f ·∇∇∇f + j∇2f
) = 0 ⇒ ∇2f = 0 , ∇∇∇f ·∇∇∇f = k2 (18.15.7)

Next, we assume that D is of the form:

D = D0

∫ v

−∞
e−jg(u)du (18.15.8)

where D0 is a constant, v is a function of ρ,φ, and g(u) is a real-valued function to be

determined. Noting that ∇∇∇D = D0e
−jg∇∇∇v and ∇∇∇g = g′(v)∇∇∇v, we find:

∇∇∇D = D0e
−jg∇∇∇v , ∇2D = D0e

−jg(∇2v− jg′(v)∇∇∇v ·∇∇∇v)

Then, it follows from Eq. (18.15.6) that ∇2D+ 2(∇∇∇ lnE)·∇∇∇D = ∇2D+ j∇∇∇f ·∇∇∇D and:

∇2D+ j∇∇∇f ·∇∇∇D = D0e
−jg[∇2v+ j(2∇∇∇f ·∇∇∇v− g′∇∇∇v ·∇∇∇v)]= 0

Equating the real and imaginary parts to zero, we obtain the two conditions:

∇2v = 0 ,
2∇∇∇f ·∇∇∇v
∇∇∇v ·∇∇∇v = g′(v) (18.15.9)

Sommerfeld’s solution involves the Fresnel diffraction coefficient of Eq. (18.14.1),

which can be written as follows:

D(v)= 1

1− j
[

1− j
2

+F(v)
]

= 1

1− j
∫ v

−∞
e−jπu

2/2du (18.15.10)

Therefore, we are led to choose g(u)= πu2/2 and D0 = 1/(1− j). To summarize,

we may construct a solution of the Helmholtz equation in the form:

∇2U + k2U = 0 , U = ED = ejfD(v) (18.15.11)

where f and v must be chosen to satisfy the four conditions:

∇2f = 0, ∇∇∇f ·∇∇∇f = k2

∇2v = 0,
2∇∇∇f ·∇∇∇v
∇∇∇v ·∇∇∇v = g′(v)= πv

(18.15.12)

It can be verified easily that the functions u = ρa cosaφ and u = ρa sinaφ are solu-

tions of the two-dimensional Laplace equation∇2u = 0, for any value of the parameter

a. Taking f to be of the form f = Aρa cosaφ, we have the condition:

∇∇∇f = Aaρa−1
[

ρ̂ρρ cosaφ− φ̂φφ sinaφ
] ⇒ ∇∇∇f ·∇∇∇f = A2a2ρ2(a−1) = k2
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This immediately implies that a = 1 and A2 = k2, so that A = ±k. Thus, f =
Aρ cosφ = ±kρ cosφ. Next, we choose v = Bρa cosaφ. Then:

∇∇∇f = A(ρ̂ρρ cosφ− φ̂φφ sinφ)

∇∇∇v = Baρa−1
[

ρ̂ρρ cosaφ− φ̂φφ sinaφ
]

∇∇∇f ·∇∇∇v = ABaρa−1
[

cosφ cosaφ+ sinφ sinaφ
] = ABaρa−1 cos(φ− aφ)

∇∇∇v ·∇∇∇v = B2a2ρ2(a−1)

Then, the last of the conditions (18.15.12) requires that:

1

πv

2∇∇∇f ·∇∇∇v
∇∇∇v ·∇∇∇v = 2Aρ1−2a cos(φ− aφ)

πaB2 cosaφ
= 1

which implies that a = 1/2 and B2 = 2A/πa = 4A/π. But since A = ±k, only the

case A = k is compatible with a real coefficient B. Thus, we have B2 = 4k/π, or,

B = ±2
√
k/π.

In a similar fashion, we find that if we take v = Bρa sinaφ, then a = 1/2, but now

B2 = −4A/π, requiring that A = −k, and B = ±2
√
k/π. In summary, we have the

following solutions of the conditions (18.15.12):

f = +kρ cosφ, v = ±2

√

k

π
ρ1/2 cos

φ

2

f = −kρ cosφ, v = ±2

√

k

π
ρ1/2 sin

φ

2

(18.15.13)

The corresponding solutions (18.15.11) of the Helmholtz equation are:

U(ρ,φ)= ejkρ cosφD(v) , v = ±2

√

k

π
ρ1/2 cos

φ

2

U(ρ,φ)= e−jkρ cosφD(v) , v = ±2

√

k

π
ρ1/2 sin

φ

2

(18.15.14)

The function D(v) may be replaced by the equivalent form of Eq. (18.14.5) in order

to bring out its asymptotic behavior for large v:

U(ρ,φ)= ejkρ cosφ
[

u(v)+d(v)e−jπv2/2
]

, v = ±2

√

k

π
ρ1/2 cos

φ

2

U(ρ,φ)= e−jkρ cosφ
[

u(v)+d(v)e−jπv2/2
]

, v = ±2

√

k

π
ρ1/2 sin

φ

2

Using the trigonometric identities cosφ = 2 cos2(φ/2)−1 = 1 − 2 sin2(φ/2), we

find for the two choices of v:

kρ cosφ− 1

2
πv2 = kρ

[

cosφ− 2 cos2 φ

2

]

= −kρ

−kρ cosφ− 1

2
πv2 = −kρ

[

cosφ+ 2 sin2 φ

2

]

= −kρ
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Thus, an alternative form of Eq. (18.15.14) is:

U(ρ,φ)= ejkρ cosφ u(v)+e−jkρ d(v) , v = ±2

√

k

π
ρ1/2 cos

φ

2

U(ρ,φ)= e−jkρ cosφ u(v)+e−jkρ d(v) , v = ±2

√

k

π
ρ1/2 sin

φ

2

(18.15.15)

Shifting the origin of the angle φ still leads to a solution. Indeed, defining φ′ =
φ±α, we note the property ∂/∂φ′ = ∂/∂φ, which implies the invariance of the Laplace

operator under this change. The functions U(ρ,φ ± α) are the elementary solutions

from which the Sommerfeld solution is built.

Considering the TE case first, the incident plane wave in Fig. 18.15.1 is E = ẑEi,

where Ei = E0e
−jk·r, with r = x̂ρ cosφ + ŷρ sinφ and k = −k(x̂ cosα + ŷ sinα). It

follows that:

k · r = −kρ(cosφ cosα+ sinφ sinα)= −kρ cos(φ−α)

Ei = E0e
−jk·r = E0e

jkρ cos(φ−α)
(18.15.16)

The image of this electric field with respect to the perfect conducting plane will

be the reflected field Er = −E0e
−jkr·r, where kr = k(−x̂ cosα + ŷ sinα), resulting in

Er = −E0e
jkρ cos(φ+α). The sum Ei + Er does vanish for φ = 0 and φ = 2π, but it also

vanishes for φ = π. Therefore, it is an appropriate solution for a full conducting plane

(the entire xz-plane), not for the half-plane.

Sommerfeld’s solution, which satisfies the correct boundary conditions, is obtained

by forming the linear combinations of the solutions of the type of Eq. (18.15.14):

Ez = E0

[

ejkρ cosφi D(vi)−ejkρ cosφr D(vr)
]

(TE) (18.15.17)

where

φi = φ−α, vi = 2

√

k

π
ρ1/2 cos

φi
2

φr = φ+α, vr = 2

√

k

π
ρ1/2 cos

φr
2

(18.15.18)

For the TM case, we form the sum instead of the difference:

Hz = H0

[

ejkρ cosφi D(vi)+ejkρ cosφr D(vr)
]

(TM) (18.15.19)

The boundary conditions (18.15.3) are satisfied by both the TE and TM solutions.

As we see below, the choice of the positive sign in the definitions of vi and vr was

required in order to produce the proper diffracted field in the shadow region. Using the

alternative forms (18.15.15), we separate the terms of the solution as follows:

Ez = E0e
jkρ cosφi u(vi)−E0e

jkρ cosφr u(vr)+E0e
−jkρ[d(vi)−d(vr)

]

(18.15.20)
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The first two terms correspond to the incident and reflected fields. The third term is

the diffracted field. The algebraic signs of vi and vr are as follows within the reflection,

transmission, and shadow regions of Eq. (18.15.4):

reflection region: 0 ≤ φ < π−α, vi > 0, vr > 0

transmission region: π−α < φ < π+α, vi > 0, vr < 0

shadow region: π+α < φ ≤ 2π, vi < 0, vr < 0

(18.15.21)

The unit-step functions will be accordingly present or absent resulting in the follow-

ing fields in these three regions:

reflection region: Ez = Ei + Er + Ed
transmission region: Ez = Ei + Ed
shadow region: Ez = Ed

(18.15.22)

where we defined the incident, reflected, and diffracted fields:

Ei = E0e
jkρ cosφi

Er = −E0e
jkρ cosφr

Ed = E0e
−jkρ[d(vi)−d(vr)

]

(18.15.23)

The diffracted field is present in all three regions, and in particular it is the only one

in the shadow region. For large vi and vr (positive or negative), we may replace d(v) by

its asymptotic form d(v)= −(1− j)/(2πv) of Eq. (18.14.6), resulting in the asymptotic

diffracted field:

Ed = −E0e
−jkρ 1− j

2π

(
1

vi
− 1

vr

)

= −E0e
−jkρ 1− j

2π2
√
k/πρ1/2

(

1

cos(φi/2)
− 1

cos(φr/2)

)

which can be written in the form:

Ed = E0
e−jkρ

ρ1/2
Dedge (18.15.24)

with an edge-diffraction coefficient:

Dedge = − 1− j
4
√
πk

⎛

⎜
⎜
⎝

1

cos
φi
2

− 1

cos
φr
2

⎞

⎟
⎟
⎠ (18.15.25)

Using a trigonometric identity, we may write Dedge as follows:

Dedge = − 1− j
4
√
πk

⎛

⎜
⎜
⎝

1

cos
φ−α

2

− 1

cos
φ+α

2

⎞

⎟
⎟
⎠ = −

1− j√
πk

sin
φ

2
sin

α

2
cosφ+ cosα

(18.15.26)
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Eqs. (18.15.22) and (18.15.24) capture the essence of the geometrical theory of diffrac-

tion: In addition to the ordinary incident and reflected geometric optics rays, one also

has diffracted rays in all directions corresponding to a cylindrical wave emanating from

the edge with a directional gain of Dedge.

For the case of Fig. 18.15.2, the incident and reflected plane waves have propagation

vectors k = k(ẑ cosα − ŷ sinα) and kr = k(ẑ cosα + ŷ sinα). These correspond to

the incident and reflected fields:

Ei = E0e
−jk·r = E0e

−jkρ cos(φ+α) , Er = −E0e
−jkr·r = −E0e

−jkρ cos(φ−α)

In this case, the Sommerfeld TE and TM solutions take the form:

Ez = E0

[

e−jkρ cosφi D(vi)−e−jkρ cosφr D(vr)
]

Hz = H0

[

e−jkρ cosφi D(vi)+e−jkρ cosφr D(vr)
] (18.15.27)

where, now:

φi = φ+α, vi = 2

√

k

π
ρ1/2 sin

φi
2

φr = φ−α, vr = −2

√

k

π
ρ1/2 sin

φr
2

(18.15.28)

The choice of signs in vi and vr are such that they are both negative within the

shadow region defined by Eq. (18.15.5). The same solution can also be obtained from

Fig. 18.15.1 and Eq. (18.15.17) by replacing α by π−α.

18.16 Rayleigh-Sommerfeld Diffraction Theory

In this section, we recast Kirchhoff’s diffraction formula in a form that uses a Dirich-

let Green’s function (i.e., one that vanishes on the boundary surface) and obtain the

Rayleigh-Sommerfeld diffraction formula. In the next section, we show that this refor-

mulation is equivalent to the plane-wave spectrum approach to diffraction, and use it

to justify the modified forms (18.1.2) and (18.1.3) of the field equivalence principle. In

Sec. 18.18, we use it to obtain the usual Fresnel and Fraunhofer approximations and

discuss a few applications from Fourier optics.

We will work with the scalar case, but the same method can be used for the vector

case. With reference to Fig. 18.16.1, we we consider a scalar field E(r) that satisfies the

source-free Helmholtz equation, (∇2 + k2)E(r)= 0, over the right half-space z ≥ 0.

We consider a closed surface consisting of the surface S∞ of a sphere of very large

radius centered at the observation point r and bounded on the left by its intersection S

with the xy plane, as shown in the Fig. 18.16.1. Clearly, in the limit of infinite radius,

the volume V bounded by S+S∞ is the right half-space z ≥ 0, and S becomes the entire

xy plane. Applying Eq. (18.10.3) to volume V, we have:

∫

V

[

G(∇′2E + k2E)−E (∇′2G+ k2G)
]

dV′ = −
∮

S+S∞

[

G
∂E

∂n′
− E ∂G

∂n′

]

dS′ (18.16.1)
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Fig. 18.16.1 Fields determined from their values on the xy-plane surface.

The surface integral over S∞ can be ignored by noting that n̂ is the negative of the

radial unit vector and therefore, we have after adding and subtracting the term jkEG:

−
∮

S∞

[

G
∂E

∂n′
− E ∂G

∂n′

]

dS′ =
∮

S∞

[

G

(
∂E

∂r
+ jkE

)

− E
(
∂G

∂r
+ jkG

)]

dS′

Assuming Sommerfeld’s outgoing radiation condition:

r

(
∂E

∂r
+ jkE

)

→ 0 , as r →∞

and noting that G = e−jkr/4πr also satisfies the same condition, it follows that the

above surface integral vanishes in the limit of large radius r. Then, in the notation of

Eq. (18.10.4), we obtain the standard Kirchhoff diffraction formula:

E(r)uV(r)=
∮

S

[

E
∂G

∂n′
−G ∂E

∂n′

]

dS′ (18.16.2)

Thus, if r lies in the right half-space, the left-hand side will be equal to E(r), and if r

is in the left half-space, it will vanish. Given a point r = (x, y, z), we define its reflection

relative to the xy plane by r− = (x, y,−z). The distance between r− and a source point

r′ = (x′, y′, z′) can be written in terms of the distance between the original point r and

the reflected source point r′− = (x′, y′,−z′):

R− = |r− − r′| =
√

(x− x′)2+(y − y′)2+(z+ z′)2 = |r− r′−|

whereas

R = |r− r′| =
√

(x− x′)2+(y − y′)2+(z− z′)2
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This leads us to define the reflected Green’s function:

G−(r, r′)= e−jkR−

4πR−
= G(r− r′−)= G(r− − r′) (18.16.3)

and the Dirichlet Green’s function:

Gd(r, r
′)= G(r, r′)−G−(r, r′)= e−jkR

4πR
− e

−jkR−

4πR−
(18.16.4)

For convenience, we may choose the origin to lie on the xy plane. Then, as shown

in Fig. 18.16.1, when the source point r′ lies on the xy plane (i.e., z′ = 0), the function

Gd(r, r
′) will vanish because R = R−. Next, we apply Eq. (18.16.2) at the observation

point r in the right half-space and at its reflection in the left half-plane, where (18.16.2)

vanishes:

E(r) =
∮

S

[

E
∂G

∂n′
−G ∂E

∂n′

]

dS′ , at point r

0 =
∮

S

[

E
∂G−
∂n′

−G− ∂E
∂n′

]

dS′ , at point r−

where G− stands for G(r− − r′). But on the xy plane boundary, G− = G so that if we

subtract the two expressions we may eliminate the term ∂E/∂n′, which is the reason

for using the Dirichlet Green’s function:†

E(r)=
∮

S
E(r′)

∂

∂n′
(G−G−)dS′ =

∮

S
E(r′)

∂Gd
∂n′

dS′

On the xy plane, we have n̂ = ẑ, and therefore

∂G

∂n′
= ∂G

∂z′

∣
∣
∣
∣
z′=0

and
∂G−
∂n′

= ∂G−
∂z′

∣
∣
∣
∣
z′=0

= − ∂G

∂z′

∣
∣
∣
∣
z′=0

Then, the two derivative terms double resulting in the Rayleigh-Sommerfeld diffrac-

tion formula [1285,1286]:

E(r)= 2

∮

S
E(r′)

∂G

∂z′
dS′ (Rayleigh-Sommerfeld) (18.16.5)

The indicated derivative of G can be expressed as follows:

∂G

∂z′

∣
∣
∣
∣
z′=0

= z

R

(

jk+ 1

R

)
e−jkR

4πR
= cosθ

(

jk+ 1

R

)
e−jkR

4πR
(18.16.6)

where θ is the angle between the z-axis and the direction between the source and obser-

vation points, as shown in Fig. 18.16.1. For distances R≫ λ, or equivalently, k≫ 1/R,

one obtains the approximation:

∂G

∂z′

∣
∣
∣
∣
z′=0

= jk cosθ
e−jkR

4πR
, for R≫ λ (18.16.7)

†By adding instead of subtracting the above integrals, we obtain the alternative Green’s function Gs =
G+G−, having vanishing derivative on the boundary.

844 18. Radiation from Apertures

This approximation will be used in Sec. 18.18 to obtain the standard Fresnel diffrac-

tion representation. The quantity cosθ = z/R is an “obliquity” factor and is usually

omitted for paraxial observation points that are near the z axis.

Equation (18.16.5) expresses the field at any point in the right half-space in terms of

its values on the xy plane. In the practical application of this result, if the plane consists

of an infinite opaque screen with an aperture S cut in it, then the integration in (18.16.5)

is restricted only over the aperture S. The usual Kirchhoff approximations assume that:

(a) the field is zero over the opaque screen, and (b) the field, E(r′), over the aperture is

equal to the incident field from the left.

Eq. (18.16.5) is also valid in the vectorial case for each component of the electric field

E(r). However, these components are not independent of each other since they must

satisfy∇∇∇·E = 0, and are also coupled to the magnetic field through Maxwell’s equations.

Taking into account these constraints, one arrives at a modified form of (18.16.5). We

pursue this further in the next section.

18.17 Plane-Wave Spectrum Representation

The plane-wave spectrum representation builds up a (single-frequency) propagating

wave E(x, y, z) as a linear combination of plane waves e−j(kxx+kyy+kzz). The only as-

sumption is that the field must satisfy the wave equation, which for harmonic time

dependence ejωt is the Helmholtz equation

(∇2 + k2)E(x, y, z)= 0 , k = ω

c
(18.17.1)

where c is the speed of light in the propagation medium (assumed here to be homoge-

neous, isotropic, and lossless.) In solving the Helmholtz equation, one assumes initially

a solution of the form:

E(x, y, z)= Ê(kx, ky, z)e−jkxxe−jkyy

Inserting this into Eq. (18.17.1) and replacing ∂x → −jkx and ∂y → −jky, we obtain:

(

−k2
x − k2

y +
∂2

∂z2
+ k2

)

Ê(kx, ky, z)= 0

or, defining k2
z = k2 − k2

x − k2
y, we have:

∂2Ê(kx, ky, z)

∂z2
= −(k2 − k2

x − k2
y)Ê(kx, ky, z)= −k2

z Ê(kx, ky, z)

Its solution describing forward-moving waves (z ≥ 0) is:

Ê(kx, ky, z)= Ê(kx, ky,0)e−jkzz (18.17.2)

If k2
x + k2

y < k2, the wavenumber kz is real-valued and the solution describes a

propagating wave. If k2
x + k2

y > k
2, then kz is imaginary and the solution describes an
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evanescent wave decaying with distance z. The two cases can be combined into one by

defining kz in terms of the evansecent square-root of Eq. (7.7.9) as follows:

kz =

⎧

⎪⎨

⎪⎩

√

k2 − k2
x − k2

y , if k2
x + k2

y ≤ k2

−j
√

k2
x + k2

y − k2 , if k2
x + k2

y > k
2

(18.17.3)

In the latter case, we have the decaying solution:

Ê(kx, ky, z)= Ê(kx, ky,0)e−z
√

k2
x+k2

y−k2

, z ≥ 0

The complete space dependence is Ê(kx, ky,0)e
−jkxx−jkyye−jkzz. The most general

solution of Eq. (18.17.1) is obtained by adding up such plane-waves, that is, by the spatial

two-dimensional inverse Fourier transform:

E(x, y, z)=
∫∞

−∞

∫∞

−∞
Ê(kx, ky,0)e

−jkxx−jkyye−jkzz
dkx dky

(2π)2
(18.17.4)

This is the plane-wave spectrum representation. Because kz is given by Eq. (18.17.3),

this solution is composed, in general, by both propagating and evanescent modes. Of

course, for large z, only the propagating modes survive. Setting z = 0, we recognize

Ê(kx, ky,0) to be the spatial Fourier transform of the field, E(x, y,0), on the xy plane:

E(x, y,0) =
∫∞

−∞

∫∞

−∞
Ê(kx, ky,0)e

−jkxx−jkyy dkx dky
(2π)2

Ê(kx, ky,0) =
∫∞

−∞

∫∞

−∞
E(x, y,0)ejkxx+jkyy dxdy

(18.17.5)

As in Chap. 3, we may give a system-theoretic interpretation to these results. Defin-

ing the “propagation” spatial filter ĝ(kx, ky, z)= e−jkzz, then Eq. (18.17.2) reads:

Ê(kx, ky, z)= ĝ(kx, ky, z)Ê(kx, ky,0) (18.17.6)

This multiplicative relationship in the wavenumber domain translates into a convo-

lutional equation in the space domain. Denoting by g(x, y, z) the spatial inverse Fourier

transform of ĝ(kx, ky, z)= e−jkzz, that is,

g(x, y, z)=
∫∞

−∞

∫∞

−∞
e−jkxx−jkyye−jkzz

dkx dky

(2π)2
(18.17.7)

we may write Eq. (18.17.4) in the form:

E(x, y, z)=
∫∞

−∞

∫∞

−∞
E(x′, y′,0)g(x− x′, y − y′, z)dx′ dy′ (18.17.8)

Eq. (18.17.8) is equivalent to the Rayleigh-Sommerfeld formula (18.16.5). Indeed, it

follows from Eq. (D.19) of Appendix D that

g(x− x′, y − y′, z)= −2
∂G

∂z
= 2

∂G

∂z′
, G = e−jkR

4πR
, R = |r− r′| (18.17.9)
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with the understanding that z′ = 0. Thus, (18.17.8) takes the form of (18.16.5).

Next, we discuss the vector case as it applies to electromagnetic fields. To simplify

the notation, we define the two-dimensional transverse vectors r⊥ = x̂x+ ŷy and k⊥ =
x̂kx + ŷky, as well as the transverse gradient ∇∇∇⊥ = x̂∂x + ŷ∂y, so that the full three-

dimensional gradient is

∇∇∇ = x̂∂x ++ŷ∂y + ẑ∂z =∇∇∇⊥ + ẑ∂z

In this notation, Eq. (18.17.6) reads Ê(k⊥, z)= ĝ(k⊥, z)Ê(k⊥,0), with g(k⊥, z)=
e−jkzz. The plane-wave spectrum representations (18.17.4) and (18.17.8) now are (where

the integral sign denotes double integration):

E(r⊥, z) =
∫∞

−∞
Ê(k⊥,0) e−jkzz e−jk⊥·r⊥

d2k⊥
(2π)2

=
∫∞

−∞
E(r⊥′,0)g(r⊥ − r⊥′, z)d2r⊥′

(18.17.10)

and

g(r⊥, z)=
∫∞

−∞
e−jkzz e−jk⊥·r⊥

d2k⊥
(2π)2

(18.17.11)

In the vectorial case, E(r⊥, z) is replaced by a three-dimensional field, which can be

decomposed into its transverse x, y components and its longitudinal part along z:

E = x̂Ex + ŷEy + ẑEz ≡ E⊥ + ẑEz

The Rayleigh-Sommerfeld and plane-wave spectrum representations apply separately

to each component and can be written vectorially as

E(r⊥, z)=
∫∞

−∞
Ê(k⊥,0) e−jkzz e−jk⊥·r⊥

d2k⊥
(2π)2

=
∫∞

−∞
E(r⊥′,0)g(r⊥ − r⊥′, z)d2r⊥′

(18.17.12)

Because E must satisfy the source-free Gauss’s law, ∇∇∇ · E = 0, this imposes certain

constraints among the Fourier componentsÊ that must be taken into account in writing

(18.17.12). Indeed, we have from (18.17.12)

∇∇∇ · E = −j
∫∞

−∞
k ·Ê(k⊥,0) e−jkzz e−jk⊥·r⊥ d2k⊥

(2π)2
= 0

which requires that k · Ê(k⊥,0)= 0. Separating the transverse and longitudinal parts,

we have:

k ·Ê = k⊥ ·Ê⊥ + kzÊz = 0 ⇒ Êz = −k⊥ ·Ê⊥
kz

It follows that the Fourier vector Ê must have the form:

Ê = Ê⊥ + ẑ Êz = Ê⊥ − ẑ
k⊥ ·Ê⊥
kz

(18.17.13)
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and, therefore, it is expressible only in terms of its transverse components Ê⊥. Then,

the correct plane-wave spectrum representation (18.17.12) becomes:

E(r⊥, z)=
∫∞

−∞

(

Ê⊥(k⊥,0)−ẑ
k⊥ ·Ê⊥(k⊥,0)

kz

)

e−jkzz e−jk⊥·r⊥
d2k⊥
(2π)2

(18.17.14)

But from the Weyl representations (D.18) and (D.20), we have with G = e−jkr/4πr:

−2
∂G

∂z
=
∫∞

−∞
e−jkzz e−jk⊥·r⊥

d2k⊥
(2π)2

, −2∇∇∇⊥G =
∫∞

−∞
k⊥
kz
e−jkzz e−jk⊥·r⊥

d2k⊥
(2π)2

Then, (18.17.14) can be written convolutionally in the form:

E(r⊥, z)= −2

∫ [

E⊥
∂G

∂z
− ẑ∇∇∇⊥G · E⊥

]

d2r⊥′ (18.17.15)

where here G = e−jkR/4πR with R = |r− r′| and z′ = 0, that is, R =
√

|r⊥ − r′⊥|2 + z2,

and E⊥ in the integrand stands for E⊥(r⊥′,0). Eq. (18.17.15) follows from the observation

that in (18.17.14) the following products of Fourier transforms (in k⊥) appear, which

become convolutions in the r⊥ domain:

Ê⊥(k⊥,0)·e−jkzz and Ê⊥(k⊥,0)·
(

k⊥
kz
e−jkzz

)

Because E⊥(r⊥′,0) does not depend on r, it is straightforward to verify using some

vector identities that

ẑ∇∇∇⊥G · E⊥ − E⊥
∂G

∂z
=∇∇∇× (ẑ× E⊥G) (18.17.16)

This gives rise to the Rayleigh-Sommerfeld-type equation for the vector case:

E(r⊥, z)= 2∇∇∇×
∫

ẑ× E⊥(r⊥′,0)G(R)d2r⊥′ (18.17.17)

which can be abbreviated as

E(r)= 2∇∇∇×
∫

S
ẑ× E⊥GdS′ (18.17.18)

The magnetic field can be determined from Faraday’s law,∇∇∇× E = −jωμH :

H(r)= 2

−jωμ∇∇∇× E = 2

−jωμ∇∇∇×
(∇∇∇×

∫

S
ẑ× E⊥GdS′

)

(18.17.19)

The same results can be derived more directly by using the Franz formulas (18.10.13)

and making use of the extinction theorem as we did in Sec. 18.16. Applying (18.10.13)

to the closed surface S + S∞ of Fig. 18.16.1, and dropping the S∞ term, it follows that

the left-hand side of (18.10.13) will be zero if the point r is not in the right half-space.

To simplify the notation, we define the vectors:†

e =
∫

S
G(ẑ× E)dS′ , h =

∫

S
G(ẑ×H)dS′

†In the notation of Eq. (18.10.12), we have e = Ams/ǫ and h = A s/μ.
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where we took S to be the xy plane with the unit vector n̂ = ẑ. Then, Eqs. (18.10.13) and

(18.10.14) can be written as:

E(r)= 1

jωǫ
∇∇∇× (∇∇∇× h)+∇∇∇× e , H(r)= 1

−jωμ∇∇∇× (∇∇∇× e)+∇∇∇× h

Noting that e,h are transverse vectors and using some vector identities and the de-

composition∇∇∇ =∇∇∇⊥+ ẑ∂z, we can rewrite the above in a form that explicitly separates

the transverse and longitudinal parts, so that if r is in the right half-space:

E(r) = 1

jωǫ

[∇∇∇⊥ × (∇∇∇⊥ × h)−∂2
zh+ ẑ∂z(∇∇∇⊥ · h)

]+∇∇∇⊥ × e+ ẑ× ∂ze

H(r) = 1

−jωμ
[∇∇∇⊥ × (∇∇∇⊥ × e)−∂2

ze+ ẑ∂z(∇∇∇⊥ · e)
]+∇∇∇⊥ × h+ ẑ× ∂zh

(18.17.20)

If r is chosen to be the reflected point r− on the left half-space, then G− = G and the

vectors e,h remain the same, but the gradient with respect to r− is now∇∇∇− =∇∇∇⊥− ẑ∂z,

arising from the replacement z → −z. Thus, replacing ∂z → −∂z in (18.17.20) and

setting the result to zero, we have:

0 = 1

jωǫ

[∇∇∇⊥ × (∇∇∇⊥ × h)−∂2
zh− ẑ∂z(∇∇∇⊥ · h)

]+∇∇∇⊥ × e− ẑ× ∂ze

0 = 1

−jωμ
[∇∇∇⊥ × (∇∇∇⊥ × e)−∂2

ze− ẑ∂z(∇∇∇⊥ · e)
]+∇∇∇⊥ × h− ẑ× ∂zh

(18.17.21)

Separating (18.17.21) into its transverse and longitudinal parts, we have:

1

jωǫ

[∇∇∇⊥ × (∇∇∇⊥ × h)−∂2
zh
] = ẑ× ∂ze , 1

jωǫ

[

ẑ∂z(∇∇∇⊥ · h)
] =∇∇∇⊥ × e

1

−jωμ
[∇∇∇⊥ × (∇∇∇⊥ × e)−∂2

ze
] = ẑ× ∂zh , 1

−jωμ
[

ẑ∂z(∇∇∇⊥ · e
] =∇∇∇⊥ × h

(18.17.22)

Using these conditions into Eq. (18.17.20), we obtain the doubling of terms:

E(r) = 2∇∇∇⊥ × e+ 2 ẑ× ∂ze = 2∇∇∇× e

H(r) = 2

−jωμ
[∇∇∇⊥ × (∇∇∇⊥ × e)−∂2

ze+ ẑ∂z(∇∇∇⊥ · e)
] = 2

−jωμ∇∇∇× (∇∇∇× e)

(18.17.23)

which are the same as Eqs. (18.17.18) and (18.17.19). Alternatively, we may express the

diffracted fields in terms of the values of the magnetic field at the xy surface:

E(r) = 2

jωǫ

[∇∇∇⊥ × (∇∇∇⊥ × h)−∂2
zh+ ẑ∂z(∇∇∇⊥ · h)

] = 2

jωǫ
∇∇∇× (∇∇∇× h)

H(r) = 2∇∇∇⊥ × h+ 2 ẑ× ∂zh = 2∇∇∇× h

(18.17.24)

Eqs. (18.17.18) and (18.17.24) are equivalent to applying the Franz formulas with the

field-equivalent surface currents of Eqs. (18.1.2) and (18.1.3), respectively.

As in the scalar case, the vector method is applied in practice by dividing S into

two parts, the screen over which the tangential fields are assumed to be zero, and the

aperture over which the fields are assumed to arise from incident fields from the left.
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Example 18.17.1: Oblique Plane Wave. Here, we show that the plane-wave spectrum method

correctly generates an ordinary plane wave from its transverse values at an input plane.

Consider a TM electromagnetic wave propagating at an angle θ0 with respect to the z axis,

as shown in the figure below. The electric field at an arbitrary point, and its transverse

part evaluated on the plane z′ = 0, are given by

E(r⊥, z) = E0(x̂ cosθ0 − ẑ sinθ0)e
−j(k0

xx+k0
zz)

E⊥(r⊥′,0) = x̂E0 cosθ0 e
−jk0

xx
′ = x̂E0 cosθ0e

−jk0⊥·r⊥′

k0
x = k sinθ0 , k0

y = 0 , k0
z = k cosθ0

k0
⊥ = x̂k0

x + ŷk0
y = x̂k sinθ0

It follows that the spatial Fourier transform of E⊥(r⊥′,0) will be

Ê⊥(k⊥,0)=
∫∞

−∞
x̂E0 cosθ0 e

−jk0⊥·r⊥′ ejk⊥·r⊥
′
d2r⊥′ = x̂E0 cosθ0(2π)

2δ(k⊥ − k0
⊥)

Then, the integrand of Eq. (18.17.14) becomes

Ê⊥ − ẑ
k⊥ ·Ê⊥
kz

= E0(x̂ cosθ0 − ẑ sinθ0)(2π)
2δ(k⊥ − k0

⊥)

and Eq. (18.17.14) gives

E(r⊥, z) =
∫∞

−∞
E0(x̂ cosθ0 − ẑ sinθ0)(2π)

2δ(k⊥ − k0
⊥)e

−jkzz e−jk⊥·r⊥
d2k⊥
(2π)2

= E0(x̂ cosθ0 − ẑ sinθ0)e
−j(k0

xx+k0
zz)

which is the correct expression for the plane wave. For a TE wave a similar result holds. ⊓⊔

18.18 Fresnel Diffraction and Fourier Optics

The Fresnel approximation for planar apertures is obtained from the Rayleigh-Sommerfeld

formula (18.16.5). Using (18.16.6), we have:

E(r⊥, z)=
∫

S
E(r⊥′,0)

2z

R

(

jk+ 1

R

)
e−jkR

4πR
d2r⊥′ (18.18.1)

where R =
√

(x− x′)2+(y − y′)2+z2 =
√

|r⊥ − r⊥′|2 + z2. The Fresnel approximation

assumes that z is large enough such that |r⊥ − r⊥′| ≪ z, which can realized if the

aperture has dimension d so that |r⊥′| < d, and one assumes that the observation point

r⊥ remains close to the z-axis (the paraxial approximation) such that |r⊥| < d, and z is

chosen such that z≫ d. Then, we can approximate R as follows:

R =
√

|r⊥ − r⊥′|2 + z2 = z
√

1+ |r⊥ − r⊥′|2
z2

≃ z
[

1+ 1

2

|r⊥ − r⊥′|2
z2

]

= z+ |r⊥ − r⊥′|2
2z
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where we used the Taylor series expansion
√

1+ x ≃ 1+ x/2. Assuming also that R or

z is much greater than the wavelength of the wave, z≫ λ, so that k≫ 1/R we obtain

2z

R

(

jk+ 1

R

)
e−jkR

4πR
≃ jke

−jk(z+|r⊥−r⊥′|2/2z)

2πz
= jk

2πz
e−jkz e−jk|r⊥−r⊥′|2/2z (18.18.2)

where we set R ≃ z in the amplitude factors, but kept the quadratic approximation in

the phase e−jkR. The Fresnel approximation is finally:

E(r⊥, z)= jk

2πz
e−jkz

∫

S
E(r⊥′,0) e−jk|r⊥−r⊥′|2/2z d2r⊥′ (Fresnel) (18.18.3)

This amounts to replacing the propagator impulse response g(r⊥, z) by the approx-

imation of Eq. (18.18.2):

g(r⊥, z)= jk

2πz
e−jkz e−jk|r⊥|

2/2z = jk

2πz
e−jkz e−jk(x

2+y2)/2z (Fresnel) (18.18.4)

Noting that k = 2π/λ, the constant factor in front is often written as:

jk

2πz
= j

λz

The above approximations can also be understood from the plane-wave spectrum

point of view. The Fourier transform of (18.18.4) is obtained from the following Fourier

integral, which is a special case of Eq. (3.5.18):

√

jk

2πz

∫∞

−∞
e−jkx

2/2z ejkxx dx = ejk2
xz/2k (18.18.5)

Applying (18.18.5) with respect to the x and y integrations, we obtain the two-

dimensional spatial Fourier transform of g(r⊥, z):

ĝ(k⊥, z)= e−jkz ej(k2
x+k2

y)z/2k = e−jkz ej|k⊥|2z/2k (18.18.6)

Then, Eq. (18.18.3) can be written in its plane-wave spectrum form:

E(r⊥, z)= e−jkz
∫∞

−∞
Ê(k⊥,0) ej|k⊥|

2z/2k e−jk⊥·r⊥
d2k⊥
(2π)2

(18.18.7)

Eq. (18.18.6) can be obtained from the exact form ĝ(k⊥, z)= e−jkzz by assuming

that for large z the evanescent modes will be absent and assuming the approximation

k2
x + k2

y ≪ k2 for the propagating modes. Then, we can write:

kz =
√

k2 − |k⊥|2 = k
√

1− |k⊥|
2

k2
≃ k

[

1− 1

2

|k⊥|2
k2

]

= k− |k⊥|
2

2k

and, hence

e−jkzz ≃ e−jkz ej|k⊥|2z/2k
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Because of the assumption |k⊥| ≪ k, the maximum transverse wavenumber will

be |k⊥| = k = 2π/λ, and correspondingly the smallest achievable transverse spatial

resolution will be Δr⊥ ∼ 1/|k⊥| ∼ λ, that is, about one wavelength. This is the basic

diffraction limit of optical instruments, such as lenses and microscopes.

Near-field optics methods [530–548], where the evanescent modes are not ignored,

overcome this limitation and can achieve much higher, subwavelength, resolutions.

Although ordinary lenses are diffraction-limited, it has been shown recently [394]

that “superlenses” made from metamaterials having negative refractive index can achieve

perfect resolution.

In the special case when the aperture field E(x′, y′,0) depends only on one trans-

verse coordinate, say, E(x′,0), the dependence of (18.18.3) on the y direction can be

integrated out using the integral

√

jk

2πz

∫∞

−∞
e−jk(y−y

′)2/2z dy′ = 1 (18.18.8)

and we obtain the following one-dimensional version of the Fresnel formula, written

convolutionally and in its plane-wave spectrum form:

E(x, z) =
√

jk

2πz
e−jkz

∫∞

−∞
E(x′,0) e−jk(x−x

′)2/2z dx′

= e−jkz
∫∞

−∞
Ê(kx,0) e

jk2
xz/2k

dkx
2π

(18.18.9)

The Fraunhofer approximation is a limiting case of the Fresnel approximation when

the distance z is even larger than that in the Fresnel case. More precisely, it is obtained

in the far-field limit when k|r⊥′|2 ≪ z, or, d2 ≪ λz, where d is the size of the aperture.

In this approximation, the field E(r⊥, z) becomes proportional to the Fourier trans-

form Ê(k⊥,0) of the field at the input plane. It is similar to the radiation-field approxi-

mation in which the radiation fields are proportional to Fourier transform of the current

sources, that is, to the radiation vector.

A direct way of deriving the Fraunhofer approximation is by applying the stationary-

phase approximation—Eq. (F.22) of Appendix F—to the evaluation of the plane-wave

spectrum integral (18.18.7). Define the phase function

φ(k⊥)= |k⊥|2z
2k

− k⊥ · r⊥ =
[

k2
xz

2k
− kxx

]

+
[

k2
yz

2k
− kyy

]

≡ φx(kx)+φy(ky)

Then, the stationary-point with respect to the kx variable is

φ′x(kx)=
kxz

k
− x = 0 ⇒ kx = xk

z
, φ′′x (kx)=

z

k

and similar expressions for φy(ky). Thus, vectorially, the stationary point is at k⊥ =
kr⊥/z. Using Eq. (F.22), we obtain:

∫∞

−∞
Ê(k⊥,0) ejφ(k⊥)

d2k⊥
(2π)2

≃
√

2πj

φ′′x (kx)
· 2πj

φ′′y (ky)

[

Ê(k⊥,0) ejφ(k⊥)
1

(2π)2

]

k⊥= kr⊥
z
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Noting that φ(k⊥)= −k|r⊥|2/2z at k⊥ = kr⊥/z, we finally find:

E(r⊥, z)= jk

2πz
e−jkz e−jk|r⊥|

2/2z
[

Ê(k⊥,0)
]

k⊥= kr⊥
z

(Fraunhofer) (18.18.10)

A simpler way of deriving (18.18.10) is by using (18.18.3) and noting that

e−jk|r⊥−r⊥′|2/2z = e−jk|r⊥|2/2z e−jk|r⊥′|2/2z ejkr⊥·r⊥′/z

The factor e−jk|r⊥
′|2/2z can be ignored if we assume that k|r⊥′|2 ≪ z, which leads to:

E(r⊥, z)= jk

2πz
e−jkz e−jk|r⊥|

2/2z

∫∞

−∞
E(r⊥′,0) ejkr⊥·r⊥′/z d2r⊥′

and the last integral factor is recognized as Ê(k⊥,0) evaluated at k⊥ = kr⊥/z.

Example 18.18.1: Knife-Edge Diffraction. Let us revisit the problem of knife-edge diffraction

using the Fresnel formula (18.18.3). The infinite edge is along the y direction and it occu-

pies the region x < 0, as shown in the figure below. The incident plane-wave field and the

diffracted field at distance z are:

Einc(x, z)= E0e
−jkz

E(x, z)=
√

jk

2πz
e−jkz

∫∞

−∞
E(x′,0) e−jk(x−x

′)2/2z dx′

At the input plane, E(x′,0)= E0, for x′ ≥ 0, and E(x′,0)= 0, for x′ < 0. Then, the above

integral becomes:

E(x, z)= E0e
−jkz

√

jk

2πz

∫ ∞

0
e−jk(x−x

′)2/2z dx′

Making the change of variables,
√

k

2z
(x′ − x)=

√
π

2
u , v =

√

k

πz
x

the above integral can be reduced to the Fresnel integral F(x) of Appendix F:

E(x, z)= E0e
−jkz

√

j

2

∫∞

−v
e−jπu

2/2 du = E0e
−jkz 1

1− j
[

F(v)+1− j
2

]

This is identical (up to the paraxial assumption) to the case discussed in Sec. 18.14. When

x < 0, the observation point lies in the shadow region. ⊓⊔

Example 18.18.2: Diffraction by an infinite slit. Consider an infinite slit on an opaque screen.

The y-dimension of the slit is infinite and its x-size is |x| ≤ a, as shown on the left in the

figure below. The same figure also shows an opaque strip of the same size.



18.18. Fresnel Diffraction and Fourier Optics 853

The incident field is a uniform plane wave, Einc(x, z)= E0e
−jkz, whose values on the slit

are E(x′,0)= E0. The diffracted field at distance z is given by Eq. (18.18.9):

E(x, z)=
√

jk

2πz
e−jkz

∫∞

−∞
E(x′,0) e−jk(x−x

′)2/2z dx′ = E0

√

jk

2πz
e−jkz

∫ a

−a
e−jk(x−x

′)2/2z dx′

The integral can be reduced to the Fresnel integral F(x) of Appendix F by making the

change of variables:

√

k

2z
(x′ − x)=

√
π

2
u , v± =

√

k

πz
(±a− x)

so that

√

jk

2πz

∫ a

−a
e−jk(x−x

′)2/2z dx′ =
√

j

2

∫ v+

v−
e−jπu

2/2 du = F(v+)−F(v−)
1− j ≡ D(x, z)

where we used
√

j/2 = 1/(1− j). Thus, E(x, z) becomes:

E(x, z)= e−jkzD(x, z) (18.18.11)

For the case of the strip, the limits of integration are changed to:

√

jk

2πz

(∫ ∞

a
+
∫ −a

−∞

)

e−jk(x−x
′)2/2z dx′ = F(∞)−F(v+)+F(v−)−F(−∞)

1− j = 1−D(x, z)

where we used F(∞)= −F(−∞)= (1 − j)/2. Thus, the diffracted field in the strip case

will be given by the complementary expression

E(x, z)= e−jkz [1−D(x, z)] (18.18.12)

This result is an example of the Babinet principle [634] that the sum of the fields from an

aperture and its complementary screen is equal to the field in the absence of the aperture:

Eslit(x, z)+Estrip(x, z)= e−jkz

Fig. 18.18.1 shows the diffracted patterns in the two cases. The graphs plot the quantities

|D(x, z)| and |1−D(x, z)| versus x in the two cases.

The slit was chosen to be four wavelengths wide, a = 4λ, and the diffracted patterns

correspond to the near, medium, and far distances z = a, z = 20a, and z = 100a. The

latter case corresponds to the Fraunhofer pattern having a small ratio a2/λz = 1/25.

For example, for the slit case, the corresponding pattern approximates (but it is not quite

there yet) the typical sinc-function Fourier transform of the rectangular slit distribution

E(x′,0)= E0, for −a ≤ x′ ≤ a :

Ê(kx,0)=
∫ a

−a
E0 e

jkxx
′
dx′ = 2aE0

sin(kxa)

kxa

where this is to be evaluated at kx = kx/z for the diffraction pattern E(x, z). The property

that at the center of the strip, x = 0, the diffracted pattern is not zero is an example of the

so-called Poisson’s spot [634]. ⊓⊔
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Fig. 18.18.1 Fresnel diffraction by a slit and a strip

18.19 Lenses

In Fourier optics applications, one considers the passage of light through various optical

elements that perform certain functions, such as Fourier transformation using lenses.

For example, Fig. 18.19.1 shows an input field starting at aperture plane a, then prop-

agating a distance z1 to a thin optical element where it is modified by a transmittance

function, and then propagating another distance z2 to an aperture plane b.

Fig. 18.19.1 Field propagated from plane a to plane b through a thin optical element.

Assuming that the input/output relationship of the optical element is multiplicative,

E+(r⊥)= T(r⊥)E−(r⊥), the relationship between the output field at plane b to the input

field at plane a is obtained by successively applying the propagation equation (18.17.10):

Eout(r⊥) =
∫

S
g(r⊥ − u⊥, z2)E+(u⊥)d2u⊥ =

∫

S
g(r⊥ − u⊥, z2)T(u⊥)E−(u⊥)d2u⊥

=
∫

S
g(r⊥ − u⊥, z2)T(u⊥)g(u⊥ − r⊥′, z1)Ein(r⊥′)d2u⊥ d2r⊥′

=
∫

S
h(r⊥, r⊥′)Ein(r⊥′)d2r⊥′
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where the overall transfer function from plane a to plane b will be:

h(r⊥, r⊥′)=
∫

S
g(r⊥ − u⊥, z2)T(u⊥)g(u⊥ − r⊥′, z1)d

2u⊥ (18.19.1)

where we labeled the spatial x, y coordinates by r⊥′,u⊥, and r⊥ on the planes (a), the

element, and plane (b).

In a similar fashion, one can work out the transfer function of more complicated

configurations. For example, passing through two transmittance elements as shown in

Fig. 18.19.2, we will have:

Eout(r⊥)=
∫

S
h(r⊥, r⊥′)Ein(r⊥′)d2r⊥′ (18.19.2)

where

h(r⊥, r⊥′)=
∫

S
g(r⊥ − u⊥, z2)T2(u⊥)g(u⊥ − v⊥, z0)T1(v⊥)g(v⊥ − r⊥′, z1)d

2u⊥ d2v⊥
(18.19.3)

Fig. 18.19.2 Field propagated from plane a to plane b through multiple optical elements.

Lenses are probably the most important optical elements. Their interesting proper-

ties arise from their transmittance function, which has the quadratic phase:

T(r⊥)= ejk|r⊥|2/2F = ejk(x2+y2)/2F (lens transmittance) (18.19.4)

where F is the focal length. Because the Fresnel propagation factor e−jk|r⊥|
2/2z also has

the same type of quadratic phase, but with the opposite sign, it is possible for lenses to act

as spatial “dispersion compensation” elements, much like the dispersion compensation

and pulse compression filters of Chap. 3. They have many uses, such as compensating

propagation effects and focusing the waves on appropriate planes, or performing spatial

Fourier transforms.

The transmittance function (18.19.4) can be derived with the help of Fig. 18.19.3,

which shows a wave entering from the left a (convex) spherical glass surface at a distance

x from the axis.

Let R and d denote the radius of the spherical element, and its maximum width

along its axis to the flat back plane, and let n be its refractive index. The wave travels a

distance a in air and a distance b in the glass. If k is the free-space wavenumber, then
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Fig. 18.19.3 Transmittance of a thin spherical lens.

in the glass it changes to kg = kn. Therefore, the wave will accumulate the following

phase as it propagates from the front plane to the back plane:

e−jka e−jkgb

where we are assuming a thin lens, which allows us to ignore the bending of the ray

arising from refraction. Because, a+ b = d, we have for the net phase:

φ(x)= ka+ kgb = ka+ nk(d− a)= nkd− (n− 1)ka

The distance a is easily seen from the above figure to be:

a = R−
√

R2 − x2

Assuming that x≪ R, we can expand the square root to get:

a = R−R
√

1− x2

R2
≃ R−R

[

1− 1

2

x2

R2

]

= x2

2R

Thus, the phase φ(x) is approximately,

φ(x)= knd− (n− 1)ka = knd− (n− 1)kx2

2R

If we make up a convex lens by putting together two such spherical lenses with radii

R1 and R2, as shown in Fig. 18.19.3, then the net phase change between the front and

back planes will be, ignoring the constant nkd terms:

φ(x)= −(n− 1)

(
1

R1

+ 1

R2

)
kx2

2
≡ −kx

2

2F
(18.19.5)

where we defined the focal length F of the lens through the “lensmaker’s equation,”

1

F
= (n− 1)

(
1

R1

+ 1

R2

)

(18.19.6)
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In a two-dimensional description, we replace x2 by |r⊥|2 = x2 + y2. Thus, the phase

change and corresponding transmittance function will be:

φ(r⊥)= −k|r⊥|
2

2F
⇒ T(r⊥)= e−jφ(r⊥) = ejk|r⊥|2/2F

Some examples of the various effects that can be accomplished with lenses can be

obtained by applying the configurations of Figs. 18.19.1 and 18.19.2 with appropriate

choices of the aperture planes and focal lengths. We will use the Fresnel approximation

(18.18.4) for g(r⊥, z) in all of the examples and assume that the transmittance (18.19.4)

extends over the entire xy plane—in effect, we are replacing the lens with the ideal case

of an infinitely thin transparency with transmittance (18.19.4).

The main property of a lens is to turn an incident plane wave from the left into

a spherical wave converging on the lens focus on the right, and similarly, if a source

of a spherical wave is placed at the focus on the left, then the diverging wave will be

converted into a plane wave after it passes through the lens. These cases are shown in

Fig. 18.19.4.

Fig. 18.19.4 Spherical waves converging to, or diverging from, a lens focal point.

The case on the left corresponds to the choices z1 = 0 and z2 = F in Fig. 18.19.1,

that is, the input plane coincides with the left plane of the lens. The incident wave has a

constant amplitude on the plane Ein(r⊥)= E0. Noting that g(r⊥′−u⊥,0)= δ2(r⊥′−u⊥),
we obtain from Eq. (18.19.1) with z2 = F:

h(r⊥, r⊥′)= T(r⊥′)g(r⊥ − r⊥′, F)= jk

2πF
e−jkF ejk|r⊥

′|2/2F e−jk|r⊥−r⊥′|2/2F

the quadratic phase terms combine as follows:

ejk|r⊥
′|2/2F e−jk|r⊥−r⊥′|2/2F = e−jk|r⊥|2/2F ejkr⊥·r⊥′/F

and result in the following transfer function:

h(r⊥, r⊥′)= T(r⊥′)g(r⊥ − r⊥′, F)= jk

2πF
e−jkF e−jk|r⊥|

2/2F ejkr⊥·r⊥′/F (18.19.7)

Its integration with the constant input results in:

E(r⊥, F)= jk

2πF
e−jkF E0e

−jk|r⊥|2/2F
∫∞

−∞
ejkr⊥·r⊥′/F d2r⊥′
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The integral is equal to the Dirac delta, (2π)2δ(kr⊥/F)= (2π)2δ(r⊥)F2/k2. Thus,

E(r⊥, F)= j2πF

k
e−jkF E0 δ(r⊥)

which is sharply focused onto the focal point r⊥ = 0 and z = F. For the second case

depicted on the right in Fig. 18.19.4, we first note that the paraxial approximation for a

spherical wave placed at the origin is:

E0
e−jkr

4πr
≃ E0

jk

4πz
e−jkz e−jk|r⊥|

2/2z , r ≃ z− |r⊥|
2

2z

If this source is placed at the left focal point of the lens, then, the diverging paraxial

spherical wave, after traveling distance z = F, will arrive at the left plane of the lens:

Ein(r⊥′,0)= E0
jk

4πF
e−jkF e−jk|r⊥

′|2/2F ≡ E1 e
−jk|r⊥′|2/2F

The transmittance of the lens will compensate this propagation phase resulting into

a constant field at the output plane of the lens, which will then propagate to the right

as a plane wave:

E(r⊥′,0)= T(r⊥′)Ein(r⊥′,0)= ejk|r⊥′|2/2F E1 e
−jk|r⊥′|2/2F = E1

The propagated field to distance z is obtained from Eq. (18.18.3):

E(r⊥, z)= e−jkz jk

2πz

∫∞

−∞
E1e

−jk|r⊥−r⊥′|2/2z d2r⊥′ = E1 e
−jkz jk

2πz

2πz

jk
= E1e

−jkz

where the integral was evaluated using twice the result (18.18.8). Thus, the transmitted

wave is a uniform plane wave propagating along the z-direction.

To see the Fourier transformation property of lenses, consider again the left picture

in Fig. 18.19.4 with the output plane still placed at the right focal length z2 = F, but

take an arbitrary field Ein(r⊥′) incident at the left plane of the lens. The overall transfer

function is still the same as in Eq. (18.19.7), thus, giving:

E(r⊥, F) =
∫∞

−∞
h(r⊥ − r⊥′)Ein(r⊥′)d2r⊥′

= jk

2πF
e−jkF e−jk|r⊥|

2/2F

∫∞

−∞
Ein(r⊥′) ejkr⊥·r⊥′/F d2r⊥′

(18.19.8)

The last integral factor is recognized as the Fourier transform Êin(k⊥) evaluated at

wavenumber k⊥ = kr⊥/F. Thus, we obtain:

E(r⊥, F)= jk

2πF
e−jkF e−jk|r⊥|

2/2F
[

Êin(k⊥)
]

k⊥= kr⊥
F

(18.19.9)

This result is similar to the Fraunhofer case (18.18.10), but it is valid at the much

shorter Fresnel distance z = F, instead of the far-field distances. It is analogous to

the output of the pulse compression filter in chirp radar discussed in Chap. 3, see for

example Eq. (3.10.14).
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It is left as an exercise to show that the extra quadratic phase factor in (18.19.9) can

be eliminated by using the configuration of Fig. 18.19.1 with both aperture planes placed

at the foci of the lens, that is, z1 = z2 = F, (known as a 2F system.)

Finally, let us look at the magnifying properties of a lens. Fig. 18.19.5 shows an

image placed at distance z1 from the left and its image formed at distance z2 on the

right. It is well-known that the distances z1, z2 must be related by:

1

z1

+ 1

z2

= 1

F
(18.19.10)

Fig. 18.19.5 Lens law of magnification.

The magnification law relates the size of the image to the size of the object:

M = x2

x1

= z2

z1

(magnification ratio) (18.19.11)

These properties can be derived by tracing the rays emanating from the top of the

object. The ray that is parallel to the lens axis will bend to pass through the focal point

on the right. The ray from the top of the object through the left focal point will bend to

become parallel to the axis. The intersection of these two rays defines the top point of

the image. From the geometry of the graph one has:

x1

z1 − F
= x2

F
and

x2

z2 − F
= x1

F

The consistency of the equations requires the condition (z1−F)(z2−F)= F2, which

is equivalent to (18.19.10). Then, Eq. (18.19.11) follows by replacing F from (18.19.10)

into the ratio x2/x1 = (z2 − F)/F.

To understand (18.19.10) and (18.19.11) from the point of view of Fresnel diffrac-

tion, we note that the transfer function (18.19.1) involves the following quadratic phase

factors, with the middle one being the lens transmittance:

e−jk|r⊥−u⊥|2/2z2 ejk|u⊥|
2/2F e−jk|u⊥−r⊥′|2/2z1

= e−jk|r⊥|2/2z2 e−jk|r⊥
′|2/2z1 e−jk(1/z1+1/z2−1/F)|u⊥|2/2 ejku⊥·(r⊥/z2+r⊥′/z1)

Because of Eq. (18.19.10), the term that depends quadratically on u⊥ cancels and

one is left only with a linear dependence on u⊥. This integrates into a delta function in

(18.19.1), resulting in

h(r⊥, r⊥′)= jke−jkz1

2πz1

jke−jkz2

2πz2

e−jk|r⊥|
2/2z2 e−jk|r⊥

′|2/2z1 (2π)2δ

(
kr⊥
z2

+ kr⊥′

z1

)
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The delta function forces r⊥ = −(z2/z1)r⊥′, which is the same as (18.19.11). The

negative sign means that the image is upside down. Noting that

δ

(
kr⊥
z2

+ kr⊥′

z1

)

= z2
1

k2
δ

(

r⊥′ + z1

z2

r⊥
)

we obtain for the field at the output plane:

Eout(r⊥)= −z1

z2

Ein

(

−z1

z2

r⊥
)

e−jk(z1+z2) e−jk|r⊥|
2(z1+z2)/2z

2
2

which represents a scaled and reversed version of the input.

Some references on the Rayleigh-Sommerfeld diffraction theory, the plane-wave spec-

trum representation, and Fourier optics are [1285,1286] and [1325–1338].

18.20 Problems

18.1 Show that Eq. (18.4.9) can be written in the compact vectorial form:

E = −jk e
−jkr

4πr
r̂× [

ẑ× f− η r̂× (ẑ× g)
]

, H = − jk
η

e−jkr

4πr
r̂× [

r̂× (ẑ× f)+η ẑ× g
]

Similarly, show that Eqs. (18.4.10) and (18.4.11) can be written as:

E = −2jk
e−jkr

4πr
r̂× [

ẑ× f
]

, H = −2jk

η

e−jkr

4πr
r̂× [

r̂× (ẑ× f)
]

E = 2jkη
e−jkr

4πr
r̂× [

r̂× (ẑ× g)
]

, H = −2jk
e−jkr

4πr
r̂× [

ẑ× g
]

18.2 Prove the first pair of equations for E,H of the previous problem by working exclusively

with the Kottler formulas (18.4.2) and taking their far-field limits.

18.3 Explain in detail how the inequality (18.6.12) for the aperture efficiency ea may be thought

of as an example of the Schwarz inequality. Then, using standard properties of Schwarz

inequalities, prove that the maximum of ea is unity and is achieved for uniform apertures.

As a reminder, the Schwarz inequality for single-variable complex-valued functions is:

∣
∣
∣
∣
∣

∫ b

a
f∗(x)g(x)dx

∣
∣
∣
∣
∣

2

≤
∫ b

a
|f(x)|2 dx ·

∫ b

a
|g(x)|2 dx

18.4 To prove the equivalence of the Kirchhoff diffraction and Stratton-Chu formulas, (18.10.6)

and (18.10.7), use the identities (C.29) and (C.32) of Appendix C, to obtain:
∫

V

[

jωμG J+ 1

ǫ
G∇∇∇′ρ+G∇∇∇′ × Jm

]

dV′ =
∫

V

[

jωμG J− ρ
ǫ
∇∇∇′G+ Jm ×∇∇∇′G

]

dV′

−
∮

S

[

n̂
ρ

ǫ
G+ n̂× JmG

]

dS′

Then, using the identity (C.33), show that Eq. (18.10.6) can be rewritten in the form:

E(r)= −
∫

V

[

jωμG J− ρ
ǫ
∇∇∇′G+ Jm ×∇∇∇′G

]

dV′

+
∮

S

[

n̂
ρ

ǫ
G+ n̂× JmG

]

dS′

−
∮

S

[

n̂G∇∇∇′ · E− (n̂× E)×∇∇∇′G−G n̂× (∇∇∇′ × E)−(n̂ · E)∇∇∇′G]dS′
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Finally, use ρ/ǫ =∇∇∇′ · E and ∇∇∇′ × E+ Jm = −jωμH to obtain (18.10.7).

18.5 Prove the equivalence of the Stratton-Chu and Kottler formulas, (18.10.7) and (18.10.10), by

first proving and then using the following dual relationships:

∫

V

[

jωρ∇∇∇′G− (J ·∇∇∇′)∇∇∇′G]dV′ =
∮

S

[(

(n̂×H)·∇∇∇′)∇∇∇′G− jωǫ(n̂ · E)∇∇∇′G]

∫

V

[

jωρm∇∇∇′G− (Jm ·∇∇∇′)∇∇∇′G
]

dV′ = −
∮

S

[(

(n̂× E)·∇∇∇′)∇∇∇′G+ jωμ(n̂ ·H)∇∇∇′G]

To prove these, work component-wise, use Maxwell’s equations (18.2.1), and apply the di-

vergence theorem on the volume V of Fig. 18.10.1.

18.6 Prove the equivalence of the Kottler and Franz formulas, (18.10.10) and (18.10.11), by using

the identity ∇∇∇ × (∇∇∇ × A)= ∇∇∇(∇∇∇ · A)−∇2A, and by replacing the quantity k2G(r − r′) by

−δ(3)(r−r′)−∇′2G. Argue that the term δ(3)(r−r′)makes a difference only for the volume

integrals, but not for the surface integrals.

18.7 Prove the equivalence of the modified Stratton-Chu and Kirchhoff diffraction integral for-

mulas of Eq. (18.12.1) and (18.12.2) by using the identity (C.42) of Appendix C and replacing

∇∇∇′ · E = 0 and∇∇∇′ × E = −jωμH in the source-less region under consideration.

18.8 Prove the equivalence of the Kottler and modified Stratton-Chu formulas of Eq. (18.12.1) and

(18.12.2) by subtracting the two expressions, replacing jωǫE =∇∇∇′×H , and using the Stokes

identity (C.38) of Appendix C.

18.9 Consider a reflector antenna fed by a horn, as shown

on the right. A closed surface S = Sr + Sa is such

that the portion Sr caps the reflector and the portion

Sa is an aperture in front of the reflector. The feed

lies outside the closed surface, so that the volume V

enclosed by S is free of current sources.

Applying the Kottler version of the extinction theorem of Sec. 18.10 on the volume V, show

that for points r outsideV, the field radiated by the induced surface currents on the reflector

Sr is equal to the field radiated by the aperture fields on Sa, that is,

E rad(r) = 1

jωǫ

∫

Sr

[

k2G J s +
(

J s ·∇∇∇′
)∇∇∇′G]dS′

= 1

jωǫ

∫

Sa

[

k2G(n̂×H )+((n̂×H )·∇∇∇′)∇∇∇′G+ jωǫ(n̂× E )×∇∇∇′G]dS′

where the induced surface currents on the reflector are J s = n̂r ×H and Jms = −n̂r ×E, and

on the perfectly conducting reflector surface, we must have Jms = 0.

This result establishes the equivalence of the so-called aperture-field and current-distribution

methods for reflector antennas [1345].

18.10 Consider an x-polarized uniform plane wave incident obliquely on the straight-edge aperture

of Fig. 18.14.4, with a wave vector direction k̂1 = ẑ cosθ1 + ŷ sinθ1. First show that the

tangential fields at an aperture point r′ = x′ x̂+y′ ŷ on the aperture above the straight-edge

are given by:

Ea = x̂E0e
−jky′ sinθ1 , Ha = ŷ

E0

η0

cosθ1e
−jky′ sinθ1

Then, using Kottler’s formula (18.12.1), and applying the usual Fresnel approximations in

the integrand, as was done for the point source in Fig. 18.14.4, show that the diffracted
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wave below the edge is given by Eqs. (18.14.22)–(18.14.24), except that the field at the edge

is Eedge = E0, and the focal lengths are in this case F = l2 and F′ = l2/ cos2 θ2

Finally, show that the asymptotic diffracted field (when l2 → ∞), is given near the forward

direction θ ≃ 0 by:

E = Eedge

e−jkl2
√

l2

1− j
2
√
πkθ

18.11 Assume that the edge in the previous problem is a perfectly conducting screen. Using the

field-equivalence principle with effective current densities on the aperture above the edge

J s = 0 and Jms = −2n̂× Ea, and applying the usual Fresnel approximations, show that the

diffracted field calculated by Eq. (18.4.1) is is still given by Eqs. (18.14.22)–(18.14.24), except

that the factor cosθ1+ cosθ2 is replaced now by 2 cosθ2, and that the asymptotic field and

edge-diffraction coefficient are:

E = E0

e−jkl2
√

l2

Dedge , Dedge = (1− j)2 cosθ2

4
√
πk(sinθ1 + sinθ2)

Show that this expression agrees with the exact Sommerfeld solution (18.15.26) at normal

incidence and near the forward diffracted direction.

18.12 A uniform plane wave, E(x, z)= E0e
−jk(x sinθ0+z cosθ0), is incident obliquely on a lens at an

angle θ0 with the z axis, as shown in the figure below.

Using similar methods as for Fig. 18.19.4, show that after passing through the lens, the wave

will converge onto the shifted focal point with coordinates z = F and x = F sinθ0.

Conversely, consider a point source of a spherical wave starting at the point z = −F and

x = F sinθ0. Show that upon passage through the lens, the spherical wave will be converted

into the obliquely moving plane wave E(x, z)= E1e
−jk(x sinθ0+z cosθ0). What is E1?

18.13 Consider the three lens configurations shown below. They are special cases of Figs. 18.19.1

and 18.19.2, with appropriate choices for the input and output aperture planes a and b.
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Working with Eqs. (18.19.1) and (18.19.3), show that the transfer functions h(r⊥, r⊥′) are

given as follows for the three cases:

h(r⊥, r⊥′)= e−2jkFejk(r⊥·r
′⊥)/F , h(r⊥, r⊥′)= jk

2πF
e−jkFejk(r⊥·r

′⊥)/F

h(r⊥, r⊥′)= −F1

F2

δ

(

r⊥ + F1

F2

r⊥

)

Show that the first two cases perform a Fourier transformation as in Eq. (18.19.9), but without

the quadratic phase factors. Show that the third case, performs a scaling of the input with

a magnification factor M = −F2/F1

19

Aperture Antennas

19.1 Open-Ended Waveguides

The aperture fields over an open-ended waveguide are not uniform over the aperture.

The standard assumption is that they are equal to the fields that would exist if the guide

were to be continued [1].

Fig. 19.1.1 shows a waveguide aperture of dimensions a > b. Putting the origin in

the middle of the aperture, we assume that the tangential aperture fields Ea, Ha are

equal to those of the TE10 mode. We have from Eq. (9.4.3):

Fig. 19.1.1 Electric field over a waveguide aperture.

Ey(x
′)= E0 cos

(
πx′

a

)

, Hx(x
′)= − 1

ηTE

E0 cos

(
πx′

a

)

(19.1.1)

where ηTE = η/K with K =
√

1−ω2
c/ω2 =

√

1− (λ/2a)2. Note that the boundary

conditions are satisfied at the left and right walls, x′ = ±a/2.

For larger apertures, such as a > 2λ, we may set K ≃ 1. For smaller apertures, such

as 0.5λ ≤ a ≤ 2λ, we will work with the generalized Huygens source condition (18.5.7).

The radiated fields are given by Eq. (18.5.5), with fx = 0:

Eθ = jk e
−jkr

2πr
cθ fy(θ,φ)sinφ

Eφ = jk e
−jkr

2πr
cφ fy(θ,φ)cosφ

(19.1.2)



18.20. Problems 863

Working with Eqs. (18.19.1) and (18.19.3), show that the transfer functions h(r⊥, r⊥′) are

given as follows for the three cases:

h(r⊥, r⊥′)= e−2jkFejk(r⊥·r
′⊥)/F , h(r⊥, r⊥′)= jk

2πF
e−jkFejk(r⊥·r

′⊥)/F

h(r⊥, r⊥′)= −F1

F2

δ

(

r⊥ + F1

F2

r⊥

)

Show that the first two cases perform a Fourier transformation as in Eq. (18.19.9), but without

the quadratic phase factors. Show that the third case, performs a scaling of the input with

a magnification factor M = −F2/F1

19

Aperture Antennas

19.1 Open-Ended Waveguides

The aperture fields over an open-ended waveguide are not uniform over the aperture.

The standard assumption is that they are equal to the fields that would exist if the guide

were to be continued [1].

Fig. 19.1.1 shows a waveguide aperture of dimensions a > b. Putting the origin in

the middle of the aperture, we assume that the tangential aperture fields Ea, Ha are

equal to those of the TE10 mode. We have from Eq. (9.4.3):

Fig. 19.1.1 Electric field over a waveguide aperture.

Ey(x
′)= E0 cos

(
πx′

a

)

, Hx(x
′)= − 1

ηTE

E0 cos

(
πx′

a

)

(19.1.1)

where ηTE = η/K with K =
√

1−ω2
c/ω2 =

√
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For larger apertures, such as a > 2λ, we may set K ≃ 1. For smaller apertures, such

as 0.5λ ≤ a ≤ 2λ, we will work with the generalized Huygens source condition (18.5.7).

The radiated fields are given by Eq. (18.5.5), with fx = 0:

Eθ = jk e
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2πr
cθ fy(θ,φ)sinφ

Eφ = jk e
−jkr

2πr
cφ fy(θ,φ)cosφ

(19.1.2)
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where fy(θ,φ) is the aperture Fourier transform of Ey(x
′), that is,

fy(θ,φ) =
∫ a/2

−a/2

∫ b/2

−b/2
Ey(x

′)ejkxx
′+jkyy′dx′dy′

= E0

∫ a/2

−a/2
cos

(
πx′

a

)

ejkxx
′
dx′ ·

∫ b/2

−b/2
ejkyy

′
dy′

The y′-integration is the same as that for a uniform line aperture. For the x′-integration,

we use the definite integral:

∫ a/2

−a/2
cos

(
πx′

a

)

ejkxx
′
dx′ = 2a

π

cos(kxa/2)

1− (kxa/π)2

It follows that:

fy(θ,φ)= E0
2ab

π

cos(πvx)

1− 4v2
x

sin(πvy)

πvy
(19.1.3)

where vx = kxa/2π and vy = kyb/2π, or,

vx = a

λ
sinθ cosφ, vy = b

λ
sinθ sinφ (19.1.4)

The obliquity factors can be chosen to be one of the three cases: (a) the PEC case, if

the aperture is terminated in a ground plane, (b) the ordinary Huygens source case, if it

is radiating into free space, or (c) the modified Huygens source case. Thus,

[

cθ
cφ

]

=
[

1

cosθ

]

,
1

2

[

1+ cosθ

1+ cosθ

]

,
1

2

[

1+K cosθ

K + cosθ

]

(19.1.5)

By normalizing all three cases to unity at θ = 0o, we may combine them into:

cE(θ)= 1+K cosθ

1+K , cH(θ)= K + cosθ

1+K (19.1.6)

where K is one of the three possible values:

K = 0 , K = 1 , K = η

ηTE

=
√

1−
(
λ

2a

)2

(19.1.7)

The normalized gains along the two principal planes are given as follows. For the xz- or

the H-plane, we set φ = 0o, which gives Eθ = 0:

gH(θ)=
|Eφ(θ)|2
|Eφ|2max

=
∣
∣cH(θ)

∣
∣2

∣
∣
∣
∣

cos(πvx)

1− 4v2
x

∣
∣
∣
∣

2

, vx = a

λ
sinθ (19.1.8)

And, for the yz- or E-plane, we set φ = 90o, which gives Eφ = 0:

gE(θ)= |Eθ(θ)|2
|Eθ|2max

=
∣
∣cE(θ)

∣
∣2

∣
∣
∣
∣
∣

sin(πvy)

πvy

∣
∣
∣
∣
∣

2

, vy = b

λ
sinθ (19.1.9)
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The function cos(πvx)/(1−4v2
x) determines the essential properties of the H-plane

pattern. It is essentially a double-sinc function, as can be seen from the identity:

cos(πvx)

1− 4v2
x
= π

4

⎡

⎢
⎢
⎣

sin

(

π
(

vx + 1

2

)
)

π
(

vx + 1

2

)
+

sin

(

π
(

vx − 1

2

)
)

π
(

vx − 1

2

)

⎤

⎥
⎥
⎦ (19.1.10)

It can be evaluated with the help of the MATLAB function dsinc, with usage:

y = dsinc(x); % the double-sinc function
cos(π x)

1 − 4x2
= π

4

[

sinc(x+ 0.5) + sinc(x− 0.5)
]

The 3-dB width of the E-plane pattern is the same as for the uniform rectangular

aperture, Δθy = 0.886λ/b. The dsinc function has the valueπ/4 at vx = 1/2. Its 3-dB

point is at vx = 0.5945, its first null at vx = 1.5, and its first sidelobe at vx = 1.8894 and

has height 0.0708 or 23 dB down from the main lobe. It follows from vx = a sinθ/λ

that the 3-dB width in angle space will be Δθx = 2×0.5945λ/a = 1.189λ/a. Thus, the

3-dB widths are in radians and in degrees:

Δθx = 1.189
λ

a
= 68.12o λ

a
, Δθy = 0.886

λ

b
= 50.76o λ

b
(19.1.11)

Example 19.1.1: Fig. 19.1.2 shows the H- and E-plane patterns for a WR90 waveguide operating

at 10 GHz, so that λ = 3 cm. The guide dimensions are a = 2.282 cm, b = 1.016 cm. The

typical MATLAB code for generating these graphs was:

a = 2.282; b = 1.016; la = 3;

th = (0:0.5:90) * pi/180;

vx = a/la * sin(th);

vy = b/la * sin(th);

K = sqrt(1 - (la/(2*a))^2); % alternatively, K = 0, or, K = 1

cE = (1 + K*cos(th))/(K+1); % normalized obliquity factors

cH = (K + cos(th))/(K+1);

gH = abs(cH .* dsinc(vx).^2); % uses dsinc

gE = abs(cE .* sinc(vy)).^2; % uses sinc from SP toolbox

figure; dbp(th,gH,45,12); dB gain polar plot

figure; dbp(th,gE,45,12);

The three choices of obliquity factors have been plotted for comparison. We note that the

Huygens source cases, K = 1 and K = η/ηTE, differ very slightly. The H-plane pattern

vanishes at θ = 90o in the PEC case (K = 0), but not in the Huygens source cases.

The gain computed from Eq. (19.1.13) isG = 2.62 or 4.19 dB, and computed from Eq. (19.1.14),

G = 2.67 or 4.28 dB, where K = η/ηTE = 0.75 and (K + 1)2/4K = 1.02.

This waveguide is not a high-gain antenna. Increasing the dimensions a,b is impractical

and also would allow the propagation of higher modes, making it very difficult to restrict

operation to the TE10 mode. ⊓⊔
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Fig. 19.1.2 Solid line has K = η/ηTE, dashed, K = 1, and dash-dotted, K = 0.

Next, we derive an expression for the directivity and gain of the waveguide aperture.

The maximum intensity is obtained at θ = 0o. Because cθ(0)= cφ(0), we have:

Umax = 1

2η
|E(0,φ)|2 = 1

2λ2η
c2
θ(0)|fy(0,φ)|2 =

1

2λ2η
c2
θ(0)|E0|2 4(ab)2

π2

The total power transmitted through the aperture and radiated away is the power

propagated down the waveguide given by Eq. (9.7.4), that is,

Prad = 1

4ηTE

|E0|2ab (19.1.12)

It follows that the gain/directivity of the aperture will be:

G = 4π
Umax

Prad

= 4π

λ2

8

π2
(ab)

ηTE

η
c2
θ(0)

For the PEC and ordinary Huygens cases, cθ(0)= 1. Assuming ηTE ≃ η, we have:

G = 4π

λ2

8

π2
(ab)= 0.81

4π

λ2
(ab) (19.1.13)

Thus, the effective area of the waveguide aperture is Aeff = 0.81(ab) and the aper-

ture efficiency e = 0.81. For the modified Huygens case, we have for the obliquity factor

cθ(0)= (K + 1)/2 with K = η/ηTE. It follows that [1339]:

G = 4π

λ2

8

π2
(ab)

(K + 1)2

4K
(19.1.14)

For waveguides larger than about a wavelength, the directivity factor (K + 1)2/4K

is practically equal to unity, and the directivity is accurately given by Eq. (19.1.13). The

table below shows some typical values of K and the directivity factor (operation in the

TE10 mode requires 0.5λ < a < λ):
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a/λ K (K + 1)2/(4K)

0.6 0.5528 1.0905

0.8 0.7806 1.0154

1.0 0.8660 1.0052

1.5 0.9428 1.0009

2.0 0.9682 1.0003

The gain-beamwidth product is from Eqs. (19.1.11) and (19.1.13), p = GΔθxΔθy =
4π(0.81)(0.886)(1.189)=10.723 rad2=35 202 deg2. Thus, another instance of the

general formula (16.3.14) is (with the angles given in radians and in degrees):

G = 10.723

ΔθxΔθy
= 35 202

Δθo
xΔθ

o
y

(19.1.15)

19.2 Horn Antennas

The only practical way to increase the directivity of a waveguide is to flare out its ends

into a horn. Fig. 19.2.1 shows three types of horns: The H-plane sectoral horn in which

the long side of the waveguide (the a-side) is flared, the E-plane sectoral horn in which

the short side is flared, and the pyramidal horn in which both sides are flared.

Fig. 19.2.1 H-plane, E-plane, and pyramidal horns.

The pyramidal horn is the most widely used antenna for feeding large microwave

dish antennas and for calibrating them. The sectoral horns may be considered as special

limits of the pyramidal horn. We will discuss only the pyramidal case.

Fig. 19.2.2 shows the geometry in more detail. The two lower figures are the cross-

sectional views along the xz- and yz-planes. It follows from the geometry that the

various lengths and flare angles are given by:

Ra = A

A− a RA ,

L2
a = R2

a +
A2

4
,

tanα = A

2Ra
,

Δa = A2

8Ra
,

Rb = B

B− b RB

L2
b = R2

b +
B2

4

tanβ = B

2Rb

Δb = B2

8Rb

(19.2.1)
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The quantities RA and RB represent the perpendicular distances from the plane of

the waveguide opening to the plane of the horn. Therefore, they must be equal,RA = RB.

Given the horn sides A,B and the common length RA, Eqs. (19.2.1) allow the calculation

of all the relevant geometrical quantities required for the construction of the horn.

The lengthsΔa andΔb represent the maximum deviation of the radial distance from

the plane of the horn. The expressions given in Eq. (19.2.1) are approximations obtained

when Ra≫ A and Rb≫ B. Indeed, using the small-x expansion,

√
1± x ≃ 1± x

2

we have two possible ways to approximate Δa:

Δa = La −Ra =
√

R2
a + A

2

4
−Ra = Ra

√

1+ A2

4R2
a
−Ra ≃ A2

8Ra

= La −
√

L2
a − A

2

4
= La − La

√

1− A2

4L2
a
≃ A2

8La

(19.2.2)

Fig. 19.2.2 The geometry of the pyramidal horn requires RA = RB.

The two expressions are equal to within the assumed approximation order. The

length Δa is the maximum deviation of the radial distance at the edge of the horn plane,

that is, at x = ±A/2. For any other distance x along theA-side of the horn, and distance

y along the B-side, the deviations will be:

Δa(x)= x2

2Ra
, Δb(y)= y2

2Rb
(19.2.3)
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The quantities kΔa(x) and kΔb(y) are the relative phase differences at the point

(x, y) on the aperture of the horn relative to the center of the aperture. To account for

these phase differences, the aperture electric field is assumed to have the form:

Ey(x, y)= E0 cos

(
πx

A

)

e−jkΔa(x) e−jkΔb(y) , or, (19.2.4)

Ey(x, y)= E0 cos

(
πx

A

)

e−jk x
2/2Ra e−jky

2/2Rb (19.2.5)

We note that at the connecting end of the waveguide the electric field is Ey(x, y)=
E0 cos(πx/a) and changes gradually into the form of Eq. (19.2.5) at the horn end.

Because the aperture sides A,B are assumed to be large compared to λ, the Huy-

gens source assumption is fairly accurate for the tangential aperture magnetic field,

Hx(x, y)= −Ey(x, y)/η, so that:

Hx(x, y)= − 1

η
E0 cos

(
πx

A

)

e−jk x
2/2Ra e−jky

2/2Rb (19.2.6)

The quantities kΔa, kΔb are the maximum phase deviations in radians. Therefore,

Δa/λ and Δb/λ will be the maximum deviations in cycles. We define:

Sa = Δa
λ
= A2

8λRa
, Sb = Δb

λ
= B2

8λRb
(19.2.7)

It turns out that the optimum values of these parameters that result into the highest

directivity are approximately: Sa = 3/8 and Sb = 1/4. We will use these values later in

the design of optimum horns. For the purpose of deriving convenient expressions for

the radiation patterns of the horn, we define the related quantities:

σ2
a = 4Sa = A2

2λRa
, σ2

b = 4Sb = B2

2λRb
(19.2.8)

The near-optimum values of these constants are σa =
√

4Sa =
√

4(3/8) = 1.2247

and σb =
√

4Sb =
√

4(1/4) = 1. These are used very widely, but they are not quite the

true optimum values, which are σa = 1.2593 and σb = 1.0246.

Replacing k = 2π/λ and 2λRa = A2/σ2
a and 2λRb = B2/σ2

b in Eq. (19.2.5), we may

rewrite the aperture fields in the form: For −A/2 ≤ x ≤ A/2 and −B/2 ≤ y ≤ B/2,

Ey(x, y) = E0 cos

(
πx

A

)

e−j(π/2)σ
2
a(2x/A)

2

e−j(π/2)σ
2
b(2y/B)

2

Hx(x, y) = − 1

η
E0 cos

(
πx

A

)

e−j(π/2)σ
2
a(2x/A)

2

e−j(π/2)σ
2
b(2y/B)

2

(19.2.9)

19.3 Horn Radiation Fields

As in the case of the open-ended waveguide, the aperture Fourier transform of the elec-

tric field has only a y-component given by:
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fy(θ,φ)=
∫ A/2

−A/2

∫ B/2

−B/2
Ey(x, y)e

jkxx+jkyy dxdy

= E0

∫ A/2

−A/2
cos

(
πx

A

)

ejkxxe−j(π/2)σ
2
a(2x/A)

2

dx ·
∫ B/2

−B/2
ejkyye−j(π/2)σ

2
b(2y/B)

2

dy

The above integrals can be expressed in terms of the following diffraction-like inte-

grals, whose properties are discussed in Appendix F:

F0(v,σ) =
∫ 1

−1
ejπvξ e−j(π/2)σ

2 ξ2

dξ

F1(v,σ) =
∫ 1

−1
cos

(
πξ

2

)

ejπvξ e−j(π/2)σ
2 ξ2

dξ

(19.3.1)

The function F0(v,σ) can be expressed as:

F0(v,σ)= 1

σ
ej(π/2)(v

2/σ2)

[

F

(
v

σ
+σ

)

− F
(
v

σ
−σ

)]

(19.3.2)

where F(x)= C(x)−jS(x) is the standard Fresnel integral, discussed in Appendix F.

Then, the function F1(v,σ) can be expressed in terms of F0(v,σ):

F1(v,σ)= 1

2

[

F0(v+ 0.5, σ)+F0(v− 0.5, σ)
]

(19.3.3)

The functions F0(v,σ) and F1(v, s) can be evaluated numerically for any vector

of values v and any positive scalar σ (including σ = 0) using the MATLAB function

diffint, which is further discussed in Appendix F and has usage:

F0 = diffint(v,sigma,0); % evaluates the function F0(v,σ)

F1 = diffint(v,sigma,1); % evaluates the function F1(v,σ)

In addition to diffint, the following MATLAB functions, to be discussed later, fa-

cilitate working with horn antennas:

hband % calculate 3-dB bandedges

heff % calculate aperture efficiency

hgain % calculate H- and E-plane gains

hopt % optimum horn design

hsigma % calculate optimum values of σa, σb

Next, we express the radiation patterns in terms of the functions (19.3.1). Defining

the normalized wavenumbers vx = kxA/2π and vy = kyB/2π, we have:

vx = A

λ
sinθ cosφ, vy = B

λ
sinθ sinφ (19.3.4)

Changing variables to ξ = 2y/B, the y-integral can written in terms of F0(v,σ):
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∫ B/2

−B/2
ejkyye−j(π/2)σ

2
b(2y/B)

2

dy = B

2

∫ 1

−1
ejπvyξ e−j(π/2)σ

2
b ξ

2

dξ = B

2
F0(vy, σb)

Similarly, changing variables to ξ = 2x/A, we find for the x-integral:

∫ A/2

−A/2
cos

(
πx

A

)

ejkxxe−j(π/2)σ
2
a(2x/A)

2

dx

= A

2

∫ 1

−1
cos

(
πξ

2

)

ejπvξ e−j(π/2)σ
2
a ξ

2

dξ = A

2
F1(vx, σa)

It follows that the Fourier transform fy(θ,φ) will be:

fy(θ,φ)= E0
AB

4
F1(vx, σa)F0(vy, σb) (19.3.5)

The open-ended waveguide and the sectoral horns can be thought of as limiting cases

of Eq. (19.3.5), as follows:

1. open-ended waveguide: σa = 0, A = a, σb = 0, B = b.
2. H-plane sectoral horn: σa > 0, A > a, σb = 0, B = b.
3. E-plane sectoral horn: σa = 0, A = a, σb > 0, B > b.

In these cases, the F-factors with σ = 0 can be replaced by the following simplified

forms, which follow from equations (F.12) and (F.17) of Appendix F:

F0(vy,0)= 2
sin(πvy)

πvy
, F1(vx,0)= 4

π

cos(πvx)

1− 4v2
x

(19.3.6)

The radiation fields are obtained from Eq. (18.5.5), with obliquity factors cθ(θ)=
cφ(θ)= (1+ cosθ)/2. Replacing k = 2π/λ, we have:

Eθ = j e
−jkr

λr
cθ(θ) fy(θ,φ)sinφ

Eφ = j e
−jkr

λr
cφ(θ) fy(θ,φ)cosφ

(19.3.7)

or, explicitly,

Eθ = j e
−jkr

λr
E0
AB

4

(
1+ cosθ

2

)

sinφF1(vx, σa)F0(vy, σb)

Eφ = j e
−jkr

λr
E0
AB

4

(
1+ cosθ

2

)

cosφF1(vx, σa)F0(vy, σb)

(19.3.8)

Horn Radiation Patterns

The radiation intensity is U(θ,φ)= r2
(|Eθ|2 + |Eφ|2

)

/2η, so that:

U(θ,φ)= 1

32ηλ2
|E0|2(AB)2 c2

θ(θ)
∣
∣F1(vx, σa)F0(vy, σb)

∣
∣2

(19.3.9)
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Assuming that the maximum intensity is towards the forward direction, that is, at

vx = vy = 0, we have:

Umax = 1

32ηλ2
|E0|2(AB)2

∣
∣F1(0, σa)F0(0, σb)

∣
∣2

(19.3.10)

The direction of maximum gain is not necessarily in the forward direction, but it

may be nearby. This happens typically when σb > 1.54. Most designs use the optimum

value σb = 1, which does have a maximum in the forward direction. With these caveats

in mind, we define the normalized gain:

g(θ,φ)= U(θ,φ)

Umax

=
∣
∣
∣
∣

1+ cosθ

2

∣
∣
∣
∣

2 ∣
∣
∣
∣

F1(vx, σa)F0(vy, σb)

F1(0, σa)F0(0, σb)

∣
∣
∣
∣

2

(19.3.11)

Similarly, the H- and E-plane gains corresponding to φ = 0o and φ = 90o are:

gH(θ)=
∣
∣
∣
∣

1+ cosθ

2

∣
∣
∣
∣

2 ∣
∣
∣
∣

F1(vx, σa)

F1(0, σa)

∣
∣
∣
∣

2

= g(θ,0o) , vx = A

λ
sinθ

gE(θ)=
∣
∣
∣
∣

1+ cosθ

2

∣
∣
∣
∣

2 ∣
∣
∣
∣

F0(vy, σb)

F0(0, σb)

∣
∣
∣
∣

2

= g(θ,90o) , vy = B

λ
sinθ

(19.3.12)

The normalizing values F1(0, σa) and F0(0, σb) are obtained from Eqs. (F.11) and

(F.15) of Appendix F. They are given in terms of the Fresnel function F(x)= C(x)−jS(x)
as follows:

|F1(0, σa)|2 = 1

σ2
a

∣
∣
∣
∣F

(
1

2σa
+σa

)

− F
(

1

2σa
−σa

)∣
∣
∣
∣

2

|F0(0, σb)|2 = 4

∣
∣
∣
∣

F(σb)

σb

∣
∣
∣
∣

2
(19.3.13)

These have the limiting values for σa = 0 and σb = 0:

|F1(0,0)|2 = 16

π2
, |F0(0,0)|2 = 4 (19.3.14)

The mainlobe/sidelobe characteristics of the gain functions gH(θ) and gE(θ) de-

pend essentially on the two functions:

f1(vx, σa)=
∣
∣
∣
∣

F1(vx, σa)

F1(0, σa)

∣
∣
∣
∣ , f0(vy, σa)=

∣
∣
∣
∣

F0(vy, σb)

F0(0, σb)

∣
∣
∣
∣ (19.3.15)

Fig. 19.3.1 shows these functions for the following values of theσ-parameters: σa =
[0, 1.2593, 1.37, 1.4749, 1.54] and σb = [0, 0.7375, 1.0246, 1.37, 1.54].

The values σa = 1.2593 and σb = 1.0246 are the optimum values that maximize

the horn directivity (they are close to the commonly used values of σa =
√

1.5 = 1.2247

and σb = 1.)

The values σa = 1.4749 and σb = σa/2 = 0.7375 are the optimum values that

achieve the highest directivity for a waveguide and horn that have the same aspect ratio

of b/a = B/A = 1/2.
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Fig. 19.3.1 Gain functions for different σ-parameters.

For σa = σb = 0, the functions reduce to the sinc and double-sinc functions of

Eq. (19.3.6). The value σb = 1.37 was chosen because the function f0(vy, σb) develops

a plateau at the 3-dB level, making the definition of the 3-dB width ambiguous.

The value σb = 1.54 was chosen because f0(vy, σb) exhibits a secondary maximum

away from vy = 0. This maximum becomes stronger as σb is increased further.

The functions f1(v,σ) and f0(v,σ) can be evaluated for any vector of v-values and

any σ with the help of the function diffint. For example, the following code computes

them over the interval 0 ≤ v ≤ 4 for the optimum values σa = 1.2593 and σb = 1.0246,

and also determines the 3-dB bandedges with the help of the function hband:

sa = 1.2593; sb = 1.0249;

v = 0:0.01:4;

f1 = abs(diffint(v,sa,1) / diffint(0,sa,1));

f0 = abs(diffint(v,sb,0) / diffint(0,sb,0));

va = hband(sa,1); % 3-dB bandedge for H-plane pattern

vb = hband(sb,0); % 3-dB bandedge for E-plane pattern

The mainlobes become wider as σa and σb increase. The 3-dB bandedges corre-

sponding to the optimum σs are found from hband to be va = 0.6928 and vb = 0.4737,

and are shown on the graphs.

The 3-dB width in angle θ can be determined from vx = (A/λ)sinθ, which gives

approximately Δθa = (2va)(λ/A)—the approximation being good for A > 2λ. Thus,

in radians and in degrees, we obtain the H-plane and E-plane optimum 3-dB widths:

Δθa = 1.3856
λ

A
= 79.39o λ

A
, Δθb = 0.9474

λ

B
= 54.28o λ

B
(19.3.16)

The indicated angles must be replaced by 77.90o and 53.88o if the near-optimum σs

are used instead, that is, σa = 1.2247 and σb = 1.

Because of the 3-dB plateau of f0(vy, σb) at or near σb = 1.37, the function hband

defines the bandedge to be in the middle of the plateau. At σb = 1.37, the computed

bandedge is vb = 0.9860, and is shown in Fig. 19.3.1.
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The 3-dB bandedges for the parameters σa = 1.4749 and σb = 0.7375 correspond-

ing to aspect ratio of 1/2 are va = 0.8402 (shown on the left graph) and vb = 0.4499.

The MATLAB function hgain computes the gains gH(θ) and gE(θ) atN+1 equally

spaced angles over the interval [0,π/2], given the horn dimensions A,B and the pa-

rameters σa, σb. It has usage:

[gh,ge,th] = hgain(N,A,B,sa,sb); % note: th = linspace(0, pi/2, N+1)

[gh,ge,th] = hgain(N,A,B); % uses optimum values σa = 1.2593, σb = 1.0246

Example 19.3.1: Fig. 19.3.2 shows the H- and E-plane gains of a horn with sides A = 4λ and

B = 3λ and for the optimum values of the σ-parameters. The 3-dB angle widths were

computed from Eq. (19.3.16) to be: Δθa = 19.85o and Δθb = 18.09o.

The graphs show also a 3-dB gain circle as it intersects the gain curves at the 3-dB angles,

which are Δθa/2 and Δθb/2.
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Fig. 19.3.2 H- and E-plane gains for A = 4λ, B = 3λ, and σa = 1.2593, σb = 1.0246.

The essential MATLAB code for generating the left graph was:

A = 4; B = 3; N = 200;

[gh,ge,th] = hgain(N,A,B); % calculate gains

Dtha = 79.39/A; % calculate width Δθa

dbp(th,gh); % make polar plot in dB

addbwp(Dtha); % add the 3-dB widths

addcirc(3); % add a 3-dB gain circle

We will see later that the gain of this horn isG = 18.68 dB and that it can fit on a waveguide

with sides a = λ and b = 0.35λ, with an axial length of RA = RB = 3.78λ. ⊓⊔

19.4 Horn Directivity

The radiated power Prad is obtained by integrating the Poynting vector of the aperture

fields over the horn area. The quadratic phase factors in Eq. (19.2.9) have no effect on

this calculation, the result being the same as in the case of a waveguide. Thus,
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Prad = 1

4η
|E0|2(AB) (19.4.1)

It follows that the horn directivity will be:

G = 4π
Umax

Prad

= 4π

λ2
(AB)

1

8

∣
∣F1(0, σa)F0(0, σb)

∣
∣2 = e 4π

λ2
AB (19.4.2)

where we defined the aperture efficiency e by:

e(σa, σb)= 1

8

∣
∣F1(0, σa)F0(0, σb)

∣
∣2

(19.4.3)

Using the MATLAB function diffint, we may compute e for any values of σa, σb.

In particular, we find for the optimum values σa = 1.2593 and σb = 1.0246:

σa = 1.2593 ⇒ |F1(0, σa)
∣
∣2 =

∣
∣diffint(0, σa,1)

∣
∣2 = 1.2520

σb = 1.0246 ⇒ |F0(0, σb)
∣
∣2 =

∣
∣diffint(0, σb,0)

∣
∣2 = 3.1282

(19.4.4)

This leads to the aperture efficiency:

e = 1

8
(1.2520)(3.1282)≃ 0.49 (19.4.5)

and to the optimum horn directivity:

G = 0.49
4π

λ2
AB (optimum horn directivity) (19.4.6)

If we use the near-optimum values ofσa =
√

1.5 andσb = 1, the calculated efficiency

becomes e = 0.51. It may seem strange that the efficiency is larger for the non-optimum

σa, σb. We will see in the next section that “optimum” does not mean maximizing the

efficiency, but rather maximizing the gain given the geometrical constraints of the horn.

The gain-beamwidth product is from Eqs. (19.3.16) and (19.4.6), p = GΔθaΔθb =
4π(0.49)(1.3856)(0.9474)=8.083 rad2=26 535 deg2. Thus, in radians and in de-

grees, we have another instance of (16.3.14):

G = 8.083

ΔθaΔθb
= 26 535

Δθo
aΔθ

o
b

(19.4.7)

The gain of the H-plane sectoral horn is obtained by setting σb = 0, which gives

F0(0,0)= 2. Similarly, the E-plane horn is obtained by setting σa = 0, with F1(0,0)=
4/π. Thus, we have:

GH = 4π

λ2
(AB)

1

8

∣
∣F1(0, σa)

∣
∣2

4 = 2π

λ2
(AB)

∣
∣F1(0, σa)

∣
∣2

GE = 4π

λ2
(AB)

1

8

16

π2

∣
∣F0(0, σb)

∣
∣2 = 8

πλ2
(AB)

∣
∣F0(0, σb)

∣
∣2

(19.4.8)

The corresponding aperture efficiencies follow by dividing Eqs. (19.4.8) by 4πAB/λ2:
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eH(σa)= e(σa,0)= 1

2

∣
∣F1(0, σa)

∣
∣2
, eE(σb)= e(0, σb)= 2

π2

∣
∣F0(0, σb)

∣
∣2

In the limit σa = σb = 0, we find e = 0.81, which agrees with Eq. (19.1.13) of the

open waveguide case. The MATLAB function heff calculates the aperture efficiency

e(σa, σb) for any values of σa, σb. It has usage:

e = heff(sa,sb); % horn antenna efficiency

Next, we discuss the conditions for optimum directivity. In constructing a horn an-

tenna, we have the constraints of (a) keeping the dimensions a,b of the feeding waveg-

uide small enough so that only the TE10 mode is excited, and (b) maintaining the equal-

ity of the axial lengths RA = RB between the waveguide and horn planes, as shown in

Fig. 19.2.2. Using Eqs. (19.2.1) and (19.2.8), we have:

RA = A− a
A

Ra = A(A− a)
2λσ2

a
, RB = B− b

B
Rb = B(B− b)

2λσ2
b

(19.4.9)

Then, the geometrical constraint RA = RB implies;

A(A− a)
2λσ2

a
= B(B− b)

2λσ2
b

⇒ σ2
b

σ2
a
= B(B− b)
A(A− a) (19.4.10)

We wish to maximize the gain while respecting the geometry of the horn. For a fixed

axial distance RA = RB, we wish to determine the optimum dimensions A,B that will

maximize the gain.

The lengthsRA, RB are related to the radial lengthsRa, Rb by Eq. (19.4.9). ForA≫ a,

the lengths Ra and RA are practically equal, and similarly for Rb and RB. Therefore, an

almost equivalent (but more convenient) problem is to find A,B that maximize the gain

for fixed values of the radial distances Ra, Rb.

Because of the relationships A = σa
√

2λRa and B = σb
√

2λRb, this problem is

equivalent to finding the optimum values of σa and σb that will maximize the gain.

Replacing A,B in Eq. (19.4.2), we rewrite G in the form:

G = 4π

λ2

(

σa

√

2λRa

)(

σb

√

2λRb

)
1

8

∣
∣F1(0, σa)F0(0, σb)

∣
∣2
, or,

G = π
√

RaRb
λ

fa(σa)fb(σb) (19.4.11)

where we defined the directivity functions:

fa(σa)= σa
∣
∣F1(0, σa)

∣
∣2
, fb(σb)= σb

∣
∣F0(0, σb)

∣
∣2

(19.4.12)

These functions are plotted on the left graph of Fig. 19.4.1. Their maxima occur at

σa = 1.2593 and σb = 1.0246. As we mentioned before, these values are sometimes

approximated by σa =
√

1.5 = 1.2244 and σb = 1.

An alternative class of directivity functions can be derived by constructing a horn

whose aperture has the same aspect ratio as the waveguide, that is,
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Fig. 19.4.1 Directivity functions.

B

A
= b

a
= r (19.4.13)

The aspect ratio of a typical waveguide is of the order of r = 0.5, which ensures the

largest operating bandwidth in the TE10 mode and the largest power transmitted.

It follows from Eq. (19.4.13) that (19.4.10) will be satisfied provided σ2
b/σ

2
a = r2, or

σb = rσa. The directivity (19.4.11) becomes:

G = π
√

RaRb
λ

fr(σa) (19.4.14)

where we defined the function:

fr(σa)= fa(σa)fb(rσa)= r σ2
a

∣
∣F1(0, σa)F0(0, rσa)

∣
∣2

(19.4.15)

This function has a maximum, which depends on the aspect ratio r. The right graph

of Fig. 19.4.1 shows fr(σ) and its maxima for various values of r. The aspect ratio

r = 1/2 is used in many standard guides, r = 4/9 is used in the WR-90 waveguide, and

r = 2/5 in the WR-42.

The MATLAB function hsigma computes the optimum σa and σb = rσa for a given

aspect ratio r. It has usage:

[sa,sb] = hsigma(r); % optimum σ-parameters

With input r = 0, it outputs the separate optimal values σa = 1.2593 and σb =
1.0246. For r = 0.5, it gives σa = 1.4749 and σb = σa/2 = 0.7375, with corresponding

aperture efficiency e = 0.4743.

19.5 Horn Design

The design problem for a horn antenna is to determine the sides A,B that will achieve a

given gainG and will also fit geometrically with a given waveguide of sidesa,b, satisfying
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the condition RA = RB. The two design equations for A,B are then Eqs. (19.4.2) and

(19.4.10):

G = e 4π

λ2
AB ,

σ2
b

σ2
a
= B(B− b)
A(A− a) (19.5.1)

The design of the constant aspect ratio case is straightforward. Because σb = rσa,

the second condition is already satisfied. Then, the first condition can be solved for A,

from which one obtains B = rA and RA = A(A− a)/(2λσ2
a):

G = e 4π

λ2
A(rA) ⇒ A = λ

√

G

4πer
(19.5.2)

In Eq. (19.5.2), the aperture efficiency emust be calculated from Eq. (19.4.3) with the

help of the MATLAB function heff.

For unequal aspect ratios and arbitrary σa, σb, one must solve the system of equa-

tions (19.5.1) for the two unknowns A,B. To avoid negative solutions for B, the second

equation in (19.5.1) can be solved for B in terms of A,a, b, thus replacing the above

system with:

f1(A,B) ≡ B−

⎡

⎢
⎣
b

2
+
√
√
√
√b

2

4
+ σ

2
b

σ2
a
A(A− a)

⎤

⎥
⎦ = 0

f2(A,B) ≡ AB− λ
2G

4πe
= 0

(19.5.3)

This system can be solved iteratively using Newton’s method, which amounts to

starting with some initial valuesA,B and keep replacing them with the corrected values

A+ΔA and B+ΔB, where the corrections are computed from:
[

ΔA

ΔB

]

= −M−1

[

f1
f2

]

, where M=
[

∂Af1 ∂Bf1
∂Af2 ∂Bf2

]

The matrix M is given by:

M=

⎡

⎢
⎣
−σ

2
b

σ2
a

2A− a
(2B− b− 2f1)

1

B A

⎤

⎥
⎦ ≃

⎡

⎢
⎣
−σ

2
b

σ2
a

2A− a
2B− b 1

B A

⎤

⎥
⎦

where we replaced the 2f1 term by zero (this is approximately correct near convergence.)

Good initial values are obtained by assuming thatA,B will be much larger than a,b and

therefore, we write Eq. (19.5.1) approximately in the form:

G = e 4π

λ2
AB ,

σ2
b

σ2
a
= B2

A2
(19.5.4)

This system can be solved easily, giving the initial values:

A0 = λ
√

G

4πe

σa
σb

, B0 = λ
√

G

4πe

σb
σa

(19.5.5)

Note that these are the same solutions as in the constant-r case. The algorithm

converges extremely fast, requiring about 3-5 iterations. It has been implemented by

the MATLAB function hopt with usage:
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[A,B,R,err] = hopt(G,a,b,sa,sb); % optimum horn antenna design

[A,B,R,err] = hopt(G,a,b,sa,sb,N); % N is the maximum number of iterations

[A,B,R,err] = hopt(G,a,b,sa,sb,0); % outputs initial values only

where G is the desired gain in dB, a,b are the waveguide dimensions. The output R

is the common axial length R = RA = RB. All lengths are given in units of λ. If the

parameters σa, σb are omitted, their optimum values are used. The quantity err is the

approximation error, and N, the maximum number of iterations (default is 10.)

Example 19.5.1: Design a horn antenna with gain 18.68 dB and waveguide sides of a = λ and

b = 0.35λ. The following call to hopt,

[A,B,R,err] = hopt(18.68, 1, 0.35);

yields the values (in units of λ): A = 4, B = 2.9987, R = 3.7834, and err = 3.7 × 10−11.

These are the same as in Example 19.3.1. ⊓⊔

Example 19.5.2: Design a horn antenna operating at 10 GHz and fed by a WR-90 waveguide

with sides a = 2.286 cm and b = 1.016 cm. The required gain is 23 dB (G = 200).

Solution: The wavelength isλ = 3 cm. We carry out two designs, the first one using the optimum

values σa = 1.2593, σb = 1.0246, and the second using the aspect ratio of the WR-90

waveguide, which is r = b/a = 4/9, and corresponds to σa = 1.4982 and σb = 0.6659.

The following MATLAB code calculates the horn sides for the two designs and plots the

E-plane patterns:

la = 3; a = 2.286; b = 1.016; % lengths in cm

G = 200; Gdb = 10*log10(G); % GdB = 23.0103 dB

[sa1,sb1] = hsigma(0); % optimum σ-parameters

[A1,B1,R1] = hopt(Gdb, a/la, b/la, sa1, sb1); % A1, B1, R1 in units of λ

[sa2,sb2] = hsigma(b/a); % optimum σ’s for r = b/a
[A2,B2,R2] = hopt(Gdb, a/la, b/la, sa2, sb2,0); % output initial values

N = 200; % 201 angles in 0 ≤ θ ≤ π/2

[gh1,ge1,th] = hgain(N,A1,B1,sa1,sb1); % calculate gains

[gh2,ge2,th] = hgain(N,A2,B2,sa2,sb2);

figure; dbp(th,gh1); figure; dbp(th,ge1); % polar plots in dB

figure; dbp(th,gh2); figure; dbp(th,ge2);

A1 = A1*la; B1 = B1*la; R1 = R1*la; % lengths in cm

A2 = A2*la; B2 = B2*la; R2 = R2*la;

The designed sides and axial lengths are in the two cases:

A1 = 19.2383 cm, B1 = 15.2093 cm, R1 = 34.2740 cm

A2 = 26.1457 cm, B2 = 11.6203 cm, R2 = 46.3215 cm

The H- and E-plane patterns are plotted in Fig. 19.5.1. The first design (top graphs) has

slightly wider 3-dB width in the H-plane because its A-side is shorter than that of the

second design. But, its E-plane 3-dB width is narrower because its B-side is longer.
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The initial values given in Eq. (19.5.5) can be used to give an alternative, albeit approximate,

solution obtained purely algebraically: Compute A0, B0, then revise the value of B0 by

recomputing it from the first of Eq. (19.5.3), so that the geometric constraint RA = RB is

met, and then recompute the gain, which will be slightly different than the required one.

For example, using the optimum values σa = 1.2593 and σb = 1.0246, we find from

(19.5.5): A0 = 18.9644, B0 = 15.4289 cm, and RA = 33.2401 cm. Then, we recalculate B0

to be B0 = 13.9453 cm, and obtain the new gain G = 180.77, or, 22.57 dB. ⊓⊔
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Fig. 19.5.1 H- and E-plane patterns.

19.6 Microstrip Antennas

A microstrip antenna is a metallic patch on top of a dielectric substrate that sits on

top of a ground plane. Fig. 19.6.1 depicts a rectangular microstrip antenna fed by a

microstrip line. It can also be fed by a coaxial line, with its inner and outer conductors

connected to the patch and ground plane, respectively.

In this section, we consider only rectangular patches and discuss simple aperture

models for calculating the radiation patterns of the antenna. Further details and appli-

cations of microstrip antennas may be found in [1359–1366].
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Fig. 19.6.1 Microstrip antenna and E-field pattern in substrate.

The height h of the substrate is typically of a fraction of a wavelength, such as

h = 0.05λ, and the length L is of the order of 0.5λ. The structure radiates from the

fringing fields that are exposed above the substrate at the edges of the patch.

In the so-called cavity model, the patch acts as resonant cavity with an electric field

perpendicular to the patch, that is, along the z-direction. The magnetic field has van-

ishing tangential components at the four edges of the patch. The fields of the lowest

resonant mode (assuming L ≥W) are given by:

Ez(x) = −E0 sin

(
πx

L

)

Hy(x) = −H0 cos

(
πx

L

) for

−L
2
≤ x ≤ L

2

−W
2
≤ y ≤ W

2

(19.6.1)

where H0 = −jE0/η. We have placed the origin at the middle of the patch (note that

Ez(x) is equivalent to E0 cos(πx/L) for 0 ≤ x ≤ L.)

It can be verified that Eqs. (19.6.1) satisfy Maxwell’s equations and the boundary

conditions, that is, Hy(x)= 0 at x = ±L/2, provided the resonant frequency is:

ω = πc

L
⇒ f = 0.5

c

L
= 0.5

c0

L
√
ǫr

(19.6.2)

where c = c0/
√
ǫr , η = η0/

√
ǫr , and ǫr is the relative permittivity of the dielectric

substrate. It follows that the resonant microstrip length will be half-wavelength:

L = 0.5
λ√
ǫr

(19.6.3)

Fig. 19.6.2 shows two simple models for calculating the radiation patterns of the

microstrip antenna. The model on the left assumes that the fringing fields extend over

a small distance a around the patch sides and can be replaced with the fields Ea that

are tangential to the substrate surface [1361]. The four extended edge areas around the

patch serve as the effective radiating apertures.
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Fig. 19.6.2 Aperture models for microstrip antenna.

The model on the right assumes that the substrate is truncated beyond the extent of

the patch [1360]. The four dielectric substrate walls serve now as the radiating apertures.

The only tangential aperture field on these walls is Ea = ẑEz, because the tangential

magnetic fields vanish by the boundary conditions.

For both models, the ground plane can be eliminated using image theory, resulting in

doubling the aperture magnetic currents, that is, Jms = −2n̂×Ea. The radiation patterns

are then determined from Jms.

For the first model, the effective tangential fields can be expressed in terms of the

field Ez by the relationship: aEa = hEz. This follows by requiring the vanishing of the

line integrals of E around the loops labeled ABCD in the lower left of Fig. 19.6.2. Because

Ez = ±E0 at x = ±L/2, we obtain from the left and right such contours:
∮

ABCD
E · dl = −E0h+ Eaa = 0 ,

∮

ABCD
E · dl = E0h− Eaa = 0 ⇒ Ea = hE0

a

In obtaining these, we assumed that the electric field is nonzero only along the sides

AD and AB. A similar argument for the sides 2 & 4 shows that Ea = ±hEz(x)/a. The

directions of Ea at the four sides are as shown in the figure. Thus, we have:

for sides 1 & 3 : Ea = x̂
hE0

a

for sides 2 & 4 : Ea = ±ŷ
hEz(x)

a
= ∓ŷ

hE0

a
sin

(
πx

L

) (19.6.4)

The outward normal to the aperture plane is n̂ = ẑ for all four sides. Therefore, the

surface magnetic currents Jms = −2n̂× Ea become:

for sides 1 & 3 : Jms = −ŷ
2hE0

a

for sides 2 & 4 : Jms = ±x̂
2hE0

a
sin

(
πx

L

) (19.6.5)

The radiated electric field is obtained from Eq. (18.3.4) by setting F = 0 and calculat-

ing Fm as the sum of the magnetic radiation vectors over the four effective apertures:
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E = jk e
−jkr

4πr
r̂× Fm = jk e

−jkr

4πr
r̂× [

Fm1 + Fm2 + Fm3 + Fm4

]

(19.6.6)

The vectors Fm are the two-dimensional Fourier transforms over the apertures:

Fm(θ,φ)=
∫

A
Jms(x, y)e

jkxx+jkyy dS

The integration surfaces dS = dxdy are approximately, dS = ady for 1 & 3, and

dS = adx for 2 & 4. Similarly, in the phase factor ejkxx+jkyy, we must set x = ∓L/2
for sides 1 & 3, and y = ∓W/2 for sides 2 & 4. Inserting Eq. (19.6.5) into the Fourier

integrals and combining the terms for apertures 1 & 3 and 2 & 4, we obtain:

Fm,13 = −ŷ
2hE0

a

∫W/2

−W/2

(

e−jkxL/2 + ejkxL/2)ejkyyady

Fm,24 = x̂
2hE0

a

∫ L/2

−L/2

(

e−jkyW/2 − ejkyW/2) sin

(
πx

L

)

ejkxxadx

Note that the a factors cancel. Using Euler’s formulas and the integrals:

∫W/2

−W/2
ejkyydy =W sin(kyW/2)

kyW/2
,

∫ L/2

−L/2
sin

(
πx

L

)

ejkxxdx = 2jkxL
2

π2

cos(kxL/2)

1−
(
kxL

π

)2 ,

we find the radiation vectors:

Fm,12 = −ŷ 4E0hW cos(πvx)
sin(πvy)

πvy

Fm,24 = x̂ 4E0hL
4vx cos(πvx)

π(1− 4v2
x)

sin(πvy)

(19.6.7)

where we defined the normalized wavenumbers as usual:

vx = kxL

2π
= L

λ
sinθ cosφ

vy =
kyW

2π
= W

λ
sinθ sinφ

(19.6.8)

From Eq. (E.8) of Appendix E, we have:

r̂× ŷ = r̂× (r̂ sinθ sinφ+ θ̂θθ cosθ sinφ+ φ̂φφ cosφ)= φ̂φφ cosθ sinφ− θ̂θθ cosφ

r̂× x̂ = r̂× (r̂ sinθ cosφ+ θ̂θθ cosθ cosφ− φ̂φφ sinφ)= φ̂φφ cosθ cosφ+ θ̂θθ sinφ

It follows from Eq. (19.6.6) that the radiated fields from sides 1 & 3 will be:

E(θ,φ)= −jk e
−jkr

4πr
4E0hW

[

φ̂φφ cosθ sinφ− θ̂θθ cosφ
]

F(θ,φ) (19.6.9)

where we defined the function:
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F(θ,φ)= cos(πvx)
sin(πvy)

πvy
(19.6.10)

Similarly, we have for sides 2 & 4:

E(θ,φ) = jk e
−jkr

4πr
4E0hL

[

φ̂φφ cosθ cosφ+ θ̂θθ sinφ
]

f(θ,φ)

f(θ,φ) = 4vx cos(πvx)

π(1− 4v2
x)

sin(πvy)

(19.6.11)

The normalized gain is found from Eq. (19.6.9) to be:

g(θ,φ)= |E(θ,φ)|2
|E|2max

= (

cos2 θ sin2φ+ cos2φ
)∣
∣F(θ,φ)

∣
∣2

(19.6.12)

The corresponding expression for sides 2 & 4, although not normalized, provides a

measure for the gain in that case:

g(θ,φ)= (

cos2 θ cos2φ+ sin2φ
)∣
∣f(θ,φ)

∣
∣2

(19.6.13)

The E- and H-plane gains are obtained by setting φ = 0o and φ = 90o in Eq. (19.6.12):

gE(θ)= |Eθ|2
|Eθ|2max

=
∣
∣cos(πvx)

∣
∣2
, vx = L

λ
sinθ

gH(θ)=
|Eφ|2
|Eφ|2max

=
∣
∣
∣
∣
∣

cosθ
sin(πvy)

πvy

∣
∣
∣
∣
∣

2

, vy = W

λ
sinθ

(19.6.14)

Most of the radiation from the microstrip arises from sides 1 & 3. Indeed, F(θ,φ)

has a maximum towards broadside, vx = vy = 0, whereas f(θ,φ) vanishes. Moreover,

f(θ,φ) vanishes identically for all θ and φ = 0o (E-plane) or φ = 90o (H-plane).

Therefore, sides 2 & 4 contribute little to the total radiation, and they are usually

ignored. For lengths of the order of L = 0.3λ to L = λ, the gain function (19.6.13)

remains suppressed by 7 to 17 dB for all directions, relative to the gain of (19.6.12).

Example 19.6.1: Fig. 19.6.3 shows the E- and H-plane patterns for W = L = 0.3371λ. Both

patterns are fairly broad.

The choice for L comes from the resonant condition L = 0.5λ/
√
ǫr . For a typical substrate

with ǫr = 2.2, we find L = 0.5λ/
√

2.2 = 0.3371λ.

Fig. 19.6.4 shows the 3-dimensional gains computed from Eqs. (19.6.12) and (19.6.13). The

field strengths (square roots of the gains) are plotted to improve the visibility of the graphs.

The MATLAB code for generating these plots was:

L = 0.5/sqrt(2.2); W = L;

[th,ph] = meshgrid(0:3:90, 0:6:360); th = th * pi/180; ph = ph * pi/180;

vx = L * sin(th) .* cos(ph);

vy = W * sin(th) .* sin(ph);

886 19. Aperture Antennas

 0
o

 180
o

 90
o

90
o

θθ
30

o

150
o

60
o

120
o

30
o

150
o

60
o

120
o

−3−6−9

dB

E− plane gain
 0

o

 180
o

 90
o

90
o

θθ
30

o

150
o

60
o

120
o

30
o

150
o

60
o

120
o

−3−6−9

dB

H− plane gain

Fig. 19.6.3 E- and H-plane gains of microstrip antenna.
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Fig. 19.6.4 Two-dimensional gain patterns from sides 1 & 3 and 2 & 4.

E13 = sqrt(cos(th).^2.*sin(ph).^2 + cos(ph).^2);

E13 = E13 .* abs(cos(pi*vx) .* sinc(vy));

figure; surfl(vx,vy,E13);

shading interp; colormap(gray(32));

view([-40,10]);

E24 = sqrt(cos(th).^2.*cos(ph).^2 + sin(ph).^2);

E24 = E24 .* abs(4*vx.*dsinc(vx)/pi .* sin(pi*vy));

figure; surfl(vx,vy,E24);

shading interp; colormap(gray(32));

The gain from sides 2 & 4 vanishes along the vx- and vy axes, while its maximum in all

directions is
√
g = 0.15 or −16.5 dB. ⊓⊔

Using the alternative aperture model shown on the right of Fig. 19.6.2, one obtains

identical expressions for the magnetic current densities Jms along the four sides, and
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therefore, identical radiation patterns. The integration surfaces are now dS = hdy for

sides 1 & 3, and dS = hdx for 2 & 4.

19.7 Parabolic Reflector Antennas

Reflector antennas are characterized by very high gains (30 dB and higher) and narrow

main beams. They are widely used in satellite and line-of-sight microwave communica-

tions and in radar.

At microwave frequencies, the most common feeds are rectangular, circular, or cor-

rugated horns. Dipole feeds—usually backed by a reflecting plane to enhance their ra-

diation towards the reflector—are used at lower frequencies, typically, up to UHF. Some

references on reflector antennas and feed design are [1339–1358].

A typical parabolic reflector, fed by a horn antenna positioned at the focus of the

parabola, is shown in Fig. 19.7.1. A geometrical property of parabolas is that all rays

originating from the focus get reflected in a direction parallel to the parabola’s axis, that

is, the z direction.

Fig. 19.7.1 Parabolic reflector antenna with feed at the focus.

We choose the origin to be at the focus. An incident ray OP radiated from the feed

at an angle ψ becomes the reflected ray PA parallel to the z-axis. The projection of all

the reflected rays onto a plane perpendicular to the z-axis—such as the xy-plane—can

be considered to be the effective aperture of the antenna. This is shown in Fig. 19.7.2.

Let R and h be the lengths of the rays OP and PA. The sum R + h represents the

total optical path length from the focus to the aperture plane. This length is constant,

independent of ψ, and is given by

R+ h = 2F (19.7.1)

where F is the focal length. The length 2F is the total optical length of the incident and

reflected axial rays going from O to the vertex V and back to O.

Therefore, all the rays suffer the same phase delay traveling from the focus to the

plane. The spherical wave radiated from the feed gets converted upon reflection into a

888 19. Aperture Antennas

Fig. 19.7.2 Parabolic antenna and its projected effective aperture.

plane wave. Conversely, for a receiving antenna, an incident plane wave gets converted

into a spherical wave converging onto the focus.

Since h = R cosψ, Eq. (19.7.1) can be written in the following form, which is the

polar representation of the parabolic surface:

R+R cosψ = 2F ⇒ R = 2F

1+ cosψ
, or, (19.7.2)

R = 2F

1+ cosψ
= F

cos2(ψ/2)
(19.7.3)

The radial displacement ρ of the reflected ray on the aperture plane is given by

ρ = R sinψ. Replacing R from (19.7.3), we find:

ρ = 2F
sinψ

1+ cosψ
= 2F tan

(
ψ

2

)

(19.7.4)

Similarly, using R+ h = 2F or F − h = R− F, we have:

F − h = F 1− cosψ

1+ cosψ
= F tan2

(
ψ

2

)

(19.7.5)

It follows that h and ρ will be related by the equation for a parabola:

4F(F − h)= ρ2 (19.7.6)

In terms of the xyz-coordinate system, we have ρ2 = x2 + y2 and z = −h, so that

Eq. (19.7.6) becomes the equation for a paraboloid surface:

4F(F + z)= x2 + y2 (19.7.7)
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The diameter D, or the radius a = D/2, of the reflector and its focal length F deter-

mine the maximum angle ψ. It is obtained by setting ρ = a in Eq. (19.7.4):

a = D

2
= 2F tan

(
ψ0

2

)

⇒ ψ0 = 2 atan

(
D

4F

)

(19.7.8)

Thus, the F/D ratio determines ψ0. For example, if F/D = 0.25,0.35,0.50, then

ψ0 = 90o, 71o, 53o. Practical F/D ratios are in the range 0.25–0.50.

19.8 Gain and Beamwidth of Reflector Antennas

To determine the radiation pattern of a reflector antenna, one may use Eq. (18.4.2),

provided one knows the aperture fields Ea, Ha on the effective aperture projected on

the aperture plane. This approach is referred to as the aperture-field method [21].

Alternatively, the current-distribution method determines the current J s on the sur-

face of the reflector induced by the incident field from the feed, and then applies

Eq. (18.4.1) with Jms = 0, using the curved surface of the reflector as the integration

surface (Jms vanishes on the reflector surface because there are no tangential electric

fields on a perfect conductor.)

The two methods yield slightly different, but qualitatively similar, results for the

radiation patterns. The aperture fields Ea,Ha and the surface current J s are determined

by geometrical optics considerations based on the assumptions that (a) the reflector

lies in the radiation zone of the feed antenna, and (b) the incident field from the feed

gets reflected as if the reflector surface is perfectly conducting and locally flat. These

assumptions are justified because in practice the size of the reflector and its curvature

are much larger than the wavelength λ.

We use the polar and azimuthal angles ψ and χ indicated on Fig. 19.7.2 to charac-

terize the direction R̂ of an incident ray from the feed to the reflector surface.

The radiated power from the feed within the solid angle dΩ = sinψdψdχmust be

equal upon reflection to the power propagating parallel to the z-axis and intercepting

the aperture plane through the area dA = ρdρdχ, as depicted in Fig. 19.7.1.

Assuming that Ufeed(ψ,χ) is the feed antenna’s radiation intensity and noting that

|Ea|2/2η is the power density of the aperture field, the power condition reads:

1

2η
|Ea|2dA = Ufeed(ψ,χ)dΩ ⇒ 1

2η
|Ea|2ρdρ = Ufeed(ψ,χ)sinψdψ (19.8.1)

where we divided both sides by dχ. Differentiating Eq. (19.7.4), we have:

dρ = 2F
dψ

2

1

cos2(ψ/2)
= Rdψ

which implies that ρdρ = R2 sinψdψ. Thus, solving Eq. (19.8.1) for |Ea|, we find:

|Ea(ρ,χ)| = 1

R

√

2ηUfeed(ψ,χ) (19.8.2)

where we think of Ea as a function of ρ = 2F tan(ψ/2) and χ. Expressing R in terms

of ρ, we have R = 2F − h = F + (F − h)= F + ρ2/4F. Therefore, we may also write:
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|Ea(ρ,χ)| = 4F

ρ2 + 4F2

√

2ηUfeed(ψ,χ) (19.8.3)

Thus, the aperture fields get weaker towards the edge of the reflector. A measure of

this tapering effect is the edge illumination, that is, the ratio of the electric field at the

edge (ρ = a) and at the center (ρ = 0). Using Eqs. (19.7.3) and (19.8.2), we find:

|Ea(a,χ)|
|Ea(0, χ)|

= 1+ cosψ0

2

√

Ufeed(ψ0, χ)

Ufeed(0, χ)
(edge illumination) (19.8.4)

In Sec. 18.6, we defined the directivity or gain of an aperture by Eq. (18.6.10), which

we rewrite in the following form:

Ga = 4πUmax

Pa
(19.8.5)

where Pa is the total power through the aperture given in terms of Ea as follows:

Pa = 1

2η

∫

A
|Ea|2dA =

∫ ψ0

0

∫ 2π

0
Ufeed(ψ,χ)sinψdψdχ (19.8.6)

and we used Eq. (19.8.1). For a reflector antenna, the gain must be defined relative to

the total power Pfeed of the feed antenna, that is,

Gant = 4πUmax

Pfeed

= 4πUmax

Pa

Pa
Pfeed

= Gaespl (19.8.7)

The factor espl = Pa/Pfeed is referred to as the spillover efficiency or loss and repre-

sents the fraction of the power Pfeed that actually gets reflected by the reflector antenna.

The remaining power from the feed “spills over” the edge of the reflector and is lost.

We saw in Sec. 18.4 that the aperture gain is given in terms of the geometrical area

A of the aperture and the aperture-taper and phase-error efficiencies by:

Ga = 4πA

λ2
eatl epel (19.8.8)

It follows that the reflector antenna gain can be written as:

Gant = Gaespl = 4πA

λ2
eatl epel espl (19.8.9)

The total aperture efficiency is ea = eatl epel espl. In practice, additional efficiency or

loss factors must be introduced, such as those due to cross polarization or to partial

aperture blockage by the feed.

Of all the loss factors, the ATL and SPL are the primary ones that significantly affect

the gain. Their tradeoff is captured by the illumination efficiency or loss, defined to be

the product of ATL and SPL, eill = eatl espl.

The ATL and SPL may be expressed in terms of the radiation intensity Ufeed(ψ,χ).

Using ρdρ = R2 sinψdψ = ρRdψ = 2FR tan(ψ/2)dψ and Eq. (19.8.2), we have:

|Ea|dA =
√

2ηUfeed
1

R
2FR tan

ψ

2
dψdχ = 2F

√

2ηUfeed tan
ψ

2
dψdχ

|Ea|2dA = 2ηUfeed
1

R2
R2 sinψdψdχ = 2ηUfeed sinψdψdχ
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The aperture area is A = πa2 = π(2F)2tan2(ψ0/2). Thus, it follows from the

definition (18.6.13) that the ATL will be:

eatl =

∣
∣
∣
∣

∫

A
|Ea|dA

∣
∣
∣
∣

2

A

∫

A
|Ea|2dA

=
(2F)2

∣
∣
∣
∣

∫

A

√

2ηUfeed tan
ψ

2
dψdχ

∣
∣
∣
∣

2

π(2F)2tan2(ψ0/2)

∫

A
2ηUfeed sinψdψdχ

, or,

eatl = 1

π
cot2

(
ψ0

2

)

∣
∣
∣
∣
∣

∫ ψ0

0

∫ 2π

0

√

Ufeed(ψ,χ) tan
ψ

2
dψdχ

∣
∣
∣
∣
∣

2

∫ ψ0

0

∫ 2π

0
Ufeed(ψ,χ)sinψdψdχ

(19.8.10)

Similarly, the spillover efficiency can be expressed as:

espl = Pa
Pfeed

=

∫ ψ0

0

∫ 2π

0
Ufeed(ψ,χ)sinψdψdχ

∫ π

0

∫ 2π

0
Ufeed(ψ,χ)sinψdψdχ

(19.8.11)

where we replaced Pfeed by the integral of Ufeed over all solid angles. It follows that the

illumination efficiency eill = eatl espl will be:

eill = 1

π
cot2

(
ψ0

2

)

∣
∣
∣
∣
∣

∫ ψ0

0

∫ 2π

0

√

Ufeed(ψ,χ) tan
ψ

2
dψdχ

∣
∣
∣
∣
∣

2

∫ π

0

∫ 2π

0
Ufeed(ψ,χ)sinψdψdχ

(19.8.12)

An example of a feed pattern that approximates practical patterns is the following

azimuthally symmetric radiation intensity [21]:

Ufeed(ψ,χ)=

⎧

⎪⎨

⎪⎩

U0 cos4ψ, if 0 ≤ ψ ≤ π

2

0 , if
π

2
< ψ ≤ π

(19.8.13)

For this example, the SPL, ATL, and ILL can be computed in closed form:

espl = 1− cos5ψ0

eatl = 40 cot2(ψ0/2)

[

sin4(ψ0/2)+ ln
(

cos(ψ0/2)
)]2

1− cos5ψ0

eill = 40 cot2(ψ0/2)
[

sin4(ψ0/2)+ ln
(

cos(ψ0/2)
)]2

(19.8.14)

The edge illumination is from Eq. (19.8.4):

|Ea(ψ0)|
|Ea(0)|

= 1+ cosψ0

2
cos2ψ0 (19.8.15)

Fig. 19.8.1 shows a plot of Eqs. (19.8.14) and (19.8.15) versus ψ0. The ATL is a

decreasing and the SPL an increasing function ofψ0. The product eill = eatl espl reaches
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Fig. 19.8.1 Tradeoff between ATL and SPF.

the maximum value of 0.82 at ψ0 = 53.31o. The corresponding edge illumination is

0.285 or −10.9 dB. The F/D ratio is cot(ψ0/2)/4 = 0.498.

This example gives rise to the rule of thumb that the best tradeoff between ATL and

SPL for parabolic reflectors is achieved when the edge illumination is about −11 dB.

The value 0.82 for the efficiency is an overestimate. Taking into account other losses,

the aperture efficiency of practical parabolic reflectors is typically of the order of 0.55–

0.65. Expressing the physical area in terms of the diameter D, we can summarize the

gain of a parabolic antenna:

G = ea 4πA

λ2
= ea

(
πD

λ

)2

, with ea = 0.55–0.65 (19.8.16)

As we discussed in Sec. 16.3, the 3-dB beamwidth of a reflector antenna with diameter

D can be estimated by rule of thumb [1351]:

Δθ3dB = 70o λ

D
(19.8.17)

The beamwidth depends also on the edge illumination. Typically, as the edge attenu-

ation increases, the beamwidth widens and the sidelobes decrease. By studying various

reflector sizes, types, and feeds Komen [1352] arrived at the following improved approx-

imation for the 3-dB width, which takes into account the edge illumination:

Δθ3dB =
(

1.05oAedge + 55.95o)
λ

D
(19.8.18)

where Aedge is the edge attenuation in dB, that is, Aedge = −20 log10

[|Ea(ψ0)/Ea(0)|
]

.

For example, for Aedge = 11 dB, the angle factor becomes 67.5o.

19.9 Aperture-Field and Current-Distribution Methods

In the previous section, we used energy flow considerations to determine the magnitude

|Ea| of the aperture field. To determine its direction and phase, we need to start from
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the field radiated by the feed antenna and trace its path as it propagates as a spherical

wave to the reflector surface, gets reflected there, and then propagates as a plane wave

along the z-direction to the aperture plane.

Points on the reflector surface will be parametrized by the spherical coordinates

R,ψ,χ as shown in Figs. 19.7.1 and 19.7.2, and points in the radiation zone of the

reflector antenna, by the usual r,θ,φ.

Let R̂, ψ̂ψψ,χ̂χχ be the unit vectors in the R,ψ,χ directions. The relationships of R,ψ,χ

to the conventional polar coordinates of the x′y′z′ coordinate system are: R = r′,
ψ = θ′, but χ = −φ′, so that the unit vectors are R̂ = r̂′, ψ̂ψψ = θ̂θθ′, and χ̂χχ = −φ̂φφ′. (The

primed system has x̂′ = x̂, ŷ′ = −ŷ, and x̂′ = −ẑ.) In terms of the unprimed system:

R̂ = x̂ sinψ cosχ+ ŷ sinψ sinχ− ẑ cosψ

ψ̂ψψ = x̂ cosψ cosχ+ ŷ cosψ sinχ+ ẑ sinψ

χ̂χχ = −x̂ sinχ+ ŷ cosχ

(19.9.1)

and conversely,

x̂ = R̂ sinψ cosχ+ ψ̂ψψ cosψ cosχ− χ̂χχ sinχ

ŷ = R̂ sinψ sinχ+ ψ̂ψψ cosψ sinχ+ χ̂χχ cosχ

ẑ = −R̂ cosψ+ ψ̂ψψ sinψ

(19.9.2)

Because the reflector is assumed to be in the radiation zone of the feed, the most

general field radiated by the feed, and incident at the point R,ψ,χ on the reflector

surface, will have the form:

E i = e−jkR

R
f i(ψ,χ) (incident field) (19.9.3)

Because of the requirement R̂ ·E i = 0, the vector function f i must satisfy R̂ · f i = 0.

As expected for radiation fields, the radial dependence on R is decoupled from the

angular dependence on ψ,χ. The corresponding magnetic field will be:

H i = 1

η
R̂× E i = 1

η

e−jkR

R
R̂× f i(ψ,χ) (19.9.4)

The feed’s radiation intensity Ufeed is related to f i through the definition:

Ufeed(ψ,χ)= R2 1

2η

∣
∣E i

∣
∣2 = 1

2η

∣
∣f i(ψ,χ)

∣
∣2

(19.9.5)

Assuming that the incident field is reflected locally like a plane wave from the reflec-

tor’s perfectly conducting surface, it follows that the reflected fields E r,H r must satisfy

the following relationships, where where n̂ is the normal to the reflector:

n̂× E r = −n̂× E i , n̂ · E r = n̂ · E i

n̂×H r = n̂×H i , n̂ ·H r = −n̂ ·H i

(19.9.6)

These imply that |E r| = |E i|, |H r| = |H i|, and that:
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E r = −E i + 2n̂(n̂ · E i)

H r = H i − 2n̂(n̂ ·H i)
(19.9.7)

Thus, the net electric field E i+E r is normal to the surface. Fig. 19.9.1 depicts these

geometric relationships, assuming for simplicity that E i is parallel to ψ̂ψψ.

Fig. 19.9.1 Geometric relationship between incident and reflected electric fields.

The proof of Eq. (19.9.7) is straightforward. Indeed, using n̂× (E i+E r)= 0 and the

BAC-CAB rule, we have:

0 = (

n̂× (E i + E r)
)× n̂ = E i + E r − n̂(n̂ · E i + n̂ · E r)= E i + E r − n̂(2 n̂ · E i)

It follows now that the reflected field at the point (R,ψ,χ) will have the form:

E r = e−jkR

R
f r(ψ,χ) (reflected field) (19.9.8)

where f r satisfies |f r| = |f i| and:

f r = −f i + 2n̂(n̂ · f i) (19.9.9)

The condition R̂ · f i = 0 implies that ẑ · f r = 0, so that f r and E r are perpendicular

to the z-axis, and parallel to the aperture plane. To see this, we note that the normal

n̂, bisecting the angle ∠OPA in Fig. 19.9.1, will form an angle of ψ/2 with the z axis, so

that ẑ · n̂ = cos(ψ/2). More explicitly, the vector n̂ can be expressed in the form:

n̂ = −R̂ cos
ψ

2
+ ψ̂ψψ sin

ψ

2
= ẑ cos

ψ

2
− (x̂ cosχ+ ŷ sinχ)sin

ψ

2
(19.9.10)

Then, using Eq. (19.9.2), it follows that:

ẑ · f r = −ẑ · f i + 2(ẑ · n̂)(n̂ · f i)

= −(−R̂ cosψ+ ψ̂ψψ sinψ)·f i + 2 cos
ψ

2
(−R̂ cos

ψ

2
+ ψ̂ψψ sin

ψ

2
)·f i

= −(ψ̂ψψ · f i)

[

sinψ− 2 cos
ψ

2
sin

ψ

2

]

= 0



19.10. Radiation Patterns of Reflector Antennas 895

Next, we obtain the aperture field Ea by propagating E r as a plane wave along the

z-direction by a distance h to the aperture plane:

Ea = e−jkhE r = e−jk(R+h)

R
f r(ψ,χ)

But for the parabola, we have R+ h = 2F. Thus, the aperture field is given by:

Ea = e−2jkF

R
fa(ψ,χ) (aperture field) (19.9.11)

where we defined fa = f r , so that:

fa = −f i + 2n̂(n̂ · f i) (19.9.12)

Because |fa| = |f r| = |f i| =
√

2ηUfeed, it follows that Eq. (19.9.11) is consistent with

Eq. (19.8.2). As plane waves propagating in the z-direction, the reflected and aperture

fields are Huygens sources. Therefore, the corresponding magnetic fields will be:

H r = 1

η
ẑ× E r , Ha = 1

η
ẑ× Ea

The surface currents induced on the reflector are obtained by noting that the total

fields are E i + E r = 2n̂(n̂ · E i) and H i +H r = 2H i − 2n̂(n̂ ·H i). Thus, we have:

J s = n̂× (H i +H r)= 2 n̂×H i = 2

η

e−jkR

R
R̂× f i

Jms = −n̂× (E i + E r)= 0

19.10 Radiation Patterns of Reflector Antennas

The radiation patterns of the reflector antenna are obtained either from the aperture

fields Ea,Ha integrated over the effective aperture using Eq. (18.4.2), or from the cur-

rents J s and Jms = 0 integrated over the curved reflector surface using Eq. (18.4.1).

We discuss in detail only the aperture-field case. The radiation fields at some large

distance r in the direction defined by the polar angles θ,φ are given by Eq. (18.5.3). The

unit vector r̂ in the direction of θ,φ is shown in Fig. 19.7.2. We have:

Eθ = jk e
−jkr

2πr

1+ cosθ

2

[

fx cosφ+ fy sinφ
]

Eφ = jk e
−jkr

2πr

1+ cosθ

2

[

fy cosφ− fx sinφ
]

(19.10.1)

where the vector f = x̂ fx + ŷ fy is the Fourier transform over the aperture:

f(θ,φ)=
∫ a

0

∫ 2π

0
Ea(ρ

′, χ) ejk·r
′
ρ′dρ′dχ (19.10.2)
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The vector r′ lies on the aperture plane and is given in cylindrical coordinates by

r′ = ρ′ρ̂ρρ = ρ′(x̂ cosχ+ ŷ sinχ). Thus,

k · r′ = kρ′(x̂ cosφ sinθ+ ŷ sinφ sinθ+ ẑ cosθ)·(x̂ cosχ+ ŷ sinχ)

= kρ′ sinθ(cosφ cosχ+ sinφ sinχ)= kρ′ sinθ cos(φ− χ)

It follows that:

f(θ,φ)=
∫ a

0

∫ 2π

0
Ea(ρ,χ) e

jkρ sinθ cos(φ−χ)ρdρdχ (19.10.3)

We may convert this into an integral over the feed anglesψ,χ by using Eq. (19.9.11)

and dρ = Rdψ, ρ = 2F tan(ψ/2), and ρdρ = 2FR tan(ψ/2)dψ. Then, the 1/R factor

in Ea is canceled, resulting in:

f(θ,φ)= 2Fe−2jkF

∫ ψ0

0

∫ 2π

0
fa(ψ,χ)e

2jkF tan
ψ
2

sinθ cos(φ−χ) tan
ψ

2
dψdχ (19.10.4)

Given a feed pattern f i(ψ,χ), the aperture pattern fa(ψ,χ) is determined from

Eq. (19.9.12) and the integrations in (19.10.4) are done numerically.

Because of the condition R̂ · f i = 0, the vector f i will have components only along

the ψ̂ψψ and χ̂χχ directions. We assume that f i has the following more specific form:

f i = ψ̂ψψF1 sinχ+ χ̂χχF2 cosχ (y-polarized feeds) (19.10.5)

where F1, F2 are functions of ψ,χ, but often assumed to be functions only of ψ, repre-

senting the patterns along the principal planes χ = 90o and χ = 0o.

Such feeds are referred to as “y-polarized” and include y-directed dipoles, and

waveguides and horns in which the electric field on the horn aperture is polarized along

the y direction (the x-polarized case is obtained by a rotation, replacing χ by χ+ 90o.)

Using Eqs. (19.9.1) and (19.9.10), the corresponding pattern fa can be worked out:

fa = −ŷ
[

F1 sin2 χ+ F2 cos2 χ
]− x̂

[

(F1 − F2)cosχ sinχ
]

(19.10.6)

If F1 = F2, we have fa = −ŷF1. But if F1 �= F2, the aperture field Ea develops a

“cross-polarized” component along the x direction. Various definitions of cross polar-

ization have been discussed by Ludwig [1357].

As examples, we consider the cases of a y-directed Hertzian dipole feed, and waveg-

uide and horn feeds. Adapting their radiation patterns given in Sections 17.2, 19.1, and

19.3, to the R,ψ,χ coordinate system, we obtain the following feed patterns, which are

special cases of (19.10.5):

f i(ψ,χ)= Fd
(

ψ̂ψψ cosψ sinχ+ χ̂χχ cosχ
)

(dipole feed)

f i(ψ,χ)= Fw(ψ,χ)
(

ψ̂ψψ sinχ+ χ̂χχ cosχ
)

(waveguide feed)

f i(ψ,χ)= Fh(ψ,χ)
(

ψ̂ψψ sinχ+ χ̂χχ cosχ
)

(horn feed)

(19.10.7)

where Fd is the constant Fd = −jη(Il)/2λ, and Fw, Fh are given by:



19.10. Radiation Patterns of Reflector Antennas 897

Fw(ψ,χ) = − jabE0

πλ
(1+ cosψ)

cos(πvx)

1− 4v2
x

sin(πvy)

πvy

Fh(ψ,χ) = − jABE0

8λ
(1+ cosψ)F1(vx, σa)F0(vy, σb)

(19.10.8)

where I, l are the current and length of the Hertzian dipole, a,b and A,B are the di-

mensions of the waveguide and horn apertures, and vx = (a/λ)sinψ cosχ, vy =
(b/λ)sinψ sinχ for the waveguide, and vx = (A/λ)sinψ cosχ, vy = (B/λ)sinψ sinχ,

for the horn, and F1, F0 are the horn pattern functions defined in Sec. 19.3. The corre-

sponding aperture patterns fa are in the three cases:

fa(ψ,χ)= −ŷFd
[

cosψ sin2 χ+ cos2 χ
]− x̂Fd

[

(cosψ− 1)sinχ cosχ
]

fa(ψ,χ)= −ŷFw(ψ,χ)

fa(ψ,χ)= −ŷFh(ψ,χ)

(19.10.9)

In the general case, a more convenient form of Eq. (19.10.6) is obtained by writing it

in terms of the sum and difference patterns:

A = F1 + F2

2
, B = F1 − F2

2
⇔ F1 = A+ B , F2 = A− B (19.10.10)

Using some trigonometric identities, we may write (19.10.6) in the form:

fa = −ŷ
(

A− B cos 2χ
)− x̂

(

B sin 2χ
)

(19.10.11)

In general, A,B will be functions ofψ,χ (as in the waveguide and horn cases.) If we

assume that they are functions only ofψ, then the χ-integration in the radiation pattern

integral (19.10.4) can be done explicitly leaving an integral overψ only. Using (19.10.11)

and the Bessel-function identities,

∫ 2π

0
eju cos(φ−χ)

[

cosnχ

sinnχ

]

dχ = 2πjn
[

cosnφ

sinnφ

]

Jn(u) (19.10.12)

we obtain:

f(θ,φ)= −ŷ
[

fA(θ)−fB(θ)cos 2φ
]− x̂

[

fB(θ)sin 2φ
]

(19.10.13)

where the functions fA(θ) and fB(θ) are defined by:

fA(θ) = 4πFe−2jkF

∫ ψ0

0
A(ψ)J0

(
4πF

λ
tan

ψ

2
sinθ

)

tan
ψ

2
dψ

fB(θ) = −4πFe−2jkF

∫ ψ0

0
B(ψ)J2

(
4πF

λ
tan

ψ

2
sinθ

)

tan
ψ

2
dψ

(19.10.14)

Using Eq. (19.10.13) and some trigonometric identities, we obtain:

fx cosφ+ fy sinφ = −(fA + fB)sinφ

fy cosφ− fx sinφ = −(fA − fB)cosφ
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It follows that the radiation fields (19.10.1) are given by:

Eθ = −j e
−jkr

λr

1+ cosθ

2

[

fA(θ)+fB(θ)
]

sinφ

Eφ = −j e
−jkr

λr

1+ cosθ

2

[

fA(θ)−fB(θ)
]

cosφ

(19.10.15)

Example 19.10.1: Parabolic Reflector with Hertzian Dipole Feed. We compute numerically the

gain patterns for a y-directed Hertzian dipole feed. We take F = 10λ andD = 40λ, so that

F/D = 0.25 and ψ0 = 90o. These choices are similar to those in [1355].

Ignoring the constant Fd in (19.10.7), we have F1(ψ)= cosψ and F2(ψ)= 1. Thus, the

sum and difference patters are A(ψ)= (cosψ + 1)/2 and B(ψ)= (cosψ − 1)/2. Up to

some overall constants, the required gain integrals will have the form:

fA(θ)=
∫ ψ0

0
FA(ψ,θ)dψ , fB(θ)=

∫ ψ0

0
FB(ψ,θ)dψ (19.10.16)

where

FA(ψ,θ) = (1+ cosψ)J0

(
4πF

λ
tan

ψ

2
sinθ

)

tan
ψ

2

FB(ψ,θ) = (1− cosψ)J2

(
4πF

λ
tan

ψ

2
sinθ

)

tan
ψ

2

(19.10.17)

The integrals are evaluated numerically using Gauss-Legendre quadrature integration, which

approximates an integral as a weighted sum [1449]:

fA(θ)=
N∑

i=1

wi FA(ψi, θ)= wTFA

where wi,ψi are the Gauss-Legendre weights and evaluation points within the integration

interval [0,ψ0], where FA is the column vector with ith component FA(ψi, θ).

For higher accuracy, this interval may be subdivided into a number of subintervals, the

quantities wi,ψi are then determined on each subinterval, and the total integral is evalu-

ated as the sum of the integrals over all the subintervals.

We have written a MATLAB function, quadrs, that determines the quantities wi,ψi over

all the subintervals. It is built on the function quadr, which determines the weights over

a single interval.

The following MATLAB code evaluates and plots in Fig. 19.10.1 the E- andH-plane patterns

(19.10.15) over the polar angles 0 ≤ θ ≤ 5o.

F = 10; D = 40; psi0 = 2*acot(4*F/D); % F/D = 0.25, ψ0 = 90o

ab = linspace(0, psi0, 5); % 4 integration subintervals in [0,ψ0]

[w,psi] = quadrs(ab); % quadrature weights and evaluation points

% uses 16 weights per subinterval

c = cos(psi); t = tan(psi/2); % cosψ, tan(ψ/2) at quadrature points

th = linspace(0, 5, 251); % angle θ in degrees over 0 ≤ θ ≤ 5o

for i=1:length(th),

u = 4*pi*F*sin(th(i)*pi/180); % u = 2kF sinθ
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Fig. 19.10.1 Parabolic reflector patterns with dipole feed.

FA = (1+c) .* besselj(0, u*t) .* t; % integrand of fA(θ)

fA(i) = w’ * FA; % integral evaluated at θ

FB = (1-c) .* besselj(2, u*t) .* t; % integrand of fB(θ)

fB(i) = w’ * FB;

end

gh = abs((1+cos(th*pi/180)).*(fA-fB)); gh = gh/max(gh); % gain patterns

ge = abs((1+cos(th*pi/180)).*(fA+fB)); ge = ge/max(ge);

plot(-th,ge,’-’, th,ge, ’-’, -th,gh,’--’,th,gh,’--’);

The graph on the right hasψ0 = 90o andD = 80λ, resulting in a narrower main beam. ⊓⊔

Example 19.10.2: Parabolic Reflector with Waveguide Feed. We calculate the reflector radiation

patterns for a waveguide feed radiating in the TE10 mode with a y-directed electric field.

The feed pattern was given in Eq. (19.10.7). Ignoring some overall constants, we have with

vx = (a/λ)sinψ cosχ and vy = (b/λ)sinψ sinχ:

f i = (1+ cosψ)
cos(πvx)

1− 4v2
x

sin(πvy)

πvy
(ψ̂ψψ sinχ+ χ̂χχ cosχ) (19.10.18)

To avoid the double integration in the ψ and χ variables, we follow Jones’ procedure

[1355] of choosing the a,b such that the E- and H-plane illuminations of the paraboloid

are essentially identical. This is accomplished when a is approximately a = 1.37b. Then,

the above feed pattern may be simplified by replacing it by its E-plane pattern:

f i = (1+ cosψ)
sin(πvy)

πvy
(ψ̂ψψ sinχ+ χ̂χχ cosχ) (19.10.19)

where vy = (b/λ)sinψ. Thus, F1 = F2 and

A(ψ)= (1+ cosψ)
sin(πb sinψ/λ)

πb sinψ/λ
and B(ψ)= 0 (19.10.20)

The radiated field is given by Eq. (19.10.15) with a normalized gain:

g(θ)=
∣
∣
∣
∣
∣

1+ cosθ

2

fA(θ)

fA(0)

∣
∣
∣
∣
∣

2

(19.10.21)
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where fA(θ) is defined up to a constant by Eq. (19.10.14):

fA(θ)=
∫ ψ0

0
A(ψ)J0

(
4πF

λ
tan

ψ

2
sinθ

)

tan
ψ

2
dψ (19.10.22)

We choose a parabolic antenna with diameter D = 40λ and subtended angle of ψ0 = 60o,

so that F = D cot(ψ0/2)/4 = 17.3205λ. The length b of the waveguide is chosen such as

to achieve an edge illumination of −11 dB on the paraboloid. This gives the condition on

b, where the extra factor of (1+ cosψ) arises from the space attenuation factor 1/R:

|E i(ψ0)|
|E i(0)|

=
(

1+ cosψ0

2

)2
∣
∣
∣
∣
∣

sin(πb sinψ0/λ)

πb sinψ0/λ

∣
∣
∣
∣
∣
= 10−11/20 = 0.2818 (19.10.23)

It has solution b = 0.6958λ and therefore, a = 1.37b = 0.9533λ. The illumination effi-

ciency given in Eq. (19.8.12) may be taken to be a measure of the overall aperture efficiency

of the reflector. Because 2ηUfeed = |f i|2 = |fa|2 = |A(ψ)|2, the integrals in (19.8.12) may

be calculated numerically, giving ea = 0.71 and a gain of 40.5 dB.

The pattern function fA(θ)may be calculated numerically as in the previous example. The

left graph in Fig. 19.10.2 shows the E- and H-plane illumination patterns versus ψ of the

actual feed given by (19.10.18), that is, the normalized gains:

gE(ψ) =
∣
∣
∣
∣
∣

(1+ cosψ)2

4

sin(πb sinψ/λ)

πb sinψ/λ

∣
∣
∣
∣
∣

2

gH(ψ) =
∣
∣
∣
∣
∣

(1+ cosψ)2

4

cos(πa sinψ/λ)

1− 4(πa sinψ/λ)2

∣
∣
∣
∣
∣

2

They are essentially identical provided a = 1.37b (the graph actually plots the square

roots of these quantities.) The right graph shows the calculated radiation pattern g(θ)

(or, rather its square root) of the paraboloid.
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Fig. 19.10.2 Feed illumination and reflector radiation patterns.

The following MATLAB code solves (19.10.23) for b, and then calculates the illumination

pattern and the reflector pattern:
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F = 17.3205; D = 40; psi0 = 2*acot(4*F/D); % ψ0 = 60o

f = inline(’(1+cos(x)).^2/4 * abs(sinc(b*sin(x))) - A’,’b’,’x’,’A’);

Aedge = 11;

b = fzero(f,0.8,optimset(’display’,’off’), psi0, 10^(-Aedge/20));

a = 1.37 * b;

psi = linspace(-psi0, psi0, 201); ps = psi * 180/pi;

gE = abs((1+cos(psi)).^2/4 .* sinc(b*sin(psi)));

gH = abs((1+cos(psi)).^2/4 .* dsinc(a*sin(psi)));

figure; plot(ps,gE,’-’, ps,gH,’--’);

[w,psi] = quadrs(linspace(0, psi0, 5)); % quadrature weights and points

s = sin(psi); c = cos(psi); t = tan(psi/2);

A = (1+c) .* sinc(b*s); % the pattern A(ψ)

thd = linspace(0, 5, 251); th = thd*pi/180;

for i=1:length(th),

u = 4*pi*F*sin(th(i));

FA = A .* besselj(0, u*t) .* t;

fA(i) = w’ * FA;

end

g = abs((1+cos(th)) .* fA); g = g/max(g);

figure; plot(-thd,g,’-’, thd,g);

The 3-dB width was calculated from Eq. (19.8.18) and is placed on the graph. The angle

factor was 1.05Aedge + 55.95 = 67.5, so that Δθ3dB = 67.5oλ/D = 67.5/40 = 1.69o. The

gain-beamwidth product is p = G(Δθ3dB)
2= 1040.5/10 (1.69o)2= 32 046 deg2. ⊓⊔

Example 19.10.3: Parabolic Reflector with Horn Feed. Fig. 19.10.3 shows the illumination and

reflector patterns if a rectangular horn antenna feed is used instead of a waveguide. The

design requirements were again that the edge illumination be -11 dB and that D = 40λ

and ψ0 = 60o. The illumination pattern is (up to a scale factor):

f i = (1+ cosψ)F1(vx, σa)F0(vy, σb) (ψ̂ψψ sinχ+ χ̂χχ cosχ)

The E- and H-plane illumination patterns are virtually identical over the angular range

0 ≤ ψ ≤ ψ0, provided one chooses the horn sides such that A = 1.48B. Then, the

illumination field may be simplified by replacing it by the E-plane pattern and the length B

is determined by requiring that the edge illumination be -11 dB. Therefore, we work with:

f i = (1+ cosψ)F0(vy, σb) (ψ̂ψψ sinχ+ χ̂χχ cosχ) , vy = B

λ
sinψ

Then, A(ψ)= (1 + cosψ)F0(vy, σb) and B(ψ)= 0 for the sum and difference patterns.

The edge illumination condition reads now:

(
1+ cosψ0

2

)2 ∣∣
∣
∣

F0(B sinψ0/λ,σb)

F0(0, σb)

∣
∣
∣
∣ = 10−11/20
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Its solution is B = 0.7806λ, and henceA = 1.48B = 1.1553λ. The left graph in Fig. 19.10.3

shows the E- and H-plane illumination gain patterns of the actual horn feed:

gE(ψ) =
∣
∣
∣
∣
∣

(1+ cosψ)2

4

F0(B sinψ/λ,σb)

F0(0, σb)

∣
∣
∣
∣
∣

2

gH(ψ) =
∣
∣
∣
∣
∣

(1+ cosψ)2

4

F1(A sinψ/λ,σa)

F1(0, σa)

∣
∣
∣
∣
∣

2

They are seen to be almost identical. The right graph shows the reflector radiation pattern

computed numerically as in the previous example. The following MATLAB code illustrates

this computation:

[w,psi] = quadrs(linspace(0, psi0, 5)); % 4 subintervals in [0,ψ0]

s = sin(psi); c = cos(psi); t = tan(psi/2); % evaluate at quadrature points

Apsi = (1+c) .* (diffint(B*s, sb, 0)); % the pattern A(ψ)

thd = linspace(0, 8, 251); th = thd*pi/180;

for i=1:length(th),

u = 4*pi*F*sin(th(i));

FA = Apsi .* besselj(0, u*t) .* t;

fA(i) = w’ * FA;

end

g = abs((1+cos(th)) .* fA); g = g/max(g);

figure; plot(-thd,g,’-’, thd,g);

The horn’s σ-parameters were chosen to have the usual optimum values of σa = 1.2593

and σb = 1.0246. The 3-dB width is the same as in the previous example, that is, 1.69o

and is shown on the graph. The computed antenna efficiency is now ea = 0.67 and the

corresponding gain 40.24 dB, so that p = G(Δθ3dB)
2= 1040.24/10 (1.69o)2= 30 184 deg2

for the gain-beamwidth product. ⊓⊔

Example 19.10.4: Here, we compare the approximate symmetrized patterns of the previous

two examples with the exact patterns obtained by performing the double-integration over

the aperture variables ψ,χ.

Both the waveguide and horn examples have a y-directed two-dimensional Fourier trans-

form pattern of the form:

fA(θ,φ)= fy(θ,φ)=
∫ ψ0

0

∫ 2π

0
FA(ψ,χ,θ,φ)dψdχ (19.10.24)

where the integrand depends on the feed pattern A(ψ,χ):

FA(ψ,χ,θ,φ)= A(ψ,χ)ej2kF tan(ψ/2)sinθ cos(φ−χ) tan
ψ

2
(19.10.25)

and, up to constant factors, the function A(ψ,χ) is given in the two cases by:

A(ψ,χ) = (1+ cosψ)
cos(πvx)

1− 4v2
x

sin(πvy)

πvy

A(ψ,χ) = (1+ cosψ)F1(vx, σa)F0(vy, σb)

(19.10.26)
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Fig. 19.10.3 Feed and reflector radiation patterns.

where vx = (a/λ)sinψ cosχ and vy = (b/λ)sinψ sinχ for the waveguide case, and

vx = (A/λ)sinψ cosχ and vy = (B/λ)sinψ sinχ for the horn.

Once, fA(θ,φ) is computed, we obtain the (un-normalized) H- and E-plane radiation pat-

terns for the reflector by setting φ = 0o and 90o, that is,

gH(θ)=
∣
∣(1+ cosθ) fA(θ,0

o)
∣
∣2
, gE(θ)=

∣
∣(1+ cosθ) fA(θ,90o)

∣
∣2

(19.10.27)

The numerical evaluation of Eq. (19.10.24) can be done with two-dimensional Gauss-Legendre

quadratures, approximating the integral by the double sum:

fA(θ,φ)=
N1∑

i=1

N2∑

j=1

w1i FA(ψi, χj)w2j = wT
1 FAw2 (19.10.28)

where {w1i,ψi} and {w2j, χj} are the quadrature weights and evaluation points over the

intervals [0,ψ0] and [0,2π], and FA is the matrix FA(ψi, χj). The function quadrs, called

on these two intervals, will generate these weights.

Fig. 19.10.4 shows the patterns (19.10.27) of the horn and waveguide cases evaluated nu-

merically and plotted together with the approximate symmetrized patterns of the previous

two examples. The symmetrized patterns agree very well with the exact patterns and fall

between them. The following MATLAB code illustrates this computation for the horn case:

[w1, psi] = quadrs(linspace(0, psi0, Ni)); % quadrature over [0,ψ0], Ni = 5

[w2, chi] = quadrs(linspace(0, 2*pi, Ni)); % quadrature over [0,2π], Ni = 5

sinpsi = sin(psi); cospsi = cos(psi); tanpsi = tan(psi/2);

sinchi = sin(chi); coschi = cos(chi);

for i = 1:length(chi), % build matrix A(ψi, χj) columnwise

Apsi(:,i) = diffint(A*sinpsi*coschi(i), sa, 1) ...

.* diffint(B*sinpsi*sinchi(i), sb, 0);

end

Apsi = repmat(tanpsi.*(1+cospsi), 1, length(psi)) .* Apsi;

th = linspace(0, 8, 401) * pi/180;

904 19. Aperture Antennas

−8 −6 −4 −2 0 2 4 6 8
−50

−40

−30

−20

−10

0

θ   (degrees)

g
a

in
s 

in
 d

B

Reflector Pattern with Horn Feed

 symmetrized

 H− plane

 E− plane

−8 −6 −4 −2 0 2 4 6 8
−50

−40

−30

−20

−10

0

θ   (degrees)

g
a

in
s 

in
 d

B

Reflector Pattern with Waveguide Feed

 symmetrized

 H− plane

 E− plane

Fig. 19.10.4 Exact and approximate reflector radiation patterns.

for i=1:length(th),

u = 4*pi*F*sin(th(i)); % u = 2kF sinθ

FH = Apsi .* exp(j*u*tanpsi*coschi’); % H-plane, φ = 0o

FE = Apsi .* exp(j*u*tanpsi*sinchi’); % E-plane, φ = 90o

fH(i) = w1’ * FH * w2; % evaluate double integral

fE(i) = w1’ * FE * w2;

end

gH = abs((1+cos(th)).*fH); gH = gH/max(gH); % radiation patterns

gE = abs((1+cos(th)).*fE); gE = gE/max(gE);

The patterns are plotted in dB, which accentuates the differences among the curves and

also shows the sidelobe levels. In the waveguide case the resulting curves are almost

indistinguishable to be seen as separate. ⊓⊔

19.11 Dual-Reflector Antennas

Dual-reflector antennas consisting of a main reflector and a secondary sub-reflector are

used to increase the effective focal length and to provide convenient placement of the

feed.

Fig. 19.11.1 shows a Cassegrain antenna† consisting of a parabolic reflector and

a hyperbolic subreflector. The hyperbola is positioned such that its focus F2 coincides

with the focus of the parabola. The feed is placed at the other focus, F1, of the hyperbola.

The focus F2 is referred to a “virtual focus” of the parabola. Any ray originating from

the point F1 will be reflected by the hyperbola in a direction that appears to have origi-

nated from the focus F2, and therefore, it will be re-reflected parallel to the parabola’s

axis.

To better understand the operation of such an antenna, we consider briefly the re-

flection properties of hyperbolas and ellipses, as shown in Fig. 19.11.2.

†Invented in the 17th century by A. Cassegrain.
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Fig. 19.11.1 Cassegrain dual-reflector antenna.

The geometrical properties of hyperbolas and ellipses are characterized completely

by the parameters e, a, that is, the eccentricity and the distance of the vertices from

the origin. The eccentricity is e > 1 for a hyperbola, and e < 1 for an ellipse. A circle

corresponds to e = 0 and a parabola can be thought of as the limit of a hyperbola in the

limit e = 1.

Fig. 19.11.2 Hyperbolic and elliptic reflectors.

The foci are at distances F1 and F2 from a vertex, say from the vertex V2, and are

given in terms of a, e as follows:

F1 = a(e+ 1), F2 = a(e− 1) (hyperbola)

F1 = a(1+ e), F2 = a(1− e) (ellipse)
(19.11.1)

The ray lengths R1 and R2 from the foci to a point P satisfy:

R1 −R2 = 2a (hyperbola)

R1 +R2 = 2a (ellipse)
(19.11.2)
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The polar representations of the hyperbola or ellipse may be given in terms of the

polar angles ψ1 or ψ2. We have:

R1 = a(e2 − 1)

e cosψ1 − 1
, R2 = a(e2 − 1)

e cosψ2 + 1
(hyperbola)

R1 = a(1− e2)

1− e cosψ1

, R2 = a(1− e2)

1− e cosψ2

(ellipse)

(19.11.3)

Note that we can write a(e2 − 1)= F1(e − 1)= F2(e + 1). For the hyperbola, the

denominator ofR1 vanishes at the anglesψ1 = ± acos(1/e), corresponding to two lines

parallel to the hyperbola asymptotes.

In the cartesian coordinates x, z (defined with respect to the origin O in the figure),

the equations for the hyperbola and the ellipse are:

(e2 − 1)z2 − x2 = a2(e2 − 1) (hyperbola)

(1− e2)z2 + x2 = a2(1− e2) (ellipse)
(19.11.4)

The semi-major axes are b2 = a2(e2 − 1) or a2(1− e2). Because of the constraints

(19.11.2), the anglesψ1,ψ2 are not independent of each other. For example, solving for

ψ2 in terms of ψ1, we have in the hyperbolic case:

cosψ2 = e2 cosψ1 − 2e+ cosψ1

e2 − 2e cosψ1 + 1
(19.11.5)

This implies the additional relationship and the derivative:

1+ cosψ2

e cosψ2 + 1
=
(

1+ cosψ1

e cosψ1 − 1

)(
e− 1

e+ 1

)

dψ2

dψ1

= sinψ1

sinψ2

(

e cosψ2 + 1

e cosψ1 − 1

)2
(19.11.6)

The incident ray R1 reflects off the surface of either the hyperbola or the ellipse as

though the surface is locally a perfect mirror, that is, the local normal bisects the angle

between the incident and reflected rays. The angles of incidence and reflectionφ shown

on the figures are given by:

φ = ψ1 +ψ2

2
(hyperbola)

φ = π

2
− ψ1 +ψ2

2
(ellipse)

(19.11.7)

To determine the aperture field on the aperture plane passing through F2, we equate

the power within a solid angle dΩ1 = sinψ1dψ1dχ radiated from the feed, to the power

reflected within the cone dΩ2 = sinψ2dψ2dχ from the hyperbola, to the power passing

through the aperture dA = ρdρdχ:

dP = U1(ψ1, χ)dΩ1 = U2(ψ2, χ)dΩ2 = 1

2η
|Ea|2 dA (19.11.8)
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where U1 is the radiation intensity of the feed, and U2 the intensity of the virtual feed.

The second of Eqs. (19.11.8) may be solved as in Eq. (19.8.2) giving:

|Ea| = 1

2F
(1+ cosψ2)

√

2ηU2(ψ2, χ) (19.11.9)

where F is the focal length of the parabola. From the first of Eqs. (19.11.8), we find:

√

U2 =
√

U1

√

sinψ1dψ1

sinψ2dψ2

=
√

U1
e cosψ1 − 1

e cosψ2 + 1
(19.11.10)

Inserting this into Eq. (19.11.9) and using Eqs. (19.11.6), we obtain:

|Ea| = 1

2F

(
e− 1

e+ 1

)

(1+ cosψ1)
√

2ηU1(ψ1, χ) (19.11.11)

Comparing with Eq. (19.8.2), we observe that this is equivalent to a single parabolic

reflector with an effective focal length:

Feff = F e+ 1

e− 1
(19.11.12)

Thus, having a secondary reflector increases the focal length while providing a con-

venient location of the feed near the vertex of the parabola. Cassegrain antenna aperture

efficiencies are typically of the order of 0.65–0.70.

19.12 Lens Antennas

Dielectric lens antennas convert the spherical wave from the feed into a plane wave

exiting the lens. Fig. 19.12.1 shows two types of lenses, one with a hyperbolic and the

other with elliptic profile.

Fig. 19.12.1 Lens antennas.

The surface profile of the lens is determined by the requirement that the refracted

rays all exit parallel to the lens axis. For example, for the lens shown on the left, the
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effective aperture plane is the right side AB of the lens. If this is to be the exiting

wavefront, then each point A must have the same phase, that is, the same optical path

length from the feed.

Taking the refractive index of the lens dielectric to be n, and denoting byR and h the

lengths FP and PA, the constant-phase condition implies that the optical length along

FPA be the same as that for FVB, that is,

R+ nh = F + nh0 (19.12.1)

But, geometrically we have R cosψ+h = F+h0. Multiplying this by n and subtract-

ing Eq. (19.12.1), we obtain the polar equation for the lens profile:

R(n cosψ− 1)= F(n− 1) ⇒ R = F(n− 1)

n cosψ− 1
(19.12.2)

This is recognized from Eq. (19.11.3) to be the equation for a hyperbola with eccen-

tricity and focal length e = n and F1 = F.

For the lens shown on the right, we assume the left surface is a circle of radius R0

and we wish to determine the profile of the exiting surface such that the aperture plane

is again a constant-phase wavefront. We denote by R and h the lengths FA and PA.

Then, R = R0 + h and the constant-phase condition becomes:

R0 + nh+ d = R0 + nh0 (19.12.3)

where the left-hand side represents the optical path FPAB. Geometrically, we have

R cosψ+ d = F and F = R0 + h0. Eliminating d and R0, we find the lens profile:

R =
F
(

1− 1

n

)

1− 1

n
cosψ

(19.12.4)

which is recognized to be the equation for an ellipse with eccentricity and focal length

e = 1/n and F1 = F.

In the above discussion, we considered only the refracted rays through the dielectric

and ignored the reflected waves. These can be minimized by appropriate antireflection

coatings.



20

Antenna Arrays

20.1 Antenna Arrays

Arrays of antennas are used to direct radiated power towards a desired angular sector.

The number, geometrical arrangement, and relative amplitudes and phases of the array

elements depend on the angular pattern that must be achieved.

Once an array has been designed to focus towards a particular direction, it becomes

a simple matter to steer it towards some other direction by changing the relative phases

of the array elements—a process called steering or scanning.

Figure 20.1.1 shows some examples of one- and two-dimensional arrays consisting

of identical linear antennas. A linear antenna element, say along the z-direction, has

an omnidirectional pattern with respect to the azimuthal angle φ. By replicating the

antenna element along the x- or y-directions, the azimuthal symmetry is broken. By

proper choice of the array feed coefficients an, any desired gain pattern g(φ) can be

synthesized.

If the antenna element is replicated along the z-direction, then the omnidirectionality

with respect toφ is maintained. With enough array elements, any prescribed polar angle

pattern g(θ) can be designed.

In this section we discuss array design methods and consider various design issues,

such as the tradeoff between beamwidth and sidelobe level.

For uniformly-spaced arrays, the design methods are identical to the methods for

designing FIR digital filters in DSP, such as window-based and frequency-sampling de-

signs. In fact, historically, these methods were first developed in antenna theory and

only later were adopted and further developed in DSP.

20.2 Translational Phase Shift

The most basic property of an array is that the relative displacements of the antenna ele-

ments with respect to each other introduce relative phase shifts in the radiation vectors,

which can then add constructively in some directions or destructively in others. This is

a direct consequence of the translational phase-shift property of Fourier transforms: a

translation in space or time becomes a phase shift in the Fourier domain.
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Fig. 20.1.1 Typical array configurations.

Figure 20.2.1 shows on the left an antenna translated by the vector d, and on the

right, several antennas translated to different locations and fed with different relative

amplitudes.

Fig. 20.2.1 Translated antennas.

The current density of the translated antenna will be Jd(r)= J(r− d). By definition,

the radiation vector is the three-dimensional Fourier transform of the current density,

as in Eq. (15.7.5). Thus, the radiation vector of the translated current will be:

Fd =
∫

ejk·r Jd(r)d
3r =

∫

ejk·r J(r− d)d3r =
∫

ejk·(r
′+d)J(r′)d3r′

= ejk·d
∫

ejk·r
′
J(r′)d3r′ = ejk·d F
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where we changed variables to r′ = r− d. Thus,

Fd(k)= ejk·d F(k) (translational phase shift) (20.2.1)

20.3 Array Pattern Multiplication

More generally, we consider a three-dimensional array of several identical antennas lo-

cated at positions d0,d1,d2, . . . with relative feed coefficients a0, a1, a2, . . . , as shown

in Fig. 20.2.1. (Without loss of generality, we may set d0 = 0 and a0 = 1.)

The current density of the nth antenna will be Jn(r)= anJ(r − dn) and the corre-

sponding radiation vector:

Fn(k)= anejk·dn F(k)

The total current density of the array will be:

Jtot(r)= a0J(r− d0)+a1J(r− d1)+a2J(r− d2)+· · ·

and the total radiation vector:

Ftot(k)= F0 + F1 + F2 + · · · = a0e
jk·d0 F(k)+a1e

jk·d1 F(k)+a2e
jk·d2 F(k)+· · ·

The factor F(k) due to a single antenna element at the origin is common to all terms.

Thus, we obtain the array pattern multiplication property:

Ftot(k)= A(k)F(k) (array pattern multiplication) (20.3.1)

where A(k) is the array factor :

A(k)= a0e
jk·d0 + a1e

jk·d1 + a2e
jk·d2 + · · · (array factor) (20.3.2)

Since k = kr̂, we may also denote the array factor asA(r̂) orA(θ,φ). To summarize,

the net effect of an array of identical antennas is to modify the single-antenna radiation

vector by the array factor, which incorporates all the translational phase shifts and

relative weighting coefficients of the array elements.

We may think of Eq. (20.3.1) as the input/output equation of a linear system with

A(k) as the transfer function. We note that the corresponding radiation intensities and

power gains will also be related in a similar fashion:

Utot(θ,φ) = |A(θ,φ)|2U(θ,φ)
Gtot(θ,φ) = |A(θ,φ)|2G(θ,φ)

(20.3.3)

where U(θ,φ) and G(θ,φ) are the radiation intensity and power gain of a single el-

ement. The array factor can dramatically alter the directivity properties of the single-

antenna element. The power gain |A(θ,φ)|2 of an array can be computed with the help

of the MATLAB function gain1d of Appendix I with typical usage:

[g, phi] = gain1d(d, a, Nph); % compute normalized gain of an array
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Example 20.3.1: Consider an array of two isotropic antennas at positions d0 = 0 and d1 = x̂d

(alternatively, at d0 = −(d/2)x̂ and d1 = (d/2)x̂), as shown below:

The displacement phase factors are:

ejk·d0 = 1 , ejk·d1 = ejkxd = ejkd sinθ cosφ

or, in the symmetric case:

ejk·d0 = e−jkxd/2 = e−jk(d/2)sinθ cosφ , ejk·d1 = ejkxd/2 = ejk(d/2)sinθ cosφ

Let a = [a0, a1] be the array coefficients. The array factor is:

A(θ,φ) = a0 + a1e
jkd sinθ cosφ

A(θ,φ) = a0e
−jk(d/2)sinθ cosφ + a1e

jk(d/2)sinθ cosφ , (symmetric case)

The two expressions differ by a phase factor, which does not affect the power pattern. At

polar angle θ = 90o, that is, on the xy-plane, the array factor will be:

A(φ)= a0 + a1e
jkd cosφ

and the azimuthal power pattern:

g(φ)= |A(φ)|2 =
∣
∣a0 + a1e

jkd cosφ
∣
∣2

Note that kd = 2πd/λ. Figure 20.3.1 shows g(φ) for the array spacings d = 0.25λ,

d = 0.50λ, d = λ, or kd = π/2,π,2π, and the following array weights:

a = [a0, a1]= [1,1]
a = [a0, a1]= [1,−1]

a = [a0, a1]= [1,−j]
(20.3.4)

The first of these graphs was generated by the MATLAB code:

d = 0.25; a = [1,1]; % d is in units of λ

[g, phi] = gain1d(d, a, 400); % 400 phi’s in [0,π]

dbz(phi, g, 30, 20); % 30o grid, 20-dB scale

As the relative phase of a0 and a1 changes, the pattern rotates so that its main lobe is in

a different direction. When the coefficients are in phase, the pattern is broadside to the

array, that is, towards φ = 90o. When they are in anti-phase, the pattern is end-fire, that

is, towards φ = 0o and φ = 180o.
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Fig. 20.3.1 Azimuthal gain patterns of two-element isotropic array.

The technique of rotating or steering the pattern towards some other direction by intro-

ducing relative phases among the elements is further discussed in Sec. 20.9. There, we

will be able to predict the steering angles of this example from the relative phases of the

weights.

Another observation from these graphs is that as the array pattern is steered from broad-

side to endfire, the widths of the main lobes become larger. We will discuss this effect in

Sects. 20.9 and 20.10.

When d ≥ λ, more than one main lobes appear in the pattern. Such main lobes are called

grating lobes or fringes and are further discussed in Sec. 20.6. Fig. 20.3.2 shows some

additional examples of grating lobes for spacings d = 2λ, 4λ, and 8λ. ⊓⊔
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Fig. 20.3.2 Grating lobes of two-element isotropic array.

Example 20.3.2: Consider a three-element array of isotropic antennas at locations d0 = 0,

d1 = dx̂, and d2 = 2dx̂, or, placed symmetrically at d0 = −dx̂, d1 = 0, and d2 = dx̂, as

shown below:

The displacement phase factors evaluated at θ = 90o are:

ejk·d0 = 1 , ejk·d1 = ejkxd = ejkd cosφ ejk·d2 = ej2kxd = ej2kd cosφ

Let a = [a0, a1, a2] be the array weights. The array factor is:

A(φ)= a0 + a1e
jkd cosφ + a2e

2jkd cosφ

Figure 20.3.3 shows g(φ)= |A(φ)|2 for the array spacings d = 0.25λ, d = 0.50λ, d = λ,

or kd = π/2,π,2π, and the following choices for the weights:

a = [a0, a1, a2]= [1,1,1]
a = [a0, a1, a2]= [1, (−1), (−1)2]= [1,−1,1]

a = [a0, a1, a2]= [1, (−j), (−j)2]= [1,−j,−1]

(20.3.5)

where in the last two cases, progressive phase factors of 180o and 90o have been introduced

between the array elements.

The MATLAB code for generating the last graph was:

d = 1; a = [1,-j,-1];

[g, phi] = gain1d(d, a, 400);

dbz(phi, g, 30, 20);
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Fig. 20.3.3 Azimuthal gains of three-element isotropic array.

The patterns are similarly rotated as in the previous example. The main lobes are narrower,

but we note the appearance of sidelobes at the level of −10 dB. We will see later that as

the number of array elements increases, the sidelobes reach a constant level of about −13

dB for an array with uniform weights.

Such sidelobes can be reduced further if we use appropriate non-uniform weights, but at

the expense of increasing the beamwidth of the main lobes. ⊓⊔

Example 20.3.3: As an example of a two-dimensional array, consider three z-directed half-

wave dipoles: one at the origin, one on the x-axis, and one on the y-axis, both at a distance

d = λ/2, as shown below.

916 20. Antenna Arrays

The relative weights are a0, a1, a2. The displacement vectors are d1 = x̂d and d2 = ŷd.

Using Eq. (17.1.4), we find the translational phase-shift factors:

ejk·d1 = ejkxd = ejkd sinθ cosφ , ejk·d2 = ejkyd = ejkd sinθ sinφ

and the array factor:

A(θ,φ)= a0 + a1e
jkd sinθ cosφ + a2e

jkd sinθ sinφ

Thus, the array’s total normalized gain will be up to an overall constant:

gtot(θ,φ)= |A(θ,φ)|2 g(θ,φ)= |A(θ,φ)|2
∣
∣
∣
∣

cos(0.5π cosθ)

sinθ

∣
∣
∣
∣

2

The gain pattern on the xy-plane (θ = 90o) becomes:

gtot(φ)=
∣
∣a0 + a1e

jkd cosφ + a2e
jkd sinφ

∣
∣2

Note that because d = λ/2, we have kd = π. The omnidirectional case of a single element

is obtained by setting a1 = a2 = 0 and a0 = 1. Fig. 20.3.4 shows the gain gtot(φ) for

various choices of the array weights a0, a1, a2.

Because of the presence of the a2 term, which depends on sinφ, the gain is not necessarily

symmetric for negative φ’s. Thus, it must be evaluated over the entire azimuthal range

−π ≤ φ ≤ π. Then, it can be plotted with the help of the function dbz2 which assumes

the gain is over the entire 2π range. For example, the last of these graphs was computed

by:

d = 0.5; a0=1; a1=2; a2=2;

phi = (0:400) * 2*pi/400;

psi1 = 2*pi*d*cos(phi);

psi2 = 2*pi*d*sin(phi);

g = abs(a0 + a1 * exp(j*psi1) + a2 * exp(j*psi2)).^2;

g = g/max(g);

dbz2(phi, g, 45, 12);

When a2 = 0, we have effectively a two-element array along the x-axis with equal weights.

The resulting array pattern is broadside, that is, maximum along the perpendicular φ =
90o to the array. Similarly, when a1 = 0, the two-element array is along the y-axis and the

pattern is broadside to it, that is, along φ = 0. When a0 = 0, the pattern is broadside to

the line joining elements 1 and 2. ⊓⊔

Example 20.3.4: The analysis of the rhombic antenna in Sec. 17.7 was carried out with the

help of the translational phase-shift theorem of Eq. (20.2.1). The theorem was applied to

antenna pairs 1,3 and 2,4.
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Fig. 20.3.4 Azimuthal gain patterns of two-dimensional array.

A more general version of the translation theorem involves both a translation and a rotation

(a Euclidean transformation) of the type r′ = R−1(r − d), or, r = Rr′ + d, where R is a

rotation matrix.

The rotated/translated current density is then defined as JR,d(r)= R−1J(r′) and the cor-

responding relationship between the two radiation vectors becomes:

FR,d(k)= ejk·dR−1F
(

R−1k
)

The rhombic as well as the vee antennas can be analyzed by applying such rotational

and translational transformations to a single traveling-wave antenna along the z-direction,

which is rotated by an angle ±α and then translated. ⊓⊔

Example 20.3.5: Ground Effects Between Two Antennas. There is a large literature on radio-

wave propagation effects [19,34,44,1367–1383]. Consider a mobile radio channel in which

the transmitting vertical antenna at the base station is at height h1 from the ground and

the receiving mobile antenna is at height h2, as shown below. The ray reflected from the

ground interferes with the direct ray and can cause substantial signal cancellation at the

receiving antenna.
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The reflected ray may be thought of as originating from the image of the transmitting

antenna at −h1, as shown. Thus, we have an equivalent two-element transmitting array.

We assume that the currents on the actual and image antennas are I(z) and ρI(z), where

ρ = −ρTM is the reflection coefficient of the ground for parallel polarization (the negative

sign is justified in the next example), given in terms of the angle of incidence α by:

ρ = −ρTM = n2 cosα−
√

n2 − sin2α

n2 cosα+
√

n2 − sin2α
, n2 = ǫ

ǫ0

− j σ
ωǫ0

= ǫr − j η0

2π
σλ

where n is the complex refractive index of the ground, and we replaced ωǫ0 = 2πfǫ0 =
2πc0ǫ0/λ and c0ǫ0 = 1/η0. Numerically, we may set η0/2π ≃ 60 Ω. From the geometry

of the figure, we find that the angle α is related to the polar angle θ by:

tanα = r sinθ

h1 + r cosθ

In the limit of large r, α tends to θ. For a perfectly conducting ground (σ = ∞), the

reflection coefficient becomes ρ = 1, regardless of the incidence angle.

On the other hand, for an imperfect ground and for low grazing angles (α ≃ 90o), the

reflection coefficient becomes ρ = −1, regardless of the conductivity of the ground. This

is the relevant case in mobile communications.

The array factor can be obtained as follows. The two displaced antennas are at locations

d1 = h1ẑ and d2 = −h1ẑ, so that the displacement phase factors are:

ejk·d1 = ejkzh1 = ejkh1 cosθ , ejk·d2 = e−jkzh1 = e−jkh1 cosθ

where we replaced kz = k cosθ. The relative feed coefficients are 1 and ρ. Therefore, the

array factor and its magnitude will be:

A(θ) = ejkh1 cosθ + ρe−jkh1 cosθ = ejkh1 cosθ
(

1+ ρe−jΔ)

|A(θ)|2 =
∣
∣1+ ρe−jΔ

∣
∣2
, where Δ = 2kh1 cosθ

(20.3.6)

The gain of the transmitting antenna becomesGtot(θ)= |A(θ)|2G(θ), whereG(θ) is the

gain with the ground absent. For the common case of low grazing angles, or ρ = −1, the

array factor becomes:

|A(θ)|2 =
∣
∣1− e−jΔ

∣
∣2 = 2− 2 cos(Δ)= 4 sin2

(
Δ

2

)

At the location of the mobile antenna which is at height h2, the geometry of the figure

implies that cosθ = h2/r. Thus, we have Δ = 2kh1 cosθ = 2kh1h2/r, and

|A(θ)|2 = 4 sin2

(
Δ

2

)

≃ Δ2 =
(

2kh1h2

r

)2
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where we assumed that kh1h2/r ≪ 1 and used the approximation sinx ≃ x. Therefore,

for fixed antenna heights h1, h2, the gain at the location of the receiving antenna drops

like 1/r2. This is in addition to the 1/r2 drop arising from the power density. Thus, the

presence of the ground reflection causes the overall power density at the receiving antenna

to drop like 1/r4 instead of 1/r2.

For two antennas pointing towards the maximum gain of each other, the Friis transmission

formula must be modified to read:

P2

P1

= G1G2

(
λ

4πr

)2
∣
∣1+ ρe−jΔ

∣
∣2
, Δ = 2kh1h2

r
= 4πh1h2

λr
(20.3.7)

The direct and ground-reflected rays are referred to as the space wave. When both antennas

are close to the ground, one must also include a term in A(θ) due to the so-called Norton

surface wave [1378–1383]:

A(θ)= 1+ ρe−jΔ
︸ ︷︷ ︸

space wave

+ (1− ρ)Fe−jΔ
︸ ︷︷ ︸

surface wave

where F is an attenuation coefficient that, for kr≫ 1, can be approximated by [1370]:

F = sin2α

jkr(cosα+ u)2
, u = 1

n2

√

n2 − sin2α

At grazing angles, the space-wave terms of A(θ) tend to cancel and the surface wave be-

comes the only means of propagation. A historical review of the ground-wave propagation

problem and some of its controversies can be found in [1368]. ⊓⊔

Example 20.3.6: Vertical Dipole Antenna over Imperfect Ground. Consider a vertical linear an-

tenna at a height h over ground as shown below. When the observation point is far from

the antenna, the direct and reflected rays r1 and r2 will be almost parallel to each other,

forming an angle θ with the vertical. The incidence angle α of the previous example is

then α = θ, so that the TM reflection coefficient is:

ρTM =
√

n2 − sin2 θ− n2 cosθ
√

n2 − sin2 θ+ n2 cosθ
, n2 = ǫr − j η0

2π
σλ

The relative permittivity ǫr = ǫ/ǫ0 and conductivity σ (in units of S/m) are given below

for some typical grounds and typical frequencies:†

†ITU Recommendation ITU-R P.527-3 on the “Electrical Characteristics of the Surface of the Earth,” 1992.

920 20. Antenna Arrays

1 MHz 100 MHz 1 GHz

ground type ǫr σ ǫr σ ǫr σ

very dry ground 3 10−4 3 10−4 3 1.5×10−4

medium dry ground 15 10−3 15 1.5×10−3 15 3.5×10−3

wet ground 30 10−2 30 1.5×10−2 30 1.5×10−1

fresh water 80 3×10−3 80 5×10−3 80 1.5×10−1

sea water 70 5 70 5 70 5

According to Eq. (17.1.6), the electric fields E1 and E2 along the direct and reflected rays

will point in the direction of their respective polar unit vector θ̂θθ, as seen in the above figure.

According to the sign conventions of Sec. 7.2, the reflected field ρTME2 will be pointing in

the −θ̂θθ direction, opposing E1. The net field at the observation point will be:

E = E1 − ρTME2 = θ̂θθ jkη e
−jkr1

4πr1

Fz(θ)sinθ− θ̂θθ jkη e
−jkr2

4πr2

ρTM Fz(θ)sinθ

where F(θ)= ẑFz(θ) is the assumed radiation vector of the linear antenna. Thus, the

reflected ray appears to have originated from an image current −ρTMI(z). Using the ap-

proximations r1 = r−h cosθ and r2 = r+h cosθ in the propagation phase factors e−jkr1

and e−jkr2 , we obtain for the net electric field at the observation point (r,θ):

E = θ̂θθ jkη e
−jkr

4πr
Fz(θ)sinθ

[

ejkh cosθ − ρTM e
−jkh cosθ

]

It follows that the (unnormalized) gain will be:

g(θ)=
∣
∣Fz(θ)sinθ

∣
∣2

∣
∣
∣1− ρTM(θ)e

−2jkh cosθ
∣
∣
∣

2

The results of the previous example are obtained if we set ρ = −ρTM. For a Hertzian dipole,

we may replace Fz(θ) by unity. For a half-wave dipole, we have:

g(θ)=
∣
∣
∣
∣

cos(0.5π cosθ)

sinθ

∣
∣
∣
∣

2 ∣
∣
∣1− ρTM(θ)e

−2jkh cosθ
∣
∣
∣

2

Fig. 20.3.5 shows the resulting gains for a half-wave dipole at heights h = λ/4 and h = λ/2
and at frequencies f = 1 MHz and f = 100 MHz. The ground parameters correspond to

the medium dry case of the above table. The dashed curves represent the gain of a single

dipole, that is, G(θ)=
∣
∣cos(0.5π cosθ)/ sinθ

∣
∣2

.

The following MATLAB code illustrates the generation of these graphs:

sigma=1e-3; ep0=8.854e-12; er=15; f=1e6; h = 1/4;

n2 = er - j*sigma/ep0/2/pi/f;

th = linspace(0,pi/2,301); c =cos(th); s2 = sin(th).^2;

rho = (sqrt(n2-s2) - n2*c)./(sqrt(n2-s2) + n2*c);

A = 1 - rho .* exp(-j*4*pi*h*cos(th)); % array factor

G = cos(pi*cos(th)/2)./sin(th); G(1)=0; % half-wave dipole gain

g = abs(G.*A).^2; g = g/max(g); % normalized gain

dbp(th, g, 30, 12); % polar plot in dB
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Fig. 20.3.5 Vertical dipole over imperfect ground

Thus, the presence of the ground significantly alters the angular gain of the dipole. For

the case h = λ/2, we observe the presence of grating lobes, arising because the effective

separation between the dipole and its image is 2h > λ/2.

The number of grating lobes increases with the height h. These can be observed by running

the above example code with f = 1 GHz (i.e., λ = 30 cm) for a cell phone held vertically at

a height of h = 6λ = 1.8 meters. ⊓⊔

20.4 One-Dimensional Arrays

Next, we consider uniformly-spaced one-dimensional arrays. An array along the x-axis

(see Fig. 20.3.4) with elements positioned at locations xn, n = 0,1,2, . . . , will have dis-

placement vectors dn = xnx̂ and array factor:

A(θ,φ)=
∑

n

ane
jk·dn =

∑

n

ane
jkxxn =

∑

n

ane
jkxn sinθ cosφ

where we set kx = k sinθ cosφ. For equally-spaced arrays, the element locations are

xn = nd, where d is the distance between elements. In this case, the array factor be-
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comes:

A(θ,φ)=
∑

n

ane
jnkd sinθ cosφ (20.4.1)

Because the angular dependence comes through the factor kxd = kd sinθ cosφ, we are

led to define the variable:

ψ = kxd = kd sinθ cosφ (digital wavenumber) (20.4.2)

Then, the array factor may be thought of as a function of ψ:

A(ψ)=
∑

n

ane
jψn (array factor in digital wavenumber space) (20.4.3)

The variable ψ is a normalized version of the wavenumber kx and is measured in

units of radians per (space) sample. It may be called a normalized digital wavenumber, in

analogy with the time-domain normalized digital frequency ω = ΩT = 2πf/fs, which

is in units of radians per (time) sample.† The array factor A(ψ) is the wavenumber

version of the frequency response of a digital filter defined by

A(ω)=
∑

n

ane
−jωn (20.4.4)

We note the difference in the sign of the exponent in the definitions (20.4.3) and

(20.4.4). This arises from the difference in defining time-domain and space-domain

Fourier transforms, or from the difference in the sign for a plane wave, that is,

ejωt−jk·r

The wavenumber ψ is defined similarly for arrays along the y- or z-directions. In

summary, we have the definitions:

ψ = kxd = kd sinθ cosφ (array along x-axis)

ψ = kyd = kd sinθ sinφ (array along y-axis)

ψ = kzd = kd cosθ (array along z-axis)

(20.4.5)

The array factors for the y- and z-axis arrays shown in Fig. 20.1.1 will be:

A(θ,φ) =
∑

n

ane
jkyyn =

∑

n

ane
jkyn sinθ sinφ

A(θ,φ) =
∑

n

ane
jkzzn =

∑

n

ane
jkzn cosθ

where yn = nd and zn = nd. More generally, for an array along some arbitrary direction,

we have ψ = kd cosγ, where γ is the angle measured from the direction of the array.

The two most commonly used conventions are to assume either an array along the z-

axis, or an array along the x-axis and measure its array factor only on the xy-plane, that

is, at polar angle θ = 90o. In these cases, we have:

ψ = kxd = kd cosφ (array along x-axis, with θ = 90o)

ψ = kzd = kd cosθ (array along z-axis)
(20.4.6)

†Here, Ω denotes the physical frequency in radians/sec.
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For the x-array, the azimuthal angle varies over−π ≤ φ ≤ π, but the array response

is symmetric in φ and can be evaluated only for 0 ≤ φ ≤ π. For the z-array, the polar

angle varies over 0 ≤ θ ≤ π.

In analogy with time-domain DSP, we may also define the spatial analog of the z-plane

by defining the variable z = ejψ and the corresponding z-transform:

A(z)=
∑

n

anz
n (array factor in spatial z-domain) (20.4.7)

The difference in sign between the space-domain and time-domain definitions is also

evident here, where the expansion is in powers of zn instead of z−n. The array factor

A(ψ) may be called the discrete-space Fourier transform (DSFT) of the array weighting

sequence an, just like the discrete-time Fourier transform (DTFT) of the time-domain

case. The corresponding inverse DSFT is obtained by

an = 1

2π

∫ π

−π
A(ψ)e−jψndψ (inverse DSFT) (20.4.8)

This inverse transform forms the basis of most design methods for the array coeffi-

cients. As we mentioned earlier, such methods are identical to the methods of designing

FIR filters in DSP. Various correspondences between the fields of array processing and

time-domain digital signal processing are shown in Table 20.4.1.

Example 20.4.1: The array factors and z-transforms for Example 20.3.1 are for the three choices

for the coefficients:
A(ψ) = 1+ ejψ ,
A(ψ) = 1− ejψ ,
A(ψ) = 1− jejψ ,

A(z) = 1+ z
A(z) = 1− z
A(z) = 1− jz

where z = ejψ and ψ = kd cosφ. ⊓⊔

20.5 Visible Region

Because the correspondence from the physical angle-domain to the wavenumber ψ-

domain is through the mapping (20.4.5) or (20.4.6), there are some additional subtleties

that arise in the array processing case that do not arise in time-domain DSP. We note

first that the array factor A(ψ) is periodic in ψ with period 2π, and therefore, it is

enough to know it within one Nyquist interval, that is, −π ≤ ψ ≤ π.

However, the actual range of variation of ψ depends on the value of the quantity

kd = 2πd/λ. As the azimuthal angle φ varies from 0o to 180o, the quantity ψ =
kd cosφ, defined in Eq. (20.4.6), varies from ψ = kd to ψ = −kd. Thus, the overall

range of variation of ψ—called the visible region—will be:

− kd ≤ ψ ≤ kd (visible region) (20.5.1)
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discrete-time signal processing discrete-space array processing

time-domain sampling tn = nT space-domain sampling xn = nd
sampling time interval T sampling space interval d

sampling rate 1/T [samples/sec] sampling rate 1/d [samples/meter]

frequency Ω wavenumber kx
digital frequency ω = ΩT digital wavenumber ψ = kxd
Nyquist interval −π ≤ω ≤ π Nyquist interval −π ≤ ψ ≤ π
sampling theorem Ω ≤ π/T sampling theorem kx ≤ π/d
spectral images grating lobes or fringes

frequency response A(ω) array factor A(ψ)

z-domain z = ejω z-domain z = ejψ
transfer function A(z) transfer function A(z)

DTFT and inverse DTFT DSFT and inverse DSFT

pure sinusoid ejω0n narrow beam e−jψ0n

windowed sinusoid w(n)ejω0n windowed narrow beam w(n)e−jψ0n

resolution of multiple sinusoids resolution of multiple beams

frequency shifting by AM modulation phased array scanning

filter design by window method array design by window method

bandpass FIR filter design angular sector array design

frequency-sampling design Woodward-Lawson design

DFT Blass matrix

FFT Butler matrix

Table 20.4.1 Duality between time-domain and space-domain signal processing.

The total width of this region is ψvis = 2kd. Depending on the value of kd, the

visible region can be less, equal, or more than one Nyquist interval:

d < λ/2 ⇒ kd < π ⇒ ψvis < 2π (less than Nyquist)

d = λ/2 ⇒ kd = π ⇒ ψvis = 2π (full Nyquist)

d > λ/2 ⇒ kd > π ⇒ ψvis > 2π (more than Nyquist)

(20.5.2)

The visible region can also be viewed as that part of the unit circle covered by the

angle range (20.5.1), as shown in Fig. 20.5.1. If kd < π, the visible region is the arc

zazzb with the point z = ejψ moving clockwise from za to zb as φ varies from 0 to π.

In the case kd = π, the starting and ending points, za and zb, coincide with the ψ = π
point on the circle and the visible region becomes the entire circle. If kd > π, the visible

region is one complete circle starting and ending at za and then continuing on to zb.

In all cases, the inverse transform (20.4.8) requires that we know A(ψ) over one

complete Nyquist interval. Therefore, in the case kd < π, we must specify appropriate

values of the array factor A(ψ) over the invisible region.
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Fig. 20.5.1 Visible regions on the unit circle.

20.6 Grating Lobes

In the case kd > π, the values of A(ψ) are over-specified and repeat over the visible

region. This can give rise to grating lobes or fringes, which are mainbeam lobes in

directions other than the desired one. We saw some examples in Figs. 20.3.1 and 20.3.2.

Grating lobes are essentially the spectral images generated by the sampling process

(in this case, sampling in space.) Inψ-space, these images fall in Nyquist intervals other

than the central one.

The number of grating lobes in an array pattern is the number of complete Nyquist

intervals fitting within the width of the visible region, that is, m = ψvis/2π = kd/π =
2d/λ. For example in Fig. 20.3.2, the number of grating lobes are m = 4,8,16 for

d = 2λ,4λ,8λ (the two endfire lobes count as one.)

In most array applications grating lobes are undesirable and can be avoided by re-

quiring that kd < 2π, or d < λ. It should be noted, however, that this condition does

not necessarily avoid aliasing—it only avoids grating lobes. Indeed, if d is in the range

λ/2 < d < λ, or, π < kd < 2π, part of the Nyquist interval repeats as shown in

Fig. 20.5.1. To completely avoid repetitions, we must have d ≤ λ/2, which is equivalent

to the sampling theorem condition 1/d ≥ 2/λ.

Grating lobes are desirable and useful in interferometry applications, such as radio

interferometry used in radio astronomy. A simple interferometer is shown in Fig. 20.6.1.

It consists of an array of two antennas separated by d ≫ λ, so that hundreds or even

thousands of grating lobes appear.

These lobes are extremely narrow allowing very small angular resolution of radio

sources in the sky. The receiver is either an adder or a cross-correlator of the two

antenna outputs. For an adder and identical antennas with equal weights, the output

will be proportional to the array gain:

g(φ)=
∣
∣1+ ejkd cosφ

∣
∣2 = 2+ 2 cos(kd cosφ)

For a cross-correlator, the output will be proportional to cos(Ωτ), where τ is the

time delay between the received signals. This delay is the time it takes the wavefront to

travel the distance d cosφ, as shown in Fig. 20.6.1, that is, τ = (d cosφ)/c. Therefore,

cos(Ωτ)= cos

(
2πfd cosφ

c

)

= cos(kd cosφ)
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Fig. 20.6.1 Two-element interferometer and typical angular pattern.

In either case, the output is essentially cos(kd cosφ), and thus, exhibits the grating-

lobe behavior. Cross-correlating interferometers are more widely used because they are

more broadband.

The Very Large Array (VLA) radio telescope in New Mexico consists of 27 dish an-

tennas with 25-m diameters. The antennas are on rails extending in three different

directions to distances of up to 21 km. For each configuration, the number of possible

interferometer pairs of antennas is 27(27−1)/2 = 351. These 351 outputs can be used

to make a “radio” picture of the source. The achievable resolution is comparable to that

of optical telescopes (about 1 arc second.)

The Very Long Baseline Array (VLBA) consists of ten 25-m antennas located through-

out the continental US, Puerto Rico, and Hawaii. The antennas are not physically con-

nected to each other. Rather, the received signals at each antenna are digitally recorded,

with the antennas being synchronized with atomic frequency standards, and then the

recorded signals are digitally cross-correlated and processed off-line. The achievable

resolution is about one milli-arc-second.

We note finally that in an interferometer, the angular pattern of each antenna element

must also be taken into account because it multiplies the array pattern.

Example 20.6.1: In Fig. 20.3.2, we assumed isotropic antennas. Here, we look at the effect of

the element patterns. Consider an array of two identical z-directed half-wavelength dipole

antennas positioned along the z-axis at locations z0 = 0 and z1 = d. The total polar gain

pattern will be the product of the array gain factor and the gain of each dipole:

gtot(θ)= |A(θ)|2gdipole(θ)=
∣
∣a0 + a1e

jkd cosθ
∣
∣2

∣
∣
∣
∣

cos(0.5π cosθ)

sinθ

∣
∣
∣
∣

2

Fig. 20.6.2 shows the effect of the element pattern for the case d = 8λ and uniform weights

a = [a0, a1]= [1,1]. The figure on the left represents the array factor, with the element

pattern superimposed (dashed gain). On the right is the total gain.

The MATLAB code used to generate the right graph was as follows:

d=8; a=[1,1];
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Fig. 20.6.2 Grating lobes of two half-wavelength dipoles separated by d = 8λ.

[g, th] = gain1d(d, a, 400);

gdip = dipole(0.5, 400);

gtot = g .* gdip;

dbp(th, gtot, 30, 12);

dbadd(1, ’--’, th, gdip, 30, 12); ⊓⊔

20.7 Uniform Arrays

The simplest one-dimensional array is the uniform array having equal weights. For an

array of N isotropic elements at locations xn = nd, n = 0,1, . . . ,N − 1, we define:

a = [a0, a1, . . . , aN−1]= 1

N
[1,1, . . . ,1] (20.7.1)

so that the sum of the weights is unity. The corresponding array polynomial and array

factor are:

A(z) = 1

N

[

1+ z+ z2 + · · · + zN−1
] = 1

N

zN − 1

z− 1

A(ψ) = 1

N

[

1+ ejψ + e2jψ + · · · + e(N−1)jψ
] = 1

N

ejNψ − 1

ejψ − 1

(20.7.2)

where z = ejψ andψ = kd cosφ for an array along the x-axis and look direction on the

xy-plane. We may also write A(ψ) in the form:

A(ψ)=
sin

(
Nψ

2

)

N sin

(
ψ

2

) ej(N−1)ψ/2 (uniform array) (20.7.3)

The array factor (20.7.2) is the spatial analog of a lowpass FIR averaging filter in

discrete-time DSP. It may also be viewed as a window-based narrow-beam design using a
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rectangular window. From this point of view, Eq. (20.7.3) is the DSFT of the rectangular

window.

The array factor has been normalized to have unity gain at dc, that is, at zero

wavenumber ψ = 0, or at the broadside azimuthal angle φ = 90o. The normalized

power gain of the array will be:

g(φ)= |A(ψ)|2 =
∣
∣
∣
∣
∣

sin(Nψ/2)

N sin(ψ/2)

∣
∣
∣
∣
∣

2

=
∣
∣
∣
∣
∣

sin
(

(Nkd/2)cosφ
)

N sin
(

(kd/2)cosφ
)

∣
∣
∣
∣
∣

2

(20.7.4)

Although (20.7.2) defines the array factor for all ψ over one Nyquist interval, the

actual visible region depends on the value of kd.

Fig. 20.7.1 showsA(ψ) evaluated only over its visible region for an 8-element (N = 8)

array, for the following three choices of the element spacing: d = 0.25λ, d = 0.5λ, and

d = λ. The following MATLAB code generates the last two graphs:

d=1; N=8;

a = uniform(d, 90, N);

[g, phi] = gain1d(d, a, 400);

A = sqrt(g);

psi = 2*pi*d*cos(phi);

plot(psi/pi, A);

figure(2);

dbz(phi, g, 45, 20);

Fig. 20.7.1 Array factor and angular pattern of 8-element uniform array.
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As φ varies from 0o to 180o, the visible regions for the three cases are:

d = 0.25λ, ψ = (π/2)cosφ ⇒ −π/2 ≤ ψ ≤ π/2
d = 0.5λ, ψ = π cosφ ⇒ −π ≤ ψ ≤ π
d = λ, ψ = 2π cosφ ⇒ −2π ≤ ψ ≤ 2π

Thus, in the first case the visible region is only half of the Nyquist interval; in the

second case, it is the full interval; and in the third case, the Nyquist interval is covered

twice, and therefore, grating lobes will appear. Becauseψ = 2π cosφ, the grating lobes

at ψ = ±2π correspond to the endfire angles of φ = 0o and 180o (the larger width of

the endfire lobes is explained in Sec. 20.10.)

The N − 1 zeros of the array polynomial A(z) are the N-th roots of unity, except

for the root at z = 1, that is,

zi = ejψi , ψi = 2πi

N
, i = 1,2, . . . ,N − 1

Because these zeros lie on the unit circle, they will correspond to nulls in the angular

pattern, as long as they lie in the visible region. For d = 0.25λ, and in general for any

d < λ/2, only a subset of these zeros will fall in the visible region. The zeros of the

8-element array patterns of Fig. 20.7.1 are shown in Fig. 20.7.2.

Fig. 20.7.2 Zero locations and visible regions of 8-element uniform array.

The two most important features of the uniform array are its 3-dB beamwidthΔψ3dB,

or Δφ3dB in angle-space, and its sidelobe level R. These parameters are shown in

Fig. 20.7.3, for an 8-element uniform array with d = 0.5λ.

For N larger than about 5–6, the sidelobe level becomes independent of N and has

the limiting value of R = 13 dB. Similarly, the beamwidth in ψ-space—defined as the

full width of the mainlobe at the half-power level—takes the simple form:

Δψ3dB = 0.886
2π

N
(3-dB width in ψ-space) (20.7.5)

The first nulls in the array factor about the mainlobe are at ±ψ1 = ±2π/N, and

therefore, 2π/N represents half of the base of the mainlobe.

The 3-dB widthΔφ3dB in angle space can be obtained by differentiating the equation

ψ = kd cosφ, that is, dψ = (∂ψ/∂φ)dφ = (−kd sinφ)dφ. Evaluating the derivative

at broadside (φ = 90o) and assuming a narrow mainlobe, we have:

Δψ3dB =
∣
∣
∣
∣
∣

∂ψ

∂φ

∣
∣
∣
∣
∣
Δφ3dB = kdΔφ3dB
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Fig. 20.7.3 Mainlobe width and sidelobe level of uniform array.

Solving for Δφ3dB, we obtain Δφ3dB = Δψ3dB/(kd)= 0.886(2π/N)/(2πd/λ), or

Δφ3dB = 0.886
λ

Nd
(3-dB width at broadside) (20.7.6)

The mainlobe beamwidth gets narrower with increasingN, while the relative sidelobe

level remains the same. To achieve better (lower) sidelobe levels, one must use non-

uniform weights obtained from non-rectangular windows.

The quantity D = Nd is the effective aperture of the array. Thus, we recognize

Eq. (20.7.6) as the classical Rayleigh limit on the resolving power of an optical system,

which states that the angular resolution achieved by an aperture of lengthD is essentially

λ/D.

The beamwidth expression (20.7.5) and the 13-dB sidelobe level can be justified as

follows. The peak of the first sidelobe occurs approximately half-way between the first

two nulls, that is, at ψ = 3π/N. More precisely, it occurs at ψ = 2.8606π/N. Thus,

the sidelobe level in dB will be:

R = −20 log10

∣
∣
∣
∣

A(ψ)

A(0)

∣
∣
∣
∣
ψ=2.8606π/N

= −20 log10

∣
∣
∣
∣

sin(1.4303π)

N sin(1.4303π/N)

∣
∣
∣
∣

≃ −20 log10

∣
∣
∣
∣

sin(1.4303π)

N(1.4303π/N)

∣
∣
∣
∣ = −20 log10

∣
∣
∣
∣

sin(1.4303π)

1.4303π

∣
∣
∣
∣ = 13.26 dB

where we used the small-x approximation, sinx ≃ x, in the denominator, which is justi-

fied whenN is large. Setting x = Nψ/2, the sidelobe peak corresponds to the secondary

maximum of the approximate array factor sinx/x, which by differentiation leads to the

equation x = tanx, having solution x = 1.4303π, or ψ = 2x/N = 2.8606π/N.

The 3-dB width Δψ3dB is twice the 3-dB or half-power frequency ψ3, defined to be

the solution of the equation:

|A(ψ3)|2 =
∣
∣
∣
∣
∣

sin(Nψ3/2)

N sin(ψ3/2)

∣
∣
∣
∣
∣

2

= 1

2

Becauseψ3 is always smaller than 2π/N, it will be small for large N, and therefore,

we may make the same approximation in the denominator as above, giving the simplified



20.8. Array Directivity 931

equation:
∣
∣
∣
∣
∣

sin(Nψ3/2)

Nψ3/2

∣
∣
∣
∣
∣

2

=
∣
∣
∣
∣

sinx3

x3

∣
∣
∣
∣

2

= 1

2

where x3 = Nψ3/2. The quantity x3 is determined to be the constant x3 = 0.443π.

Thus, ψ3 = 2x3/N = 0.443(2π/N), and Δψ3dB = 2ψ3 = 0.886(2π/N).

20.8 Array Directivity

The value of kd has an impact also on the directivity of an array. In the array processing

literature, the directivity of an array is usually defined with reference to a z-directed

array consisting of isotropic radiators. The wavenumber is ψ = kd cosθ and the max-

imum of the array factor is assumed to occur at broadside θ = 90o, or ψ = 0. This

basically means that the array factor will have a lowpass shape as a function of ψ, with

a maximum value at dc given by

|A(0)| =
∣
∣
∣
∣
∣
∣

N−1∑

n=0

an

∣
∣
∣
∣
∣
∣

It follows that the normalized power gain of the array will be:

g(θ)= c|A(θ)|2

where c = 1/|A(0)|2. The corresponding beam solid angle will be:

ΔΩ = 2π

∫ π

0
g(θ)sinθdθ = 2π

∫ π

0
c|A(θ)|2 sinθdθ

Changing variables of integration from θ to ψ, which varies over the visible region

(20.5.1), we obtain:

ΔΩ = 2π

kd

∫ kd

−kd
c|A(ψ)|2 dψ = 2πc

kd

∫ kd

−kd

∑

n,m

ana
∗
me

j(n−m)ψ dψ

Performing the integration, we get

ΔΩ = 4πc
∑

n,m

ana
∗
m

sin
(

kd(n−m))

kd(n−m)

Therefore, the directivity of the array becomes:

D = 4π

ΔΩ
=

∣
∣
∑

n

an
∣
∣2

∑

n,m

ana
∗
m

sin
(

kd(n−m))

kd(n−m)
(20.8.1)

In the particular case of half-wavelength spacing d = λ/2 or kd = π, the sinc function

acts as a delta function δ(n−m), and the sum simplifies into:

D =
∣
∣
∑N−1
n=0 an

∣
∣2

∑N−1
n=0 |an|2

(20.8.2)
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The maximum of this quantity is reached when all the coefficients are equal to each

other. The common value may be adjusted so that their sum is unity, that is:

an = 1

N
, n = 0,1, . . . ,N − 1

The maximized value of D becomes:

Dmax = N (20.8.3)

Thus, the uniform array with half-wavelength spacing achieves maximum directivity

equal to the number of array elements. This result is analogous to finding the optimum

N-tap lowpass FIR filter that minimizes the noise reduction ratio, that is, the sum of the

squares of its coefficients.

For arbitrary spacing d, it is shown in Problem 20.6 that the optimum array vec-

tor a = [a0, a1, . . . , aN−1]
T that maximizes (20.8.1), and the corresponding maximum

directivity, are given by:

a = A−1u , Dmax = uTA−1u (20.8.4)

where u = [1,1, . . . ,1]T is a vector of N ones and A is the so-called prolate matrix

[1274] with matrix elements:

Anm = sin
(

kd(n−m))

kd(n−m) , 0 ≤ n,m ≤ N − 1 (20.8.5)

The coefficients a may be renormalized such that their sum is unity. When d is an

integer multiple ofλ/2, the prolate matrix reduces to theN×N identity matrix, resulting

into (20.8.3).

20.9 Array Steering

An array is typically designed to have maximum directive gain at broadside, that is,

at φ = 90o (for an array along the x-axis.) The maximum of the array factor A(ψ)

corresponds to ψ = kd cosφ = 0, so that |A|max = |A(0)|.
We wish to “electronically” rotate, or steer, the array pattern towards some other

direction, say φ0, without physically rotating it. The corresponding wavenumber at the

desired look-direction will be:

ψ0 = kd cosφ0 (steering phase) (20.9.1)

Such steering operation can be achieved by wavenumber translation inψ-space, that

is, replacing the broadside pattern A(ψ) by the translated pattern A(ψ −ψ0). Thus,

we define:

A′(ψ)= A(ψ−ψ0) (steered array factor) (20.9.2)

and the translated wavenumber variable,

ψ′ = ψ−ψ0 = kd(cosφ− cosφ0) (steered wavenumber) (20.9.3)
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Then, A′(ψ)= A(ψ′). The maximum of A′(ψ) will coincide with the maximum of

A(ψ′), which occurs at ψ′ = 0, or equivalently at ψ = ψ0, or at angle φ = φ0.

Fig. 20.9.1 illustrates this wavenumber translation process and the corresponding ro-

tation of the angular pattern, for an 11-element uniform array with d = λ/2, steered

from broadside to φ0 = 60o. The MATLAB code for the last two graphs was:

d=0.5; N=11; ph0=60;

a = uniform(d, ph0, N); % steered uniform weights

[g, phi] = gain1d(d, a, 400); % calculate normalized gain g(φ)

psi = 2*pi*d*cos(phi); % φ to ψ transformation

figure; plot(psi/pi, sqrt(g)); % plot in ψ space

figure; dbz(phi, g, 30, 20); % azimuthal gain plot in dB

Fig. 20.9.1 Array steering or scanning by translation in wavenumber space.

It follows from the translation theorem of Fourier transforms that the weight coef-

ficients a′n of the translated pattern A′(ψ) will be given by:

a′n = ane−jψ0n (steered array weights) (20.9.4)

so that we have:

A′(ψ)=
∑

n

a′ne
jψn =

∑

n

ane
j(ψ−ψ0)n =

∑

n

ane
jψ′n = A(ψ′)

Because of the progressive phase factors e−jψ0n in the weights a′n, the steered or

scanned array is sometimes called a phased or scanning array.

The time-domain version of array steering is AM modulation, in which a baseband

signal is translated up in frequency by modulating with it a sinusoidal carrier, much like

Eq. (20.9.4). Frequency translation is also used in DSP for mapping a lowpass filter into

a bandpass one and for designing filter banks. We will use it in Sec. 21.4 to design arrays

with angular sector patterns.
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The MATLAB functions steer.m and scan.m of Appendix I can be used to implement

Eq. (20.9.4). Their usage for even or odd number of array elements is discussed in

Sec. 21.1.

Example 20.9.1: In Examples 20.3.1 and 20.3.2, we considered the three cases having progres-

sive phasesψ0 = 0,π,π/2. These may or may not correspond to a physical steering angle

φ0, depending on whether or not ψ0 lies in the visible region.

In the caseψ0 = π and d = 0.25λ, we haveψ = 0.5π cosφ, and therefore it is not possible

to find a solution for 0.5π cosφ0 = ψ0 = π. However, the array factor does correspond

to a pattern rotated towards endfire. This can be seen from the expression,

|A(ψ)| = |1− ejψ| = 2
∣
∣sin(ψ/2)

∣
∣ = 2

∣
∣sin(0.25π cosφ)

∣
∣

which is maximum towards endfire and minimum towards broadside. In the case ψ0 =
π/2 and d = 0.25λ, there is a solution to 0.5π cosφ0 = ψ0 = 0.5π, that is, φ0 = 0o,

which corresponds to the maximum of the steered array.

In the case ψ0 = π and d = 0.5λ, we have ψ = π cosφ, and the solution to the equation

π cosφ0 = π is φ0 = 0o. However, because the phase ψ0 = π is indistinguishable

from the phase ψ0 = −π (both lead to e−jψ0 = −1), we will also have the solution to

π cosφ0 = −π, which is φ0 = 180o.

In the case ψ0 = π/2 and d = 0.5λ, the solution to π cosφ0 = π/2 is φ0 = 60o, which

corresponds to the maximum, as can be seen in Fig. 20.3.1.

In the case ψ0 = ±π and d = λ, we have ψ = 2π cosφ, and the solutions to 2π cosφ0 =
±π are φ0 = 60o and 120o.

Finally, in the case ψ0 = π/2 and d = λ, the solution to 2π cosφ0 = π/2 is φ0 = 75.5o.

However, there is another grating lobe maximum towardsφ0 = 138.6o, which corresponds

to the solution of 2π cosφ0 = −3π/2. This is so becauseψ0 = π/2 andψ0 = −3π/2 are

indistinguishable phases, both leading to e−jψ0 = −j. ⊓⊔

The concepts of visible region, beamwidth, and the condition for absence of grating

lobes, translate with minor modifications to the case of a steered array. As the angle φ

varies over 0o ≤ φ ≤ 180o, the translated wavenumberψ′ of Eq. (20.9.3) varies over the

shifted visible region:

−kd(1+ cosφ0)≤ ψ′ ≤ kd(1− cosφ0) (shifted visible region) (20.9.5)

where its total width is again 2kd. The condition for absence of grating lobes is obtained

with the help of the inequality:

|ψ′| ≤ kd| cosφ− cosφ0| ≤ kd
(| cosφ| + | cosφ0|

) ≤ kd(1+ | cosφ0|
)

To ensure no grating lobes, ψ′ must remain strictly less than 2π, which results in

the sufficient condition: kd
(

1+ | cosφ0|
)

< 2π, or replacing kd = 2πd/λ,

d <
λ

1+ | cosφ0|
(no grating lobes) (20.9.6)

At broadside, φ0 = 90o, this reduces to the earlier condition d < λ. At endfire,

φ0 = 0o or 180o, it reduces to d < λ/2.
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20.10 Array Beamwidth

Because the steered array has a mainlobe towards the directionφ0, the beamwidth must

be calculated by linearizing the map ψ = kd cosφ about φ0, that is,

Δψ =
∣
∣
∣
∣
∣

∂ψ

∂φ

∣
∣
∣
∣
∣
φ0

Δφ = | − kd sinφ0|Δφ

which leads to the 3-dB beamwidth in angle-space:

Δφ3dB = 1

kd sinφ0

Δψ3dB , (3-dB width of steered array) (20.10.1)

For window-based narrow-beam design methods, the beamwidth Δψ3dB is approxi-

mately equal to the product of the beamwidth of the uniform array, Eq. (20.7.5), and a

so-called broadening factor b, whose value depends on the choice of the window. Thus,

we have:

Δψ3dB = bΔψ3-dB, uniform = 0.886
2πb

N
(3-dB width in ψ-space) (20.10.2)

Combining Eqs. (20.10.1) and (20.10.2) and replacing kd by 2πd/λ, we get:

Δφ3dB = 0.886

sinφ0

λ

Nd
b , (3-dB width in angle-space) (20.10.3)

The 3-dB angles will be approximately φ0 ± Δφ3dB/2. Because of the presence of

sinφ0 in the denominator, the beamwidth Δφ3dB will broaden as the array is steered

from broadside to endfire.

Exactly at endfire, φ0 = 0o or 180o, Eq. (20.10.3) fails and the beamwidth must be

calculated by a different procedure. At φ0 = 0o, the translated wavenumber ψ′ =
ψ −ψ0 becomes ψ′ = kd(cosφ − 1). Using the approximation cosx = 1 − x2/2, we

may relate the 3-dB angle φ3 to the corresponding 3-dB wavenumber by:

ψ′3 = kd(cosφ3 − 1)= kd((1−φ2
3/2)−1

) = −1

2
kdφ2

3

It follows that the 3-dB width inψ-space will beΔψ3dB = 2|ψ′3| = kdφ2
3. Solving for

φ3, we haveφ3 =
√

Δψ3dB/kd. Thus, the 3-dB width in angle space will beΔφ3dB = 2φ3,

Δφ3dB = 2

√

Δψ3dB

kd
, (3-dB width at endfire) (20.10.4)

The same expression also holds for endfire towards φ0 = 180o. Replacing Δψ3dB

from Eq. (20.10.2), we find the width in angle space:

Δφ3dB = 2

√

0.886
λ

Nd
b , (3-dB width in angle-space) (20.10.5)
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To summarize, the angular 3-dB width of the steered array can be computed in terms

of the broadside 3-dB width in wavenumber space by:

Δφ3dB =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

kd sinφ0

Δψ3dB , for 0o < φ0 < 180o

2

√

Δψ3dB

kd
, for φ0 = 0o, 180o

(20.10.6)

In particular, if Eq. (20.10.2) is used:

Δφ3dB =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0.886

sinφ0

λ

Nd
b , for 0o < φ0 < 180o

2

√

0.886
λ

Nd
b , for φ0 = 0o, 180o

(20.10.7)

In degrees, Eq. (20.10.7) reads as:

Δφ3dB =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

50.76o

sinφ0

λ

Nd
b , for 0o < φ0 < 180o

107.86o

√

λ

Nd
b , for φ0 = 0o, 180o

(20.10.8)

In some designs such as binomial arrays, it is easier to determine Δψ3dB directly

from the array factor A(ψ). In other designs, it is more convenient to estimate Δψ3dB

using Eq. (20.10.2).

The broadening factor b depends on the choice of the window and its sidelobe level.

The larger the sidelobe attenuation, the larger the broadening factor. Some examples of

broadening factors for different windows are given as follows:

Rectangular: b = 1, (R = 13 dB)

Hamming: b = 2, (R = 40 dB)

Taylor-Kaiser [1265]: b = 6(R+ 12)

155

Dolph-Chebyshev [1263]: b = 1+ 0.636

[
2

Ra
cosh

(√

acosh2(Ra)−π2

)]2

where R and Ra represent the sidelobe level in dB and absolute units, respectively,

R = 20 log10(Ra) ⇔ Ra = 10R/20 (sidelobe level) (20.10.9)

Here, R and Ra represent the attenuation of the sidelobe and, therefore, R > 0 and

Ra > 1. The corresponding gain of the sidelobe relative to the mainlobe peak will be

R−1
a = 10−R/20, which is less than one.

The MATLAB function bwidth.m of Appendix I implements Eq. (20.10.6). Its inputs

are the quantities d, φ0, Δψ3dB and its output is the 3-dB width in degrees Δφ3dB. Its

usage is:

Dphi = bwidth(d, phi0, Dpsi); % map Δψ beamwidth to Δφ beamwidth
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20.11 Problems

20.1 Show that the modified Friis formula (20.3.7) for two antennas over imperfect ground takes

the following frequency-independent form in the limit of low grazing angles and h1h2 ≪ λr:

P2

P1

= G1G2

(
h1h2

r2

)2

20.2 Consider two horizontal dipoles I over imperfect ground, oriented along the x and y direc-

tions, as shown below. Show that the effect of the direct and ground-reflected rays can be

obtained by considering an image dipole ρI.

By considering the relative directions of the electric field along the direct and reflected rays,

show that the resulting in array factor has the form:

A(θ)= ejkh cosθ + ρe−jkh cosθ

with ρ = ρTM for the x-directed case and ρ = ρTE for the y-directed one, where ρTM, ρTE are

given by Eq. (7.4.4) with n2 = ǫr − j60σλ.

20.3 A z-directed half-wave dipole is positioned in front of a 90o corner reflector at a distance

d from the corner, as shown below. The reflecting conducting sheets can be removed and

replaced by three image dipoles of alternating signs, as shown.

a. Thinking of the equivalent image problem as an array, determine an analytical expres-

sion for the array factorA(θ,φ) as a function of the polar and azimuthal angles θ,φ.

b. For the values d = 0.5λ, d = λ, and d = 1.5λ, plot the azimuthal pattern A(90o,φ)

at polar angle θ = 90o and for −45o ≤ φ ≤ 45o.

c. For the cases d = 0.5λ and d = 1.5λ, calculate the directivity D (in dB and in absolute

units) and compare it with the directivity of a single half-wave dipole in the absence

of the reflector.

d. Suppose that the corner reflector is flattened into a conducting sheet lying on the yz

plane, i.e., the 90o angle between the sheets is replaced by a 180o angle. Repeat parts

(a–c) in this case.
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20.4 Four identical isotropic antennas are positioned on the xy-plane at the four corners of a

square of sides a, as shown below. Determine the array factor A(φ) of this arrangement as

a function of the azimuthal angle φ. (Assume the look direction is on the xy-plane.)

20.5 The array factor of a two-element array is given by:

g(φ)=
∣
∣a0 + a1e

jψ
∣
∣2 = 1+ sinψ

2
, ψ = π

2
cosφ

whereφ is the azimuthal angle (assume θ = 90o) andψ, the digital wavenumber. The array

elements are along the x-axis at locations x0 = 0 and x1 = d.

a. What is the spacing d in units of λ? Determine the values of the array weights, a =
[a0, a1], assuming that a0 is real-valued and positive.

b. Determine the visible region and display it on the unit circle. Plot |A(ψ)|2 versus ψ

over the visible region. Based on this plot, make a rough sketch of the radiation pattern

of the array (i.e., the polar plot of g(φ) versus 0 ≤ φ ≤ 2π).

c. Determine the exact 3-dB width of this array in angle space.

20.6 Defining the array vector a and the prolate matrix A via Eqs. (20.8.4) and (20.8.5), show that

the directivity defined in Eq. (20.8.1) can be written in the compact form, where the dagger

† indicates the conjugate transposed operation:

D =
∣
∣u†a

∣
∣2

a†Aa
(20.11.1)

a. Show that the maximum of D is attained for a = A−1u and that the maximized D is

Dmax = u†A−1u. Show that the value of Dmax is not affected if a is defined with an

arbitrary normalization factor μ, that is, a = μA−1u.

b. Show that an equivalent problem is the minimization problem:

a†Aa = min , subject to u†a = 1

c. Show that (20.11.1) is a special case of the more general problem of the maximization

of the Rayleigh quotient :

D = a†Qa

a†Aa
= max

where A,Q are positive-definite Hermitian matrices. Show that the solution of this

problem is the eigenvector corresponding to the maximum eigenvalue λ = λmax of the

generalized eigenvalue problem Qa = λAa. Explain how this formulation leads to the

same solution in the case of (20.11.1).

d. Show that the directivity (20.11.1) of a uniform array (a = u) is given by the two equiv-

alent forms:

Dunif = |u†u|2
u†Au

= N2

N + 2

N−1∑

n=1

(

N − |n|) sin(kdn)

kdn
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20.7 Computer Experiment—Optimum Directivity. Using the matrix formulation of the previous

problem, calculate the optimum directivity for anN-element array over the range of spacing

values: 0.1 ≤ d/λ ≤ 2 and plot it versus d. Carry this out for the values N = 5,10,15 and

place the results on the same graph.

The directivityD of (20.11.1) can be evaluated for any given vector of array weights. Evaluate

it for the uniform array a = u and plot the results on the same graph as above. You should

observe that directivity of the uniform array comes close to that of the optimum one for

most (but not all) of the spacings d.

For each d and for the caseN = 15, calculate the directivities of the array weights a designed

with the MATLAB function taylor1p of the next chapter, with sidelobe attenuations of R =
20 R = 30 dB, and place them on the same graph.

21

Array Design Methods

21.1 Array Design Methods

As we mentioned in Sec. 20.4, the array design problem is essentially equivalent to the

problem of designing FIR digital filters in DSP. Following this equivalence, we discuss

several array design methods, such as:

1. Schelkunoff’s zero placement method

2. Fourier series method with windowing

3. Woodward-Lawson frequency-sampling design

4. Narrow-beam low-sidelobe design methods

5. Multi-beam array design

Next, we establish some common notation. One-dimensional equally-spaced arrays

are usually considered symmetrically with respect to the origin of the array axis. This

requires a slight redefinition of the array factor in the case of even number of array

elements. Consider an array ofN elements at locations xm along the x-axis with element

spacing d. The array factor will be:

A(φ)=
∑

m

ame
jkxxm =

∑

m

ame
jkxm cosφ

where kx = k cosφ (for polar angle θ = π/2.) If N is odd, say N = 2M + 1, we can

define the element locations xm symmetrically as:

xm =md, m = 0,±1,±2, . . . ,±M

This was the definition we used in Sec. 20.4. The array factor can be written then as

a discrete-space Fourier transform or as a spatial z-transform:

A(ψ) =
M∑

m=−M
ame

jmψ = a0 +
M∑

m=1

[

ame
jmψ + a−me−jmψ

]

A(z) =
M∑

m=−M
amz

m = a0 +
M∑

m=1

[

amz
m + a−mz−m

]

(21.1.1)
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where ψ = kxd = kd cosφ and z = ejψ. On the other hand, if N is even, say N = 2M,

in order to have symmetry with respect to the origin, we must place the elements at the

half-integer locations:

x±m = ±
(

md− d
2

) = ±(m− 1

2

)

d, m = 1,2, . . . ,M

The array factor will be now:

A(ψ) =
M∑

m=1

[

ame
j(m−1/2)ψ + a−me−j(m−1/2)ψ

]

A(z) =
M∑

m=1

[

amz
m−1/2 + a−mz−(m−1/2)

]

(21.1.2)

In particular, if the array weights am are symmetric with respect to the origin, am =
a−m, as they are in most design methods, then the array factor can be simplified into

the cosine forms:

A(ψ)= a0 + 2

M∑

m=1

am cos(mψ), (N = 2M + 1)

A(ψ)= 2

M∑

m=1

am cos
(

(m− 1/2)ψ)
)

, (N = 2M)

(21.1.3)

In both the odd and even cases, Eqs. (21.1.1) and (21.1.2) can be expressed as the

left-shifted version of a right-sided z-transform:

A(z)= z−(N−1)/2Ã(z)= z−(N−1)/2
N−1∑

n=0

ãnz
n (21.1.4)

where a = [ã0, ã1, . . . , ãN−1] is the vector of array weights reindexed to be right-sided.

In terms of the original symmetric weights, we have:

[ã0, ã1, . . . , ãN−1]= [a−M, . . . , a−1, a0, a1, . . . , aM], (N = 2M + 1)

[ã0, ã1, . . . , ãN−1]= [a−M, . . . , a−1, a1, . . . , aM], (N = 2M)
(21.1.5)

In time-domain DSP, a factor of z represents a time-advance or left shift. But in the

spatial domain, a left shift is represented by z−1 because of the opposite sign convention

in the definition of the z-transform. Thus, the factor z−(N−1)/2 represents a left shift by

a distance (N − 1)d/2, which places the middle of the right-sided array at the origin.

For instance, see Examples 20.3.1 and 20.3.2.

The corresponding array factors in ψ-space are related in a similar fashion. Setting

z = ejψ, we have:

A(ψ)= e−jψ(N−1)/2Ã(ψ)= e−jψ(N−1)/2
N−1∑

n=0

ãne
jnψ (21.1.6)
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Working with Ã(ψ) is more convenient for programming purposes, as it can be

computed by an ordinary DTFT routine, such as that in Ref. [49], Ã(ψ)= dtft(a,−ψ).
The phase factor e−jψ(N−1)/2 does not affect the power gain of the array; indeed, we

have |A(ψ)|2 = |Ã(ψ)|2 = |dtft(a,−ψ)|2.

Some differences arise also for steered array factors. Given a steering phase ψ0 =
kd cosφ0, we define the steered array factor as A′(ψ)= A(ψ−ψ0). Then, we have:

A′(ψ)= A(ψ−ψ0)= e−j(ψ−ψ0)(N−1)/2Ã(ψ−ψ0)= e−jψ(N−1)/2Ã′(ψ)

It follows that the steered version of Ã(ψ) will be:

Ã′(ψ)= ejψ0(N−1)/2Ã(ψ−ψ0) (21.1.7)

which implies for the weights:

ã′n = ãne−jψ0(n−(N−1)/2) , n = 0,1, . . . ,N − 1 (21.1.8)

This simply means that the progressive phase is measured with respect to the middle

of the array. Again, the common phase factor ejψ0(N−1)/2 is usually unimportant. One

case where it is important is the case of multiple beams steered towards different angles;

these are discussed in Sec. 21.14. In the symmetric notation, the steered weights are as

follows:

a′m = ame−jmψ0 , m = 0,±1,±2, . . . ,±M, (N = 2M + 1)

a′±m = a±me∓j(m−1/2)ψ0 , m = 1,2, . . . ,M, (N = 2M)
(21.1.9)

The MATLAB functions scan and steer perform the desired progressive phasing of

the weights according to Eq. (21.1.8). Their usage is as follows:

ascan = scan(a, psi0); % scan array with given scanning phase ψ0

asteer = steer(d, a, ph0); % steer array towards given angle φ0

Example 21.1.1: For the cases N = 7 and N = 6, we have M = 3. The symmetric and right-

sided array weights will be related as follows:

a = [ã0, ã1, ã2, ã3, ã4, ã5, ã6]= [a−3, a−2, a−1, a0, a1, a2, a3]

a = [ã0, ã1, ã2, ã3, ã4, ã5]= [a−3, a−2, a−1, a1, a2, a3]

For N = 7 we have (N − 1)/2 = 3, and for N = 6, (N − 1)/2 = 5/2. Thus, the array

locations along the x-axis will be:

xm =
{−3d, −2d, −d, 0, d, 2d, 3d

}

xm =
{−5

2
d, −3

2
d, −1

2
d,

1

2
d,

3

2
d,

5

2
d
}

Eq. (21.1.4) reads as follows in the two cases:

A(z) = a−3z
−3 + a−2z

−2 + a−1z
−1 + a0 + a1z+ a2z

2 + a3z
3

= z−3
[

a−3 + a−2z+ a−1z
2 + a0z

3 + a1z
4 + a2z

5 + a3z
6
] = z−3Ã(z)

A(z) = a−3z
−5/2 + a−2z

−3/2 + a−1z
−1/2 + a1z

1/2 + a2z
3/2 + a3z

5/2

= z−5/2
[

a−3 + a−2z+ a−1z
2 + a1z

3 + a2z
4 + a3z

5
] = z−5/2Ã(z)
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If the arrays are steered, the weights pick up the progressive phases:

[

a−3e
j3ψ0 , a−2e

j2ψ0 , a−1e
jψ0 , a0, a1e

−jψ0 , a2e
−j2ψ0 , a3e

−j3ψ0
]

= ej3ψ0
[

a−3, a−2e
−jψ0 , a−1e

−2jψ0 , a0e
−3jψ0 , a1e

−4jψ0 , a2e
−j5ψ0 , a3e

−j6ψ0
]

[

a−3e
j5ψ0/2, a−2e

j3ψ0/2, a−1e
jψ0/2, a1e

−jψ0/2, a2e
−j3ψ0/2, a3e

−j5ψ0/2
]

= ej5ψ0/2
[

a−3, a−2e
−jψ0 , a−1e

−2jψ0 , a1e
−3jψ0 , a2e

−j4ψ0 , a3e
−j5ψ0

]

where ψ0 = kd cosφ0 is the steering phase. ⊓⊔

Example 21.1.2: The uniform array of Sec. 20.7, was defined as a right-sided array. In the

present notation, the weights and array factor are:

a = [ã0, ã1, . . . , ãN−1]= 1

N
[1,1, . . . ,1], Ã(z)= 1

N

zN − 1

z− 1

Using Eq. (21.1.4), the corresponding symmetric array factor will be:

A(z)= z−(N−1)/2Ã(z)= z−(N−1)/2 1

N

zN − 1

z− 1
= 1

N

zN/2 − z−N/2
z1/2 − z−1/2

Setting z = ejψ, we obtain

A(ψ)=
sin

(
Nψ

2

)

N sin

(
ψ

2

) (21.1.10)

which also follows from Eqs. (20.7.3) and (21.1.6). ⊓⊔

21.2 Schelkunoff’s Zero Placement Method

The array factor of an N-element array is a polynomial of degree N− 1 and therefore it

has N − 1 zeros:

Ã(z)=
N−1∑

n=0

ãnz
n = (z− z1)(z− z2)· · · (z− zN−1)ãN−1 (21.2.1)

By proper placement of the zeros on the z-plane, a desired array factor can be de-

signed. Schelkunoff’s paper of more than 45 years ago [1242] discusses this and the

Fourier series methods.

As an example consider the uniform array that has zeros equally spaced around

the unit circle at the N-th roots of unity, that is, at zi = ejψi , where ψi = 2πi/N,

i = 1,2, . . . ,N − 1. The index i = 0 is excluded as z = 1 or ψ = 0 corresponds to the

mainlobe peak of the array. Depending on the element spacing d, it is possible that not

all of these zeros lie within the visible region and, therefore, they may not correspond to

actual nulls in the angular pattern. This happens when d < λ/2 for a broadside array,

which has a visible region that covers less than the full unit circle, ψvis = 2kd < 2π.
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Fig. 21.2.1 Endfire array zeros and visible regions for N = 6, and d = λ/4 and d = λ/8.

Schelkunoff’s design idea was to place all N− 1 zeros of the array within the visible

region, for example, by equally spacing them within it. Fig. 21.2.1 shows the visible

regions and array zeros for a six-element endfire array with element spacings d = λ/4
and d = λ/8.

The visible region is determined by Eq. (20.9.5). For an endfire (φ0 = 0) array with

d = λ/4 or kd = π/2, the steered wavenumber will be ψ′ = kd(cosφ − cosφ0)=
(cosφ − 1)π/2 and the corresponding visible region, −π ≤ ψ′ ≤ 0. Similarly, when

d = λ/8 or kd = π/4, we haveψ′ = (cosφ−1)π/4 and visible region,−π/2 ≤ ψ′ ≤ 0.

The uniform array has five zeros. When d = λ/4, only three of them lie in the visible

region, and when d = λ/8 only one of them does. By contrast Schelkunoff’s design

method places all five zeros within the visible regions.

Fig. 21.2.2 shows the gains of the two cases and compares them to the gains of the

corresponding uniform array. The presence of more zeros in the visible regions results

in a narrower mainlobe and smaller sidelobes.

The angular nulls corresponding to the zeros that lie in the visible region may be

observed in these graphs for both the uniform and Schelkunoff designs.

Because the visible region is in both cases −2kd ≤ ψ′ ≤ 0, the five zeros are chosen

as zi = ejψi , where ψi = −2kdi/5, i = 1,2, . . . ,5. The array weights can be obtained

by expanding the zero factors of Eq. (21.2.1). The following MATLAB statements will

perform and plot the design:

d=1/4; kd=2*pi*d;

i = 1:5;

psi = -2*kd*i/5;

zi = exp(j*psi);

a = fliplr(poly(zi));

a = steer(d, a, 0);

[g, ph] = array(d, a, 400);

dbz(ph, g, 45, 40);

The function poly computes the expansion coefficients. But because it lists them

from the higher coefficient to the lowest one, that is, from zN−1 to z0, it is necessary to

reverse the vector by fliplr. When the weight vector is symmetric with respect to its

middle, such reversal is not necessary.
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Fig. 21.2.2 Gain of six-element endfire array with d = λ/4 and d = λ/8.

21.3 Fourier Series Method with Windowing

The Fourier series design method is identical to the same method in DSP for designing

FIR digital filters [48,49]. The method is based on the inverse discrete-space Fourier

transforms of the array factor.

Eqs. (21.1.1) and (21.1.2) may be thought of as the truncated or windowed versions

of the corresponding infinite Fourier series. Assuming an infinite and convergent series,

we have for the “odd” case:

A(ψ)= a0 +
∞∑

m=1

[

ame
jmψ + a−me−jmψ

]

(21.3.1)

Then, the corresponding inverse transform will be:

am = 1

2π

∫ π

−π
A(ψ)e−jmψ dψ , m = 0,±1,±2, . . . (21.3.2)
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Similarly, in the “even” case we have:

A(ψ)=
∞∑

m=1

[

ame
j(m−1/2)ψ + a−me−j(m−1/2)ψ

]

(21.3.3)

with inverse transform:

a±m = 1

2π

∫ π

−π
A(ψ)e∓j(m−1/2)ψ dψ , m = 1,2, . . . (21.3.4)

In general, a desired array factor requires an infinite number of coefficients am to be

represented exactly. Keeping only a finite number of coefficients in the Fourier series

introduces unwanted ripples in the desired response, known as the Gibbs phenomenon

[48,49]. Such ripples can be minimized using an appropriate window, but at the expense

of wider transition regions.

The Fourier series method may be summarized as follows. Given a desired response,

say Ad(ψ), pick an odd or even window length, for example N = 2M+ 1, and calculate

the N ideal weights by evaluating the inverse transform:

ad(m)= 1

2π

∫ π

−π
Ad(ψ)e

−jmψ dψ , m = 0,±1, . . . ,±M (21.3.5)

then, the final weights are obtained by windowing with a length-N window w(m):

a(m)= w(m)ad(m), m = 0,±1, . . . ,±M (21.3.6)

This method is convenient only when the required integral (21.3.5) can be done ex-

actly, as when Ad(ψ) has a simple shape such as an ideal lowpass filter. For arbitrarily

shaped Ad(ψ) one must evaluate the integrals approximately using an inverse DFT

as is done in the Woodward- Lawson frequency-sampling design method discussed in

Sec. 21.5.

In addition, the method requires thatAd(ψ) be specified over one complete Nyquist

interval, −π ≤ ψ ≤ π, regardless of whether the visible region ψvis = 2kd is more or

less than one Nyquist period.

21.4 Sector Beam Array Design

As an example of the Fourier series method, we discuss the design of an array with

angular pattern confined into a desired angular sector.

First, we consider the design in ψ-space of an ideal bandpass array factor centered

at wavenumber ψ0 with bandwidth of 2ψb. We will see later how to map these spec-

ifications into an actual angular sector. The ideal bandpass response is defined over

−π ≤ ψ ≤ π as follows:

ABP(ψ)=
{

1, ψ0 −ψb ≤ ψ ≤ ψ0 +ψb
0, otherwise
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For the odd case, the corresponding ideal weights are obtained from Eq. (21.3.2):

aBP(m)= 1

2π

∫ π

−π
ABP(ψ)e

−jmψ dψ = 1

2π

∫ ψ0+ψb

ψ0−ψb
1 · e−jmψ dψ

which gives:

aBP(m)= e−jmψ0
sin(ψbm)

πm
, m = 0,±1,±2, . . . (21.4.1)

This problem is equivalent to designing an ideal lowpass response with cutoff fre-

quency ψb and then translating it by ABP(ψ)= ALP(ψ
′)= ALP(ψ −ψ0), where ψ′ =

ψ−ψ0. The lowpass response is defined as:

ALP(ψ
′)=

{

1, −ψb ≤ ψ′ ≤ ψb
0, otherwise

and its ideal weights are:

aLP(m)= 1

2π

∫ π

−π
ALP(ψ

′)e−jmψ
′
dψ′ = 1

2π

∫ ψb

−ψb
1 · e−jmψ′ dψ′ = sin(ψbm)

πm

Thus, as expected, the ideal weights for the bandpass and lowpass designs are related

by a scanning phase: aBP(m)= e−jmψ0aLP(m).

A more realistic design of the bandpass response is to prescribe “brickwall” specifi-

cations, that is, defining a passband range over which the response is essentially flat and

a stopband range over which the response is essentially zero. These ranges are defined

by the bandedge frequencies ψp and ψs, such that the passband is |ψ−ψ0| ≤ ψp and

the stopband |ψ−ψ0| ≥ ψs. The specifications of the equivalent lowpass response are

shown in Fig. 21.4.1.

Fig. 21.4.1 Specifications of equivalent lowpass response.

Over the stopband, the attenuation is required to be greater than a minimum value,

say A dB. The attenuation over the passband need not be specified, because the window

method always results in extremely flat passbands for reasonable values of A, e.g., for

A > 35 dB. Indeed, the maximum passband attenuation is related to A by the approxi-

mate formula Apass = 17.4δ dB, where δ = 10−A/20 (see Ref. [49].)

Most windows do not allow a user-defined choice for the stopband attenuation. For

example, the Hamming window has A = 54 dB and the rectangular window A = 21 dB.
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The Kaiser window is the best and simplest of a small class of windows that allow a

variable choice for A.

Thus, the design specifications are the quantities {ψp,ψs,A}. Alternatively, we can

take them to be {ψp, Δψ,A}, where Δψ = ψs −ψp is the transition width. We prefer

the latter choice. The design steps for the bandpass response using the Kaiser window

are summarized below:

1. From the stopband attenuation A, calculate the so-called D-factor of the window

(similar to the broadening factor):

D =

⎧

⎪⎨

⎪⎩

A− 7.95

14.36
, if A > 21

0.922, if A ≤ 21

(21.4.2)

and the window’s shape parameter α:

α =

⎧

⎪⎪⎨

⎪⎪⎩

0.1102(A− 8.7), if A≥ 50

0.5842(A− 21)0.4+0.07886(A− 21), if 21<A< 50

0, if A ≤ 21

(21.4.3)

2. From the transition width Δψ, calculate the length of the window by choosing the

smallest odd integer N = 2M + 1 that satisfies:

Δψ = 2πD

N − 1
(21.4.4)

Alternatively, if N is given, calculate the transition width Δψ.

3. Calculate the samples of the Kaiser window:

w(m)= I0
(

α
√

1−m2/M2
)

I0(α)
, m = 0,±1, . . . ,±M (21.4.5)

where I0(x) is the modified Bessel function of first kind and zeroth order.

4. Calculate the ideal cutoff frequency ψb by taking it to be at the middle between

the passband and stopband frequencies:

ψb = 1

2
(ψp +ψs)= ψp + 1

2
Δψ (21.4.6)

5. Calculate the final windowed array weights from a(m)= w(m)aBP(m):

a(m)= w(m)e−jmψ0
sin(ψbm)

πm
, m = 0,±1, . . . ,±M (21.4.7)
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Next, we use the above bandpass design inψ-space to design an array with an angular

sector response inφ-space. The ideal array will have a pattern that is uniformly flat over

an angular sector [φ1,φ2]:

A(φ)=
{

1, φ1 ≤ φ ≤ φ2

0, otherwise

Alternatively, we can define the sector by means of its center angle and its width,

φc = (φ1 +φ2)/2 and φb = φ2 −φ1. Thus, we have the equivalent definitions of the

angular sector:

φc = 1

2
(φ1 +φ2)

φb = φ2 −φ1

⇔

φ1 = φc − 1

2
φb

φ2 = φc + 1

2
φb

(21.4.8)

For a practical design, we may take [φ1,φ2] to represent the passband of the re-

sponse and assume an angular stopband with attenuation of at least A dB that begins

after a small angular transition width Δφ on either side of the passband.

In filter design, the stopband attenuation and the transition width are used to deter-

mine the window length N. But in the array problem, because we are usually limited in

the number N of available array elements, we must assume that N is given and deter-

mine the transition width Δφ from A and N.

Thus, our design specifications are the quantities {φ1,φ2,N,A}, or alternatively,

{φc,φb,N,A}. These specifications must be mapped into equivalent ones in ψ-space

using the steered wavenumber ψ′ = kd(cosφ− cosφ0).

We require that the angular passband [φ1,φ2] be mapped onto the lowpass pass-

band [−ψp,ψp] in ψ′-space. Thus, we have the conditions:

ψp = kd cosφ1 −ψ0

−ψp = kd cosφ2 −ψ0

They may be solved for ψp and ψ0 as follows:

ψp = 1

2
kd(cosφ1 − cosφ2)

ψ0 = 1

2
kd(cosφ1 + cosφ2)

(21.4.9)

Using Eq. (21.4.8) and some trigonometry, we have equivalently:

ψp = kd sin(φc)sin
(φb

2

)

ψ0 = kd cos(φc)cos
(φb

2

)
(21.4.10)

Setting ψ0 = kd cosφ0, we find the effective steering angle φ0:

cosφ0 = cos(φc)cos
(φb

2

) ⇒ φ0 = acos
(

cos(φc)cos(φb/2)
)

(21.4.11)
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Note that φ0 is not equal to φc, except for very narrow widths φb.

The design procedure is then completed as follows. Given the attenuation A, we

calculate the window parameters D,α from Eqs. (21.4.2) and (21.4.3). Since N is given,

we calculate the transition width Δψ directly from Eq. (21.4.4). Then, the ideal lowpass

frequency ψb is calculated from Eq. (21.4.6), that is,

ψb = ψp + 1

2
Δψ = kd sin(φc)sin

(φb
2

)+ πD

N − 1
(21.4.12)

Finally, the array weights are obtained from Eq. (21.4.7). The transition width Δφ

can be approximated by linearizing ψ = kd cosφ around φ1, or around φ2, or around

φc. We prefer the latter choice, giving:

Δφ = Δψ

kd sinφc
= 2πD

kd(N − 1)sinφc
(21.4.13)

The design method can be extended to the case of evenN = 2M. The integral (21.3.4)

can still be done exactly. The Kaiser window expression (21.4.5) remains the same for

m = ±1,±2, . . . ,±M. We note the symmetry w(−m)= w(m). After windowing and

scanning with ψ0, we get the final designed weights:

a(±m)= w(m)e∓j(m−1/2)ψ0
sin

(

ψb(m− 1/2)
)

π(m− 1/2)
, m = 1,2, . . . ,M (21.4.14)

The MATLAB function sector implements the above design steps for either even or

odd N. Its usage is as follows:

[a, dph] = sector(d, ph1, ph2, N, A); % A=stopband attenuation in dB

Fig. 21.4.2 shows four design examples having sector [φ1,φ2]= [45o,75o], or cen-

ter φc = 60o and width φb = 30o. The number of array elements was N = 21 and

N = 41, with half-wavelength spacing d = λ/2. The stopband attenuations wereA = 20

and A = 40 dB. The two cases with A = 20 dB are equivalent to using the rectangular

window. They have visible Gibbs ripples in their passband. Some typical MATLAB code

for generating these graphs is as follows:

d=0.5; ph1=45; ph2=75; N=21; A=20;

[a, dph] = sector(d, ph1, ph2, N, A);

[g, ph] = array(d, a, 400);

dbz(ph,g, 30, 80);

addray(ph1, ’--’); addray(ph2, ’--’);

The basic design tradeoff is betweenN andA and is captured by Eq. (21.4.4). Because

D is linearly increasing with A, the transition width will increase with A and decrease

with N. As A increases, the passband exhibits no Gibbs ripples but at the expense of

larger transition width.

21.5 Woodward-Lawson Frequency-Sampling Design

As we mentioned earlier, the Fourier series method is feasible only when the inverse

transform integrals (21.3.2) and (21.3.4) can be done exactly. If not, we may use the
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Fig. 21.4.2 Angular sector array design with the Kaiser window.

frequency-sampling design method of DSP [48,49]. In the array context, the method is

referred to as the Woodward-Lawson method.

For anN-element array, the method is based on performing an inverseN-point DFT.

It assumes thatN samples of the desired array factorA(ψ) are available, that is,A(ψi),

i = 0,1, . . . ,N − 1, where ψi are the N DFT frequencies:

ψi = 2πi

N
, i = 0,1, . . . ,N − 1, (DFT frequencies) (21.5.1)

The frequency samples A(ψi) are related to the array weights via the forward N-

point DFT’s obtained by evaluating Eqs. (21.1.1) and (21.1.2) at the N DFT frequencies:

A(ψi) = a0 +
M∑

m=1

[

ame
jmψi + a−me−jmψi

]

,

A(ψi) =
M∑

m=1

[

ame
j(m−1/2)ψi + a−me−j(m−1/2)ψi

]

,

(N = 2M + 1)

(N = 2M)

(21.5.2)
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where ψi are given by Eq. (21.5.1). The corresponding inverse N-point DFT’s are as

follows. For odd N = 2M + 1,

am = 1

N

N−1∑

i=0

A(ψi)e
−jmψi , m = 0,±1,±2, . . . ,±M (21.5.3)

and for even N = 2M,

a±m = 1

N

N−1∑

i=0

A(ψi)e
∓j(m−1/2)ψi , m = 1,2, . . . ,M (21.5.4)

There is an alternative definition of theN DFT frequenciesψi for which the forms of

the forward and inverse DFT’s, Eqs. (21.5.2)–(21.5.4), remain the same. For either even

or odd N, we define:

ψi = 2π(i−K)
N

, (alternative DFT frequencies) (21.5.5)

where i = 0,1, . . . ,N − 1 and K = (N − 1)/2.

This definition makes a difference only for evenN, in which case the index i−K takes

on all the half-integer values in the symmetric interval [−K,K]. For odd N, Eq. (21.5.5)

amounts to a re-indexing of Eq. (21.5.1), with i−K taking values now over the symmetric

integer interval [−K,K].
For both the standard and the alternative sets, theN complex numbers zi = ejψi are

equally spaced around the unit circle. For odd N, they are the N-th roots of unity, that

is, the solutions of the equation zN = 1. For the alternative set with even N, they are

the N solutions of the equation zN = −1.

The alternative set is usually preferred in array processing. In DSP, it leads to the

discrete cosine transform. The MATLAB function woodward implements the inverse DFT

operations (21.5.3) and (21.5.4), for either the standard or the alternative definition of

ψi. Its usage is as follows:

a = woodward(A, alt); % alt=0,1 for standard or alternative

The frequency-sampling array design method is summarized as follows: Given a set

ofN frequency response valuesA(ψi), i = 0,1, . . . ,N−1, calculate theN array weights

a(m) using the inverse DFT formulas (21.5.3) or (21.5.4). Then, replace the weights by

their windowed versions using any symmetric length-N window. The final expressions

for the windowed weights are, for odd N = 2M + 1,

a(m)= w(m) 1

N

N−1∑

i=0

A(ψi)e
−jmψi , m = 0,±1,±2, . . . ,±M (21.5.6)

and for even N = 2M,

a(±m)= w(±m) 1

N

N−1∑

i=0

A(ψi)e
∓j(m−1/2)ψi , m = 1,2, . . . ,M (21.5.7)
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As an example, consider the design of a sector beam with edges at φ1 = 45o and

φ2 = 75o. Thus, the beam is centered at φc = 60o and has width φb = 30o.

Asφ ranges over [φ1,φ2], the wavenumberψ = kd cosφ will range over kd cosφ2

≤ ψ ≤ kd cosφ1. For all DFT frequencies ψi that lie in this interval, we set A(ψi)= 1,

otherwise, we set A(ψi)= 0. Assuming the alternative definition for ψi, we have the

passband condition:

kd cosφ2 ≤ 2π(i−K)
N

≤ kd cosφ1

Setting kd = 2πd/λ and solving for the DFT index i−K, we find:

j1 ≤ i−K ≤ j2, where j1 = Nd

λ
cosφ2, j2 = Nd

λ
cosφ1

This range determines the DFT indices i for which A(ψi)= 1. The inverse DFT

summation over i will then be restricted over this subset of i’s. Fig. 21.5.1 shows the

response of a 20-element array with half-wavelength spacing, d = λ/2, designed with a

rectangular and a Hamming window. The MATLAB code for generating the right graph

was as follows:

d=0.5; N=20; ph1=45; ph2=75; alt=1; K=(N-1)/2;

j1 = N*d*cos(ph2*pi/180);

j2 = N*d*cos(ph1*pi/180);

i = (0:N-1); % DFT index

j = i - alt*K; % alternative DFT index

A = (j>=j1)&(j<=j2); % equals 1, if j1 ≤ j ≤ j2 , and 0, otherwise

a = woodward(A, alt); % inverse DFT

w = 0.54 - 0.46*cos(2*pi*i/(N-1)); % Hamming window

awind = a .* w; % windowed weights

[g,ph] = array(0.5, awind, 400); % array gain

dbz(ph, g, 30, 80);

addray(ph1,’--’); addray(ph2,’--’);
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Fig. 21.5.1 Angular sector array design with Woodward-Lawson method.

The sidelobes of the Hamming window are down approximately at the expected 54-

dB level (they reach 54 dB for larger N.) The design is comparable to that of Fig. 21.4.2.
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The power of this method lies in the ability to specify any shape for the array factor

through its frequency samples. The method works well for half-wavelength spacing

d = λ/2, because allN DFT frequenciesψi lie within the visible region, which coincides

in this case with the full Nyquist interval, −π ≤ ψ ≤ π.

As another example, we consider the design of an array with a secant-squared gain

pattern, which is relevant in air search radars as discussed in Sec. 16.11. We consider an

array of N elements along the z-direction with half-wavelength spacing d = λ/2. The

corresponding wavenumber ψ will be ψ = kzd, or

ψ = kd cosθ

The design of the secant-squared gain pattern requires that the array factor itself

have a secant dependence. Indeed,

g(θ)= |A(ψ)|2 = K

cos2 θ
⇒ |A(ψ)| = K1/2

| cosθ|
Because the secant pattern is defined only up to an angle θmax, we may define the

theoretical array factor in the normalized form:

A(θ)=

⎧

⎪⎨

⎪⎩

cosθmax

cosθ
, if 0 ≤ θ ≤ θmax

1, if θmax < θ ≤ 90o

(21.5.8)

As θ varies over [0, θmax], the wavenumberψ = kd cosθ will vary over [ψmax, kd],

whereψmax = kd cosθmax. Because d = λ/2, we have kd = π and theψ-range becomes

[ψmax,π]. Noting that cosθmax/ cosθ = ψmax/ψ, we can rewrite Eq. (21.5.8) in terms

of ψ:

A(ψ)=

⎧

⎪⎨

⎪⎩

ψmax

ψ
, if ψmax ≤ ψ ≤ π

1, if 0 ≤ ψ < ψmax

(21.5.9)

We symmetrize A(−ψ)= A(ψ) to cover the entire 2π Nyquist interval in ψ. Eval-

uating Eq. (21.5.9) at the N DFT frequencies ψi = 2πi/N, we obtain the array weights

by doing an inverse DFT and then windowing the array coefficients with a Hamming

window. Fig. 21.5.2 shows a design case with N = 21 and θmax = 70o. The figure com-

pares the Hamming and rectangular window designs to the exact expression (21.5.8).

The details of the design are indicated in the MATLAB code:

N=21; K=(N-1)/2; d=0.5; thmax=70;

psmax = 2*pi*d * cos(thmax*pi/180);

Ai = ones(1,K+1);

psi = 2*pi*(0:K)/N; % half of DFT frequencies

j = find(psi); % non-zero ψ’s

Ai(j) = psmax*(psi(j)>=psmax)./psi(j) + (psi(j)<psmax); % half of the DFT values

Ai = [Ai, Ai(K:-1:1)]; % all the DFT values

a = woodward(Ai, 0) / N; % inverse DFT with alt=0
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aw = a .* (0.54 - 0.46*cos(2*pi*(0:N-1)/(N-1))); % Hamming

th = (0:200) * 90 / 200;

ps = 2*pi*d * cos(th*pi/180);

A = abs(dtft(a, -ps)); % rectangular design

Aw = abs(dtft(aw,-ps)); % Hamming design

A0 = psmax*(ps>=psmax)./ps + (ps<psmax); % exact pattern
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Fig. 21.5.2 Woodward-Lawson design of secant-squared array gain.

21.6 Discretization of Continuous Line Sources

One-dimensional arrays may be thought of as arising from the spatial sampling of con-

tinuous line current distributions. Consider, for example, a current I(x) flowing along

the x-axis. Its current density is Jx(x, y, x)= I(x)δ(y)δ(z), where the delta functions

confine the current on the x-axis. The corresponding radiation vector will have only an

x-component:

Fx(kx, ky, kz) =
∫

Jx(x, y, z)e
jkxx+jkyy+jkzz dxdydz

=
∫

I(x)δ(y)δ(z)ejkxx+jkyy+jkzz dxdydz =
∫∞

−∞
I(x)ejkxxdx

Thus, Fx(kx) depends only on the kx wavevector component and is the spatial

Fourier transform of the line current I(x):

Fx(kx)=
∫∞

−∞
I(x)ejkxxdx (21.6.1)

In spherical coordinates, kx is given by kx = k sinθ cosφ, with k = 2π/λ. The range

of kx values when θ,φ vary over 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π is the “visible region”.

The inversion of the Fourier transform, however, requires knowledge of Fx(kx) over all
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kx, and in such case the inverse is:

I(x)= 1

2π

∫∞

−∞
Fx(kx)e

−jkxx dkx (21.6.2)

Suppose now that the current I(x) is sampled at the regular intervals xm = md

with spacing d and integer m. The sampled current may be represented as the sum of

impulses:

Î(x)=
∞∑

m=−∞
I(xm)δ(x− xm)=

∞∑

m=−∞
Im δ(x−md) (21.6.3)

where we set Im = I(xm)= I(md). Then, the corresponding Fourier transform will be:

F̂x(kx)=
∫∞

−∞
Î(x)ejkxxdx =

∞∑

m=−∞
Im e

jmkxd =
∞∑

m=−∞
Im e

jmψ (21.6.4)

This has precisely the form of an array factor with ψ = kxd. The pattern F̂x(kx)

is periodic in kx with period ks = 2π/d, which is the sampling frequency in units

of radians/meter. Equivalently, F̂x(kx) is periodic in ψ with period 2π. The Poisson

summation formula [48] relates F̂x(kx) to the unsampled pattern Fx(kx) as a sum of

shifted replicas:

F̂x(kx)= 1

d

∞∑

n=−∞
Fx(kx − nks) (21.6.5)

Aliasing, that is, the overlapping of the spectral replicas, can be avoided only if

Fx(kx) is bandlimited to within the Nyquist interval, |kx| ≤ ks/2. This would imply that

I(x) have infinite extent.

In practice, I(x) is assumed to be space-limited with a finite extent, say, over an in-

terval−l/2 ≤ x ≤ l/2. In this case, Fx(kx) cannot be bandlimited and therefore, aliasing

will always occur. However, if the pattern F(kx) attenuates with large kx, aliasing may

be minimized by selecting a small enough d.

Eqs. (21.6.4) and (21.6.5) provide two equivalent ways to express the spectrum of the

sampled current. Eq. (21.6.4) can be inverted to recover the current samples Im:

Im = 1

ks

∫ ks/2

−ks/2
F̂x(kx)e

−jmkxd dkx = 1

2π

∫ π

−π
F̂x(ψ)e

−jmψ dψ (21.6.6)

which is the inverse discrete-space Fourier transform that we introduced in (20.4.8).

By using the z-domain variable z = ejψ, (21.6.4) can also be written as the spatial z-

transform:

F̂x(z)=
∞∑

m=−∞
Im z

n (21.6.7)

Next, we focus on finite line sources I(x), −l/2 ≤ x ≤ l/2. Then, (21.6.1) reads:

Fx(kx)=
∫ l/2

−l/2
I(x)ejkxx dx (21.6.8)

It proves convenient to define a normalized wavenumber variable u by:

u = lkx
2π

⇔ kx = 2πu

l
⇔ u = l

λ
sinθ cosφ (21.6.9)
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and define a scaled pattern F(u)= Fx(kx)/l. Then, we have the Fourier relationships:

F(u)= 1

l

∫ l/2

−l/2
I(x)ej2πux/l dx ⇔ I(x)=

∫∞

−∞
F(u)e−j2πux/l du (21.6.10)

If I(x)were periodic with period l, then 2π/lwould be its fundamental harmonic and

2πu/l would be interpreted as the uth harmonic. Indeed, the continuous-line version

of the Woodward-Lawson method gives u just such an interpretation. Let us define the

periodic extension of the space-limited I(x) with period l to be the sum of its replicas:

Ĩ(x)=
∞∑

n=−∞
I(x− nl) (21.6.11)

Then, Ĩ(x), being periodic, could be expanded in a Fourier series with coefficients:

Ĩ(x)=
∞∑

p=−∞
cp e

−j2πpx/l , cp = 1

l

∫ l/2

−l/2
Ĩ(x)ej2πpx/l dx (21.6.12)

Because Ĩ(x)= I(x) over the period −l/2 ≤ x ≤ l/2, the above integral for the pth

coefficient implies from (21.6.10) that cp = F(u) with u = p. Thus, restricting x over

its basic period, we have the representation:

I(x)=
∞∑

p=−∞
F(p)e−j2πpx/l , − l

2
≤ x ≤ l

2
(21.6.13)

The pattern F(u) may itself be expressed in terms of its samples F(p). We have

from (21.6.13):

F(u)= 1

l

∫ l/2

−l/2
I(x)ej2πux/l dx =

∞∑

p=−∞
F(p)

1

l

∫ l/2

−l/2
ej2π(u−p)x/l dx , or,

F(u)=
∞∑

p=−∞
F(p)

sin
(

π(u− p))

π(u− p) (21.6.14)

Eqs. (21.6.13) and (21.6.14) are the continuous-line version of the Woodward-Lawson

method, which is of course equivalent to the application of Shannon’s sampling theorem

to the space-limited function I(x), and our derivation is nothing more than the proof

of that theorem.

For discrete arrays, we must sample in space xm =md, not in frequency. By taking

N samples over the length l, that is, d = l/N, and truncating the summation in (21.6.13)

to p = 0,1, . . . ,N− 1, we obtain the practical version of the Woodward-Lawson method

that we used in the previous section.

For an N-element finite array, the z-transform F̂x(z) of Eq. (21.6.7) becomes a poly-

nomial of degree N − 1 in z. Such an array can be designed directly in discrete-space

domain, or it can be designed by mapping a given continuous line source pattern to the

discrete case. This can be accomplished approximately by mapping N − 1 zeros of the

958 21. Array Design Methods

continuous pattern toN−1 zeros of the array using the mapping z = ejψ = ejkxd. Since

d = l/N, the mapping from u-space toψ-space becomesψ = kxd = 2πud/l = 2πu/N:

ψ = kxd = 2πu

N
(21.6.15)

Therefore, if un, n = 1,2, . . . ,N−1 are theN−1 zeros of the pattern F(u) on which

the design is to be based, then, we may define the corresponding zeros of the array by:

ψn = 2πun
N

⇒ zn = ejψn = ej2πun/N , n = 1,2, . . . ,N − 1 (21.6.16)

and construct the array pattern polynomial from these zeros:

A(z)=
N−1∏

n=1

(z− zn) (21.6.17)

The method is an approximation because F(u) generally has an infinity of zeros.

However, good results are obtained if N is large (e.g., N > 10).

To clarify the above definitions and Fourier relationships, we consider three exam-

ples: (a) the uniform line source and how it relates to the uniform array, (b) Taylor’s

one-parameter line source and its use to design Taylor-Kaiser arrays, and (c) Taylor’s

ideal line source, which is an idealization of the Chebyshev array, and leads to the so-

called Taylor’s n̄ distribution. A uniform line source has constant current:

I(x)=
⎧

⎨

⎩

1 , if − l/2 ≤ x ≤ l/2
0 , otherwise

(21.6.18)

Its pattern is:

F(u)= 1

l

∫ l/2

−l/2
I(x)ej2πux/l dx = 1

l

∫ l/2

−l/2
ej2πux/l dx = sin(πu)

πu
(21.6.19)

Its zeros are at the non-zero integers un = ±n, for n = 1,2, . . . . By selecting the first

N− 1 of these, un = n, for n = 1,2, . . . ,N− 1, we may map them to the N− 1 zeros of

the uniform array:

zn = ej2πun/N = ej2πn/N , n = 1,2, . . . ,N − 1

The constructed array polynomial will be then,

A(z)= 1

N

N−1∏

n=1

(z− zn)= 1

N

N−1∏

n=1

(

z− ej2πn/N) = 1

N

N−1∏

n=0

(

z− ej2πn/N)

z− 1

where we introduced a scale factor 1/N and multiplied and divided by the factor (z−1).

But the numerator polynomial, being a monic polynomial and having as roots the Nth

roots of unity, must be equal to zN − 1. Thus,

A(z)= 1

N

zN − 1

z− 1
= 1

N

(

1+ z+ z2 + · · · + zN−1
)
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which has uniform array weights, am = 1/N. Replacing z = ejψ = ej2πu/N, we have:

A(ψ)= 1

N

ejψN − 1

ejψ − 1
= sin(Nψ/2)

N sin(ψ/2)
ejψ(N−1)/2 = sin(πu)

N sin(πu/N)
ejπu(N−1)/N

For large N and fixed value of u, we may use the approximation sinx ≃ x in the

denominator which tends to N sin(πu/N)≃ N(πu/N)= πu, thus, approximating the

sinπu/πu pattern of the continuous line case.

Taylor’s one-parameter continuous line source [1260] has current I(x) and corre-

sponding pattern F(u) given by the Fourier transform pair [190]:

F(u)=
sinh

(

π
√
B2 − u2

)

π
√
B2 − u2

⇔ I(x)= I0
(

πB
√

1− (2x/l)2

)

(21.6.20)

where −l/2 ≤ x ≤ l/2 and I0(·) is the modified Bessel function of first kind and zeroth

order, and B is a positive parameter that controls the sidelobe level. For u > B, the

pattern becomes a sinc-pattern in the variable
√
u2 − B2, and for large u, it tends to the

pattern of the uniform line source. We will discuss this further in Sec. 21.10.

Taylor’s ideal line source [1261] also has a parameter that controls the sidelobe level

and is is defined by the Fourier pair [190]:

F(u) = cosh
(

π
√

A2 − u2
)

I(x) =
I1
(

πA
√

1− (2x/l)2
)

√

1− (2x/l)2

πA

l
+ δ

(

x− l

2

)

+ δ
(

x+ l

2

) (21.6.21)

where I1(·) is the modified Bessel function of first kind and first order. Van der Maas

[1249] showed first that this pair is the limit of a Dolph-Chebyshev array in the limit of

a large number of array elements. We will explore it further in Sec. 21.12.

21.7 Narrow-Beam Low-Sidelobe Designs

The problem of designing arrays having narrow beams with low sidelobes is equivalent to

the DSP problem of spectral analysis of windowed sinusoids. A single beam corresponds

to a single sinusoid, multiple beams to multiple sinusoids.

To understand this equivalence, suppose one wants to design an infinitely narrow

beam toward some look direction φ = φ0. In ψ-space, the array factor (spatial or

wavenumber spectrum) should be the infinitely thin spectral line:†

A(ψ)= 2πδ(ψ−ψ0)

where ψ = kd cosφ and ψ0 = kd cosφ0. Inserting this into the inverse DSFT of

Eq. (21.3.2), gives the double-sided infinitely-long array, for −∞ < m <∞:

a(m)= 1

2π

∫ π

−π
A(ψ)e−jmψdψ = 1

2π

∫ π

−π
2πδ(ψ−ψ0)e

−jmψdψ = e−jψ0m

†To be periodic in ψ, all the Nyquist replicas of this term must be added. But they are not shown here

because ψ0 and ψ are assumed to lie in the central Nyquist interval [−π,π].
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This is the spatial analog of an infinite sinusoid a(n)= ejω0n whose spectrum is the

sharp spectral line A(ω)= 2πδ(ω −ω0). A finite-duration sinusoid is obtained by

windowing with a length-N time window w(n) resulting in a(n)= w(n)ejω0n.

In the frequency domain, the effect of windowing is to replace the spectral line

δ(ω−ω0) by its smeared versionW(ω−ω0), whereW(ω) is the DTFT of the window

w(n). The spectrum W(ω −ω0) exhibits a main lobe at ω = ω0 and sidelobes. The

main lobe gets narrower with increasing N.

A finiteN-element array with a narrow beam and low sidelobes, and steered towards

an angle φ0, can be obtained by windowing the infinite narrow-beam array with an

appropriate length-N spatial window w(m). For odd N = 2M+ 1, or even N = 2M, we

define respectively:

a(m) = e−jmψ0w(m), m = 0,±1,±2, . . . ,±M

a(±m) = e∓j(m−1/2)ψ0w(±m), m = 1,2, . . . ,M
(21.7.1)

In both cases, the array factor of Eqs. (21.1.1) and (21.1.2) becomes:

A(ψ)=W(ψ−ψ0) (narrow beam array factor) (21.7.2)

where W(ψ) is the DSFT of the window, defined for odd or even N as:

W(ψ) = w(0)+
M∑

m=1

[

w(m)ejmψ +w(−m)e−jmψ
]

W(ψ) =
M∑

m=1

[

w(m)ej(m−1/2)ψ +w(−m)e−j(m−1/2)ψ
]

(21.7.3)

Assuming a symmetric window, w(−m)= w(m), we can rewrite:

W(ψ) = w(0)+2

M∑

m=1

w(m)cos(mψ)

W(ψ) = 2

M∑

m=1

w(m)cos
(

(m− 1/2)ψ
)

(N = 2M + 1)

(N = 2M)

(21.7.4)

At broadside,ψ0 = 0,φ0 = 90o, Eq. (21.7.1) reduces to a(m)= w(m) and the array

factor becomesA(ψ)=W(ψ). Thus, the weights of a broadside narrow beam array are

the window samples a(m)= w(m). The steered weights (21.7.1) can be calculated with

the help of the MATLAB function scan, or steer:

a = scan(w, psi0);

a = steer(d, w, phi0);

The primary issue in choosing a window function w(m) is the tradeoff between fre-

quency resolution and frequency leakage, that is, between main-lobe width and sidelobe

level [48,49]. Ideally, one would like to meet, as best as possible, the two conflicting

requirements of having a very narrow mainlobe and very small sidelobes.
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Fig. 21.7.1 shows four narrow-beam design examples illustrating this tradeoff. All

designs are 7-element arrays with half-wavelength spacing, d = λ/2, and steered to-

wards 90o. The Dolph-Chebyshev and Taylor-Kaiser arrays were designed with sidelobe

level of R = 20 dB.
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Fig. 21.7.1 Narrow beam design examples.

Shown on the graphs are also the half-power 3-dB circles being intersected by the

angular rays at the 3-dB angles. For comparison, we list below the designed array weights

(normalized to unity at their endpoints) and the corresponding 3-dB angular widths (in

degrees):

Uniform Dolph-Chebyshev Taylor-Kaiser Binomial

1 1.0000 1.0000 1

1 1.2764 1.8998 6

1 1.6837 2.6057 15

1 1.8387 2.8728 20

1 1.6837 2.6057 15

1 1.2764 1.8998 6

1 1.0000 1.0000 1

14.5o 16.4o 16.8o 24.6o
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The uniform array has the narrowest mainlobe but also the highest sidelobes. The

Dolph-Chebyshev is optimum in the sense that, for the given sidelobe level of 20 dB, it

has the narrowest width. The Taylor-Kaiser is somewhat wider than the Dolph-Chebyshev,

but it exhibits better sidelobe behavior. The binomial array has the widest mainlobe but

no sidelobes at all.

Fig. 21.7.2 shows another set of examples. All designs are 21-element arrays with

half-wavelength spacing, d = λ/2, and scanned towards 60o.
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Fig. 21.7.2 Comparison of steered 21-element narrow-beam arrays.

The Dolph-Chebyshev and Taylor arrays were designed with sidelobe level of R = 25

dB. The uniform array has sidelobes atR = 13 dB. BecauseN is higher than in Fig. 21.7.1,

the beams will be much narrower. The 3-dB beamwidths are in the four cases:

Δφ3dB = 5.58o Uniform

Δφ3dB = 6.44o Dolph-Chebyshev

Δφ3dB = 7.03o Taylor-Kaiser

Δφ3dB = 15.64o Binomial

The two key parameters characterizing a window are the 3-dB width of its main lobe,

Δψ3dB, and its sidelobe level R (in dB). For some windows, such as Dolph-Chebyshev
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and binomial, Δψ3dB can be calculated exactly. In others, such as Taylor-Kaiser and

Hamming, it can be calculated approximately by Eq. (20.10.2), that is,

Δψ3dB = 0.886
2πb

N
(3-dB width in ψ-space) (21.7.5)

where b is a broadening factor that depends on the choice of window and increases

with the sidelobe attenuation R. As discussed in Sec. 20.10, once Δψ3dB is known, the

angular 3-dB width of the steered array can be computed approximately by:

Δφ3dB =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Δψ3dB

kd sinφ0

, for 0o < φ0 < 180o

2

√

Δψ3dB

kd
, for φ0 = 0o, 180o

(21.7.6)

This is an adequate approximation in practice. In succeeding sections, we discuss

the binomial, Dolph-Chebyshev, and Taylor-Kaiser arrays in more detail. In addition, we

discuss prolate arrays, Taylor’s n̄ distribution, and Villeneuve arrays.

We finish this section by summarizing the uniform array, which is based on the

rectangular window and has b = 1 and sidelobe level R = 13 dB. Its weights, symmetric

DSFT, and symmetric z-transform were determined in Example 21.1.2:

w = 1

N
[1,1, . . . ,1]

W(ψ) =
sin

(
Nψ

2

)

N sin

(
ψ

2

)

W(z) = 1

N

zN/2 − z−N/2
z1/2 − z−1/2

= z−(N−1)/2 1

N

zN − 1

z− 1

(21.7.7)

21.8 Binomial Arrays

The weights of an N-element binomial array are the binomial coefficients:

w(m)= (N − 1)!

m!(N − 1−m)! , m = 0,1, . . . ,N − 1 (21.8.1)

For example, for N = 4 and N = 5 they are:

w = [1,3,3,1]
w = [1,4,6,4,1]

The binomial weights are the expansion coefficients of the polynomial (1 + z)N−1. In-

deed, the symmetric z-transform of the binomial array is defined as:

W(z)= (

z1/2 + z−1/2
)N−1 = z−(N−1)/2(1+ z)N−1 (21.8.2)
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Setting z = ejψ, we find the array factor in ψ-space:

W(ψ)= (

ejψ/2 + e−jψ/2)N−1 =
[

2 cos
(ψ

2

)
]N−1

(21.8.3)

This response falls monotonically on either side of the peak atψ = 0 until it becomes

zero at the Nyquist frequency ψ = ±π. Indeed, the z-transform has a multiple zero of

order N − 1 at z = −1.

Thus, the binomial response has no sidelobes. This is, of course, at the expense of

a fairly wide mainlobe. The 3-dB width Δψ3dB can be determined by finding the 3-dB

frequencies ±ψ3 that satisfy the half-power condition:

|W(ψ3)|2
|W(0)|2 = 1

2
⇒

[

cos
(ψ3

2

)
]2(N−1)

= 1

2

The solution is:

ψ3 = 2 acos
(

2−0.5/(N−1)
)

Therefore, the 3-dB width will be Δψ3dB = 2ψ3:

Δψ3dB = 4 acos
(

2−0.5/(N−1)
)

(21.8.4)

Once Δψ3dB is found, the 3-dB width Δφ3dB in angle space, for an array steered

towards an angle φ0, can be found from Eq. (21.7.6). The MATLAB function binomial

generates the array weights (steered towards φ0) and 3-dB width. Its usage is:

[a, dph] = binomial(d, ph0, N); % binomial array coefficients and beamwidth

For example, the fourth graph of the binomial response of Fig. 21.7.1 was generated

by the MATLAB code:

[a, dph] = binomial(0.5, 90, 5); % array weights and 3-dB width

[g, ph] = array(0.5, a, 200); % compute array gain

dbz(ph, g, 45, 40); % plot gain in dB with 40-dB scale

addcirc(3, 40, ’--’); % add 3-dB grid circle

addray(90 + dph/2, ’-’); % add rays at 3-dB angles

addray(90 - dph/2, ’-’);

21.9 Dolph-Chebyshev Arrays

Most windows have largest sidelobes near the main lobe. If a window is designed to

achieve a minimum sidelobe attenuation of R dB, then typically R will be the atten-

uation of the sidelobes nearest to the mainlobe; the sidelobes further away will have

attenuations higher than R.

Because of the tradeoff between mainlobe width and sidelobe attenuation, the extra

attenuation of the furthest sidelobes will come at the expense of increased mainlobe

width. If the attenuation of these sidelobes could be decreased (up to the level of the

minimum R), then the mainlobe width would narrow.

It follows that for a given minimum desired sidelobe levelR, the narrowest mainlobe

width will be achieved by a window whose sidelobes are all equal to R. Conversely,
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for a given maximum desired mainlobe width, the largest sidelobe attenuation will be

achieved by a window with equal sidelobe levels.

This “optimum” window is the Dolph-Chebyshev window, which is constructed with

the help of Chebyshev polynomials. The mth Chebyshev polynomial Tm(x) is:

Tm(x)= cos
(

m acos(x)
)

(21.9.1)

If |x| > 1, the inverse cosine acos(x) becomes imaginary, and the expression can be

rewritten in terms of hyperbolic cosines: Tm(x)= cosh
(

m acosh(x)
)

.

Setting x = cosθ, or θ = acos(x), we see that Tm(x)= cos(mθ). Using trigonomet-

ric identities, the quantity cos(mθ) can always be expanded as a polynomial in powers

of cosθ. The expansion coefficients are precisely the coefficients of the powers of x of

the Chebyshev polynomial. For example, we have:

cos(0θ)= 1 T0(x)= 1

cos(1θ)= cosθ T1(x)= x
cos(2θ)= 2 cos2 θ− 1 ⇒ T2(x)= 2x2 − 1

cos(3θ)= 4 cos3 θ− 3 cosθ T3(x)= 4x3 − 3x

cos(4θ)= 8 cos4 θ− 8 cos2 θ+ 1 T4(x)= 8x4 − 8x2 + 1

For |x| < 1, the Chebyshev polynomial has equal ripples, whereas for |x| > 1, it

increases like xm. Moreover, Tm(x) is even in x if m is even, and odd in x if m is odd.

Fig. 21.9.1 depicts the Chebyshev polynomials T9(x) and T10(x).

Fig. 21.9.1 Chebyshev polynomials of orders nine and ten.

The Dolph-Chebyshev window is defined such that its sidelobes will correspond to

a portion of the equi-ripple range |x| ≤ 1 of the Chebyshev polynomial, whereas its

mainlobe will correspond to a portion of the range x > 1.

For either even or odd N, Eq. (21.7.4) implies that any window spectrum W(ψ) can

be written in general as a polynomial of degree N − 1 in the variable u = cos(ψ/2).

Indeed, we have for the mth terms:

cos(mψ)= cos

(

2m
ψ

2

)

= T2m(u)

cos
(

(m− 1/2)ψ)= cos

(

(2m− 1)
ψ

2

)

= T2m−1(u)

Thus in the odd case, the summation in Eq. (21.7.4) will result in a polynomial of

maximal degree 2M = N − 1 in the variable u, and in the even case, it will result into a

polynomial of degree 2M − 1 = N − 1.
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The Dolph-Chebyshev [1243] array factor is defined by the Chebyshev polynomial of

degree N − 1 in the scaled variable x = x0 cos(ψ/2), that is,

W(ψ)= TN−1(x), x = x0 cos

(
ψ

2

)

(Dolph-Chebyshev array factor) (21.9.2)

The scale factor x0 is always x0 > 1 and is determined below. For a broadside design,

as the azimuthal angle φ ranges over the interval 0o ≤ φ ≤ 180o, the wavenumberψ =
kd cosφwill range over the visible region−kd ≤ ψ ≤ kd. The quantity x = x0 cos(ψ/2)

will range from xmin = x0 cos(kd/2) to the value x = x0, which is reached broadside at

φ = 90o or ψ = 0, and then x will move back to xmin. Thus, the range of variation of x

will be xmin ≤ x ≤ x0.

Assuming that xmin is in the interval −1 ≤ xmin ≤ 1, we can split the interval

[xmin, x0] into the two subintervals: [xmin,1] and [1, x0], as shown in Fig. 21.9.2. We

require that the subinterval [xmin,1] coincide with the sidelobe interval of the array

factor W(ψ), and that the subinterval [1, x0] coincide with the mainlobe interval. The

zeros of the Chebyshev polynomial within [xmin,1] become the sidelobe zeros of the

array factor and get repeated twice as φ varies over [0o,180o].

In Fig. 21.9.2, for spacing d = λ/2, we have kd = π and xmin = x0 cos(kd/2)

= x0 cos(π/2)= 0. Similarly, we have xmin = x0 cos(3π/4)= −0.707x0 for d = 3λ/4,

and xmin = x0 cos(π/4)= 0.707x0 for d = λ/4.

The relative sidelobe attenuation level in absolute units and in dB is defined in terms

of the ratio of the mainlobe to the sidelobe heights:

Ra = Wmain

Wside

, R = 20 log10(Ra) , Ra = 10R/20

Because the mainlobe peak occurs at ψ = 0 or x = x0, we will have Wmain =
TN−1(x0), and because the sidelobe level is equal to the Chebyshev level within |x| ≤ 1,

we will have Wside = 1. Thus, we find:

Ra = TN−1(x0)= cosh
(

(N − 1)acosh(x0)
)

(21.9.3)

which can be solved for x0 in terms of Ra:

x0 = cosh

(
acosh(Ra)

N − 1

)

(21.9.4)

Once the scale factor x0 is determined, the window samplesw(m) can be computed

by constructing the z-transform of the array factor from its zeros and then doing an

inverse z-transform. The N − 1 zeros of TN−1(x) are easily found to be:

TN−1(x)= cos
(

(N − 1)acos(x)
) = 0 ⇒ xi = cos

(
(i− 1/2)π

N − 1

)

for i = 1,2, . . . ,N − 1. Solving for the corresponding wavenumbers through xi =
x0 cos(ψi/2), we find the pattern zeros:

ψi = 2 acos
( xi
x0

)

, zi = ejψi , i = 1,2, . . . ,N − 1
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Fig. 21.9.2 Chebyshev polynomials and array factors for d = λ/2, d = 3λ/4, and d = λ/4.

We note that the zeros xi do not have to lie within the sidelobe range [xmin,1] and

the corresponding ψi do not all have to be in the visible region.

The symmetric z-transform of the window is constructed in terms of the one-sided

transform using Eq. (21.1.4) as follows:

W(z)= z−(N−1)/2 W̃(z)= z−(N−1)/2
N−1∏

i=1

(z− zi) (21.9.5)

The inverse z-transform of W(z) are the window coefficients w(m). The MATLAB
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function dolph.m of Appendix I implements this design procedure with the help of

the function poly2.m, which calculates the coefficients from the zeros.† The typical

MATLAB code in dolph.m is as follows:

N1 = N-1; % number of zeros

Ra = 10^(R/20); % sidelobe level in absolute units

x0 = cosh(acosh(Ra)/N1); % scaling factor

i = 1:N1;

xi = cos(pi*(i-0.5)/N1); % N1 zeros of Chebyshev polynomial

psi = 2 * acos(xi/x0); % N1 array pattern zeros in psi-space

zi = exp(j*psi); % N1 zeros of array polynomial

a = real(poly2(zi)); % zeros-to-polynomial form (N coefficients)

The window coefficients resulting from definition (21.9.5) are normalized to unity

values at their end-points. This definition differs from that of Eq. (21.9.2) by the scale

factor xN−1
0 /2.

The function dolph.m also returns the 3-dB width of the main lobe. The 3-dB fre-

quency ψ3 is defined by the half-power condition:

W(ψ3)= TN−1(x3)= TN−1(x0)√
2

= Ra√
2

⇒ cosh
(

(N − 1)acosh(x3)
) = Ra√

2

Solving for x3 and the corresponding 3-dB angle, x3 = x0 cos(ψ3/2), we have:

x3 = cosh

(

acosh(Ra/
√

2)

N − 1

)

, ψ3 = 2 acos

(
x3

x0

)

(21.9.6)

which yields the 3-dB width in ψ-space, Δψ3dB = 2ψ3. The 3-dB width in angle space,

Δφ3dB, is then computed from Eq. (21.7.6) or (20.10.6).

There exist several alternative methods for calculating the Chebyshev array coeffi-

cients [1247–1255,1257] and have been compared in [1256]. One particularly accurate

and effective method is that of Bresler [1250], which has recently been implemented by

Simon [1252] with the MATLAB function chebarray.m.

Example 21.9.1: The second graph of Fig. 21.7.1 was generated by the MATLAB commands:

[a, dph] = dolph(0.5, 90, 5, 20); % array weights and 3-dB width

[g, ph] = array(0.5, a, 200); % compute array gain

dbz(ph, g, 45); % plot gain in dB

addcirc(3, 40, ’--’); % add 3-dB gain circle

addray(90 + dph/2, ’--’); % add 3-dB angles

addray(90 - dph/2, ’--’);

The array weights and 3-dB width were given previously in the table of Fig. 21.7.1. The

weights are constructed as follows. The scale parameter x0 is found to be x0 = 1.2933.

The zeros xi, ψi, and zi are found to be:

i xi ψi zi
1 0.9239 1.5502 0.0206+ 0.9998j

2 0.3827 2.5408 −0.8249+ 0.5653j

3 −0.3827 3.7424 −0.8249− 0.5653j

4 −0.9239 4.7330 0.0206− 0.9998j

†See Sec. 6.8 regarding the accuracy of poly2 versus poly.
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It follows that the one-sided array polynomial will be:

W̃(z)= (z− z1)(z− z2)(z− z3)(z− z4)= z4 + 1.6085z3 + 1.9319z2 + 1.6085z+ 1

and the symmetric z-transform:

W(z)= z−2 W̃(z)= z2 + 1.6085z+ 1.9319+ 1.6085z−1 + z−2

resulting in the array weights w = [1.0000, 1.6085, 1.9319, 1.6085, 1.0000]. We note

that the array zeros come in conjugate pairs. Only the first two xi and ψi lie in the visible

region and show up as pattern zeros in the array factor. ⊓⊔

Example 21.9.2: The second graph of Fig. 21.7.2 was generated by the MATLAB commands:

[a, dph] = dolph(0.5, 60, 21, 25);

[g, ph] = array(0.5, a, 200);

dbz(ph, g);

The function dolph.m was called with the parameters N = 21, R = 20 dB and was steered

towards the angle φ0 = 60o. ⊓⊔

Example 21.9.3: As another example, consider the design of a nine-element broadside Dolph-

Chebyshev array with half-wavelength spacing and sidelobe attenuation level of R = 20

dB. The array factor is shown in Fig. 21.9.2.

The absolute attenuation level is Ra = 10R/20 = 1020/20 = 10, that is, if the peak is

normalized to height Ra = 10, the sidelobes will have height of unity. The scale factor x0

is found to be x0 = 1.0708, and the array weights:

w = [1.0000, 1.0231, 1.3503, 1.5800, 1.6627, 1.5800, 1.3503, 1.0231, 1.0000]

The array zeros are constructed as follows:

i xi ψi zi
1 0.9808 0.8260 0.6778+ 0.7352j

2 0.8315 1.3635 0.2059+ 0.9786j

3 0.5556 2.0506 −0.4616+ 0.8871j

4 0.1951 2.7752 −0.9336+ 0.3583j

5 −0.1951 3.5080 −0.9336− 0.3583j

6 −0.5556 4.2326 −0.4616− 0.8871j

7 −0.8315 4.9197 0.2059− 0.9786j

8 −0.9808 5.4572 0.6778− 0.7352j

The 3-dB width is found from Eq. (21.9.6) to be Δφ3dB = 12.51o. ⊓⊔

In order for the Chebyshev interval [xmin,1] to be mapped onto the sidelobe region

of the array factor, we must require that xmin ≥ −1.

If d < λ/2, then this condition is automatically satisfied because kd < π/2 and

xmin = x0 cos(kd/2)> 0. (In this case, we must also demand that xmin ≤ 1. However,

as we discuss below, when d < λ/2 Dolph’s construction is no longer optimal and is

replaced by the alternative procedure of Riblet.)
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If λ/2 < d < λ, then π < kd < 2π and xmin < 0 and can exceed the left limit

x = −1. This requires that for the given sidelobe level R, the array spacing may not

exceed a maximum value that satisfies xmin = x0 cos(kdmax/2)= −1. This gives:

kdmax = 2 acos

(

− 1

x0

)

⇒ dmax = λ

π
acos

(

− 1

x0

)

(21.9.7)

An alternative way of phrasing the condition xmin ≥ −1 is to say that for the given

value of the array spacing d (such that λ/2 < d < λ), there is a maximum sidelobe

attenuation that may be designed. The corresponding maximum value of x0 will satisfy

xmin = x0,max cos(kd/2)= −1, which gives:

x0,max = − 1

cos(kd/2)
⇒ Ra,max = TN−1(x0,max) (21.9.8)

Example 21.9.4: Consider the case d = 3λ/4, R = 20 dB, N = 9. Then for the given R, the

maximum element spacing that we can have is dmax = 0.8836λ.

Alternatively, for the given spacing d = 3λ/4, the maximum sidelobe attenuation that we

can have is Ra,max = 577, or, Rmax = 55.22 dB.

An array designed with the maximum spacing d = dmax will have the narrowest mainlobe,

because its total length will be the longest possible. For example, the following two calls

to the function dolph will calculate the required 3-dB beamwidths:

[w, dph1] = dolph(0.75, 90, 9, 20); % spacing d = 3/4

[w, dph2] = dolph(0.8836, 90, 9, 20); % spacing d = dmax

We find Δφ1 = 8.34o and Δφ2 = 7.08o. The array weights w are the same in the two cases

and equal to those of Example 21.9.3. The gains are shown in Fig. 21.9.3. ⊓⊔
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Fig. 21.9.3 Chebyshev arrays with N = 9, R = 20 dB, d = 3λ/4 and d = 0.8836λ.

As pointed out by Riblet [1244], Dolph’s procedure is optimal only for element spac-

ings that are greater than half a wavelength, d ≥ λ/2. For d < λ/2, it is possible to

find another set of window coefficients that would result into a narrower main lobe.
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Riblet modified Dolph’s method to obtain an optimal design for both cases, d < λ/2

and d ≥ λ/2, but only for an odd number of array elements, N = 2M + 1.

It follows from Eq. (21.7.4) that if N is odd, the array factorW(ψ) can be expressed

either as a polynomial in the variable cos(ψ/2) or as a polynomial in the variable cosψ.

Dolph’s original definition of Eq. (21.9.2) used a Chebyshev polynomial T2M(x) of

order 2M = N − 1 in the variable x = x0 cos(ψ/2). Riblet used instead a Chebyshev

polynomial TM(y) of orderM in the new variable y = A cosψ+B, where the constants

A,B are to be determined from the desired spacing d and sidelobe attenuation R. The

array factor is defined as:

W(ψ)= TM(y), y = A cosψ+ B (Riblet’s modification) (21.9.9)

The mainlobe peak of height Ra at φ = 90o (or ψ = 0) will correspond to a value y0

such that:

Ra = TM(y0)= cosh
(

M acosh(y0)
)

(21.9.10)

which may be solved for y0:

y0 = cosh

(
acosh(Ra)

M

)

(21.9.11)

We note that y0 is related to x0 of Eq. (21.9.3) by y0 = 2x2
0−1. This follows from the

general property of Chebyshev polynomials that:

y = 2x2 − 1 ⇒ T2M(x)= TM(y) (21.9.12)

Indeed, setting x = cosθ and y = cos(2θ)= 2 cos2 θ − 1 = 2x2 − 1, we have

θ = acos(x) and 2θ = acos(y), and therefore:

T2M(x)= cos
(

(2M)θ)= cos
(

M(2θ)
) = TM(y)

As the azimuthal angle φ varies over 0o ≤ φ ≤ 180o and the wavenumber ψ over

the visible region −kd ≤ ψ ≤ kd, the quantity c = cosψ will vary from c = cos(kd) at

φ = 0o to c = 1 at φ = 90o, and then back to c = cos(kd) at φ = 180o.

If λ/2 ≤ d ≤ λ, then π ≤ kd ≤ 2π and ψ = kd cosφ will pass through the value

ψ = π before it reaches the valueψ = kd. It follows that the quantity c will go through

c = −1 before it reaches c = cos(kd). Thus, in this case the widest range of variation

of c = cosψ is −1 ≤ c ≤ 1.

On the other hand, if d < λ/2, then kd < π and c never reaches the value c = −1.

Its minimum value is c = cos(kd), and the range of c is [cos(kd),1]. To summarize,

the range of variation of c will be the interval [c0,1], where

c0 =
{

−1, if d ≥ λ/2
cos(kd), if d < λ/2

(21.9.13)

Assuming A > 0, it follows that the range of variation of y = A cosψ+B will be the

interval [Ac0 +B, A+B]. The parameters A,B are fixed by requiring that this interval

coincide with the interval [−1, y0] so that the right end will correspond to the mainlobe
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peak, while the left end will ensure that we use the maximum size of the equi-ripple

interval of the Chebyshev variable y. Thus, we require the conditions:

Ac0 + B = −1

A+ B = y0

(21.9.14)

which may be solved for A,B:

A = 1+ y0

1− c0

B = −1+ y0c0

1− c0

(21.9.15)

For d ≥ λ/2, the method coincides with Dolph’s original method. In this case,

c0 = −1, and A,B become:

A = y0 + 1

2
= x2

0

B = y0 − 1

2
= x2

0 − 1

(21.9.16)

where we used y0 = 2x2
0 − 1, as discussed above. It follows that the y variable will be

related to the Dolph variable x = x0 cos(ψ/2) by:

y = x2
0 cosψ+ x2

0 − 1 = x2
0(cosψ+ 1)−1 = 2x2

0 cos2
(ψ

2

)− 1 = 2x2 − 1

and therefore, Eq. (21.9.12) implies that W(ψ)= TM(y)= T2M(x).

Once the parameters A,B are determined, the window w(m) may be constructed

from the zeros of the Chebyshev polynomials. The M zeros of TM(y) are:

yi = cos

(
(i− 1/2)π

M

)

, i = 1,2, . . . ,M

The corresponding wavenumbers are found by inverting yi = A cosψi + B:

ψi = acos

(
yi − B
A

)

, i = 1,2, . . . ,M

The 2M = N − 1 zeros of the z-transform of the array are the conjugate pairs:

{

ejψi e−jψi
}

, i = 1,2, . . . ,M

The symmetrized z-transform will be then:

W(z)= z−MW̃(z)= z−M
M∏

i=1

(

(z− ejψi)(z− e−jψi))

The inverse z-transform of W(z) will be the desired array weights w(m). This

procedure is implemented by the MATLAB function dolph2.m of Appendix I. We note

again that this definition differs from that of Eq. (21.9.9) by the scale factor AM/2.
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The function dolph2 also returns the 3-dB width of the main lobe. The 3-dB fre-

quency ψ3 is computed from the half-power condition:

W(ψ3)= TM(y3)= TM(y0)√
2

= Ra√
2

⇒ y3 = cosh

(

acosh(Ra/
√

2)

M

)

Inverting y3 = A cosψ3 + B, we obtain the 3-dB width in ψ-space:

ψ3 = acos

(
y3 − B
A

)

, Δψ3dB = 2ψ3 (21.9.17)

For the case d ≥ λ/2, the maximum element spacing given by Eq. (21.9.7) can also

be expressed in terms of the variable y0 as follows:

dmax = λ
[

1− 1

2π
acos

(3− y0

1+ y0

)

]

(21.9.18)

This follows from the condition xmin = x0 cos(kdmax/2)= −1. The corresponding

value of y will be y = 2x2
min − 1 = 1. Using Eq. (21.9.16), this condition reads:

y = y0 + 1

2
cos(kdmax)+y0 − 1

2
= 1 ⇒ cos(kdmax)= 3− y0

1+ y0

Because the function acos always returns a value in the range [0,π], and we want a

value kdmax > π, we must invert the cosine as follows:

kdmax = 2π− acos
(3− y0

1+ y0

)

which implies Eq. (21.9.18).

Example 21.9.5: The bottom two graphs of Fig. 21.9.2 show the array factor designed using

Dolph’s and Riblet’s methods for the case N = 9, R = 20 dB, and d = λ/4. The Dolph

weights are the same as those given in Example 21.9.3. The Riblet weights computed by

dolph2 are:

w = [1, −3.4884, 7.8029, −11.7919, 13.6780, −11.7919, 7.8029, −3.4884, 1]

The corresponding array gains in dB are shown in Fig. 21.9.4. The 3-dB widths of the Dolph

and Riblet designs are Δφ3dB = 25.01o and Δφ3dB = 17.64o. ⊓⊔

Next, we discuss steered arrays [1245]. We assume a steering angle 0o < φ0 <

180o. The endfire case φ0 = 0o,180o will be treated separately [1246]. The steered

wavenumber will be:

ψ′ = ψ−ψ0 = kd(cosφ− cosφ0) (21.9.19)

where ψ0 = kd cosφ0. The corresponding array weights and array factor will be:

a(m) = e−jmψ0w(m) , −M ≤m ≤M
A(ψ) =W(ψ−ψ0)=W(ψ′)= TM(y′), y′ = A cosψ′ + B

(21.9.20)
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Fig. 21.9.4 Dolph and Riblet designs of Chebyshev array with N = 9, R = 20 dB, d = λ/4.

where we assumed that N is odd, N = 2M + 1. The visible region becomes now:

kd
(

1− | cosφ0|
) ≤ ψ′ ≤ kd(1+ | cosφ0|

)

In order to avoid grating lobes, the element spacing must be less than the maximum:

d0 = λ

1+ | cosφ0|
(21.9.21)

which satisfies kd0

(

1+ | cosφ0|
) = 2π.

The Chebyshev design method is carried out in the same way, except instead of using

the half-wavelength spacing λ/2 as the dividing line between the Riblet and the Dolph

methods, we must use d0/2. Thus, the variable c = cosψ′ = cos(ψ−ψ0) will vary in

the interval [c0,1], where Eq. (21.9.13) is now replaced by

c0 =
{

−1, if d ≥ d0/2

cos
(

kd(1+ | cosφ0|)
)

, if d < d0/2

Replacing 1+ | cosφ0| = λ/d0, we can rewrite this as follows:

c0 =

⎧

⎪⎨

⎪⎩

−1, if d ≥ d0/2

cos
(2πd

d0

)

, if d < d0/2
(21.9.22)

The solutions for A,B will still be given by Eq. (21.9.15) with this new value for c0.

Note that when d < d0/2 the quantities A,B, and hence the array weights w(m), will

depend on φ0. Therefore, the weights must be redesigned for each new value of φ0,

instead of simply steering the broadside weights [1245].

When d ≥ d0/2, we have c0 = −1 and the weights w(m) become independent of

φ0. In this case, the steered weights are obtained by steering the broadside weights.

Example 21.9.6: Fig. 21.9.5 shows the gain of an array steered towards φ0 = 60o, with N = 9,

R = 20 dB, and element spacing d = λ/4.
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The grating lobe spacing is d0 = λ/(1+ cos(60o))= 2λ/3, and the dividing line between

Dolph and Riblet designs will be d0/2 = λ/3. The second graph shows the gain of a

broadside array, which is steered towards 60o. It demonstrates that the plain steering of

a broadside design will not work for d < d0/2. The array weights were computed by the

MATLAB commands:

a1 = dolph2(1/4, 60, 9, 20); % steered array

w = dolph2(1/4, 90, 9, 20); % broadside array

a2 = steer(1/4, w, 60); % steered broadside array

The 3-dB width was Δφ3dB = 26.66o. It was obtained using Eq. (21.9.17) and the approx-

imation Eq. (21.7.6). The first graph also shows the 3-dB gain circle intersecting the rays

at the 3-dB angles φ0 ± Δφ3dB/2, that is, at 46.67o and 73.33o. We note also that the

broadside weights w were given in Example 21.9.5. ⊓⊔
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Fig. 21.9.5 Nine-element array with d = λ/4 steered towards 60o.

Endfire Dolph-Chebyshev arrays require special treatment. DuHamel has shown how

to modify Riblet’s design for this purpose [1246]. The key idea is not to use a steering

angle φ0 = 0o or φ0 = 180o, but rather to make φ0, and the corresponding steering

phase ψ0 = kd cosφ0, a free design parameter.

The steered wavenumber will still be ψ′ = kd cosφ − kd cosφ0 = kd cosφ −ψ0

and the array factor and array weights will still be given by Eq. (21.9.20).

The three parameters {A,B,ψ0} are determined by the following conditions. For a

forward endfire array (with mainlobe peak towards φ = 0o,) we require that y′ = y0 at

φ = 0, or, at ψ′ = kd−ψ0. Moreover, we require that the two endpoints y′ = −1 and

y′ = 1 of the equi-ripple range of the Chebyshev polynomial are reached at ψ′ = 0 and

at φ = 180o, or, ψ′ = −kd−ψ0. These three conditions can be stated as follows:

A cos(kd−ψ0)+B = y0

A+ B = −1

A cos(kd+ψ0)+B = 1

(21.9.23)
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For a backward endfire array (with mainlobe towards φ = 180o,) we must replace

ψ0 by −ψ0. The solution of Eqs. (21.9.23) is:

A = −y0 + 3+ 2 cos(kd)
√

2(y0 + 1)

2 sin2(kd)

B = −1−A

ψ0 = ± asin

(
y0 − 1

2A sin(kd)

)

(21.9.24)

where in the solution forψ0, the plus (minus) sign is chosen for the forward (backward)

endfire array. Bidirectional endfire arrays can also be designed. In that case, we set

ψ0 = 0 and only require the first two conditions in (21.9.23), which become

A cos(kd)+B = y0

A+ B = −1
(21.9.25)

with solution:

A = − y0 + 1

1− cos(kd)

B = y0 + cos(kd)

1− cos(kd)

(21.9.26)

In all three of the above endfire designs, we must assume d ≤ λ/2 in order to avoid

grating lobes. The MATLAB function dolph3.m of Appendix I implements all three cases.

Example 21.9.7: Fig. 21.9.6 shows three endfire designs for a nine-element array with quarter-

wavelength spacing d = λ/4, and sidelobe level of R = 20 dB. The array weights and 3-dB

widths were computed as follows:

[a1, dph1] = dolph3(1, 1/4, 9, 20); % forward endfire

[a2, dph2] = dolph3(-1, 1/4, 9, 20); % backward endfire

[a3, dph3] = dolph3(2, 1/4, 9, 20); % bidirectional endfire

The first argument of dolph3 takes on one of the three values {1,−1,2}, for forward,

backward, and bidirectional designs. In the forward and backward cases, the array weights

are already scanned by the effective scanning phase ±ψ0. The calculated array weights

are in the three cases:

weights forward backward bidirectional

a0 18.3655 18.3655 20.4676

a1 = a∗−1 −15.8051− 1.0822j −15.8051+ 1.0822j −17.5583

a2 = a∗−2 9.8866+ 1.3603j 9.8866− 1.3603j 10.8723

a3 = a∗−3 −4.1837− 0.8703j −4.1837+ 0.8703j −4.5116

a4 = a∗−4 0.9628+ 0.2701j 0.9628− 0.2701j 1.0000

Because the backward case is obtained by the replacement ψ0 → −ψ0, its weights will be

the conjugates of those of the forward case.

The 3-dB widths are in the three cases: Δφ3dB = 22.85o,22.85o,22.09o. The graphs also

show the 3-dB gain circles intersecting the gains at the 3-dB angles. ⊓⊔
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Fig. 21.9.6 Forward, backward, and bidirectional endfire designs.

21.10 Taylor One-Parameter Source

In Sec. 21.4, we used the Kaiser window to design a sector array pattern. That de-

sign problem was equivalent to designing an FIR lowpass digital filter using the window

method. Here, we use the Kaiser window to design a narrow beam array—a problem

equivalent to the spectral analysis of windowed sinusoids [48,49,1265].

The broadside array weights are equal to the window coefficients a(m)= w(m),

defined up to an overall normalization constant by:

w(m)= I0
(

α
√

1−m2/M2

)

(21.10.1)

wherem = ±1,±2, . . . ,±M, orm = 0,±1,±2, . . . ,±M, for even or odd number of array

elements, N = 2M or N = 2M + 1.

This window is based on Taylor’s one-parameter continuous line source [1260], and

is obtained by setting xm =md with d = l/(2M) in Eq. (21.6.20), so that 2xm/l =m/M,

I(xm)= I0
(

πB
√

1− (2xm/l)2

)

= I0
(

πB
√

1− (m/M)2

)

Thus, we note that the Kaiser window shape parameter α is related to Taylor’s pa-

rameter B by α = πB. The parameter B or α control the sidelobe level. The continuous

line pattern of (21.6.20),

F(u)=
sinh

(

π
√
B2 − u2

)

π
√
B2 − u2

=
sin

(

π
√
u2 − B2

)

π
√
u2 − B2

(21.10.2)

has a first null at u0 =
√
B2 + 1, and therefore, the first sidelobe will occur for u > u0.

For this range, we must use the sinc-form of F(u) and to find the maximum sidelobe

level, we must find the maximum of the sinc function (for argument other than zero).

This can be determined, for example, by the MATLAB command:†

x0=fminbnd(’sinc(x)’, 1,2, optimset(’TolX’,eps)); r0 = abs(sinc(x0));

†MATLAB’s sinc function is defined as sinc(x)= sinπx/πx.
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which yields the values:

x0 = 1.4302966532

r0 =
∣
∣sinc(x0)

∣
∣ = 0.2172336282

R0 = −20 log10(r0)= 13.2614588840 dB

(21.10.3)

The sidelobe levelRa (in absolute units) is defined as the ratio of the pattern at u = 0

to the maximum sidelobe level r0, that is,

Ra = 1

r0

sinh(πB)

πB
(21.10.4)

and in dB, R = 20 log10(Ra),

R = R0 + 20 log10

(
sinh(πB)

πB

)

(21.10.5)

To avoid having to solve (21.10.4) for B for a given Ra, Kaiser and Schafer [1265]

have developed an empirical formula in terms of the sidelobe level R in dB, which is

valid across the range 13 < R < 120 dB:

πB =

⎧

⎪⎪⎨

⎪⎪⎩

0, R ≤ 13.26

0.76609(R− 13.26)0.4+0.09834(R− 13.26), 13.26<R≤ 60

0.12438(R+ 6.3), 60<R< 120

(21.10.6)

For R ≤ 13.26, w(m) becomes the rectangular window. The broadening factor b,

and the 3-dB width in ψ-space can also be expressed in terms of the dB sidelobe level

R by the following empirical formula valid for 20 < R < 100 dB:

b = 0.01330R+ 0.9761 , Δψ3dB = 0.886
2πb

N
(21.10.7)

The 3-dB width in angle space, Δφ3dB, is then calculated from Eq. (21.7.6). The 3-dB

beam width may be more accurately calculated by finding it in u-space, say Δu, and

then transforming it to ψ-space using Eq. (21.6.15), Δψ3dB = 2πΔu/N. The width Δu

is given by Δu = 2u3, where u3 is the solution of the half-power condition:

∣
∣F(u3)

∣
∣2 = 1

2

∣
∣F(0)

∣
∣2 ⇒

sinh

(

π
√

B2 − u2
3

)

π
√

B2 − u2
3

= 1√
2

sinh(πB)

πB
(21.10.8)

For small values of B, the right-hand side becomes less than one, and we must switch

the left-hand side to its sinc form. This happens when B ≤ Bc, where

1√
2

sinh(πBc)

πBc
= 1 ⇒ Bc = 0.4747380492 (21.10.9)

which, through (21.10.5), corresponds to a sidelobe attenuation ofRc = 16.27 dB. Rather

than using the above empirical formulas, Eqs. (21.10.4) and (21.10.8) may be solved

numerically in MATLAB. The function taylorbw implements the solution, returning the

values of B and Δu, for any vector of sidelobe attenuations R:
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[B,Du] = taylorbw(R); % Taylor parameter B and beamwidth Δu

It is built on the functions sinhc and asinhc for computing the hyperbolic sinc

function and its inverse:

y = sinhc(x); % hyperbolic sinc function, sinhc(x) = sinh(π x)/π x

x = asinhc(y); % inverse function, finds the x that satisfies sinhc(x) = y

For small x, the equation y = sinh(x)/x is solved for x by using the Taylor series

expansion y = sinh(x)x ≃ 1 + x2/6 + x4/120; for larger x, it is solved by the iteration

sinh(xn)/xn−1 = y, or, xn = asinh(yxn−1), for n = 1,2, . . . .

Once the B-parameter is determined, the array weightsw(m) can be computed from

(21.10.1) using the built-in function besseli, and then steered towards an angle φ0

using Eq. (21.7.1). In this case, to avoid grating lobes, the element spacing must be less

than the maximum:

d0 = λ

1+ | cosφ0|
(21.10.10)

As discussed in Sec. 21.9, in order for the visible region is ψ-space to cover at least

one Nyquist period, the element spacing d must be in the range:

d0

2
≤ d < d0 (21.10.11)

The MATLAB function taylor1p of Appendix I implements this design procedure

and invokes the function taylorbw. The outputs of the function are the steered array

weights and the 3-dB width. It has usage:

[a, dph] = taylor1p(d, ph0, N, R); % Taylor 1-parameter line source

Example 21.10.1: Fig. 21.10.1 depicts the gain of a 14- and a 15-element Taylor-Kaiser array

with half-wavelength spacing d = λ/2, steered towards φ0 = 60o. The sidelobe level was

R = 20 dB. The array weights were obtained by:

[a1, dph1] = taylor1p(0.5, 60, 14, 20);

[a2, dph2] = taylor1p(0.5, 60, 15, 20);

The graphs in Fig. 21.10.1 can be produced by the following commands:

[g1,ph1] = gain1d(0.5, a1, 720); % compute normalized gain at 720 angles

dbz(ph1,g1); % make azimuthal plot of the gain

addcirc(3); % add 3-dB circle

addray(60-dph1/2); addray(60+dph1/2); % add rays at 3-dB angles

The array weights are already steered towards 60o. The designed unsteered weights were

in the two cases:

w1 = [1.0000, 1.3903, 1.7762, 2.1339, 2.4401, 2.6749, 2.8224,

2.8224, 2.6749, 2.4401, 2.1339, 1.7762, 1.3903, 1.0000]

w2 = [1.0000, 1.3903, 1.7762, 2.1339, 2.4401, 2.6749, 2.8224, 2.8728

2.8224, 2.6749, 2.4401, 2.1339, 1.7762, 1.3903, 1.0000]
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The corresponding 3-dB widths were Δφ3dB = 9.68o and Δφ3dB = 9.03o, with the second

being slightly narrower because the array is slightly longer. The graphs show how the rays

at the two 3-dB angles intersect the 3-dB gain circles. The maximum and minimum array

spacings are from (21.10.10): d0 = 2λ/3 and d0/2 = λ/3. ⊓⊔
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Fig. 21.10.1 Taylor-Kaiser arrays with N = 14 and N = 15, and d = λ/2.

Example 21.10.2: Fig. 21.10.2 depicts the gain of a 31-element endfire array with spacing d =
λ/4 and sidelobe level R = 20 dB, steered towards the forward direction,φ0 = 0o, and the

backward one, φ0 = 180o.

The maximum and minimum array spacings, calculated from Eq. (21.10.10) for φ0 = 0o

and φ0 = 180o, are d0 = λ/2 and d0/2 = λ/4. We have chosen d = d0/2 = λ/4.

The 3-dB widths are in both cases Δφ3dB = 43.12o. The graphs also show the 3-dB circle

intersecting the 3-dB angle rays. ⊓⊔
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Fig. 21.10.2 Taylor-Kaiser endfire arrays with N = 31 and d = λ/4.

The design method of the section was based on sampling the current distribution

directly, as in Eq. (21.10.1), rather than using the procedure of mapping the pattern
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zeros as outlined in Eqs. (21.6.15)–(21.6.17). A variation of the design method array that

uses the latter procedure is discussed in Problem 21.1.

21.11 Prolate Array

Kaiser has noted [1264,1265] that the Kaiser window function (21.10.1) is an excellent

approximation to the 0th order discrete prolate spheroidal sequence that maximizes the

energy concentration in a given frequency interval [1267–1276].

Using the prolate sequence as a window for array design provides a slight improve-

ment over the Taylor-Kaiser case in the sense of having a slightly narrower beamwidth

while meeting the sidelobe specification more precisely. The prolate array can be de-

signed very quickly using the inverse power iteration.

Given an N-dimensional array a = [a0, a1, . . . , aN−1]
T with array pattern A(ψ),

the discrete prolate spheroidal performance index which measures the concentration of

energy within the wavenumber interval [−ψc,ψc] is defined by:

J =
1

2π

∫ ψc

−ψc
|A(ψ)|2 dψ

1

2π

∫ π

−π
|A(ψ)|2 dψ

(21.11.1)

The integration range in the denominator may be changed to be the visible region

[−kd, kd] if so desired [1269], but the design technique remains essentially the same.

Inserting the array pattern,

A(ψ)=
N−1∑

n=0

an e
jψn (21.11.2)

into (21.11.1), we may express the performance index J as a Rayleigh quotient involving

the so-called prolate matrix [1268,1276]:

J = a†Aa

a†a
(21.11.3)

where the dagger denotes the Hermitian conjugate and the prolate matrix is defined by

its matrix elements:

Anm = sin
(

ψc(n−m)
)

π(n−m) = sin
(

2πW(n−m))

π(n−m) , n,m = 0,1, . . . ,N − 1 (21.11.4)

where we set ψc = 2πW for later convenience. This matrix is the convolution matrix

arising from the impulse response of the ideal lowpass filter with cutoff ψc.

The problem of maximum energy concentration is to find that finite sequence a that

maximizes the performance indexJ. This problem has been studied extensively both for

discrete and continuous time sequences, see [1270] for a nice review. The maximization

of the Rayleigh quotient is realized by the maximum eigenvector of the prolate matrix

A, that is, the eigenvector belonging to the maximum eigenvalue, say, λ0:

Aa = λ0 a (21.11.5)
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The prolate matrix is notoriously ill-conditioned having approximately 2NW eigen-

values that are very near one, and the remaining eigenvalues decreasing rapidly to zero.

The following table lists the eigenvalues in decreasing order for the case N = 21 and

W = 0.2, so that 2NW = 8.4, its condition number being, cond(A)= 5.1063×1016:

i λi

0 0.99999999998517786000

1 0.99999999795514627000

2 0.99999987170540139000

3 0.99999517388508363000

4 0.99987947149714795000

5 0.99792457099956200000

6 0.97588122145542644000

7 0.83446090480119717000

8 0.45591142240913063000

9 0.11887181858959120000

10 0.01567636516215985600

i λi

11 0.00131552671490021500

12 0.00007986915605618046

13 0.00000365494381482577

14 0.00000012731149204486

15 0.00000000336154097643

16 0.00000000006621668668

17 0.00000000000094327944

18 0.00000000000000920186

19 0.00000000000000004034

20 0.00000000000000001958

These were generated by the following MATLAB code:

N = 21; W = 0.2;

n = 0:N-1; f = 2*W*sinc(2*W*n);

A = toeplitz(f,f);

lambda = svd(A);

The eigenvectors of the prolate matrix are referred to as the discrete prolate spheroidal

sequences (DPSS), and the first 2NW of them are relevant in multitaper methods of spec-

tral analysis [1275] .

For the array problem, we are interested only in the maximum eigenvector. A simple

way to compute it is by the power iteration, that is, an = Aan−1 = Ana0. However,

because the corresponding eigenvalue λ0 and the next highest one are so close to unity,

the iteration will be very slow converging.

A more efficient approach is to apply the inverse power iteration on the matrix

Q = I − A, that is, an+1 = Q−1an = Q−na0. This iteration converges to the minimum

eigenvector of Q, which is the same as the maximum eigenvector of A. The minimum

eigenvalue of Q is 1 − λ0, which is very small and its inverse (1 − λ0)
−1 very large,

causing the iteration to converge very fast.

For the array problem one needs to know the relationship of the bandwidth parame-

ter W to the desired sidelobe level R and the array length N. Because the Taylor-Kaiser

window is a good approximation to the maximum eigenvector, one expects to have a

relationship among the parameters W,B,N,R. As pointed out by Kaiser and Walden

[1264,1272], this relationship is approximately W = B/N.

We have improved this relationship slightly by using the results of [1276] to arrive

at the following empirical formula, which works well over the range 14 ≤ R ≤ 120 dB:

W = 0.95B+ 0.14

N
(21.11.6)

This leads to the following design procedure. Given N and R, we calculate B using

the function taylorbw, described in Sec. 21.10, then calculate W from (21.11.6), and
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construct the prolate matrix A, and Q = I −A, then, apply the inverse power iteration

initialized with the unit vector a0 = [1,0,0, . . . ,0]T:

a = [1,0,0, . . . ,0]T
for n = 1,2, . . . ,Niter,

a = Q−1a

The algorithm is insensitive to the choice of the initial vector a0 and converges ex-

tremely fast, requiring about 1–3 iterations (we use 3 by default).

We determine the 3-dB width by simply equating it to that of the Taylor array, that

is, Δψ = 2πΔu/N, whereΔu is also obtained from the function taylorbw. Even so, the

prolate array’s mainlobe, as a whole, is slightly narrower than that of the Taylor array.

The MATLAB function prol implements the above procedure:

[a, dph] = prol(d,ph0,N,R); % prolate array

The function prolmat constructs the prolate matrix for given N,W:

A = prolmat(N,W); % prolate matrix

Fig. 21.11.1 shows a design example with N = 21 and R = 30. The left graph

plots the array patterns |A(ψ)| for the prolate and Taylor designs at broadside. The

right graph shows the same prolate array steered towards 60o. The 3-dB width is also

indicated on the figure. We note that the Taylor array has a slightly wider mainlobe and

slightly lower sidelobes, whereas the prolate design meets the sidelobe specification

exactly. The graphs were computed by the following MATLAB code:

d = 0.5; N = 21; R = 30; ph0 = 90;

[at,Dt] = taylor1p(d,ph0,N,R); % Taylor design

[ap,Dp] = prol(d,ph0,N,R); % Prolate design

f = linspace(-1,1,1001); psi = pi*f; % normalized wavenumber ψ

At = 20*log10(abs(dtft(at,-psi))); At = At-max(At); % compute pattern

Ap = 20*log10(abs(dtft(ap,-psi))); Ap = Ap-max(Ap);

figure; plot(f,Ap, ’-’, f,At,’--’);

ap = steer(d,ap,60); % redesign steered towards 60o

[gp,phi] = gain1d(d,ap,720); % normalized gain

figure; dbz(phi,gp);

Fig. 21.11.2 compares the corresponding array weights of the prolate and Taylor

designs for the cases N = 21 and N = 41, and R = 30 dB.

21.12 Taylor Line Source

Taylor’s ideal line source pattern [1261], given in Eq. (21.6.21), has a mainlobe when

|u| ≤ A and equiripple sidelobes when |u| ≥ A. The equiripple behavior arises from

the fact that the pattern switches to its cosine form when |u| ≥ A, as shown below:
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F(u)=

⎧

⎪⎨

⎪⎩

cosh
(

π
√
A2 − u2

)

, if |u| ≤ A

cos
(

π
√
u2 −A2

)

, if |u| ≥ A
(21.12.1)

The sidelobe level (in absolute units) is the ratio of the mainlobe peak height |F(0)| =
cosh(πA) to the sidelobe height, which is unity:

Ra = cosh(πA) ⇒ A = 1

π
acosh(Ra) (21.12.2)

The pattern F(u)may be thought of as a limiting form of the Chebyshev array when

the number N of array elements becomes large [1249]. To see this, we consider the

Chebyshev polynomial TN(x)= cosh(Nξ), where x = coshξ. In the limit of large N
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and small ξ, with the product Nξ kept constant, we can use the approximation

x = coshξ ≃ 1+ 1

2
ξ2 ⇒ ξ ≃

√
2x− 2 ⇒ TN(x)≃ cosh

(

N
√

2x− 2
)

(21.12.3)

For an N-element array, the Chebyshev pattern is defined by Eqs. (21.9.2) and (21.9.3):

A(ψ)= TN−1

(

x0 cos
ψ

2

)

, Ra = TN−1(x0) (21.12.4)

Recalling thatψ = 2πu/N, it follows thatψ will be small in the limit of largeN and

fixed u, thus, we may apply the approximation cos(ψ/2)≃ 1 −ψ2/8. Then, using the

Chebyshev approximation (21.12.3), we have:

A(ψ) ≃ cosh

(

(N − 1)

√

2x0 cos
ψ

2
− 2

)

= cosh

⎛

⎝(N − 1)

√
√
√
√2x0

(

1− ψ
2

8

)

− 2

⎞

⎠

= cosh

⎛

⎝

√

(N − 1)2(2x0 − 2)−
(
(N − 1)ψ

2

)2
⎞

⎠

We also have Ra = TN−1(x0)≃ cosh
(

(N − 1)
√

2x0 − 2
)

. Comparing with (21.12.2),

we may identify πA = (N − 1)
√

2x0 − 2. We also note that in the large-N limit:

(N − 1)ψ

2
= (N − 1)2πu

2N
≃ πu

It follows that the limiting form of A(ψ) is precisely the pattern (21.12.1).

Taylor introduced a modification of the ideal pattern so the first few sidelobes, say

the first n̄, are essentially equiripple at the given sidelobe level R, while the remaining

ones follow the sinπu/πu attenuation rate of the uniform array. The method essentially

preserves the mainlobe width and sidelobe level of the Chebyshev array, while allowing

the far sidelobes to decay faster.

The zeros of the sinπu/πu pattern occur at the integers un = ±n, n = 1,2, . . . ,

whereas the zeros of the ideal pattern (21.12.1) occur at the locations:

√

u2
n −A2 = (n− 0.5) ⇒ un = ±

√

A2 + (n− 0.5)2 , n = 1,2, . . . (21.12.5)

Taylor defined a new pattern such that its zeros are:

un =
⎧

⎨

⎩

±σ
√

A2 + (n− 0.5)2 , for n = 1,2, . . . , n̄− 1

±n , for n ≥ n̄ (21.12.6)

The scale parameter σ is selected to allow a smooth transition between the two sets

of zeros, that is, requiring the matching condition:

σ
√

A2 + (n̄− 0.5)2 = n̄ ⇒ σ = n̄
√

A2 + (n̄− 0.5)2
(21.12.7)

The 3-dB width of the ideal pattern is obtained from the condition:

cosh

(

π
√

A2 − u2
3

)

= 1√
2

cosh(πA) ⇒ Δu = 2u3 (21.12.8)
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The 3-dB width of the modified pattern is σ times larger:

Δu = 2u3σ = 2σ

√

A2 − 1

π2
acosh2

(
1√
2

cosh(πA)

)

(21.12.9)

As discussed by Taylor [1261], the minimum acceptable value for n̄ should be such

that ∂σ/∂n̄ < 0. This gives the constraint:

n̄ ≥ 2A2 + 1 (21.12.10)

Eqs. (21.12.6)–(21.12.10) define completely the properties of the modified pattern.

An N-element array approximating Taylor’s modified pattern can be designed by the

procedure outlined in Eqs. (21.6.16) and (21.6.17), that is, selecting the firstN−1 zeros

of the continuous pattern as the zeros of the discrete pattern.

In particular, given the parametersN,R, n̄, we calculateA from (21.12.2) andσ from

(21.12.7), and define the N − 1 conjugate zeros:

un =

⎧

⎪⎪⎨

⎪⎪⎩

σ
√

A2 + (n− 0.5)2 , for 1 ≤ n ≤ n̄− 1

n , for n̄ ≤ n ≤ N − n̄
−σ

√

A2 + (N − n− 0.5)2 , for N − n̄+ 1 ≤ n ≤ N − 1

(21.12.11)

Then, we define the array’s zeros in ψ-space and z-domain:

ψn = 2πun
N

, zn = ejψn , n = 1,2, . . . ,N − 1 (21.12.12)

and convolve them to get the array pattern polynomial:

A(z)=
N−1∏

n=1

(z− zn) (21.12.13)

The first and last n̄ − 1 zeros are conjugate pairs by construction; the middle ones

come in conjugate pairs because for each n in the range n̄ ≤ n ≤ N−n̄, the integerN−n
is also in the same range and has a conjugated zero: zN−n = ej2π(N−n)/N = e−j2πn/N =
z∗n . An exception is in the case when N is even, for which n = N/2 corresponds to a

real zero.

The 3-dB width of the array is calculated from Δψ = 2πΔu/N. This design method

is implemented by the MATLAB function taylornb with usage:

[a,dph] = taylornb(d,ph0,N,R,nbar); % Taylor’s n-bar line source array design

Fig. 21.12.1 shows two design examples. The left graph has N = 21, R = 30 dB, and

n̄ = 5, while the right graph hasN = 41, R = 40 dB, and n̄ = 10. The required minimum

values for n̄, calculated from (21.12.10), were n̄ = 4.48 and n̄ = 6.69, respectively.

In order for the middle range of ns in (21.12.11) to be nontrivial, we must necessarily

have n̄ ≤ N/2, which combined with the restriction (21.12.10) implies a minimum value

for the array length:

N ≥ 4A2 + 2 (21.12.14)
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Fig. 21.12.1 Taylor n̄ line source array design.

The following table lists some representative values of the minimum N:

R dB n̄ N

15 2 4

20 2 5

25 3 7

30 4 8

35 5 11

40 6 13

45 7 15

R dB n̄ N

50 9 18

55 11 22

60 12 25

65 14 29

70 16 33

75 18 37

80 20 41

21.13 Villeneuve Arrays

Taylor’s n̄ pattern was based on the ideal continuous line source distribution (21.12.1),

which was the limit of a Dolph-Chebyshev array. The design of an N-element array was

accomplished by the usual method of mappingN−1 continuous-case zeros to theN−1

zeros of the array.

Villeneuve [1277] introduced an alternative design method whose starting point was

a trueN-element Chebyshev array, instead of the ideal limiting form. The modified array

was designed by choosing its first (and last) n̄− 1 zeros to coincide with the (stretched)

zeros of the Chebyshev array, and the remaining zeros to coincide with zeros of an

N-element uniform array.

We recall from Sec. 21.9 that the N−1 zeros of and N-element Chebyshev array are

constructed by:

xn = cos

(
(2n− 1)π

2(N − 1)

)

, ψn = 2 acos

(
xn
x0

)

, zn = ejψn (21.13.1)

for n = 1,2, . . . ,N − 1, where x0 is determined by TN(x0)= Ra, and Ra is the sidelobe

level in absolute units. Villeneuve modified the above zeros as follows:
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ψn =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+σ 2 acos

(
xn
x0

)

, for 1 ≤ n ≤ n̄− 1

2πn

N
, for n̄ ≤ n ≤ N − n̄

−σ 2 acos

(
xN−n
x0

)

, for N − n̄+ 1 ≤ n ≤ N − 1

(21.13.2)

where xn are given as in (21.13.1). By construction, we have ψN−n = −ψn, for 1 ≤ n ≤
n̄− 1, which implies that the first and last n̄ zeros are conjugate pairs.

The scale factor σ is fixed by requiring a smooth transition between the two sets of

zeros at n = n̄, that is,

σ 2 acos

(
xn̄
x0

)

= 2πn̄

N
, where xn̄ = cos

(
(2n̄− 1)π

2(N − 1)

)

(21.13.3)

With zn = ejψn , the array polynomial is then formed by

A(z)=
N−1∏

n=1

(z− zn)

The 3-dB width of the new design is taken to be σ times greater than that of the

Dolph-Chebyshev case. The MATLAB function ville implements this method:

[a,dph] = ville(d,ph0,N,R,nbar); % Villeneuve array design

The method applied to the two examples of Fig. 21.12.1 produces virtually identical

graphs, and we do not repeat them here.

21.14 Multibeam Arrays

An array can form multiple narrow beams towards different directions. For example,

suppose it is desired to form three beams towards the steering angles φ1, φ2, and φ3.

The weights for such a multibeam array can be obtained by superimposing the weights

of a single broadside array, say w(m), steered towards the three angles. Defining the

corresponding scanning phases ψi = kd cosφi, i = 1,2,3, we have:

a(m)= A1e
−jmψ1w(m)+A2e

−jmψ2w(m)+A3e
−jmψ3w(m)

where m = 0,±1,±2, . . . ,±M and we assumed an odd number of array elements N =
2M + 1. The complex amplitudes A1, A2, A3 represent the relative importance of the

three beams. The corresponding array factor becomes:

A(ψ)= A1W(ψ−ψ1)+A2W(ψ−ψ2)+A3W(ψ−ψ3)

and will exhibit narrow peaks towards the three steering angles. More generally, we

can form L beams towards the angles φi, i = 1,2, . . . , L by superimposing the steered

beams:

a(m)=
L∑

i=1

Aie
−jmψiw(m) , m = 0,±1,±2, . . . ,±M (21.14.1)
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where ψi = kd cosφi, i = 1,2, . . . , L. For an even number of array elements, N = 2M,

we replace Eq. (21.14.1) with:

a(±m)=
L∑

i=1

Aie
∓j(m−1/2)ψiw(±m) , m = 1,2, . . . ,M (21.14.2)

For either even or odd N, the corresponding array factor will be the superposition:

A(ψ)=
L∑

i=1

AiW(ψ−ψi) (multi-beam array factor) (21.14.3)

The basic broadside array weights w(m) can be designed to achieve a desired side-

lobe level or beam width. As the broadside beam w(m) is steered away from 90o, the

beamwidths will broaden. To avoid grating lobes, the element spacing d must be less

the quantity d0 (and greater than d0/2):

d0 = min
i
di, where di = λ

1+ | cosφi|
, i = 1,2, . . . , L

This minimum is realized at the beam angle closest to endfire. If the steering angles

are closer to each other than about one 3-dB beamwidth, the mainlobes will begin to

merge with each other reducing the resolvability of the individual beams. This behavior

is analogous to the problem of frequency resolution of multiple sinusoids.

The MATLAB function multbeam.m of Appendix I implements Eqs. (21.14.1) and

(21.14.2). Its inputs are the vector of broadside array weights w—which can be de-

signed beforehand using for example dolph2 or taylor1p—and the beam angles and

amplitudes φi, Ai.

Example 21.14.1: Fig. 21.14.1 shows the gains of two 21-element three-beam arrays with half-

wavelength spacing, and steered towards the three angles of 45o, 90o, and 120o. The

broadside array was designed as a Taylor-Kaiser array with sidelobe level of R = 20 and

R = 30 dB.

The relative amplitudes of the three beams were equal to unity. The MATLAB code used

to generate the right figure was:

w = taylor1p(0.5, 90, 21, 30); % unsteered weights

a = multbeam(0.5, w, [1,1,1], [45, 90, 120]); % equal-amplitude beams

[g, ph] = array(d, a, 400); % compute gain

dbz(ph, g); % plot gain in dB

addray(45); addray(-45); % add ± 45o grid rays

We note the broadening of the beam widths of the larger beam angles. The left array

has narrower mainlobes than the right one because its sidelobe attenuation is less. But, it

also exhibits more constructive interference between mainlobes causing somewhat smaller

sidelobe attenuations than the desired one of 20 dB. ⊓⊔

Equations (21.14.1) and (21.14.2) generalize the Woodward-Lawson frequency sam-

pling design equations (21.5.6) and (21.5.7) in the sense that the steering phasesψi can

be arbitrary and do not have to be the DFT frequencies.
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Fig. 21.14.1 Multi-beam arrays with R = 20 and R = 30 dB sidelobes.

However, if the ψi are chosen to be the DFT frequencies given by Eq. (21.5.1) or

(21.5.5), and the broadside array is chosen to be a length-N uniform array, w(m)= 1,

then the inverse DFT expressions (21.5.6) and (21.5.7) can be thought of as defining

N beams—called the Woodward-Lawson-Butler beams—steered towards the DFT angles

φi = acos(ψi/kd), that is, towards

φi = acos

(
ψi
kd

)

= acos

(
2πi

Nkd

)

= acos

(
λi

Nd

)

, i = 0,1, . . . ,N − 1 (21.14.4)

The array weights will be given then by the inverse DFT:

a(m)= 1

N

N−1∑

i=0

A(ψi)e
−jmψi (21.14.5)

and the corresponding array factor by:

A(ψ)= 1

N

N−1∑

i=0

A(ψi)W(ψ−ψi) (21.14.6)

where W(ψ)= sin(Nψ/2)/ sin(ψ/2) is the array factor of the uniform window. The

DFT values are identified as the relative beam weights Ai = A(ψi)/N.

A single Butler beam, say the jth beam, can be turned on by choosing Ai = δij. By

successively turning on the Butler beams one by one, the array will act as a scanning

array. Fig. 21.14.2 depicts such a multi-beam array structure. The inverse DFT box

implements Eq. (21.14.5). The inputs are the “beams”Ai and the outputs are the weights

a(m).

Somewhat before the advent of the FFT algorithm, Butler proposed a hardware re-

alization of the inverse DFT network, which was quickly recognized to be equivalent to

the FFT algorithm [1278,1279,1281–1284]. The DFT matrix realization of this network

is called the Blass matrix in the antenna array context [18,10].

Example 21.14.2: Fig. 21.14.3 shows the individual Butler beams turned on successively for

an eight-element array. Both the standard and alternative DFT frequency sets are shown.
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Fig. 21.14.2 Woodward-Lawson-Butler beam matrix network for N = 8.

There are eight beams in each graph. For the standard DFT set, the two endfire beams

count as one, that is, the i = 0 beam.

The sidelobes are at the 13-dB level because these are scanned versions of the uniform

array. The mainlobes intersect exactly half-way between the DFT frequencies ψi, that is,

the ith beam intersects the neighboring ones at ψ = ψi +π/N = 2π(i + 0.5)/N. These

intersection points are approximately 4 dB down (3.92 dB to be exact) from the main peaks.

The 4-dB gain circle intersects the gain curves at these points. ⊓⊔
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Fig. 21.14.3 Woodward-Lawson-Butler beams for N = 8.

21.15 Problems

21.1 Computer Experiment—Taylor’s one-parameter/n̄ array design. Taylor’s n̄ distribution of

Sec. 21.12 can also be applied to Taylor’s one-parameter continuous distribution of Sec. 21.10.

First, show that the zeros of Eq. (21.10.2) occur at

un =
√

B2 + n2 , n = 1,2, . . .
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Then, choose n̄ such that n̄ ≤ N/2 and define an N-element array by its N − 1 zeros:

un =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

σ
√

B2 + n2 , for 1 ≤ n ≤ n̄− 1

n , for n̄ ≤ n ≤ N − n̄
−σ

√

B2 + (N − n)2 , for N − n̄+ 1 ≤ n ≤ N − 1

(21.15.1)

Fix the parameter σ such that σ
√
B2 + n̄2 = n̄. Then, define the array polynomial:

A(z)=
N−1∏

n=1

(z− zn) , ψn = 2πun
N

, zn = ejψn , n = 1,2, . . . ,N − 1 (21.15.2)

Write a MATLAB function that implements this procedure, and takes as input the parameters

N,R, n̄ and outputs the array weights and 3-dB width.

Apply your function to the following example N = 21, R = 30 dB, n̄ = 5, with half-

wavelength spacing d = λ/2. You will notice that, like the prolate array, the mainlobe is

slightly narrower and the sidelobe level slightly better matched than the Taylor-Kaiser array.

On the same graph, plot the array patterns |A(ψ)| in dB for the present design, the Taylor

Kaiser and the prolate arrays designed with the same specifications. Vary n̄ to understand

its effect on the design.

21.2 Computer Experiment—Villeneuve array design. Redesign the examples shown in Fig. 21.12.1

using Villeneuve’s array design method and plot the array responses together with those of

that figure. Vary the parametersN,R, n̄ and compare the range of similarity of the Villeneuve

versus the Taylor n̄ method.
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Currents on Linear Antennas

22.1 Hallén and Pocklington Integral Equations

In Sec. 15.4, we determined the electromagnetic fields generated by a given current

distribution on a thin linear antenna, but did not discuss the mechanism by which the

current distribution is set up and maintained. In Chap. 17, we assumed that the currents

were sinusoidal, but this was only an approximation. Here, we discuss the integral

equations that determine the exact form of the currents.

An antenna, whether transmitting or receiving, is always driven by an external source

field. In transmitting mode, the antenna is driven by a generator voltage applied to its

input terminals, and in receiving mode, by an incident electric field (typically, a uniform

plane wave if it is arriving from far distances.) In either case, we will refer to this external

source field as the “incident” field Ein.

The incident field Ein induces a current on the antenna. In turn, the current generates

its own field E, which is radiated away. The total electric field is the sum Etot = E +
Ein. Assuming a perfectly conducting antenna, the boundary conditions are that the

tangential components of the total electric field vanish on the antenna surface. These

boundary conditions are enough to determine the current distribution induced on the

antenna.

Fig. 22.1.1 depicts a z-directed thin cylindrical antenna of length l and radius a, with

a current distribution I(z) along its length. We will concentrate only on the z-component

Ez of the electric field generated by the current and use cylindrical coordinates.

For a perfectly conducting antenna, the current is essentially a surface current at

radial distance ρ = a with surface density Js(z)= ẑ I(z)/2πa, where in the “thin-

wire approximation,” we may assume that the density is azimuthally symmetric with no

dependence on the azimuthal angle φ. The corresponding volume current density will

be as in Eq. (15.4.2):

J(r)= Js(z)δ(ρ− a)= ẑ I(z)δ(ρ− a) 1

2πa
≡ ẑJz(r)
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Fig. 22.1.1 Thin-wire model of cylindrical antenna.

Following the procedure of Sec. 15.4, we obtain the z-component of the vector potential:

Az(z, ρ,φ) = μ

4π

∫

V′

Jz(r
′)e−jkR

R
d3r′ = μ

4π

∫

V′

I(z′)δ(ρ′ − a)e−jkR
2πaR

ρ′dρ′dφ′dz′

= μ

4π

∫ l/2

−l/2

∫ 2π

0

I(z′)e−jkR

2πR
dφ′dz′

where R = |r− r′| =
√

(z− z′)2+|ρρρ−ρρρ′|2. Because ρ′ = a, we have:

|ρρρ−ρρρ′|2 = ρ2 + a2 − 2ρρρ ·ρρρ′ = ρ2 + a2 − 2ρa cos(φ′ −φ)

and becauseφ′ appears only through the differenceφ′−φ, we may change the variable

of integration from φ′ to φ′ −φ. This implies that Az will be cylindrically symmetric,

that is, independent of φ. It follows that:

Az(z, ρ)= μ

4π

∫ l/2

−l/2
I(z′)G(z− z′, ρ)dz′ (22.1.1)

where we defined the exact thin-wire kernel :

G(z− z′, ρ)= 1

2π

∫ 2π

0

e−jkR

R
dφ′ (22.1.2)

with R =
√

(z− z′)2+ρ2 + a2 − 2ρa cosφ′. In the limit of a thin antenna, a → 0,

Eq. (22.1.1) reduces to:

Az(z, ρ)= μ

4π

∫ l/2

−l/2
I(z′)Gapp(z− z′, ρ)dz′ (22.1.3)

where Gapp(z− z′, ρ) is the approximate or reduced thin-wire kernel :

Gapp(z− z′, ρ)= e−jkR

R
(22.1.4)
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with R =
√

(z− z′)2+ρ2. Eq. (22.1.3) is the same as (15.4.3) because the limit a = 0 is

equivalent to assuming that the current density is a line current J(r)= ẑ I(z)δ(x)δ(y),

as given by Eq. (15.4.1).

Given the vector potential Az(z, ρ), the z-component of the electric field generated

by the current is obtained from Eq. (15.4.6):

jωμǫEz(z, ρ)= (∂2
z + k2)Az(z, ρ) (22.1.5)

The values of the vector potential Az and the electric field Ez on the surface of the

wire antenna are obtained by setting ρ = a:

Az(z, a)= μ

4π

∫ l/2

−l/2
I(z′)G(z− z′, a)dz′ (22.1.6)

To simplify the notation, we will denote Az(z, a) and G(z − z′, a) by Az(z) and

G(z− z′). The boundary condition on the surface is that the z-component of the total

electric field vanish, that is, at ρ = a:

Ez,tot(z, a)= Ez(z, a)+Ez,in(z, a)= 0

Thus, with Ez(z)= Ez(z, a) and Ein(z)= Ez,in(z, a), we have Ez(z)= −Ein(z), and

Eq. (22.1.5) can be expressed in terms of the z-component of the incident field:

(∂2
z + k2)Az(z)= −jωμǫEin(z) (22.1.7)

Either kernel can be used in Eq. (22.1.6). If the approximate kernel Gapp(z) is used,

then it is still meaningful to consider the boundary conditions at the cylindrical surface

(i.e., at ρ = a) of the antenna, as shown on the right of Fig. 22.1.1.

To summarize, given an incident field Ein(z) that is known along the length of the

antenna, Eq. (22.1.7) may be solved for Az(z) and then the integral equation (22.1.6)

can be solved for the current I(z).

Depending on how this procedure is carried out, one obtains either the Hallén or

the Pocklington equations. Solving Eq. (22.1.7) by formally inverting the differential

operator (∂2
z + k2) and combining with (22.1.6), we obtain Hallén’s integral equation:

μ

4π

∫ l/2

−l/2
I(z′)G(z− z′)dz′ = −jωμǫ(∂2

z + k2)−1Ein(z) (Hallén) (22.1.8)

Alternatively, applying the differential operator (∂2
z+k2) directly to Eq. (22.1.6) and

combining with (22.1.7) , we obtain Pocklington’s integral equation:

μ

4π

∫ l/2

−l/2
I(z′)(∂2

z + k2)G(z− z′)dz′ = −jωμǫEin(z) (Pocklington) (22.1.9)

The two integral equations must be solved subject to the constraint that the current

I(z) vanish at the antenna ends, that is, I(l/2)= I(−l/2)= 0. The exact and approxi-

mate kernels evaluated on the antenna surface are:

G(z− z′)= 1

2π

∫ 2π

0

e−jkR

R
dφ′ , R =

√

(z− z′)2+2a2 − 2a2 cosφ′

Gapp(z− z′)= e−jkR

R
, R =

√

(z− z′)2+a2

(22.1.10)
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The inverse differential operator in the right-hand side of Eq. (22.1.8) can be rewritten

as an integral convolutional operator acting on Ein. We discuss this in detail in Sec. 22.3.

We will then consider the numerical solutions of these equations using either the exact

or the approximate kernels. The numerical evaluation of these kernels is discussed in

Sec. 22.7.

22.2 Delta-Gap, Frill Generator, and Plane-Wave Sources

Although the external source field Ein(z) can be specified arbitrarily, there are two spe-

cial cases of practical importance. One is the so-called delta-gap model, which imitates

the way a transmitting antenna is fed by a transmission line. The other is a uniform

plane wave incident at an angle on a receiving antenna connected to a load impedance.

Fig. 22.2.1 depicts these cases.

Fig. 22.2.1 External sources acting on a linear antenna.

The left figure shows the delta-gap model of a generator voltage applied between

the upper and lower halves of the antenna across a short gap of length Δz. The applied

voltage V0 can be thought of as arising from an electric field—the “incident” field in this

case—which exists only within the gap, such that

V0 =
∫ Δz/2

−Δz/2
Ein(z)dz (22.2.1)

A simplified case arises when we take the limit Δz → 0. Then, approximately, V0 =
EinΔz, or Ein = V0/Δz. In order to maintain a finite value of V0 in the left-hand side of

Eq. (22.2.1), Ein must become commensurately large. This means that in this limit,

Ein(z)= V0δ(z) (delta-gap model of incident field) (22.2.2)

King [3] has discussed the case of a finite Δz. An alternative type of excitation input

is the frill generator [6,7] defined by:

Ein(z)= V0

2 ln(b/a)

[

e−jkRa

Ra
− e

−jkRb

Rb

]

,
Ra =

√
z2 + a2

Rb =
√
z2 + b2

(22.2.3)
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where b > a. The case of a receiving antenna with a uniform plane wave incident at a

polar angle θ and such that the propagation vector k̂ is co-planar with the antenna axis

is shown on the right of Fig. 22.2.1.

The electric field vector is perpendicular to k̂ and has a space dependence E0e
−jk·r.

For a thin antenna, we may evaluate the field along the z-axis, that is, we set x = y = 0

so that e−jk·r = e−jkzz = ejkz cosθ because kz = −k cosθ. Then, the z-component of the

incident field will be:

Ein(z)= E0 sinθejkz cosθ (incident uniform plane wave) (22.2.4)

If the wave is incident from broadside (θ = π/2), then Ein(z)= E0, that is, a constant

along the antenna length. And, if θ = 0 or π, then Ein(z)= 0.

22.3 Solving Hallén’s Equation

Instead of working with the vector potential Az(z) it proves convenient to work with a

scaled version of it that has units of volts and is defined as:

V(z)= 2jcAz(z) (22.3.1)

where c is the speed of light. We note thatV(z) is not the scalar potentialϕ(z) along the

antenna length. From the Lorenz condition, Eq. (15.4.5), we have ∂zAz = −jωμǫϕ(z).
Multiplying by 2jc and noting that cωǫμ =ω/c = k, we find:

∂zV(z)= 2kϕ(z) (22.3.2)

Multiplying both sides of Eq. (22.1.7) by 2jc, we can rewrite it as:

(∂2
z + k2)V(z)= 2kEin(z) (22.3.3)

Similarly, Eq. (22.1.6) becomes:

jη

2π

∫ h

−h
G(z− z′)I(z′)dz′ = V(z) (22.3.4)

where η = √

μ/ǫ, and for later convenience, we introduced the half-length h = l/2 of

the antenna. Eqs. (22.3.3)–(22.3.4) represent our rescaled version of Hallén’s equations.

Formally, we can write V(z)= 2k(∂2
z + k2)−1Ein(z), but we prefer to express V(z)

as an integral operator acting on Ein(z). A particular solution of (22.3.3) is obtained

with the help of the Green’s function F(z) for this differential equation:

(∂2
z + k2)F(z)= 2kδ(z) (22.3.5)

The general solution of Eq. (22.3.3) is obtained by adding the most general solution

of the homogeneous equation, (∂2
z + k2)V(z)= 0, to the Green’s function solution:

V(z)= C1e
jkz +C2e

−jkz +
∫ h

−h
F(z− z′)Ein(z

′)dz′ (22.3.6)
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With a re-definition of the constants C1, C2, we can also write:

V(z)= C1 coskz+C2 sinkz+
∫ h

−h
F(z− z′)Ein(z

′)dz′ (22.3.7)

In fact, F(z) itself is defined up to an arbitrary solution of the homogeneous equa-

tion. If F(z) satisfies Eq. (22.3.5), so does F1(z)= F(z)+C1e
jkz+C2e

−jkz, with arbitrary

constants C1, C2. Some possible choices for F(z) are as follows. They differ from each

other by a homogeneous term:

F1(z) = je−jk|z| = F2(z)+j coskz

F2(z) = sink|z| = F3(z)− sinkz

F3(z) = 2 sin(kz)u(z)= F4(z)+2 sinkz

F4(z) = −2 sin(kz)u(−z)

(22.3.8)

where u(z) is the unit-step function. All satisfy Eq. (22.3.5) as well as the required

discontinuity conditions on their first derivative, that is,

F′(0+)−F′(0−)= 2k (22.3.9)

This discontinuity condition is obtained by integrating Eq. (22.3.5) over the small

interval −ǫ ≤ z ≤ ǫ and then taking the limit ǫ → 0 and assuming that F(z) itself is

continuous at z = 0. Depending on the choice of F(z), the corresponding solutionV(z)

of Eq. (22.3.3) can be written in the equivalent forms (each with different C1, C2):

V(z) = C1e
jkz +C2e

−jkz +
∫ h

−h
je−jk|z−z

′|Ein(z
′)dz′

V(z) = C1e
jkz +C2e

−jkz +
∫ h

−h
sin

(

k|z− z′|)Ein(z
′)dz′

V(z) = C1e
jkz +C2e

−jkz + 2

∫ z

−h
sin

(

k(z− z′))Ein(z
′)dz′

V(z) = C1e
jkz +C2e

−jkz − 2

∫ h

z
sin

(

k(z− z′))Ein(z
′)dz′

(22.3.10)

We will use mostly the first and second choices for F(z), that is, F(z)= je−jk|z|

and F(z)= sink|z|. Combining the solution for V(z) with Eq. (22.3.4), we obtain the

equivalent form of Hallén’s integral equation for an arbitrary incident field :

jη

2π

∫ h

−h
G(z− z′)I(z′)dz′ = C1e

jkz +C2e
−jkz +

∫ h

−h
F(z− z′)Ein(z

′)dz′ (22.3.11)

or, alternatively,

jη

2π

∫ h

−h
G(z− z′)I(z′)dz′ = C1 coskz+C2 sinkz+

∫ h

−h
F(z− z′)Ein(z

′)dz′
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The constants C1, C2 are determined from the end conditions I(h)= I(−h)= 0.

Next, we consider the particular forms of Eq. (22.3.11) in the delta-gap and plane-wave

cases. In the delta-gap case, we have Ein(z)= V0δ(z) and the integral on the right-hand

side can be done trivially, giving:

∫ h

−h
F(z− z′)Ein(z

′)dz′ =
∫ h

−h
F(z− z′)V0δ(z

′)dz′ = V0F(z)

Thus, we have the integral equation:

jη

2π

∫ h

−h
G(z− z′)I(z′)dz′ = C1 coskz+C2 sinkz+V0F(z)

We expect the current I(z) to be an even function of z (because Ein(z) is), and thus

we may drop the C2 term. Using F(z)= sink|z| as our Green’s function choice, we

obtain Hallén’s equation for the delta-gap case:

jη

2π

∫ h

−h
G(z− z′)I(z′)dz′ = V(z)= C1 coskz+V0 sink|z| (22.3.12)

This equation forms the basis for determining the current on a center-driven lin-

ear antenna. We will consider several approximate solutions of it as well as numerical

solutions based on moment methods.

We can verify that V(z) correctly gives the potential difference between the upper

and lower halves of the antenna. DifferentiatingV(z) about z = 0 and using Eq. (22.3.2),

we have:

V′(0+)−V′(0−)= 2kV0 = 2k
(

ϕ(0+)−ϕ(0−)) ⇒ ϕ(0+)−ϕ(0−)= V0

As a second example, consider the case of an antenna receiving a uniform plane wave

with incident field as in Eq. (22.2.4). Using F(z)= je−jk|z| as the Green’s function, the

convolution integral of F(z) and Ein(z) can be done easily giving:

∫ h

−h
je−jk|z−z

′|E0 sinθejkz
′ cosθ dz′ = 2E0

k sinθ
ejkz cosθ + (homogeneous terms)

where the last terms are solutions of the homogeneous equation, and thus, can be ab-

sorbed into the other homogeneous terms of V(z). Because the current is not expected

to be symmetric in z, we must keep both homogeneous terms, resulting in Hallén’s

equation for a receiving antenna:

jη

2π

∫ h

−h
G(z− z′)I(z′)dz′ = V(z)= C1e

jkz +C2e
−jkz + 2E0

k sinθ
ejkz cosθ (22.3.13)

22.4 Sinusoidal Current Approximation

Here, we look at simplified solutions of Eq. (22.3.12), which justify the common sinu-

soidal assumption for the current. We work with the approximate kernel.
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Inspecting the quantity Gapp(z−z′)= e−jkR/R in the integral equation (22.3.12), we

note that as the integration variable z′ sweeps past z, the denominator becomes very

large, because R = a at z′ = z. Therefore, the integral is dominated by the value of the

integrand near z′ = z. We can write approximately,

jη

2π

∫ h

−h
Gapp(z− z′)I(z′)dz′ ≃ Z̄(z)I(z)≃ Z̄I(z) (22.4.1)

where Z̄(z) is a sort of an average value of jηGapp(z− z′)/2π in the neighborhood of

z′ = z. This quantity varies slowly with z and we may approximate it with a constant,

say Z̄. Then, Hallén’s equation (22.3.12) becomes approximately:

Z̄I(z)= V(z)= C1 coskz+V0 sink|z|

This shows that I(z) is approximately sinusoidal. The constant C1 is fixed by the

end-condition I(h)= 0, which gives:

C1 coskh+V0 sinkh = 0 ⇒ C1 = −V0
sinkh

coskh

so that I(z) becomes:

Z̄I(z)= −V0
1

coskh

[

sinkh coskz− coskh sink|z|] = −V0
1

coskh
sin

(

k(h− |z|))

Solving for I(z), we obtain the common standing-wave expression for the current:

I(z)= I(0)sin
(

k(h− |z|))

sinkh
, I(0)= −V0 sinkh

Z̄ coskh
(22.4.2)

where I(0) is the input current at z = 0. The crude approximation of Eq. (22.4.1) can

be refined further using King’s three-term approximation discussed in Sec. 22.6. From

Eq. (22.4.2), the antenna input impedance is seen to be:

ZA = V0

I(0)
= −Z̄ cotkh (22.4.3)

22.5 Reflecting and Center-Loaded Receiving Antennas

A similar approximation to Hallén’s equation can be carried out in the plane-wave case

shown in Fig. 22.2.1. We distinguish three cases: (a)ZL = 0, corresponding to a reflecting

parasitic antenna with short-circuited output terminals, (b) ZL = ∞, corresponding to

open-circuited terminals, and (c) arbitraryZL, corresponding to a center-loaded receiving

antenna. See Ref. [12] for more details on this approach.

By finding the short-circuit current from case (a) and the open-circuit voltage from

case (b), we will determine the output impedance of the receiving antenna, that is, the

Thevénin impedance ZA of the model of Sec. 16.4, and show that it is equal to the

input impedance (22.4.3) of the transmitting antenna, in accordance with the reciprocity

principle. We will also show from case (c) that the angular gain pattern of the receiving

antenna agrees with that of the transmitting one.
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Starting with the short-circuited case, the approximation of Eq. (22.4.1) applied to

(22.3.13) gives:

Z̄I(z)= V(z)= C1e
jkz +C2e

−jkz + 2E0

k sinθ
ejkz cosθ

The end-point conditions I(h)= I(−h)= 0 provide two equations in the two un-

knowns C1, C2, that is,

C1e
jkh +C2e

−jkh + 2E0

k sinθ
ejkh cosθ = 0

C1e
−jkh +C2e

jkh + 2E0

k sinθ
e−jkh cosθ = 0

with solution:

C1 = −E0 sin
(

kh(1+ cosθ)
)

k sinθ sinkh coskh
, C2 = −E0 sin

(

kh(1− cosθ)
)

k sinθ sinkh coskh

Then, the current I(z) becomes:

I(z)= 1

Z̄

[

C1e
jkz +C2e

−jkz + 2E0

k sinθ
ejkz cosθ

]

(22.5.1)

For normal incidence, θ = 90o, we have C1 = C2 and Eq. (22.5.1) becomes:

I(z)= 2E0

Z̄k coskh
(coskh− coskz) (22.5.2)

For θ = 0 and θ = π, the z-component of the incident field is zero, Ein(z)= 0, and

we expect I(z)= 0. This can be verified by carefully taking the limit of Eq. (22.5.1) at

θ = 0,π, with the seemingly diverging term 2E0/k sinθ getting canceled.

The short-circuit current at the output terminals is obtained by setting z = 0 in

Eq. (22.5.1):

Isc = I(0)= 1

Z̄

[

C1 +C2 + 2E0

k sinθ

]

Inserting the expressions for C1, C2, we find:

Isc = 2E0

Z̄k coskh

coskh− cos(kh cosθ)

sinθ
(22.5.3)

For the open-circuit case, the incident field will induce an open-circuit voltage across

the gap, and therefore, the scalar potential ϕ(z) will be discontinuous at z = 0. In

addition, the current must vanish at z = 0. Therefore, we must apply Eq. (22.3.13)

separately to the upper and lower halves of the antenna. Using coskz and sinkz as the

homogeneous terms, instead of e±jkz, we have the approximation:

Z̄I(z)= V(z)=

⎧

⎪⎪⎨

⎪⎪⎩

C1 coskz+C2 sinkz+ 2E0

k sinθ
ejkz cosθ, z ≥ 0

D1 coskz+D2 sinkz+ 2E0

k sinθ
ejkz cosθ, z ≤ 0
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The conditions I(0+)= I(h)= 0 and I(0−)= I(−h)= 0 provide four equations in

the four unknowns C1, C2,D1,D2. They are:

C1 + 2E0

k sinθ
= 0, C1 coskh+C2 sinkh+ 2E0

k sinθ
ejkh cosθ = 0

D1 + 2E0

k sinθ
= 0, D1 coskh−D2 sinkh+ 2E0

k sinθ
e−jkh cosθ = 0

with solution:

C1 = D1 = − 2E0

k sinθ

C2 = 2E0(coskh− ejkh cosθ)

k sinθ sinkh
, D2 = −2E0(coskh− e−jkh cosθ)

k sinθ sinkh

The open-circuit voltage is Voc =ϕ(0+)−ϕ(0−). Using Eq. (22.3.2), we have:

V′(0+)−V′(0−)= 2kVoc = k(C2 −D2) ⇒ Voc = 1

2
(C2 −D2)

and using the solution for C2,D2, we find:

Voc = 2E0

k sinkh

coskh− cos(kh cosθ)

sinθ
(22.5.4)

Having found the short-circuit current and open-circuit voltage, we obtain the cor-

responding output Thevénin impedance by dividing Eq. (22.5.4) and (22.5.3):

ZA = −Voc

Isc

= −Z̄ cotkh (22.5.5)

where the minus sign is due to the fact that Isc is flowing into (instead of out of) the top

antenna terminal. We note that Eq. (22.5.5) agrees with (22.4.3) of the transmitting case.

Equations (22.5.3) and (22.5.4) are special cases of a more general result, which is a

consequence of the reciprocity principle (for example, see [34]). Given an incident field

on a receiving linear antenna, the induced short-circuit current and open-circuit voltage

at its terminals are given by:

Isc = 1

V0

∫ h

−h
Ein(z)I(z)dz , Voc = − 1

I0

∫ h

−h
Ein(z)I(z)dz (22.5.6)

where I(z) is the current generated by V0 when the antenna is transmitting. Inserting

Eq. (22.4.2) into (22.5.6), we can easily derive Eqs. (22.5.3) and (22.5.4). We will use

(22.5.6) in Sec. 23.3 to derive the mutual impedance between two antennas.

Finally, we consider case (c) of an arbitrary load impedance ZL. The current will be

continuous across the gap but it does not have to vanish at z = 0. The voltage difference

across the gap will be equal to the voltage drop across the load, that is, VL = −ZLI(0).
The approximate Hallén equation is now:

Z̄I(z)= V(z)=

⎧

⎪⎪⎨

⎪⎪⎩

C1 coskz+C2 sinkz+ 2E0

k sinθ
ejkz cosθ, z ≥ 0

D1 coskz+D2 sinkz+ 2E0

k sinθ
ejkz cosθ, z ≤ 0
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where D1 = C1 because of the continuity of I(z) at z = 0. The end conditions, I(h)=
I(−h)= 0, give:

C1 coskh+C2 sinkh+ 2E0

k sinθ
ejkh cosθ = 0

C1 coskh−D2 sinkh+ 2E0

k sinθ
e−jkh cosθ = 0

Moreover, we have the discontinuity condition:

V′(0+)−V′(0−)= 2kVL = k(C2 −D2) ⇒ VL = 1

2
(C2 −D2)

Ohm’s law at the load gives:

VL = −ZLI(0)= −ZL
Z̄

(

C1 + 2E0

k sinθ

)

= ZL
ZA

(

C1 + 2E0

k sinθ

)

cotkh

where we used Eq. (22.5.5). Solving the above four equations for C1, C2,D2, VL, we find

eventually:

VL = ZL
ZA + ZL

2E0

k sinkh

coskh− cos(kh cosθ)

sinθ
= VocZL
ZA + ZL

(22.5.7)

This is equivalent to the Thevénin model that we used in Sec. 16.4. The power

delivered to the load will be proportional to |VL|2, which is proportional to the gain

pattern of a transmitting dipole, that is,

∣
∣
∣
∣

coskh− cos(kh cosθ)

sinθ

∣
∣
∣
∣

2

22.6 King’s Three-Term Approximation

To improve the crude sinusoidal approximation of Eq. (22.4.1), we must look more care-

fully at the properties of the kernel. Separating its real and imaginary parts, we have:

jη

2π
Gapp(z− z′)= jη

2π

e−jkR

R
= kη

2π

[
sinkR

kR
+ j coskR

kR

]

For R near zero, the imaginary part becomes very large and we may apply the ap-

proximation (22.4.1) to it. But, the real part remains finite at R = 0. For kR ≤ π,

which will be guaranteed if kh ≤ π, the sinc function can be very well approximated by

cos(kR/2)≃ cos(k|z−z′|/2) as can be verified by plotting the two functions. Therefore,

sinkR

kR
≃ cos(kR/2)≃ cos

(

k(z− z′)/2), for kR ≤ π (22.6.1)

Using this approximation for the real part of the kernel, and applying the approx-

imation of Eq. (22.4.1) to its imaginary part, King has shown [4,94] that an improved

approximation of the convolution integral is as follows:

jη

2π

∫ h

−h
Gapp(z− z′)I(z′)dz′ ≃ R cos

(kz

2

)+ jXI(z) (22.6.2)
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where R,X are appropriate constants, which are real if I(z) is real. The approximation

also assumes that the current is symmetric, I(z)= I(−z). Indeed, we have:

jη

2π

∫ h

−h
Gapp(z− z′)I(z′)dz′ = kη

2π

∫ h

−h

[

cos
(k(z− z′)

2

)+ j coskR

kR

]

I(z′)dz′

= kη

2π

∫ h

−h

[

cos
(kz

2

)

cos
(kz′

2

)

I(z′)+ sin
(kz

2

)

sin
(kz′

2

)

I(z′)+j coskR

kR
I(z′)

]

dz′

The first term is of the form R cos(kz/2), the second term vanishes because of the

assumed even symmetry of I(z), and the third term is of the form jXI(z). It follows

that the Hallén equation (22.3.12) can be approximated by:

R cos
(kz

2

)+ jXI(z)= V(z)= C1 coskz+V0 sink|z|

This shows that the current I(z) is a linear combination of the sinusoidal terms

sink|z|, coskz, and cos(kz/2), and leads to King’s three-term approximation for the

current [4,94], which incorporates the condition I(h)= 0. There are two alternative

forms:

I(z)= A1I1(z)+A2I2(z)+A3I3(z)= A′1I′1(z)+A′2I′2(z)+A′3I′3(z) (22.6.3)

where the expansion currents are defined by:

I1(z) = sink|z| − sinkh

I2(z) = coskz− coskh

I3(z) = cos(kz/2)− cos(kh/2)

,

I′1(z) = sin
(

k(h− |z|))

I′2(z) = coskz− coskh

I′3(z) = cos(kz/2)− cos(kh/2)

(22.6.4)

Using the trigonometric identity I1(z)= I′2(z)tankh−I′1(z)/ coskh, the relationship

between the primed and unprimed coefficients is:

[

A′1
A′2

]

= 1

coskh

[

−1 0

sinkh coskh

][

A1

A2

]

, A′3 = A3 (22.6.5)

The condition number of the transformation matrix is 1/| coskh|, and the transfor-

mation breaks down when coskh = 0, that is, when the antenna length l = 2h is an

odd-multiple of λ/2. In that case, only the unprimed form may be used. Otherwise,

the primed form is preferable because the term I′1(z)= sin
(

k(h−|z|)) has the conven-

tional standing-wave form. We will work with the unprimed form because it is always

possible. The MATLAB function kingprime transforms the unprimed coefficients into

the primed ones:

Aprime = kingprime(L,A); % converts from unprimed to primed form

To determine the expansion coefficientsA1,A2,A3, we insert Eq. (22.6.3) into Hallén’s

equation (22.3.12) and get:

A1V1(z)+A2V2(z)+A3V3(z)= V(z)= C1 coskz+V0 sink|z| (22.6.6)
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where

Vi(z)= jη

2π

∫ h

−h
Gapp(z− z′)Ii(z′)dz′ , i = 1,2,3 (22.6.7)

At z = h, we have:

A1V1(h)+A2V2(h)+A3V3(h)= V(h)= C1 coskh+V0 sinkh (22.6.8)

Subtracting Eqs. (22.6.6) and (22.6.8), and defining Vdi(z)= Vi(z)−Vi(h), we have:

A1Vd1(z)+A2Vd2(z)+A3Vd3(z)= C1(coskz− coskh)+V0(sink|z| − sinkh)

Using the definition (22.6.4), we can write:

A1Vd1(z)+A2Vd2(z)+A3Vd3(z)= C1I2(z)+V0I1(z) (22.6.9)

Introducing the difference kernel Gd(z− z′)= Gapp(z− z′)−Gapp(h− z′), we have:

Vdi(z)= jη

2π

∫ h

−h
Gd(z− z′)Ii(z′)dz′ , i = 1,2,3 (22.6.10)

The improved approximation (22.6.2) applied to the difference kernel gives:

jη

2π

∫ h

−h
Gd(z− z′)I(z′)dz′ = R

(

cos(kz/2)− cos(kh/2)
)+ jXI(z)= RI3(z)+jXI(z)

Therefore, applying it to the three separate currents I1(z), I2(z), I3(z), we obtain:

Vdi(z)= Vi(z)−Vi(h)= RiI3(z)+jXiIi(z) , i = 1,2,3 (22.6.11)

Inserting these approximations in Eq. (22.6.6), we have:

A1

[

R1I3(z)+jX1I1(z)
]+A2

[

R2I3(z)+jX2I2(z)
]+A3

[

R3I3(z)+jX3I3(z)
] =

= C1I2(z)+V0I1(z)

Defining Z3 = R3 + jX3 and matching the coefficients of I1(z), I2(z), I3(z) in the

two sides, gives three equations in the four unknowns A1,A2,A3, C1:

jX1A1 = V0, jX2A2 −C1 = 0, R1A1 +R2A2 + Z3A3 = 0

The fourth equation is (22.6.8). Thus, we obtain the linear system:

⎡

⎢
⎢
⎢
⎣

jX1 0 0 0

0 jX2 0 −1

R1 R2 Z3 0

V1(h) V2(h) V3(h) − coskh

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

A1

A2

A3

C1

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

V0

0

0

V0 sinkh

⎤

⎥
⎥
⎥
⎦

(22.6.12)

The matrix elements can be determined by evaluating the defining approximations

(22.6.11) at z-points at which the currents Ii(z) take on their maximum values. For

I1(z), the maximum occurs at z1 = 0 if h ≤ λ/4 and at z1 = h−λ/4 if λ/4 ≤ h ≤ 5λ/8.
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For I2(z) and I3(z), the maxima occur at z = 0. Thus, the defining equations for the

matrix elements are:

Vd1(z1)= V1(z1)−V1(h)= R1I3(z1)+jX1I1(z1)

Vd2(0)= V2(0)−V2(h)= R2I3(0)+jX2I2(0)

Vd3(0)= V3(0)−V3(h)= Z3I3(0)

(22.6.13)

The coefficients R1, X1, R2, X2 are obtained by extracting the real and imaginary

parts of these expressions. The left-hand sides can be computed by direct numerical

integration of the definitions (22.6.7). The expected range of applicability of the 3-term

approximation is for antenna lengths l ≤ 1.25λ (see [4,94].) However, it works well even

for longer lengths.

The MATLAB function king implements the design equations (22.6.12) and (22.6.13).

It has usage:

A = king(L,a); % King’s 3-term sinusoidal approximation

where L,a are the antenna length and its radius in units of λ and the output A is the

column vector of the coefficients Ai of the (unprimed) representation (22.6.3) of the

current.

The numerical integrations are done with a 32-point Gauss-Legendre quadrature in-

tegration routine implemented with the function quadr, which provides the appropriate

weights and evaluation points for the integration.

Example 22.6.1: Fig. 22.6.1 compares the three-term approximation to the standard sinusoidal

approximation, I(z)= sin
(

k(h − |z|)), and to the exact numerical solution of Hallén’s

equation for the two cases of l = λ and l = 1.5λ. The antenna radius was a = 0.005λ.
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0.5

1.5

2.5

z/λ

|
I(

z)
|

 (
m

A
)

l = 1.0λ, a = 0.005λ
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 numerical

Fig. 22.6.1 Three-term approximation for l = λ and l = 1.5λ.

In the full-wavelength case, the sinusoidal approximation has I(0)= 0, which would imply

infinite antenna impedance. The three-term approximation gives a nonzero value for I(0).

The computed three-term coefficients are in the two cases:
⎡

⎢
⎣

A1

A2

A3

⎤

⎥
⎦ = 10−3

⎡

⎢
⎣

−2.6035j

0.2737+ 0.2779j

0.2666+ 0.2376j

⎤

⎥
⎦ ,

⎡

⎢
⎣

A1

A2

A3

⎤

⎥
⎦ = 10−3

⎡

⎢
⎣

−2.1403j

7.7886− 3.6840j

0.8688+ 2.4546j

⎤

⎥
⎦
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We used the unprimed representation for both cases (the primed one coincides with the

unprimed one for the case l = λ because coskh = −1 and the transformation matrix

(22.6.5) becomes the identity matrix.) The graphs were generated by the following example

code (for the l = 1.5λ case):

L = 1.5; h = L/2; a = 0.005; % length and radius

k = 2*pi; % wavenumber in units of λ = 1

M = 30; % number of cells is 2M + 1

[In,zn] = hdelta(L,a,M,’e’); % numerical solution of Hallén equation with exact kernel

In = In(M+1:end); % keep only upper half of the values

zn = zn(M+1:end);

A = king(L,a); % King’s three-term approximation

z = 0:h/150:h; % evaluation points on upper half

Ik = abs(kingeval(L,A,z)); % evaluate King’s three-term current

B = kingfit(L,In,zn,1); % fit one-term sinusoidal current

I1 = abs(kingeval(L,B,z)); % evaluate one-term sinusoidal current

C = kingfit(L,In,zn,3); % fit three-term current to the numerical values

I3 = abs(kingeval(L,C,z)); % evaluate fitted three-term current

plot(z,Ik,’-’, z,I3,’:’, z,I1,’--’, zn,abs(In), ’.’);

The currents I1(z) and I3(z) represent the one-term and three-term fits to the numerical

samples In at the points zn, as described below. ⊓⊔

As is evident from the above example, King’s three-term approximation does not

work particularly well for larger antenna lengths (about l > 1.25λ). This can be at-

tributed to the crude approximation of computing the coefficients Ai by matching the

defining currents only at one point along the antenna (at the current maxima).

It turns out, however, that the three-term approximation is very accurate if fitted to

the “exact” current as computed by solving Hallén’s equation numerically, with a range

of applicability of up to about l = 2λ. With a 4-term fit, the range increases to l = 3λ.

Typically, numerical methods generate a set of N current values In at N points zn,

n = 1,2, . . . ,N, along the antenna. These values can be fitted to a three-term expression

of the form of Eq. (22.6.3) using the least-squares criterion:

J =
N∑

n=1

∣
∣Is(zn)−In

∣
∣2 = min , where Is(z)=

3∑

i=1

AiIi(z) (22.6.14)

where J is minimized with respect to the three coefficients A1,A2,A3. This is equiva-

lent to finding the least-squares solution of the overdetermined N×3 linear system of

equations (assuming N > 3):

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I1(z1) I2(z1) I3(z1)
...

...
...

I1(zn) I2(zn) I3(zn)
...

...
...

I1(zN) I2(zN) I3(zN)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎣

A1

A2

A3

⎤

⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I1
...

In
...

IN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(22.6.15)
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Writing this system in the compact matrix form SA = I, its MATLAB solution is

obtained by the backslash operation: A = S\I. More generally, one may perform the fit

to p = 1,2,3,4 sinusoidal terms, that is,

Is(z)=
p
∑

i=1

AiIi(z) (22.6.16)

For p = 1,2,3, the basis currents Ii(z) are as in Eq. (22.6.4). For p = 1, the basis

is always defined as I1(z)= sin
(

kh − k|z|). For p = 4, the first two basis currents,

I1(z), I2(z), are as in (22.6.4), and the last two are:

I3(z) = cos(kz/4)− cos(kh/4)

I4(z) = cos(3kz/4)− cos(3kh/4)
(22.6.17)

The MATLAB function kingfit solves the system of equations (22.6.15), or its more

general version, and returns the coefficients Ai. It has the following usage, where p is

the desired number of terms:

A = kingfit(L,In,zn,p); % p-term fit to sinusoidal currents

The function kingeval evaluates the p-term approximation (22.6.16) at a given num-

ber of z-points:

I = kingeval(L,A,z); % evaluate p-term expression I(z) at the points z

where the number of termsp is determined from the number of coefficientsAi. The right

graph of Fig. 22.6.1 compares King’s and the least-squares three-term approximations.

The four-term approximation is justified as follows. The three-term case was based

on the approximation sinkR/kR ≃ cos(kR/2). To improve it, we consider the identity:

sinkR

kR
= sin(kR/2)

kR/2
cos(kR/2)= sin(kR/4)

kR/4
cos(kR/4)cos(kR/2)

The three-term case is obtained by replacing sin(kR/2)/(kR/2)≃ 1, which is ap-

proximately valid for R ≤ λ/2. A better approximation is obtained from the second

identity by setting sin(kR/4)/(kR/4)≃ 1. This results in the approximation:

sinkR

kR
≃ cos(kR/4)cos(kR/2)= 1

2

[

cos(kR/4)+ cos(3kR/4)
]

(22.6.18)

which is well satisfied up toR ≤ 3λ/2. Using the same arguments that led to Eq. (22.6.2),

we now obtain the approximation:

jη

2π

∫ h

−h
Gapp(z− z′)I(z′)dz′ ≃ R cos

(kz

4

)+R′ cos
(3kz

4

)+ jXI(z) (22.6.19)

where R,R′, X are appropriate constants. Thus, Hallén’s equation (22.3.12) can be ap-

proximated as:

R cos
(kz

4

)+R′ cos
(3kz

4

)+ jXI(z)= V(z)= C1 coskz+V0 sink|z|
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which implies that I(z) can be written as the sum of four sinusoidal currents, I1(z), I2(z),

given by Eq. (22.6.3), and I3(z), I4(z), given by (22.6.17).

Fig. 22.6.2 compares the three-term and four-term fits for the two antenna lengths

l = λ and l = 3λ. For the l = λ case, the two fits are virtually indistinguishable. The

antenna radius was a = 0.005λ and the “exact” numerical solution was computed using

the exact kernel with 2M + 1 = 101 segments. The graphs can be generated by the

following example code:

L=3; a=0.005; M=50;

[Ie,z] = hdelta(L,a,M,’e’); % solve Hallén equation with exact kernel and delta-gap input

A = kingfit(L,Ie,z,3); I3 = kingeval(L,A,z);

B = kingfit(L,Ie,z,4); I4 = kingeval(L,B,z);

plot(z,real(Ie),’.’, z,real(I4),’-’, z,real(I3),’--’);

−0.5 −0.25 0 0.25 0.5
0

0.5

1

z/λ

I(
z)

 −
 r

e
a

l 
p

a
rt

 (
m

A
)

l = λ

 

 
exact

4−term

3−term

−0.5 −0.25 0 0.25 0.5
−3

−2

−1

0

1

2

z/λ

I(
z)

 −
 i

m
a

g
 p

a
rt

 (
m

A
)

l = λ

 

 
exact

4−term

3−term

−1.5 −1 −0.5 0 0.5 1 1.5
−1

0

1

2

z/λ

I(
z)

 −
 r

e
a

l 
p

a
rt

 (
m

A
)

l = 3λ

 

 
exact

4−term

3−term

−1.5 −1 −0.5 0 0.5 1 1.5
−3

−2

−1

0

1

2

3

z/λ

I(
z)

 −
 i

m
a

g
 p

a
rt

 (
m

A
)

l = 3λ

 

 
exact

4−term

3−term

Fig. 22.6.2 Three- and four-term approximations for l = λ and l = 3λ.

We will look at further examples later on. The main advantage of such fits is that

they provide simple analytical expressions for the current, which can be used in turn to

compute the radiation pattern. We saw in Eq. (17.1.7) that the radiation intensity of a
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linear antenna is given by

U(θ)= ηk2

32π2
|Fz(θ)|2 sin2 θ

where Fz(θ) is the z-component of the radiation vector:

Fz(θ)=
∫ h

−h
I(z)ejkz cosθdz

For the p-term current given by Eq. (22.6.16), we have:

Fz(θ)=
p
∑

i=1

Ai

∫ h

−h
Ii(z)e

jkz cosθdz =
p
∑

i=1

AiFi(θ) (22.6.20)

The individual radiation vectors Fi(θ) are given by closed-form expressions as fol-

lows. For I1(z) and I′1(z), we have:

F1(θ) =
∫ h

−h

(

sink|z| − sinkh
)

ejkz cosθdz =

= 1

k

(

1− cos(kh cosθ)coskh
)

cosθ− sin(kh cosθ)sinkh

cosθ sin2 θ

F′1(θ) =
∫ h

−h
sin

(

kh− k|z|)ejkz cosθdz = 2

k

cos(kh cosθ)− coskh

sin2 θ

(22.6.21)

The rest of the radiation vectors are obtained from the following integral, with the

parameter values α = 1, 1/2, 1/4, 3/4:

∫ h

−h

[

cos(kαz)− cos(kαh)
]

ejkz cosθdz =

= α

k

(α+ cosθ)sin
(

kh(α− cosθ)
)− (α− cosθ)sin

(

kh(α+ cosθ)
)

cosθ(α2 − cos2 θ)

(22.6.22)

22.7 Evaluation of the Exact Kernel

Numerical methods for Hallén’s and Pocklington’s equations require the numerical eval-

uation (and integration) of the exact or approximate kernel. A sample of such numerical

methods is given in Refs. [1384–1447].

The evaluation of the approximate kernel is straightforward. The exact kernel re-

quires a more careful treatment because of its singularity at z = 0. Here, we follow

[1440] and express the exact kernel in terms of elliptic functions and discuss its numer-

ical evaluation. The exact kernel was defined in Eq. (22.1.2):

G(z,ρ)= 1

2π

∫ 2π

0

e−jkR

R
dφ′ , R =

√

z2 + ρ2 + a2 − 2ρa cosφ′ (22.7.1)
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The distance R may be written in the alternative forms:

R =
√

z2 + (ρ+ a)2−2ρa(1+ cosφ′)

=
√

z2 + (ρ+ a)2−4ρa cos2(φ′/2)

=
√

z2 + (ρ+ a)2−4ρa sin2 θ

= Rmax

√

1− κ2 sin2 θ

(22.7.2)

where we defined:

Rmax =
√

z2 + (ρ+ a)2 , κ = 2
√

aρ

Rmax

= 2
√

aρ
√

z2 + (ρ+ a)2
(22.7.3)

and made the change of variablesφ′ = π+2θ. Under this change, the integration range

[0,2π] in φ′ maps onto [−π/2,π/2] in θ, and because R is even in θ, that range can

be further reduced to [0,π/2], resulting into the expression for the kernel:

G(z,ρ)= 2

π

∫ π/2

0

e−jkR

R
dθ = 2

πRmax

∫ π/2

0

e−jkRmax

√
1−κ2 sin2 θ

√

1− κ2 sin2 θ
dθ (22.7.4)

where Rmax represents the maximum value of R as θ varies. The approximate kernel

corresponds to the limit a = 0 or κ = 0. The connection to elliptic functions comes

about as follows [1449–1453]. The change of variables,

u =
∫ θ

0

dα
√

1− κ2 sin2α
⇒ du = dθ

√

1− κ2 sin2 θ
(22.7.5)

defines θ indirectly as a function of u. The Jacobian elliptic functions sn(u, κ) and

dn(u, k) are then defined by

sn(u, κ) = sinθ

dn(u, k) =
√

1− κ2sn2(u, κ) =
√

1− κ2 sin2 θ

(22.7.6)

where κ is referred to as the elliptic modulus. The complete elliptic integrals of the first

and second kinds are given by:

K(κ)=
∫ π/2

0

dθ
√

1− κ2 sin2 θ
, E(κ)=

∫ π/2

0

√

1− κ2 sin2 θdθ (22.7.7)

Thus, when θ = π/2, then u = K(κ). With these definitions, Eq. (22.7.4) can be

written as:

G(z,ρ)= 2

πRmax

∫ K(κ)

0
e−jkRmax dn(u,κ) du (22.7.8)

Changing variables from u to uK(κ), we may write:

G(z,ρ)= 2K(κ)

πRmax

∫ 1

0
e−jkRmax dn(uK,κ) du (22.7.9)
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For points on the surface of the antenna wire (ρ = a), the kernel and the quantities

Rmax and κ simplify into:

G(z)= 2

π

∫ π/2

0

e−jkR

R
dθ = 2K(κ)

πRmax

∫ 1

0
e−jkRmax dn(uK,κ) du (exact kernel) (22.7.10)

with R =
√

z2 + 4a2 − 4a2 sin2 θ = Rmax

√

1− κ2 sin2 θ and

Rmax =
√

z2 + 4a2 , κ = 2a

Rmax

= 2a
√

z2 + 4a2
(22.7.11)

As u varies over the interval 0 ≤ u ≤ 1, the quantity dn(uK,κ) stays bounded,

varying over the range:

κ′ ≤ dn(uK,κ)≤ 1 (22.7.12)

where we introduced the complementary modulus:

κ′ =
√

1− κ2 = |z|
√

z2 + 4a2
= |z|
Rmax

(22.7.13)

Therefore, the integral in Eq. (22.7.10) remains bounded and less than one in magni-

tude for all values of z. On the other hand, the factor K(κ) incorporates the logarithmic

singularity at z = 0. Indeed, as z→ 0, the moduli κ and κ′ tend to 1 and 0, respectively,

and K(κ) behaves as ln(4/κ′) [1452]:

K(κ)≃ ln

(
4

κ′

)

≃ ln

(
4Rmax

|z|
)

≃ ln

(
8a

|z|
)

, as z→ 0 (22.7.14)

where we replaced Rmax ≃ 2a as z→ 0. Thus, the kernel behaves like

G(z)≃ 1

πa
ln

(
8a

|z|
)

, as z→ 0 (22.7.15)

The MATLAB function kernel implements Eq. (22.7.10) to compute G(z) at any

vector of z points. For smaller values of z, it uses the asymptotic form (22.7.15). It has

usage:

G = kernel(z,a,’e’); % exact kernel

G = kernel(z,a,’a’); % approximate kernel

It employs the following set of MATLAB functions for the evaluation of the complete

elliptic integrals and the function dn(uK,κ):

K = ellipK(k); % elliptic integral K(κ) at a vector of κ’s

E = ellipE(k); % elliptic integral E(κ) at a vector of κ’s

v = landenv(k); % Landen transformations of a vector of κ’s

w = snv(u,k); % sn(uK,κ) function at a vector of u’s and a vector of κ’s

w = dnv(u,k); % dn(uK,κ) function at a vector of u’s and a vector of κ’s

These are based on a set of similar functions developed for the implementation

of elliptic filters [1454–1456] that were modified here to handle a vector of moduli κ

arising from a vector of z points. Using these functions, the integral in Eq. (22.7.10) is

implemented with a 32-point Gauss-Legendre integration over the interval 0 ≤ u ≤ 1.

Let wi, ui, i = 1,2, . . . ,32, denote the weights and evaluation points obtained by calling

the quadrature function quadr:
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[w,u] = quadr(0,1,32); % 32-point Gauss-Legendre integration over the interval [0,1]

Then, Eq. (22.7.10) can be evaluated by

G(z)= 2K(κ)

πRmax

32∑

i=1

wi e
−jkRmax dn(uiK,κ) (22.7.16)

The function kernel has an additional input parameter, method,

G = kernel(z,a,’e’,method); % exact kernel

that allows one to select faster but somewhat less accurate methods of computing the

kernel. The method of Eq. (22.7.16) is selected with method = 3. The integral in (22.7.10)

can be expanded approximately as follows [1440]:

J(κ) = K
∫ 1

0
e−jkRmax dn(uK,κ) du =

∫ K

0
e−jkRmax dn(u,κ) du

= e−jkRmax

∫ K

0
e−jkRmax

(

dn(u,κ)−1
)

du

≃ e−jkRmax

∫ K

0

[

1− jkRmax

(

dn(u, κ)−1
)+ (−jkRmax)

2

2

(

dn(u, κ)−1
)2

]

du

Using the definitions (22.7.5)–(22.7.7), we find:

∫ K

0

(

dn(u, κ)−1
)

du = π

2
−K ,

∫ K

0

(

dn(u, κ)−1
)2
du = K + E −π

Thus, J(κ) can be written approximately as

J(κ)=
∫ K

0
e−jkRmax dn(u,κ) ≃ e−jkRmax

[

K + jkRmax

(

K − π
2

)

+ (jkRmax)
2

2
(K + E −π)

]

This leads to the following approximations for the kernel G(z). If only the linear

term in (jkRmax) is kept, then

G(z)= 2e−jkRmax

πRmax

[

K + jkRmax

(

K − π
2

)]

(22.7.17)

and, if both the linear and the quadratic terms are kept,

G(z)= 2e−jkRmax

πRmax

[

K + jkRmax

(

K − π
2

)

+ (jkRmax)
2

2
(K + E −π)

]

(22.7.18)

Eqs. (22.7.17) and (22.7.18) are selected with the method = 1,2, respectively, and

provide faster alternatives to the slower but more accurate method of Eq. (22.7.16).

Becauseκ2 = 1−κ′2, floating point accuracy limits the values ofκ′2 to be greater than

about the machine epsilon, that is, κ′ >
√
ǫ, which for MATLAB gives ǫ = 2.22×10−16

and κ′ >
√
ǫ = 1.49×10−8. Since for small z we have κ′ = z/2a, this limitation trans-

lates to a minimum value of z below which the elliptic function calculations cannot be

used and one must use the asymptotic form (22.7.15):

zmin

2a
= κ′ = √ǫ ⇒ zmin = (2.98×10−8)a (22.7.19)
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An alternative computation method, which will also help refine the asymptotic form

(22.7.15), is based on a straightforward series expansion of the integral in (22.7.10):

J(κ) = K
∫ 1

0
e−jkRmax dn(uK,κ) du =

∫ K

0
e−jkRmax dn(u,κ) du

=
∞∑

m=0

(−jkRmax)
m

m!

∫ K

0
dnm(u, κ)du

Defining the integrals,

Jm(κ)=
∫ K

0
dnm(u, κ)du =

∫ π/2

0

(√

1− κ2 sin2 θ

)m−1

dθ , m ≥ 0 (22.7.20)

we have:

J(κ)=
∞∑

m=0

(−jkRmax)
m

m!
Jm(κ) (22.7.21)

The first few of these are:

J0(κ) = K(κ)

J1(κ) = π

2

J2(κ) = E(κ)

J3(κ) = π

4
(1+ κ′2)

J4(κ) = 1

3

[

2(1+ κ′2)E(κ)−κ′2K(κ)]

(22.7.22)

where κ′2 = 1− κ2. The rest can be computed from the following recursion [1452]:

Jm+1(κ)= (m− 1)(1+ κ′2)Jm−1(κ)−(m− 2)κ′2Jm−3(κ)

m
, m ≥ 4 (22.7.23)

Separating the m = 0 term from the rest, the kernel can be written in the form:

G(z)= 2

πRmax

(

K(κ)+C(κ)) , C(κ)=
∞∑

m=1

(−jkRmax)
m

m!
Jm(κ) (22.7.24)

In the limit κ → 1, the quantities Jm(κ) have a finite limit, with the exception of

J0(κ), which diverges as J0(κ)= K(κ)= ln(4/κ′). For example, the term κ′2K(κ) in

J4(κ) converges to zero:

lim
κ→1

κ′2K(κ)= lim
κ′→0

k′2 ln

(
4

κ′

)

= 0

In this limit, the integrals in (22.7.20) can be done in closed form and expressed in

terms of the gamma function [1449]:

Jm(1)=
∫ π/2

0
(cosθ)m−1dθ =

√
π

2

Γ

(
m

2

)

Γ

(
m+ 1

2

) , m ≥ 1 (22.7.25)
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Therefore, the term C(κ) in (22.7.24) also has a finite limit given by:

C(1)=
∞∑

m=1

(−2jka)m

m!
Jm(1) (22.7.26)

where we replaced Rmax = 2a. Then, the asymptotic form (22.7.15) of the kernel may

be modified by adding the constant C(1):

G(z)= 1

πa

[

ln

(
8a

|z|
)

+C(1)
]

, as z→ 0 (22.7.27)

In the function kernel, we use this approximation for |z| < zmin, where the series

for C(1) converges very fast requiring about 4–5 terms for typical values of the radius,

such as 0.001λ ≤ a ≤ 0.01λ.

For |z| ≥ zmin, one may use the series expansion (22.7.24). The smaller the z, the

smaller the number of terms required for convergence of the sum. For example, for the

case a = 0.005λ and for some typical values of z, the number of terms were:

z/λ 3 2 1 0.5 0.05 0.005 0.0005

M 76 58 38 22 10 7 7

The method (22.7.24) is selected by the value method = 4 in the function kernel. We

have included all four methods described by Eqs. (22.7.16)–(22.7.18), and (22.7.24) as

options in kernel. The default method is that of Eq. (22.7.18) selected with method = 2.

22.8 Method of Moments

The method of moments (MoM) refers to a family of numerical methods for solving

integral equations [1393–1399]. We summarize the method in the context of solving

Hallén’s equations for a delta-gap input, and later on, we apply it to the cases of arbitrary

incident fields and Pocklington’s equation. For an antenna of length l, half-length h =
l/2, and radius a, Hallén’s equation reads:

jη

2π

∫ h

−h
G(z− z′)I(z′)dz′ = V(z)= C1 coskz+V0 sink|z| (22.8.1)

where G(z − z′) is the exact or the approximate kernel. The antenna is divided into

N = 2M + 1 segments of width Δ = l/N = 2h/(2M + 1), as shown in Fig. 22.8.1, with

centers at the positions:

zm =mΔ, −M ≤m ≤M (22.8.2)

and the current is expanded into a sum of basis functions:

I(z′)=
M∑

m=−M
Im B(z

′ − zm) (22.8.3)

where B(z′ − zm) are localized functions centered on the mth segment. For example,

in the case of pulse basis functions shown in Fig. 22.8.1, we have:

B(z′ − zm)=
⎧

⎨

⎩

1, if |z′ − zm| ≤ 1

2
Δ

0, otherwise
(22.8.4)
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Fig. 22.8.1 Pulse-function segments along an antenna, with N = 11, M = 5.

Other basis functions are possible such as triangular, sinusoidal, or even plain delta-

functions, and we will consider them in succeeding sections. Because of the localized

nature of the basis, the expansion (22.8.3) is referred to as a sub-domain expansion.

Alternatively, entire-domain basis functions can be used that are defined over the entire

length l of the antenna. Substitution of I(z′) into the Hallén equation gives:

jη

2π

M∑

m=−M
Im

∫ h

−h
G(z− z′)B(z′ − zm)dz′ = V(z) (22.8.5)

The localized nature of B(z′−zm) restricts this integral to be over themth segment.

Next, a local weighted average is formed about each point zn = nΔ by using another

local weighting (or testing) function W(z− zn), which is centered on zn :

jη

2π

M∑

m=−M
Im

∫ h

−h

∫ h

−h
W(z− zn)G(z− z′)B(z′ − zm)dzdz′ =

∫ h

−h
W(z− zn)V(z)dz

This may be written in the N×N matrix form:

M∑

m=−M
ZnmIm = vn , −M ≤ n ≤M (22.8.6)

where we defined

Znm = jη

2π

∫ h

−h

∫ h

−h
W(z− zn)G(z− z′)B(z′ − zm)dzdz′

vn =
∫ h

−h
W(z− zn)V(z)dz

(22.8.7)

Two popular choices for the weighting function are the Galerkin and the point-

matching or collocation choices. In the Galerkin method the weighting function is taken

to be the same as the basis function, and in the point-matching case, it is a delta function:

W(z− zn)= δ(z− zn) (point-matching)

W(z− zn)= B(z− zn) (Galerkin)
(22.8.8)
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Thus, in the point-matching method, Eqs. (22.8.7) reduce to:

Znm = jη

2π

∫ h

−h
G(zn − z′)B(z′ − zm)dz′

vn = V(zn)= C1 coskzn +V0 sink|zn|
(22.8.9)

Similarly, in the Galerkin method, we have:

Znm = jη

2π

∫ h

−h

∫ h

−h
B(z− zn)G(z− z′)B(z′ − zm)dzdz′

vn =
∫ h

−h
B(z− zn)V(z)dz

(22.8.10)

In succeeding sections, we will consider the following cases and discuss how to

compute the quantities Znm and vn:

– Delta-function basis with point matching

– Pulse-function basis with point matching

– Pulse-function basis with Galerkin weighting

– Triangular basis with point matching

– Sinusoidal spline basis (NEC basis) with point matching

– Method of moments for Hallén’s equation with arbitrary incident field

– Method of moments for Pocklington’s equation

We will also consider the following issues that have been discussed extensively in the

literature regarding the existence of solutions of Hallén’s equation (22.8.1) with delta-

gap input [1424–1436]:

1. The approximate kernel is non-singular at z = 0. Yet, the numerical solution of

Hallén’s equation using the approximate kernel does not converge and becomes

unusable for increasing number of segments N and/or for increasing radius a,

whereas the solution based on the exact kernel does converge. However, for mod-

erate values of N, one does get useful results from the approximate kernel.

2. In fact, the approximate-kernel Hallén equation for a delta-gap input does not,

strictly speaking, have a solution, whereas the one with the exact kernel does.

3. The input impedance of the antenna, Z0 = V0/I(0), for the delta-gap case does

not converge to a constant value for the approximate kernel asN increases, but it

does so for the exact kernel. Generally, numerical methods get the resistive part

of Z0 fairly accurately, but have a hard time for the reactive part.

4. The solution I(z) for the exact kernel in the delta-gap case has a logarithmic

singularity at z = 0 of the form:

I(z)≃ −j 4kaV0

η
ln
(

k|z|) , z ≃ 0 (22.8.11)

Therefore, one may wonder if the numerical solutions have any use. However, this

logarithmic singularity is confined to a very narrow range around z = 0 and for

all other values of z, the exact-kernel solution is accurate and useful.
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5. King’s empirical three-term approximation for the current is also very accurate

(except in the immediate vicinity of the logarithmic singularity at z = 0), if fitted

to the exact-kernel solution.

22.9 Delta-Function Basis

Here, we discuss numerical solutions of (22.8.1) using a delta-function basis with point

matching. The basis functions are defined by:

B(z′ − zm)= δ(z′ − zm)Δ (22.9.1)

Fig. 22.9.1 depicts the delta functions as narrow pulses of width δ. The factor Δ is

needed to give I(z′) the right dimensions.

Fig. 22.9.1 Delta-function segments along an antenna, with N = 11, M = 5.

Inserting this basis into Eq. (22.8.9), we find

Znm = jη

2π
G(zn − zm)Δ , −M ≤ n,m ≤M

vn = C1 coskzn +V0 sink|zn| , −M ≤ n ≤M
(22.9.2)

Because zn−zm = (n−m)Δ, the diagonal entries Znn correspond to the evaluation

of the kernel G(z) at z = 0. For the approximate kernel, G(0) is finite (corresponding

to the small but finite radius R = a). But for the exact kernel, G(0) is infinite because

of its logarithmic singularity at z = 0. A reasonable way of modifying Znn is to replace

the infinitely thin delta-function by a finite-width pulse:

B(z)= δ(z)Δ→ u(z+ δ/2)−u(z− δ/2)
δ

Δ

where u(z) is the unit-step. Then, Eq. (22.9.3) gives in the case n =m:

Znn = jη

2π

∫ h

−h
G(zn − z′)B(z′ − zn)dz′ = Δ

δ

jη

2π

∫ δ/2

−δ/2
G(z)dz

where we used the even-ness of G(z). The best choice for δ which yields results com-

parable to the other bases is the value δ = Δ, giving:

Znn = jη

2π

∫ Δ/2

−Δ/2
G(z)dz , −M ≤ n ≤M (22.9.3)
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We evaluate this integral numerically using Gauss-Legendre integration, However,

one could also use quadrature rules [1414,1415] that are more appropriate for the loga-

rithmic singularity of G(z). The above method of regularizing the impedance matrix by

local averaging about the singularity region is akin to alternative discretizations based

on locally-corrected Nyström methods that replace the integral equation by a quadrature

integration rule, such as Gauss-Legendre [1420–1423].

With the definitions (22.9.2) and (22.9.3), the matrix equation (22.8.6) may be written

in the compact form:

ZI = v = C1c+V0s (22.9.4)

where Z is theN×N matrix with matrix elements Znm and I, s, c are the column vectors

with elements In, cn = coskzn, and sn = sink|zn|, for n = −M, . . . ,M. The vector I is

symmetric about its middle, that is, I−n = In, and similarly for c, s. Therefore, we have:

I =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

IM
...

I1
I0
I1
...

IM

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, v =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

vM
...

v1

v0

v1

...

vM

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, c =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cM
...

c1

c0

c1

...

cM

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, s =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sM
...

s1

s0

s1

...

sM

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(22.9.5)

The matrix Z is a symmetric Toeplitz matrix because the matrix element Znm de-

pends only on the difference |n −m|. Taking advantage of the Toeplitz nature of Z
and the symmetry of the vectors (22.9.5), the matrix system (22.9.4) can be replaced by

one essentially half its size, thus, speeding up the solution. To see this, we partition the

vector I into its upper (negative-z), middle, and lower (positive-z) parts:

I =

⎡

⎢
⎣

IR1
I0
I1

⎤

⎥
⎦ , I1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

I1
I2
...

IM

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, IR1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

IM
...

I2
I1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

The upper part IR1 is the reverse of the lower part I1. The reversal operation can be

expressed as a matrix operation:

IR1 = JI1 , J =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 · · · 0 1

0 · · · 1 0

... . .
. ...

...

1 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

where J is theM×M reversing matrix J, that is, the matrix with ones along its antidiag-

onal. Then, the impedance matrix Z and Eq. (22.9.4) can be partitioned in a compatible

way as follows:
⎡

⎢
⎣

AR aR BR

aTR a0 aT

B a A

⎤

⎥
⎦

⎡

⎢
⎣

IR1
I0
I1

⎤

⎥
⎦ =

⎡

⎢
⎣

vR1
v0

v1

⎤

⎥
⎦ (22.9.6)
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where we have separated the middle column and row of Z. Because Z satisfies the

reversal invariance condition Z(n,m)= Z(−n,−m), the upper-left blockAR will be the

reverse of the lower-right block A, and the upper-right, the reverse of the lower-left.

Moreover, because Z is symmetric, we have AR = AT = A and BR = BT.

The reverse of a matrix is obtained by reversing its columns and then reversing its

rows, an operation which is equivalent to multiplication by the reversing matrix J from

left and right:

AR = JAJ
Writing out the three sub-block equations of Eq. (22.9.6), we obtain:

ARIR1 + aRI0 + BRI1 = vR1

aTRIR1 + a0I0 + aTI1 = v0

BIR1 + aI0 +AI1 = v1

But, the first is exactly the reverse of the last, and therefore redundant. Noting that

aTRIR1 = aTI1 and BIR1 = BJI1, we obtain the reduced system:

a0I0 + 2aTI1 = v0

aI0 + (A+ BJ)I1 = v1

which can be written in the reduced block matrix form:

[

a0 2aT

a A+ BJ

][

I0
I1

]

=
[

v0

v1

]

(22.9.7)

Thus, we can replace the N×N system (22.9.4) or (22.9.6) by the (M + 1)×(M + 1)

system (22.9.7) acting only on half-vectors. We will write Eq. (22.9.7) in the following

compact form:

ZI = v = C1c+V0s (22.9.8)

where Z is constructed from Z according to (22.9.7) and the vectors are the half-vectors:

I =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

I0
I1
...

IM

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, v =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

v0

v1

...

vM

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, c =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

c0

c1

...

cM

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, s =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

s0

s1

...

sM

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(22.9.9)

Next, we impose the condition that IM = 0 from which the constant C1 can be

determined. This condition can be written vectorially in the form uTI = 0, where uT =
[0, . . . ,0,1]. Solving (22.9.8) for I, we obtain:

I = C1Z
−1c+V0Z

−1s (22.9.10)

Multiplying both sides by uT, we obtain the condition:

uTI = C1uTZ−1c+V0uTZ−1s = 0
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which may be solved for C1:

C1 = −V0
uTZ−1s

uTZ−1c
(22.9.11)

The two equations (22.9.10) and (22.9.11) provide the complete solution of the dis-

cretized Hallén equation. The MATLAB function hdelta implements the above solution

procedure. It has usage:

[I,z,cnd] = hdelta(L,a,M,ker,basis); % solve Hallén equation with delta-gap input

The string parameter inputs ker and basis take the possible values:

ker = ’e’, ’a’ % exact or approximate kernel

basis = ’p’, ’t’, ’n’, ’d’ % pulse, triangular, NEC, or delta-function basis

where the choice basis=’d’ applies in this section. This function solves the half system

(22.9.8), but returns the fullN-dimensional symmetric vector I of Eq. (22.9.5). The quan-

tity z is theN-dimensional vector of sampled z-points (22.8.2), and cnd is the condition

number of the matrix Z that is being inverted. The quantities L,a are the antenna length

and radius in units of λ, and M has the same meaning as above.

The matrix inversions required in (22.9.10) can be implemented efficiently by MAT-

LAB’s backslash operation Z\[c, s]. The function assumes V0 = 1. Therefore, the input

impedance of the antenna will be Z0 = V0/I0 = 1/I0, where I0 is the middle of the

output vector I (i.e., the sample I(M + 1) in MATLAB indexing.)

Internally, the function hdelta calls the functions hmat and hwrap to construct the

impedance matrices Z and Z:

[Z,B] = hmat(L,a,M,ker,basis); % construct the (2M + 1)×(2M + 1) Hallén impedance matrix

Zwrap = hwrap(Z); % wrap impedance matrix to size (M + 1)×(M + 1)

where B is a tridiagonal matrix that is applicable only in the NEC basis case, as explained

in Sec. 22.12, and is equal to the identity matrix otherwise.

Fast Toeplitz solvers can also be used, based on the Levinson recursion and fast

Cholesky factorizations [49]. However, we found that the built-in linear system solver

of MATLAB is much faster for sizes of the order M = 20–200.

Example 22.9.1: To clarify the structure of the impedance matrix Z and show how to wrap it

efficiently into the half-size of (22.9.7), consider the case N = 7 or M = 3. Because Z
is Toeplitz and symmetric, it can be built from the knowledge of its first column or first

row. The first column is Zn,−M = Zn+M,0, for −M ≤ n ≤ M. Setting m = n +M, so that

m = 0,1, . . . ,2M, the first column (and first row) consists of the numbers:

am = Zm,0 , m = 0,1, . . . ,2M (22.9.12)

Therefore, the full matrix Z will have the form:

Z =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a0 a1 a2 a3 a4 a5 a6

a1 a0 a1 a2 a3 a4 a5

a2 a1 a0 a1 a2 a3 a4

a3 a2 a1 a0 a1 a2 a3

a4 a3 a2 a1 a0 a1 a2

a5 a4 a3 a2 a1 a0 a1

a6 a5 a4 a3 a2 a1 a0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

1022 22. Currents on Linear Antennas

where we partitioned it as in Eq. (22.9.7), with submatrices:

A =

⎡

⎢
⎣

a0 a1 a2

a1 a0 a1

a2 a1 a0

⎤

⎥
⎦ , B =

⎡

⎢
⎣

a4 a3 a2

a5 a4 a3

a6 a5 a4

⎤

⎥
⎦ , a =

⎡

⎢
⎣

a1

a2

a3

⎤

⎥
⎦

Therefore, the wrapped version of Z will be:

Z =
[

a0 2aT

a A+ BJ

]

=

⎡

⎢
⎢
⎢
⎣

a0 2a1 2a2 2a3

a1 a0 + a2 a1 + a3 a2 + a4

a2 a1 + a3 a0 + a4 a1 + a5

a3 a2 + a4 a1 + a5 a0 + a6

⎤

⎥
⎥
⎥
⎦

(22.9.13)

This matrix can be constructed quickly as follows. Once the numbers am,m = 0,1, . . . ,2M

are computed, take the first and last M + 1 numbers, that is, define the two row vectors:

f = [a0, a1, a2, a3, a4, a5, a6] ⇒ g = [a0, a1, a2, a3] , h = [a3, a4, a5, a6]

Then, form the Toeplitz matrix whose first column and first row are g, and add it to the

Hankel matrix whose first column is g and last row is h. This is accomplished easily by the

built-in MATLAB functions toeplitz and hankel:

toeplitz(g,g)+hankel(g,h)=

⎡

⎢
⎢
⎢
⎣

2a0 2a1 2a2 2a3

2a1 a0 + a2 a1 + a3 a2 + a4

2a2 a1 + a3 a0 + a4 a1 + a5

2a3 a2 + a4 a1 + a5 a0 + a6

⎤

⎥
⎥
⎥
⎦

Then, replace the first column by half its value. These procedures are incorporated into the

function hwrap. We note that the full matrix Z can also be constructed using the function

toeplitz by:

Z = toeplitz(f, f)

This is how Z is constructed by the function hmat. ⊓⊔

22.10 Pulse Basis

The delta function discretization scheme described in the previous section yields com-

parable results to the other bases. Here, we look at the pulse-function basis, which was

defined by Eq. (22.8.4) and shown in Fig. 22.8.1. For the point-matching case, the matrix

elements Znm are given by Eq. (22.8.9):

Znm = jη

2π

∫ h

−h
G(zn − z′)B(z′ − zm)dz′ = jη

2π

∫ zm+Δ/2

zm−Δ/2
G(zn − z′)dz′

or, changing integration variable to z = z′ − zm,

Znm = jη

2π

∫ Δ/2

−Δ/2
G(zn − zm − z)dz , −M ≤ n,m ≤M (22.10.1)
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The integration range can be folded in half giving:

Znm = jη

2π

∫ Δ/2

0

[

G(zn − zm − z)+G(zn − zm + z)
]

dz (22.10.2)

The function hmat with the option, basis=’p’, may be used to evaluate Znm, for

both the exact and the approximate kernels. A 32-point Gauss-Legendre quadrature

integration rule is used to evaluate the integral in (22.10.2). The Hallén matrix equation

is again given by (22.9.4):

ZI = v = C1c+V0s (22.10.3)

and may be solved using the techniques of the previous sections. The function hdelta

solves (22.10.3) with the option, basis=’p’.

For the Galerkin case, the matrix equation (22.10.3) has the same form but with some

redefinitions of the quantities Z, c, s. The matrix elements Znm are given by (22.8.10):

Znm = jη

2π

∫ h

−h

∫ h

−h
B(z− zn)G(z− z′)B(z′ − zm)dzdz′ =

= jη

2π

∫ zn+Δ/2

zn−Δ/2

∫ zm+Δ/2

zm−Δ/2
G(z− z′)dzdz′

= jη

2π

∫ Δ/2

−Δ/2

∫ Δ/2

−Δ/2
G(zn − zm + x− x′)dxdx′

where we changed variables to x = z− zn and x′ = z′ − zm. Defining a new integration

variable z = x− x′, then one of the remaining integrations can be done giving:

Znm = jη

2π

∫ Δ

−Δ

(

Δ− |z|)G(zn − zm + z)dz , −M ≤ n,m ≤M (22.10.4)

Similarly, the right-hand side vector v of (22.10.3) has components:

vn =
∫ h

−h
B(z− zn)V(z)dz =

∫ Δ/2

−Δ/2
V(zn + x)dx

= C1

∫ Δ/2

−Δ/2
cosk(zn + x)dx+V0

∫ Δ/2

−Δ/2
sink|zn + x|dx ≡ C1cn +V0sn

where the individual terms cn, sn can be calculated explicitly:

cn =
∫ Δ/2

−Δ/2
cosk(zn + x)dx = 2

k
sin

(
kΔ

2

)

coskzn

sn =
∫ Δ/2

−Δ/2
sink|zn + x|dx = 4

k
sin2

(
kΔ

4

)

δ(n)+2

k
sin

(
kΔ

2

)

sink|zn|
(22.10.5)

where δ(n) is the Kronecker delta, and zn = nΔ, for −M ≤ n ≤ M. The Galerkin

method yields very comparable results to the point matching case.

Some examples of the point-matching case with pulse-function basis were shown in

Figs. 22.6.1 and 22.6.2. Some further examples are given below based on [1433,1434].
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Fig. 22.10.1 Real and imaginary parts of I(z) for half-wave dipole, M = 50 and M = 100.

Fig. 22.10.1 compares the solutions of (22.10.3) using the exact and the approximate

kernels for a dipole of length l = 0.5λ and radius a = 0.005λ.

The upper two graphs show the real and imaginary parts of the current samples In
(joined here by straight lines) using M = 50, which corresponds to N = 2M + 1 = 101

segments. The lower two graphs show the case of M = 100. We note that for the

approximate kernel, the solution oscillates wildly near the center and the end-points

of the antenna—a behavior attributed to the non-existence of solutions of the Hallén

equation Eq. (22.8.1) in this case. Fig. 22.10.2 depicts the case of a half-wave dipole with

a larger radius a = 0.008λ and M = 100, for which the oscillations get worse.

We have not superimposed King’s three-term fit because it is virtually indistinguish-

able from the exact-kernel solution. The graphs, including the 3-term fit, may be gener-

ated by the following example MATLAB code:

L=0.5; a=0.005; M=100;

[Ie,z] = hdelta(L,a,M,’e’,’p’); % solution of Hallén equation with exact kernel

Ia = hdelta(L,a,M,’a’,’p’); % solution of Hallén equation with approximate kernel

A = kingfit(L,Ie,z,3); % three-term coefficients fitted to exact-kernel solution

I3 = kingeval(L,A,z); % evaluate 3-term current at the sample points z

figure; plot(z,real(Ie),’-’, z,real(Ia),’:’, z,real(I3),’--’);

figure; plot(z,imag(Ie),’-’, z,imag(Ia),’:’, z,imag(I3),’--’);
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Fig. 22.10.2 Current on half-wave dipole of radius a = 0.008λ and M = 100.

In Fig. 22.10.3, we compare how well the logarithmic behavior of Eq. (22.8.11) near

z = 0 fits the computed current I(zn).
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Fig. 22.10.3 Logarithmic behavior of the solution near z = 0.

To make the comparison, we adjust the asymptotic form (22.8.11) to match the

computed value at the the closest z-point to zero, that is, at z1 = Δ. The adjusted

asymptotic current is then,

Ilog(z)≃ −j 4kaV0

η
ln

∣
∣
∣
∣

z

z1

∣
∣
∣
∣+ I(z1) , z ≃ 0 (22.10.6)

so that it satisfies Ilog(z1)= I(z1). For the case a = 0.005λ and M = 50, Fig. 22.10.3

plots the imaginary part of the computed current I(z) based on the exact kernel, to-

gether with the corresponding three-term fit, and the asymptotic current Ilog(z).

The graph on the left is over the interval 0 ≤ z ≤ 0.25λ, whereas the graph on the

right shows only the narrow interval 0 ≤ z ≤ 0.05λ, and both graphs use an expanded

vertical scale compared to that of Fig. 22.10.1. The logarithmic behavior is evident. We

note also that the three-term fit agrees very well with the computed current except in a

narrow interval about z = 0.
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Finally, we look at the stability of the numerical solutions based on the exact and

approximate kernels as the number of segments M increases. Fig. 22.10.4 depicts the

calculated input admittance Y0 = I0/V0 as a function of the number of segments M.
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Fig. 22.10.4 Input admittance of half-wave dipole vs. number of segments M.

The conductanceG0 = Re(Y0) converges for both the exact and approximate kernel

solutions. However, the susceptance B0 = Im(Y0) diverges for the approximate kernel

case, and converges for the exact kernel—the two agreeing well only for M ≲ 30.

Fig. 22.10.5 depicts the dependence of the condition number of the Hallén impedance

matrix Z on the number of segments M. We note the relative well-conditioning of the

exact-kernel case. The above graphs may be computed with the following MATLAB code:

L=0.5; a=0.005;

for M=1:1:100,

[I,z,cnd] = hdelta(L,a,M,’e’,’p’); Ye(M) = I(M+1); ce(M) = cnd;

[I,z,cnd] = hdelta(L,a,M,’a’,’p’); Ya(M) = I(M+1); ca(M) = cnd;

end

M=1:1:100;

figure; plot(M,real(Ye),’-’, M,real(Ya),’.’);

figure; plot(M,imag(Ye),’-’, M,imag(Ya),’.’);

figure; semilogy(M,ce,’-’, M,ca,’--’);

For very small antenna radius, the exact and approximate kernels produce essentially

the same current solutions. Fig. 22.10.6 shows the input impedance Z0 = R + jX =
V0/I0 versus the antenna length in the interval 0.3λ ≤ l ≤ 0.7λ, and for the two radii

a = 0.0005λ and 0.000001λ.

The calculation was carried out using a pulse basis and the approximate kernel with

M = 100 segments, but one could just as well have used the exact kernel or a trian-

gular basis with very little difference in the results. The graphs are similar to those

of Fig. 17.3.1 and show the resonant length at about 0.48λ–0.49λ. The graphs were

produced with the MATLAB code:

L = linspace(0.3,0.7,41);

a = [0.0005, 0.00001];
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Fig. 22.10.5 Condition number of Hallén impedance matrix vs. number of segments M.

M = 100;

for i=1:length(L),

for k=1:length(a),

I = hdelta(L(i),a(k),M,’a’,’p’); Z(i,k) = 1/I(M+1);

end

end

figure; plot(L, real(Z(:,1)), ’-’, L, real(Z(:,2)), ’--’);

figure; plot(L, imag(Z(:,1)), ’-’, L, imag(Z(:,2)), ’--’);
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Fig. 22.10.6 Input impedance versus antenna length.

22.11 Triangular Basis

For the triangular basis, the current expansion (22.8.3), reads

I(z′)=
M∑

m=−M
ImB(z

′ − zm) (22.11.1)
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where B(z) is the triangular function:

B(z)=

⎧

⎪⎨

⎪⎩

1− |z|
Δ
, if |z| ≤ Δ

0 , otherwise
(22.11.2)

The triangular basis functions, depicted in Fig. 22.11.1, have duration 2Δ, that is,

twice as long as the pulse case. The linear combination of (22.11.1) is equivalent to

connecting the sample values Im by straight line segments.

Fig. 22.11.1 Triangular basis functions with N = 11, M = 5.

The antenna is divided into N = 2M segments of width Δ = l/2M = h/M, and the

(2M + 1) points zm =mΔ , −M ≤m ≤ M, lie at the end points of these segments. As

depicted in Fig. 22.11.1, the influence of the last current sample IM at zM (and I−M at

z−M) may be thought of as extending beyond the end of the antenna by an additional

segment. The vanishing of the current at the ends of the antenna is enforced by the

conditions IM = I−M = 0.

For point-matching, the Hallén impedance matrix (22.8.9) will be given as follows:

Znm = jη

2π

∫ h

−h
G(zn − z′)B(z′ − zm)dz′

= jη

2π

∫ zm+Δ

zm−Δ

(

1− |z
′ − zm|
Δ

)

G(zn − z′)dz′

= jη

2π

∫ Δ

−Δ

(

1− |z|
Δ

)

G(zn − zm − z)dz

(22.11.3)

which differs by a factor of Δ from the Galerkin case of the pulse basis, Eq. (22.10.4).

The Hallén matrix equation remains the same as (22.9.4):

ZI = v = C1c+V0s (22.11.4)

with the same right-hand vectors, that is, cn = coskzn and sn = sink|zn|,−M ≤ n ≤M.

It may be solved by the function hmat, called with the option, basis=’t’. A 32-point

Gauss-Legendre quadrature is used to compute the integrals in (22.11.3).

The exact and approximate kernel current solutions and input admittance exhibit

the same behavior in the triangular basis as in the pulse basis.

Using the exact kernel, the triangular basis converges faster than the pulse basis

as the number of segments M increases. Fig. 22.11.2 compares the convergence of the

input admittance of a half-wave dipole with radius a = 0.005λ for the two bases.
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Fig. 22.11.2 Input admittance computed with pulse and triangular basis functions.

22.12 NEC Sinusoidal Basis

The Numerical Electromagnetics Code (NEC) is a widely used public-domain program

for modeling antennas and other structures [1407]. The program solves Pocklington’s

equation using point-matching and a spline-like sinusoidal basis. A similar basis was

originally used by [1391]. For a linear antenna, the basis is defined by:

B(z)=

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

A− + B− sink(z+Δ)+C− cosk(z+Δ) , −3Δ

2
≤ z ≤ −Δ

2

A0 + B0 sinkz+C0 coskz , −Δ
2
≤ z ≤ Δ

2

A+ + B+ sink(z−Δ)+C+ cosk(z−Δ) , Δ

2
≤ z ≤ 3Δ

2

(22.12.1)

whereΔ is the segment length defined as usual byΔ = 2h/(2M+1). The basis function

B(z) is shown on the left of Fig. 22.12.1. It extends over three consecutive segments.

Fig. 22.12.1 NEC sinusoidal basis functions.

The A,B,C coefficients are determined by imposing the spline-like conditions that

(a) the three pieces of B(z) join continuously, as do their slopes, at the points z = ±Δ/2,

(b) at the end-points z = ±3Δ/2, the function B(z)and its derivative vanish, and (c) at

the center z = 0, B(0) is normalized to one. These conditions provide nine equations

1030 22. Currents on Linear Antennas

for the nine coefficients, with solution:

A0 =
1− 2c2

Δ

1+ cΔ − 2c2
Δ

, B0 = 0 , C0 = cΔ

1+ cΔ − 2c2
Δ

(22.12.2)

A± = 1

2(1+ cΔ − 2c2
Δ)
, B± = ∓ sΔ

2(1+ cΔ − 2c2
Δ)
, C± = − cΔ

2(1+ cΔ − 2c2
Δ)

(22.12.3)

where cΔ, sΔ are shorthands for the quantities:

cΔ = cos

(
kΔ

2

)

, sΔ = sin

(
kΔ

2

)

(22.12.4)

The current expansion in terms of this basis is as follows:

I(z)=
M∑

m=−M
bmB(z− zm) (22.12.5)

where zm =mΔ, −M ≤m ≤M and the coefficients bm are to be determined.

Fig. 22.12.2 NEC sinusoidal basis with N = 11, M = 5.

Fig. 22.12.2 depicts (22.12.5). Actually, the NEC basis handles the two end segments

centered at z±M separately [1407] and uses the following expansion instead of (22.12.5):

I(z)= b−MBL(z− z−M)+
(M−1)
∑

m=−(M−1)

bmB(z− zm)+bMBR(z− zM) (22.12.6)

where BR(z) and BL(z) are given by:

BR(z)=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

AR− + BR− sink(z+Δ)+CR− cosk(z+Δ) , −3Δ

2
≤ z ≤ −Δ

2

AR0 + BR0 sinkz+CR0 coskz , −Δ
2
≤ z ≤ Δ

2

(22.12.7)

and BL(z)= BR(−z), where the coefficients are determined by requiring (a) the conti-

nuity of the two pieces and their derivatives at z = −Δ/2, (b) the vanishing of BR(z)

at z = Δ/2, (c) the vanishing of BR(z) and its derivative at z = −3Δ/2, and (d) the

normalization condition BR(0)= 1. These give:

AR− =
1

1+ 3cΔ − 4c2
Δ

, BR− =
sΔ

1+ 3cΔ − 4c2
Δ

, CR− = −
cΔ

1+ 3cΔ − 4c2
Δ

AR0 =
1− 4c2

Δ

1+ 3cΔ − 4c2
Δ

, BR0 = −
sΔ

1+ 3cΔ − 4c2
Δ

, CR0 =
3cΔ

1+ 3cΔ − 4c2
Δ

(22.12.8)
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The functions BL(z)and BR(z) are depicted on the right of Fig. 22.12.1, and are

shown as dashed curves at the antenna ends in Fig. 22.12.2. Because of the end condi-

tions I±M = 0, it makes very little difference whether one uses (22.12.5) or (22.12.6). We

will use the former.

Because B(z) straddles three adjacent segments and B(±Δ) �= 0, the value of the

current at a sample point zn will receive contributions from the two adjacent samples

zn−1 and zn+1. For −M < n < M, we have from (22.12.5):

In = I(zn)= bn−1B(zn − zn−1)+bnB(zn − zn)+bn+1B(zn − zn+1)

= bn−1B(Δ)+bnB(0)+bn+1B(−Δ)
or, noting that B(0)= 1 and defining β = B(Δ)= B(−Δ),

In = βbn−1 + bn + βbn+1 , −M < n < M (22.12.9)

and for the end points:

I−M = b−M + βb−M+1 , IM = βbM−1 + bM (22.12.10)

Eqs. (22.12.9) and (22.12.10) can be arranged into a tridiagonal matrix, for example,

I =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I−3

I−2

I−1

I0
I1
I2
I3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 β 0 0 0 0 0

β 1 β 0 0 0 0

0 β 1 β 0 0 0

0 0 β 1 β 0 0

0 0 0 β 1 β 0

0 0 0 0 β 1 β

0 0 0 0 0 β 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b−3

b−2

b−1

b0

b1

b2

b3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≡ Bb (22.12.11)

It follows from Eq. (22.12.1) that the parameter β is equal to A+ +C+, or,

β = B(Δ)= 1− cΔ
2(1+ cΔ − 2c2

Δ)
(22.12.12)

For the pulse and triangular bases, the matrix B is equal to the identity matrix be-

cause in these cases β = B(Δ)= 0.

Next, we determine the solution of Hallén’s equation with point matching. Inserting

the expansion (22.12.5) into (22.8.1), and evaluating it at the sample point zn, we obtain

the matrix equation for the coefficients bm:

M∑

m=−M
Znmbm = C1 coskzn +V0 sink|zn| , −M ≤ n ≤M (22.12.13)

or, written compactly,

Zb = C1c+V0s (22.12.14)

where the matrix elements Znm are given by:

Znm = jη

2π

∫ h

−h
G(zn − z′)B(z′ − zm)dz′

= jη

2π

∫ 3Δ/2

−3Δ/2
B(z)G(zn − zm − z)dy

(22.12.15)
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Substituting (22.12.11) into (22.12.14), we obtain,

ZB−1I = C1c+V0s (22.12.16)

This has the same form as (22.9.4) with the replacement Z → ZB−1 and therefore,

it can be solved by the same method. The MATLAB function hdelta implements the

solution with the option, basis=’n’.

The function hmat calculates Z, and it also optionally, outputs the matrix B, which

is required in (22.12.16). The integral in (22.12.15) is calculated with Gauss-Legendre

quadrature. The basis function B(z) may be evaluated with the help of the MATLAB

function hbasis, with usage:

B = hbasis(z,Delta,basis); % evaluate basis function B(z) at a vector of z’s

where Delta is the value ofΔ and the string basis can take the possible values ’p’, ’t’,

’n’, ’nR’, ’nL’, for pulse, triangular, and NEC basis (the last two options evaluate the

rightmost and leftmost NEC basis functions.)

The NEC basis for the Hallén equation has very comparable performance to the pulse

basis with point matching—the two agreeing to within one percent or so, and hence, we

do not give any further examples.

22.13 Hallén’s Equation for Arbitrary Incident Field

Here, we discuss the solution of Hallén’s equation (22.3.11) with arbitrary incident field:

jη

2π

∫ h

−h
G(z− z′)I(z′)dz′ = C1e

jkz +C2e
−jkz +

∫ h

−h
F(z− z′)Ein(z

′)dz′ (22.13.1)

In applying the method of moments, we expand the current and the incident field

with respect to a given basis B(z):

I(z′) =
M∑

m=−M
ImB(z

′ − zm)

Ein(z
′) =

M∑

m=−M
EmB(z

′ − zm)
(22.13.2)

We consider only the point-matching case. Sampled at the points zn = nΔz, the

convolution of the incident field with the Green’s function F(z) becomes:

∫ h

−h
F(zn − z′)Ein(z

′)dz′ =
M∑

m=−M
Em

∫ h

−h
F(zn − z′)B(z′ − zm)dz′

We define the Green’s matrix Fnm, for −M ≤ n,m ≤M by

Fnm =
∫ h

−h
F(zn − z′)B(z′ − zm)dz′ =

∫ h

−h
F(zn − zm − z)B(z)dz (22.13.3)
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It follows that the discretized Hallén equation (22.13.1) takes the form:

M∑

m=−M
ZnmIm = C1e

jkzn +C2e
−jkzn +

M∑

m=−M
FnmEm (22.13.4)

where Znm are defined as in the previous sections:

Znm =
∫ h

−h
G(zn − z′)B(z′ − zm)dz′ =

∫ h

−h
G(zn − zm − z)B(z)dz

Eq. (22.13.4) can be written in the compact form:

ZI = C1s1 +C2s2 + FE (22.13.5)

where s1 and s2 are column vectors with elements s1(n)= ejkzn and s2(n)= e−jkzn .

Defining the N×2 matrix S = [s1, s2] and the two-dimensional column vector of con-

stants C = [C1, C2]
T, we write Eq. (22.13.5) in the form:

ZI = SC+ FE (22.13.6)

For the NEC basis, the expansion (22.13.2) has the modified form:

I(z′)=
M∑

m=−M
bmB(z

′ − zm) , Ein(z
′)=

M∑

m=−M
emB(z

′ − zm) (22.13.7)

where the vectors of the coefficients bm and em are related to the values of the current

and field, Im and Em, at the sample points zm via the tridiagonal matrix B of (22.12.11):

I = Bb , E = Be (22.13.8)

The discretized Hallén equation now takes the form:

Zb = SC+ Fe (22.13.9)

and expressed in terms of I and E :

ZB−1I = SC+ FB−1E (22.13.10)

For the pulse, triangular, and delta bases B is replaced by the identity matrix. It

is not possible to wrap this equation in half because E is not necessarily symmetric

about its middle. The constants C must be found by imposing the two independent end

conditions I(zM)= I(−zM)= 0. These conditions can be written compactly as:

UTI = 0

where U = [utop,ubot] and utop = [1,0, . . . ,0]T selects the top entry of the vector I,

while ubot = [0, . . . ,0,1]T selects the bottom entry. Solving for I, we have:

I = BZ−1SC+BZ−1FB−1E (22.13.11)
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Multiplying from the left by the matrix UT, we obtain the condition:

UTI = UTBZ−1SC+UTBZ−1FB−1E = 0

which may be solved for C :

C = −(UTBZ−1S)−1(UTBZ−1FB−1E) (22.13.12)

Eqs. (22.13.11) and (22.13.12) describe the complete solution of the discrete Hallén

equation (22.13.10). The MATLAB function hfield implements the solution, with usage:

[I,z,cnd] = hfield(L,a,E,ker,basis); % Hallen’s equation with arbitrary incident E-field

where instead of the parameter M, it has as input the vector E of the samples of the

incident field. The dimensionN = 2M+1 is extracted from the length of E. The strings

ker and basis have the same meaning as for the function hdelta.

The functions hdelta and hfield produce practically identical output in the delta-

gap case, that is, when the incident field is:

E = [0, 0, . . . , 0
︸ ︷︷ ︸

M zeros

,
1

Δ
, 0, . . . ,0,0
︸ ︷︷ ︸

M zeros

]T (22.13.13)

The middle entry imitates the delta-gap V0δ(z)≃ V0/Δ near z = 0. For the case of a

field incident at a polar angle θ as in Eq. (22.2.4), the sampled vector E will have entries:

En = E0 sinθejkzn cosθ , zn = nΔ , −M ≤ n ≤M (22.13.14)

Fig. 22.13.1 compares the current solutions using hdelta and hfield with the input

of Eq. (22.13.13), for the case of a half-wave dipole of radius a = 0.005λ, using a pulse

basis with M = 50 and the exact kernel.
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Fig. 22.13.1 Comparison of delta-gap and field solutions for a half-wave dipole.

For larger values of M, the results of the two methods are indistinguishable. The

following example MATLAB code can be used to generate these graphs:
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L=0.5; a=0.005; M = 30; D = L/(2*M+1);

E = zeros(2*M+1,1); E(M+1)=1/D; % define E by Eq. (22.13.13)

[If,z] = hfield(L,a,E,’e’,’p’); % field input

[Id,z] = hdelta(L,a,M,’e’,’p’); % delta-gap input

figure; plot(z,real(If),’-’, z,real(Id),’.’);

figure; plot(z,imag(If),’-’, z,imag(Id),’.’);

Next, we discuss the computation of the matrix elements Fnm for different basis

functions. It follows from Eq. (22.13.3) and the even-ness of B(z) that Fnm is a Toeplitz

and symmetric matrix and, therefore, it depends on n,m through the difference |n−m|.
Thus, it can be constructed by Fnm = f|n−m|, where fm is given by

fm =
∫ h

−h
F(mΔ− z)B(z)dz , m = 0,1, . . . ,2M (22.13.15)

Once the vector f = [f0, f1, . . . , f2M] is computed, the matrix F can be constructed as

a Toeplitz matrix whose first row or first column is f, by calling the function toeplitz:

F = toeplitz(f, f)

For the Green’s function F(z) we choose,

F(z)= sink|z|

although any of those listed in Eq. (22.3.8) could have been chosen. The integrals in

(22.13.15) can be done in closed form resulting in the following expressions for fm in

the various bases. For the delta-function basis B(z)= δ(z)Δ, we have:

fm = F(mΔ)Δ = sin(kmΔ)Δ , 0 ≤m ≤ 2M (22.13.16)

For the pulse basis, fm is given by

fm =
∫ Δ/2

−Δ/2
sin

(

k|mΔ− z|)dz (22.13.17)

which gives:

fm = 2

k
sin

(
kΔ

2

)

sin(kmΔ) , 1 ≤m ≤ 2M

f0 = 2

k

(

1− cos
kΔ

2

) (22.13.18)

For the triangular basis, we have:

fm =
∫ Δ

−Δ

(

1− |z|
Δ

)

sin
(

k|mΔ− z|)dz

with the result:

fm = 2(1− coskΔ)

k2Δ
sin(kmΔ) , 1 ≤m ≤ 2M

f0 = 2(kΔ− sinkΔ)

k2Δ

(22.13.19)
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For the NEC basis, fm is defined by

fm =
∫ 3Δ/2

−3Δ/2
B(z)sin

(

k|mΔ− z|)dz

where B(z) is given by (22.12.1), and we obtain:

fm = Δ

2D

(

cos
kΔ

2
− cos

3kΔ

2

)

sin(kmΔ) , 2 ≤m ≤ 2M

f0 = 2

kD

[

cos
kΔ

2
− coskΔ+ kΔ

4
sin

3kΔ

2

]

f1 = 1

kD

[

1− cos
kΔ

2
+ kΔ

4

(

sin
kΔ

2
+ sin

3kΔ

2
− sin

5kΔ

2

)]

(22.13.20)

where D is the normalization factor:

D = 1+ cos
kΔ

2
− 2 cos2 kΔ

2
= cos

kΔ

2
− coskΔ

As in the delta-gap case, the pulse and NEC bases give almost identical results, while

the triangular basis converges the fastest. For large M, all bases produce virtually the

same result if the exact kernel is used. The approximate kernel solutions suffer from

the same type of oscillations as in the delta-gap case.

Fig. 22.13.2 shows the current induced on a half-wave dipole antenna of radius a =
0.005λ by a plane wave incident from broadside. Setting θ = 90o in (22.13.14) results

into constant E-field samples Em = E0, for −M ≤m ≤M. To illustrate the convergence

properties, the current was computed using a triangular basis with M = 30, and then

using a pulse basis with successively increasing values of M = 30, 50, 100, converging

to the triangular case. The M = 50,100 cases for a triangular basis are not shown

because they are indistinguishable from the M = 30 case.
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Fig. 22.13.2 Current on half-wave dipole induced by plane wave incident from broadside.
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22.14 Solving Pocklington’s Equation

In this section, we discuss the numerical solution of Pocklington’ s equation (22.1.9) for

arbitrary incident field. Rearranging some constants, we can write it in the form:

(

∂2
z + k2

) jη

2π

∫ h

−h
G(z− z′)I(z′)dz′ = 2kEin(z) (22.14.1)

where G(z) is the exact or the approximate kernel. Eq. (22.14.1) must be solved sub-

ject to the end-point conditions I(±h)= 0. Its numerical solution has been studied

extensively [1384–1444].

In our method of solution we use point matching and, following Ref. [1406], ap-

ply a finite-difference approximation to the Helmholtz operator (∂2
z + k2) to convert

(22.14.1) into a matrix equation for the current. The method generates essentially the

same solutions as the Hallén equation and is efficiently implementable, making use of

the numerical tools that we developed in the previous sections for computing the Hallén

impedance matrix for different bases,

Znm = jη

2π

∫ h

−h
G(zn − zm − z)B(z)dz (22.14.2)

For convenience, we write (22.14.1) in the form:

(∂2
z + k2)V(z)= 2kEin(z) , V(z)= jη

2π

∫ h

−h
G(z− z′)I(z′)dz′ (22.14.3)

Evaluating (22.14.3) at theN = 2M+1 sample points zn = nΔ, −M ≤ n ≤M, where

the spacing Δ is given by Δ = 2h/(2M+1) in the pulse, NEC, and delta-function bases,

and Δ = h/M in the triangular basis, we have:

(∂2
z + k2)V(zn)= 2kEin(zn) , V(zn)= jη

2π

∫ h

−h
G(zn − z′)I(z′)dz′ (22.14.4)

Following [1406], we replace the second derivative in z by the finite difference:

∂2
zV(zn)≃

V(zn+1)−2V(zn)+V(zn−1)

Δ2

Denoting Vn = V(zn) and En = Ein(zn), Eq. (22.14.4) becomes:

Vn+1 − 2Vn +Vn−1

Δ2
+ k2Vn = 2kEn

which can be re-written as:

Vn+1 − 2αVn +Vn−1 = End (22.14.5)

where we defined α = 1 − k2Δ2/2 and d = 2kΔ2, and we must restrict n to the range

−(M− 1)≤ n ≤M− 1. Eq. (22.14.5) may be written in the following tridiagonal matrix
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form that displays all the samples Vn and En, −M ≤ n ≤M, shown here for M = 3:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0

1 −2α 1 0 0 0 0

0 1 −2α 1 0 0 0

0 0 1 −2α 1 0 0

0 0 0 1 −2α 1 0

0 0 0 0 1 −2α 1

0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V−3

V−2

V−1

V0

V1

V2

V3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E−3

E−2

E−1

E0

E1

E2

E3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

d

(22.14.6)

where the top and bottom rows of zeros are redundant and have been added to make

these matrices square, both having rank (N− 2). We may write (22.14.6) compactly as:

AV = QEd (22.14.7)

We note that Q is a projection matrix and so is its complement P = I −Q,† which

enforces the end-point conditions I±M = 0:

PI = (I −Q)I =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I−3

I−2

I−1

I0
I1
I2
I3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I−3

0

0

0

0

0

I3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0 (22.14.8)

The samples Vn can be represented in terms of the Hallén impedance matrix and

current samples In with respect to a particular basis B(z). Inserting the expansion,

I(z)=
M∑

m=−M
ImB(z− zm)

into (22.14.4), we have:

Vn =
M∑

m=−M
Im

jη

2π

∫ h

−h
G(zn − zm − z)B(z)dz =

M∑

m=−M
ZnmIm

with Znm given by (22.14.2). Vectorially, we may write

V = ZI

For the NEC basis, we have instead:

I(z)=
M∑

m=−M
bmB(z− zm) , and,

Vn =
M∑

m=−M
bm

jη

2π

∫ h

−h
G(zn − zm − z)B(z)dz =

M∑

m=−M
Znmbm , or,

†here, I is the identity matrix.
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V = Zb , with I = Bb ⇒ V = ZB−1I (22.14.9)

with B defined as in (22.12.11). Combining with (22.14.7), we obtain:

AZB−1I = QEd (22.14.10)

Using (22.14.8) and the idempotent propertyQ2 = Q, we have I = QI = Q2I. Making

this replacement into (22.14.10), we obtain:

(AZB−1Q)(QI)= (QE)d (22.14.11)

This is the discretized Pocklington equation for the current. The operationAZB−1Q
simply extracts the middle portion of the matrix AZB−1, and QI and QE extract the

middle portions of I and E . Indeed, we have

QE =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E−3

E−2

E−1

E0

E1

E2

E3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

E−2

E−1

E0

E1

E2

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≡

⎡

⎢
⎣

0

Ē

0

⎤

⎥
⎦

and similarly, AZB−1 and AZB−1Q have the structures:

AZB−1 =

⎡

⎢
⎢
⎣

0 0T 0

a Z̄ b

0 0T 0

⎤

⎥
⎥
⎦ ⇒ AZB−1Q =

⎡

⎢
⎢
⎣

0 0T 0

0 Z̄ 0

0 0T 0

⎤

⎥
⎥
⎦

where Z̄ is an (N−2)×(N−2) non-singular matrix. Thus, (22.14.11) is equivalent to:

⎡

⎢
⎢
⎣

0 0T 0

0 Z̄ 0

0 0T 0

⎤

⎥
⎥
⎦

⎡

⎢
⎣

0

Ī

0

⎤

⎥
⎦ =

⎡

⎢
⎣

0

Ē

0

⎤

⎥
⎦d ⇒ Z̄Ī = Ēd (22.14.12)

with solution:

Ī = Z̄−1Ēd , I = QI =

⎡

⎢
⎣

0

Ī

0

⎤

⎥
⎦ (22.14.13)

The MATLAB function pfield implements the above solution procedure:

[I,z,cnd] = pfield(L,a,E,ker,basis); solve Pocklington’s equation

where I, E, z are the vectors of sampled values In, En, zn = nΔ, the quantity cnd is the

condition number of the Pocklington impedance matrix Z̄, and the string constants ker

and basis take the possible values:

ker = ’e’, ’a’, % exact or approximate kernel

basis = ’p’, ’t’, ’n’, ’d’, % pulse, triangular, NEC, or delta-function basis
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The condition number of the Pocklington matrix Z̄ can be one or more orders of

magnitude larger than that of the Hallén matrix Z. Yet, the computed currents by the

functions pfield and hfield are remarkably close to each other and virtually indistin-

guishable over a wide range of the parameters L,a,M.

The large condition number is due to the Helmholtz operator (∂2
z+k2)—represented

in discrete form by the matrix A—which causes the Pocklington kernel to become less

well-behaved than the Hallén kernel. This has been a primary concern in all the numerical

methods for solving Pocklington’s equation.

Fig. 22.14.1 shows the currents computed by the Pocklington and Hallén methods

induced on a half-wave dipole antenna of radius a = 0.005λ by a plane wave incident

from broadside (left graph) and by a delta-gap input (right graph).
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Fig. 22.14.1 Comparison of Pocklington and Hallén equation solutions.

The top curves represent the real parts of the currents and the bottom ones, the

imaginary parts. We used a triangular basis with the exact kernel and M = 30 seg-

ments. The condition numbers of the impedance matrices Z and Z̄ were 17 and 377,

respectively. The following MATLAB code illustrates the computation:

L = 0.5; a = 0.005; M = 30; ker = ’e’; basis = ’t’;

if basis==’t’, D = L/(2*M); else D = L/(2*M+1); end

E = zeros(2*M+1,1); E(M+1) = 1/D; % delta-gap input

% E = ones(2*M+1,1); % plane-wave input

[If,zf,cf] = hfield(L,a,E,ker,basis); % Hallén

[Ip,zp,cp] = pfield(L,a,E,ker,basis); % Pocklington

plot(zf,real(If),’.’, zp, real(Ip), ’-’, zf,imag(If),’.’, zp, imag(Ip), ’-’);

To see the dramatic difference between the Hallén and Pocklington impedance ma-

trices Z and Z̄, Fig. 22.14.2 plots the singular values of these matrices (normalized to

their maximum value) for the case of a half-wave dipole of radius a = 0.005λ using a

triangular basis with M = 100 and the exact kernel. The computed condition numbers

for Z and Z̄ were 59 and 1185, respectively.

The numerical solution of Pocklington’s equation has similar properties as the Hallén

case, such as, the triangular basis converging faster than the other bases with increasing
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Fig. 22.14.2 Singular values of the impedance matrices Z and Z̄ for N=2M+1=201.

M, and the use of the approximate kernel causing oscillations at the end-points of the

antenna (and at the center for delta-gap input.)

This chapter dealt with the currents on a single linear antenna. The case of several

antennas forming an array and interacting with each other is treated in Chap. 23.

Hallén’s and Pocklington’s integral equations generalize into a system of several

coupled integral equations for the currents on the antennas. We solve the coupled

Hallén equations in the case of delta-gap center-driven antennas. The linearity of the

equations allows us to collect them together into a block matrix system from which the

currents on each antenna can be obtained.

One simplification arises in the case of an array of identical antennas. Then, the

block linear system can be wrapped in half much like it was done in Sec. 22.9, thus,

reducing the computational cost.

The case of an array of non-identical antennas is also considered and we obtain

solutions for Yagi-Uda arrays with parasitic reflector and director antennas.

22.15 Problems

22.1 Plot the approximations of sinkR/kR given in Eqs. (22.6.1) and (22.6.18) versus R in the

range R ≤ 2λ and verify their validity. Prove the identity:

sinkR

kR
= sin(kR/8)

kR/8
cos(kR/8)cos(kR/4)cos(kR/2)

which leads to the approximation:

sinkR

kR
≃ cos(kR/8)cos(kR/4)cos(kR/2)

Determine the range of applicability of this approximation and plot it together with the

previous two cases. Show that it leads to a six-term sinusoidal fit for the current. What are

the current basis functions Ii(z), i = 1,2, . . . ,6, in this case?

22.2 Computer Experiment—Solving Hallén’s Equation. Consider a dipole antenna of length l =
0.5λ and radius a = 0.005λ.

1042 22. Currents on Linear Antennas

a. For each of the values M = 20,50,100,200, solve Hallén’s equation for a delta-gap

input with voltage V0 = 1 volt using both the exact and the approximate kernels. Plot

the real and imaginary parts of the current Im = I(zm) versus zm over the right half

of the antenna, that is, 0 ≤ zm ≤ h, where h = l/2.

b. Fit to the computed current samples Im of the exact kernel to King’s three-term approx-

imation. Then, place the fitted points on the same graphs as in part (a). Discuss how

well or not the three-term approximation fits the exact-kernel and the approximate-

kernel current.

Repeat by using a two-term approximation. Discuss how well or not the two-term

approximation fits the exact-kernel and the approximate-kernel current.

c. To illustrate the logarithmic singularity near z = 0, evaluate the limiting expression at

the points zm, m = 1,2, . . . ,M, for M = 200 (the point z0 = 0 is to be skipped):

Ilog(zm)= −j 4kaV0

η
ln
(

k|zm|
)+ const.

Adjust the constant so that this expression agrees with the exact-kernel current at the

point z1, that is, Ilog(z1)= I1. Then, plot the imaginary parts of Im and Ilog(zm) versus

zm.

d. Repeat parts (a–c) for the antenna radius a = 0.001 and then for a = 0.008. Discuss

the effect of changing the radius on the quality of the solution, both for the exact and

the approximate kernel cases.

e. Repeat parts (a–d) for the antenna length l = 1.0λ. Comment on the success of the

exact versus approximate kernel calculations versus the parameters l, a,M.

f. For each value of M and current solution Im, −M ≤ m ≤ M, the input impedance of

the antenna can be calculated from the center sample I0, that is, Z0 = V0/I0. Similarly,

the input admittance is:

Y0 = 1

Z0

= I0
V0

= G0 + jB0

where G0, B0 are its real and imaginary parts, that is, the input conductance and sus-

ceptance.

For each of the valuesM = 1,2, . . . ,100, calculate the corresponding conductance and

susceptance, G0(M),B0(M), using the exact and the approximate kernels and plot

them versus M. Use the length and radius l = 0.5λ and a = 0.005λ.

This is a time-consuming question. It requires that you solve the Hallén equation

for each value of M for the exact and approximate kernels and pick the center value

I0. Discuss the convergence properties of the exact versus the approximate kernel

calculation.
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Coupled Antennas

23.1 Near Fields of Linear Antennas

In calculating mutual coupling effects between closely-spaced linear antennas, we need

to know the fields produced by an antenna at near distances. The fields generated by a

thin wire antenna with current I(z) were worked out in Sec. 15.4.

We summarize these results here. All field components can be obtained from the

knowledge of the z-component of the magnetic vector potential Az(z, ρ):

Az(z, ρ)= μ

4π

∫ h

−h
I(z′)

e−jkR

R
dz′ , R =

√

ρ2 + (z− z′)2 (23.1.1)

where h is the half-length of the antenna, h = l/2, and the geometry is shown in

Fig. 23.1.1. We have used the approximate thin-wire kernel because it differs little from

the exact kernel for distances ρ > a (typically, when ρ ! 5a.)

Fig. 23.1.1 Fields of a thin wire antenna.
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Then, the non-zero field components Ez, Eρ,Hφ can be constructed from the two

alternative sets of formulas:

jωμǫEz = ∂2
zAz + k2Az

jωμǫEρ = ∂ρ∂zAz
μHφ = −∂ρAz

,

jωμǫEz = ∂2
zAz + k2Az

∂ρ(ρHφ) = jωǫρEz
jωǫEρ = −∂zHφ

(23.1.2)

As a first approximation, we will assume that the current I(z) is sinusoidal. This

is justified only when the antenna length is near half a wavelength λ/2. Most coupled

antenna arrays that are used in practice, such as Yagi-Uda, satisfy this condition.

We note also that the near fields resulting from the sinusoidal current assumption

do not satisfy the correct boundary conditions on the surface of the antenna, that is

the condition Ez(z, ρ)= 0 at z �= 0 and ρ = a. In Sec. 23.2, we consider an improved

approximation of the near fields that addresses these issues. Thus for now, we will

assume that:

I(z)= I0 sin
(

k(h− |z|))

sinkh
= Im sin

(

k(h− |z|)) (23.1.3)

where we distinguish between the current I0 at z = 0 and the maximum current Im =
I0/ sinkh. For half-wavelength antennas, we have kh = π/2, I0 = Im, and the current

becomes I(z)= I0 coskz.

In principle, one could insert Eq. (23.1.3) into (23.1.1) and perform the required

integrations to get Az. However, for the purpose of determining the fields, this is not

necessary. Combining (23.1.1) and (23.1.2), we obtain:

jωμǫEz(z, ρ)= ∂2
zAz + k2Az = μ

4π

∫ h

−h
I(z′)(∂2

z′ + k2)G(z− z′, ρ)dz′ (23.1.4)

where we denoted G(z − z′, ρ)= e−jkR/R and replaced ∂2
z by ∂2

z′ . Next, we use the

differential identity:

I(∂2
z′ + k2)G−G(∂2

z′ + k2)I = ∂z′
[

I∂z′G−G∂z′I
]

(23.1.5)

Because of the assumed form (23.1.3), I(z′) satisfies the Helmholtz equation, (∂2
z′ +

k2)I(z′)= 0, and therefore, the integrand of (23.1.4) becomes a complete derivative:

I(z′)(∂2
z′ +k2)G(z−z′, ρ)= ∂z′

[

I(z′)∂z′G(z−z′, ρ)−G(z−z′, ρ)∂z′I(z′)
]

(23.1.6)

Integrating the first term, we obtain:

∫ h

−h
∂z′

[

I(z′)∂z′G(z− z′, ρ)
]

dz′ = I(h)∂z′G(z− h,ρ)−I(−h)∂z′G(z+ h,ρ)= 0

where we used the end-conditions I(h)= I(−h)= 0. The second term in (23.1.6) is a

little trickier because ∂z′I(z
′) is discontinuous at z = 0. Splitting the integration range,

we obtain:
∫ h

−h
∂z′

[

G(z− z′, ρ)∂z′I(z′)
]

dz′ =
(∫ 0

−h
+
∫ h

0

)

∂z′
[

G(z− z′, ρ)∂z′I(z′)
]

dz′

= [

G(z,ρ)I′(0−)−G(z+ h,ρ)I′(−h)]+ [

G(z− h,ρ)I′(h)−G(z,ρ)I′(0+)]

= kIm
[

2 coskhG(z, ρ)−G(z− h,ρ)−G(z+ h,ρ)]
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where we used I′(0±)= ∓kIm coskh and I′(±h)= ∓kIm. Inserting this result into

Eq. (23.1.4) and rearranging some constants, we find:

Ez(z, ρ)= − jηIm
4π

[

G(z− h,ρ)+G(z+ h,ρ)−2 coskhG(z, ρ)
]

(23.1.7)

The quantities G(z−h,ρ),G(z+h,ρ),G(z, ρ) can be written conveniently as follows:

G(z,ρ) = e−jkR0

R0

, R0 =
√

ρ2 + z2

G(z− h,ρ) = e−jkR1

R1

, R1 =
√

ρ2 + (z− h)2

G(z+ h,ρ) = e−jkR2

R2

, R2 =
√

ρ2 + (z+ h)2

(23.1.8)

where R0, R1, R2 are recognized to be the distances from the center and the two ends

of the antenna to the observation point, as shown in Fig. 23.1.1. Thus, we can write:

Ez(z, ρ)= − jηIm
4π

[

e−jkR1

R1

+ e
−jkR2

R2

− 2 coskh
e−jkR0

R0

]

(23.1.9)

Next, we determineHφ from Ampère’s law in (23.1.2) by noting thatρEz is a complete

derivative with respect to ρ. Indeed, for any of the quantities R, we have:

∂ρ(e
−jkR)= −jk(∂ρR)e−jkR = −jkρe

−jkR

R
⇒ e−jkR

R
= − 1

jkρ
∂ρ(e

−jkR)

Applying this result to all three terms of Eq. (23.1.9), we have:

ρEz(z, ρ)= − jηIm
4π

1

−jk∂ρ
[

e−jkR1 + e−jkR2 − 2 coskhe−jkR0
]

Inserting this into Ampère’s law, ∂ρ(ρHφ)= jωǫρEz, and rearranging some con-

stants, we find:

∂ρ(ρHφ)= jIm
4π

∂ρ
[

e−jkR1 + e−jkR2 − 2 coskhe−jkR0
]

which can be integrated trivially, giving:

Hφ(z, ρ)= jIm
4πρ

[

e−jkR1 + e−jkR2 − 2 coskhe−jkR0
]

(23.1.10)

A possible integration constant in ρ is dropped because the field must vanish when

its source vanishes, that is, when Im = 0. Finally, we obtain Eρ from Faraday’s law in

(23.1.2). Noting the differentiation property:

∂z(e
−jkR)= −jk z

R
e−jkR, R =

√

ρ2 + z2
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we obtain from jωǫEρ = −∂zHφ:

Eρ(z, ρ)= jηIm
4πρ

[
z− h
R1

e−jkR1 + z+ h
R2

e−jkR2 − 2 coskh
z

R0

e−jkR0

]

(23.1.11)

The field expressions (23.1.9)–(23.1.11) have been used widely primarily for the pur-

pose of calculating mutual impedances. They appear in many textbooks and some early

references are [1459,1461,2,3]; see also [1443].

It is worth also to verify that the exact expressions for the fields give correctly the

radiation fields that were derived in Sec. 17.3. At large distances, we can make the

approximations:

R0 = r, R1 = r − h cosθ, R2 = r + h cosθ

where r is the radial distance and θ the polar angle. Replacing ρ = r sinθ, the magnetic

field (23.1.10) becomes approximately:

Hφ(r,θ)= jIm
4πr sinθ

[

e−jk(r−h cosθ) + e−jk(r+h cosθ) − 2 coskhe−jkr
]

which simplifies into:

Hφ(r,θ)= jIme
−jkr

2πr

cos(kh cosθ)− coskh

sinθ
(23.1.12)

This agrees with the results of Sec. 17.3.

23.2 Improved Near-Field Calculation

The current on a thin linear antenna is determined from the solution of the Hallén or

Pocklington integral equations; for example, the latter is,

∫ h

−h
I(z′)(∂2

z′ + k2)G(z− z′, a)dz′ = −4πjωǫEin(z) (23.2.1)

For a center-fed antenna, the impressed field is related to the driving voltageV0 at the

antenna terminals by Ein(z)= V0δ(z). The boundary condition that the net tangential

E-field vanish on the antenna surface requires that,

Ez(z, a)= −Ein(z)= −V0δ(z) (23.2.2)

where Ez(z, a) is the field on the antenna surface (i.e., at ρ = a) generated by the

current. Thus, the net field is zero, Ez,tot(z, a)= Ez(z, a)+Ein(z)= 0. It follows then

from Eq. (23.2.2) that Ez(z, a) must vanish along the antenna, except at z = 0.

As we saw in Sec. 22.4, the assumption of a sinusoidal current can be justified on the

basis of Pocklington’s equation, but it represents at best a crude approximation. The

resulting electric field does not satisfy condition (23.2.2), as can be seen setting ρ = a
into Eq. (23.1.9).

King’s three-term approximation, or a three-term fitted to a numerical solution, pro-

vides a better approximation to the current, and one may expect that the fields generated
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by such current would more closely satisfy the boundary condition (23.2.2). This is what

we discuss in this section.

Because the current need not satisfy the Helmholtz equation, I′′(z)+k2I(z)= 0, we

must revisit the calculations of the previous section. We begin by assuming that I(z) is

symmetric in z and that it vanishes at the antenna end-points, that is, I(±h)= 0. The

electric field Ez(z, ρ) at distance ρ is obtained from Eq. (23.1.4):

4πjωǫEz(z, ρ) =
∫ h

−h
I(z′)(∂2

z′ + k2)G(z− z′, ρ)dz′

=
∫ h

−h
I(z′)(∂2

z′ + k2)
e−jkR

R
dz′

(23.2.3)

where R =
√

(z− z′)2+ρ2. Applying the differential identity (23.1.5) and the end-point

conditions I(±h)= 0, we obtain,

4πjωǫEz(z, ρ) =
∫ h

−h
G(z− z′, ρ)

[

I′′(z′)+k2I(z′)
]

dz′ −

−
[

G(z− z′, ρ)I′(z′)
]z′=h

z′=−h

(23.2.4)

The assumed symmetry of I(z) implies a discontinuity of its derivative at z = 0. In-

deed, setting I(z)= F(|z|), for some continuous and continuously differentiable func-

tion F(·), we find,

I′(z) = sign(z)F′(|z|) ⇒ I′(0+)= −I′(0−)= F′(0)
I′′(z) = 2δ(z)F′(0)+sign2(z)F′′(|z|)

Using these into Eq. (23.2.4) and splitting the integration range [−h,h] into three

parts, [−h,0−], [0−,0+], [0+, h], we obtain:

∫ h

−h
−
[]h

−h
=
∫ 0−

−h
+
∫ 0+

0−
+
∫ h

0+
−
[]0−

−h
−
[]0+

0−
−
[]h

0+
=
∫ 0−

−h
+
∫ h

0+
−
[]0−

−h
−
[]h

0+

where we have canceled the terms over [0−,0+]; indeed, it is easily verified that:

∫ 0+

0−
G(z− z′, ρ)

[

I′′(z′)+k2I(z′)
]

dz′ = 2G(z,ρ)F′(0)

[

G(z− z′, ρ)I′(z′)
]0+

0−
= 2G(z,ρ)F′(0)

Using the following notation for the principal-value integral,

−
∫ h

−h
=
∫ 0−

−h
+
∫ h

0+

it follows from Eq. (23.2.4) that,

4πjωǫEz(z, ρ) = −
∫ h

−h
G(z− z′, ρ)

[

I′′(z′)+k2I(z′)
]

dz′

−
[

G(z− z′, ρ)I′(z′)
]0−

−h
−
[

G(z− z′, ρ)I′(z′)
]h

0+
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which gives,

4πjωǫEz(z, ρ) = −
∫ h

−h
G(z− z′, ρ)

[

I′′(z′)+k2I(z′)
]

dz′ +

+ 2I′(0+)G(z, ρ)−I′(h)
[

G(z− h,ρ)+G(z+ h,ρ)
] (23.2.5)

where we used I′(h)= −I′(−h). Finally, we can write,

4πjωǫEz(z, ρ) = −
∫ h

−h
e−jkR

R

[

I′′(z′)+k2I(z′)
]

dz′ +

+ 2I′(0+)e
−jkR0

R0

− I′(h)
[
e−jkR1

R1

+ e
−jkR2

R2

]
(23.2.6)

The last three terms are the standard terms found in the previous section. The

principal-value integral term represents the correction that must be added to enable the

boundary conditions. The other field components can now be obtained from Ez using

similar procedures as in the previous section. For Hφ, we find:

−4πjkρHφ(z, ρ) = −
∫ h

−h
e−jkR

[

I′′(z′)+k2I(z′)
]

dz′ +

+ 2I′(0+)e−jkR0 − I′(h)[e−jkR1 + e−jkR2
]

(23.2.7)

which may also be written in the form:

− 4πjkρHφ(z, ρ)=
∫ h

−h
I(z′)(∂2

z′ + k2)e−jkRdz′ (23.2.8)

obtained by reversing the above differential identity steps. Similarly, we have:

−4πjωǫρEρ(z, ρ) = −
∫ h

−h
z− z′
R

e−jkR
[

I′′(z′)+k2I(z′)
]

dz′ +

+ 2I′(0+) z
R0

e−jkR0 − I′(h)
[
z− h
R1

e−jkR1 + z+ h
R2

e−jkR2

] (23.2.9)

which may also be written as,

− 4πjωǫρEρ(z, ρ)=
∫ h

−h
I(z′)(∂2

z′ + k2)

(
z− z′
R

e−jkR
)

dz′ (23.2.10)

Our procedure for obtaining improved near fields is to first get an improved solution

for the current I(z) and then use it in Eq. (23.2.6) to calculate the field Ez(z, ρ). We will

use the three-term approximation for the current:

I(z)= A1

[

sin(k|z|)− sin(kh)
]+A2

[

cos(kz)− cos(kh)
]+A3

[

cos

(
kz

2

)

−cos

(
kh

2

)]

(23.2.11)

and fix the coefficients A1,A2,A3 by fitting this expression to a numerical solution as

discussed in Sec. 22.6, and then, use Eq. (23.2.11) into (23.2.6) with the integral term
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Fig. 23.2.1 Calculated near field Ez(z, ρ) for l = 0.5λ.

evaluated numerically. Fig. 23.2.1 shows the results of such a calculation for a half-

wave antenna l = 0.5λ with radius a = 0.005λ. Fig. 23.2.2 shows the results for a

full-wave antenna l = 1.0λ with the same radius. The required quantities appearing in

(23.2.6) are calculated as follows:

I′′(z′)+k2I(z′)= −k2A1 sinkh− k2A2 coskh− k2A3

[

cos

(
kh

2

)

− 3

4
cos

(
kz′

2

)]
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Fig. 23.2.2 Calculated near field Ez(z, ρ) for l = 1.0λ.

I′(0+)= −I′(0−)= kA1

I′(h)= −I′(−h)= kA1 coskh− kA2 sinkh− 1

2
kA3 sin

(
kh

2

)

The numerical solutions were obtained by solving the Hallén equation with point-

matching, pulse basis functions, and the exact kernel usingM = 100 upper-half current
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samples In. These current samples were then used as in Eq. (22.6.15) to obtain the

parameters A1,A2,A3.

The upper-left graphs show the current I(z) of Eq. (23.2.11) together with the sam-

ples In to which it was fitted.

The upper-right graphs show the magnitude of Ez(z, ρ) as a function of ρ for z fixed

at z = 0.2h. The behavior of Ez(z, ρ) is consistent initially with a logarithmic depen-

dence on ρ as predicted by King and Wu [1389,1390] and discussed below, followed then

by the expected 1/ρ decrease arising from the last three standard terms of Eq. (23.2.6),

which are represented by the dashed curves.

The left middle-row graphs display the logarithmic dependence more clearly by plot-

ting the real and imaginary parts of Ez(z, ρ) versus ln(ρ/a), including the King-Wu

approximation of Eq. (23.2.15).

The right middle-row graphs show the magnitude of the field Ez(z, a) at the surface

of the antenna as a function of z over the interval 0 ≤ z ≤ h. Except at the feed and end

points, the field is effectively zero as required by the boundary conditions.

To observe the importance of the correction term, that is, the principal-value integral

in Eq. (23.2.6), the third-row graphs display the real and imaginary parts of Ez(z, a)

versus z. Plotted separately are also the correction and standard terms, which appear

always to have opposite signs canceling each other so that the net field is zero.

The graphs for Fig. 23.2.1 were generated by the following MATLAB code (for Figure

23.2.2 simply set L=1):

L = 0.5; h = L/2; a = 0.005; k = 2*pi; eta = 377;

M = 100; [In,zn] = hdelta(L,a,M,’e’,’p’); % Hallen solution

Inp = In(M+1:end); znp = zn(M+1:end); % keep upper-half only

z = 0:h/100:h;

A = kingfit(L,Inp,znp,3); I = kingeval(L,A,z); % 3-term fit

s = 1000; % scale in units of mA

plot(z,abs(I)*s,’-’, znp,abs(Inp)*s,’.’, ’markersize’,11); % upper-left graph

I1h = k*(A(1)*cos(k*h) - A(2)*sin(k*h) - A(3)/2 * sin(k*h/2)); % I’(h)

I10 = A(1)*k; % I’(0+)

G = @(x,r) exp(-j*k*sqrt(x.^2 + r.^2))./sqrt(x.^2 + r.^2); % kernel function

Helm = @(z) -k^2*(A(1)*sin(k*h) + A(2)*cos(k*h) + A(3)*(cos(k*h/2)-3/4*cos(k*z/2)));

z = 0.2*h; r = linspace(a,200*a, 1001); logr = log(r/a);

S = -j*eta/4/pi/k; % scale factor, note omega*epsilon = k/eta

[wi,zi] = quadrs([-h,0,h],32); % quadrature weights and evaluation points

for i=1:length(r),

GHelm = G(z-zi,r(i)) .* Helm(zi);

E1(i) = (wi’*GHelm) * S; % correction term

E2(i) = (- I1h * (G(z-h,r(i)) + G(z+h,r(i))) + 2*I10 * G(z,r(i))) * S;

E(i) = E1(i) + E2(i);

end

Eapp = E(1) - Helm(z) * logr * 2*S; % King-Wu approximation adjusted by Ez(z,a)

figure; plot(r,abs(E), r,abs(Eapp),’:’, r,abs(E2),’--’); % upper-right graph
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figure; plot(logr,real(E), logr,real(Eapp),’--’,...

logr,imag(E),’-.’, logr,imag(Eapp),’:’); % middle-left graph

clear E E1 E2;

z = linspace(0,h,201); r = a;

for i=1:length(z),

GHelm = G(z(i)-zi,r) .* Helm(zi);

E1(i) = (wi’*GHelm) * S;

E2(i) = (- I1h * (G(z(i)-h,r) + G(z(i)+h,r)) + 2*I10 * G(z(i),r)) * S;

E(i) = E1(i) + E2(i);

end

figure; plot(z,abs(E),’-’); % middle-right graph

figure; plot(z,real(E), z,real(E1),’--’, z,real(E2),’:’); % lower-left graph

figure; plot(z,imag(E), z,imag(E1),’--’, z,imag(E2),’:’); % lower-right graph

Next, we discuss the King-Wu small-ρ approximation [1389,1390]; see also McDonald

[1444]. First, we note that the Hφ and Eρ components in Eqs. (23.2.8) and (23.2.10)

were obtained by using Maxwell’s equations (23.1.2), that is, Ampère’s laws ∂ρ(ρHφ)=
jωǫρEz and jωǫEρ = −∂zHφ. We may also verify Faraday’s law, which has only a φ

component in this case:

∂ρEz − ∂zEρ = jωμHφ (23.2.12)

Indeed, this can be derived from Eqs. (23.2.3), (23.2.8), and (23.2.10) by using the identity:

ρ
∂

∂ρ

(

e−jkR

R

)

+ ∂

∂z

(
z− z′
R

e−jkR
)

= −jke−jkR

For a thin antenna, the small-ρ dependence of Hφ is obtained by taking the limit

ρ → 0 in the right-hand side of Eq. (23.2.8). In this limit, we have e−jkR = e−jk|z−z
′|,

which is recognized as the Green’s function of the one-dimensional Helmholtz equation

discussed in Sec. 22.3 that satisfies (∂2
z′+k2)e−jk|z−z

′| = −2jkδ(z−z′). It follows then,

−4πjkρHφ(z, ρ) =
∫ h

−h
I(z′)(∂2

z′ + k2)e−jkRdz′ →
∫ h

−h
I(z′)(∂2

z′ + k2)e−jk|z−z
′|dz′

= −2jk

∫ h

−h
I(z′)δ(z− z′)dz′ = −2jkI(z)

or, for small ρ,

Hφ(z, ρ)= I(z)

2πρ
(23.2.13)

Let Q(z) denote the charge density per unit z-length along the antenna, which is

related to I(z) via the charge conservation equation I′(z)+jωQ(z)= 0. Then, the Eρ
component can be obtained from Maxwell’s equation:

jωǫEρ = −∂zHφ = − I
′(z)

2πρ
= jωQ(z)

2πρ

that is, for small ρ:

Eρ(z, ρ)= Q(z)

2πǫρ
(23.2.14)
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The same result can also be derived from Eq. (23.2.10) by recognizing the small-ρ

limit (z− z′)e−jkR/R→ sign(z− z′)e−jk|z−z′|, which satisfies the Helmholtz identity:

(∂2
z′ + k2)sign(z− z′)e−jk|z−z′| = 2∂zδ(z− z′)

Combining Eqs. (23.2.13) and (23.2.14) into the Faraday equation (23.2.12), we have,

∂ρEz = ∂zEρ + jωμHφ = Q′(z)
2πǫρ

+ jωμI(z)
2πρ

= j

ωǫ

I′′(z)+k2I(z)

2πρ

Integrating from ρ = a, we obtain the small-ρ King-Wu approximation:

Ez(z, ρ)= Ez(z, a)+ j

2πωǫ

[

I′′(z)+k2I(z)
]

ln

(
ρ

a

)

(23.2.15)

Strictly speaking, we must set Ez(z, a)= 0 because of the boundary condition. How-

ever, in our numerical solution, we have kept the term Ez(z, a), which is small but not

necessarily exactly zero, in order to compare the analytical calculation (23.2.15) with

the numerical solution. The left middle-row graphs confirm the linear dependence on

ln(ρ/a) with the right slope.

For longer antennas, up to about l = 3λ, the four-term approximation discussed in

Sec. 22.6 can be used and leads to similar results. In this case, the following current

expressions should be used:

I(z) = A1

[

sin(k|z|)− sin(kh)
]+A2

[

cos(kz)− cos(kh)
]+

+A3

[

cos

(
kz

4

)

− cos

(
kh

4

)]

+A4

[

cos

(
3kz

4

)

− cos

(
3kh

4

)]

I′′(z′)+k2I(z′) = −k2A1 sinkh− k2A2 coskh− k2A3

[

cos

(
kh

4

)

− 15

16
cos

(
kz′

4

)]

− k2A4

[

cos

(
3kh

4

)

− 7

16
cos

(
3kz′

4

)]

I′(0+)= −I′(0−)= kA1

I′(h)= −I′(−h)= kA1 coskh− kA2 sinkh− 1

4
kA3 sin

(
kh

4

)

− 3

4
kA4 sin

(
3kh

4

)

We observe in the upper-right figures that the maximum values of |Ez(z, ρ)| occur

roughly at distance:

ρ = λ

20
(23.2.16)

and this remains roughly true for antenna lengths 0.5 ≤ l/λ ≤ 1.3 and radii 0.001 ≤
a/λ ≤ 0.007 and for a variety of distances along the antenna, such as, 0.2h ≤ z ≤ 0.7h.

Thus, this distance may be taken as a rough measure of the distance beyond which

the standard terms begin to take over and the sinusoidal current approximation becomes

justified.

The mutual impedance formulas that we develop in succeeding sections are based

on the sinusoidal assumption, and therefore, they can be used more reliably for antenna

separations d that are greater than that of Eq. (23.2.16). For example, to increase one’s

confidence, one could take the separations to be greater than, say, double the above

value, that is, d ≥ λ/10.
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23.3 Self and Mutual Impedance

The mutual coupling between antennas cannot be ignored if the antennas are near each

other. The mutual impedance is a measure of such proximity effects [2,1458–1470].

Consider two parallel center-driven linear dipoles, as shown in Fig. 23.3.1. Their

distance along the x-direction is d and their centers are offset by b along the z-direction.

Fig. 23.3.1 Parallel linear dipoles.

If antenna-1 is driven and antenna-2 is open-circuited, the near field generated by

the current on antenna-1 will cause an open-circuit voltage, sayV21,oc on antenna-2. The

mutual impedance of antenna-2 due to antenna-1 is defined to be:

Z21 =
V21,oc

I1
(23.3.1)

where I1 is the input current on antenna-1. Reciprocity implies that Z12 = Z21. More

generally, if both antennas are driven, then, the relationship of the driving voltages to

the input currents is given by:

V1 = Z11I1 + Z12I2
V2 = Z21I1 + Z22I2

(23.3.2)

The quantities Z11, Z22 are the self impedances of the two antennas and are approx-

imately equal to the input impedances of the isolated antennas, that is, when the other

antenna is absent. If antenna-2 is open-circuited, so that I2 = 0, then the second of

Eqs. (23.3.2) gives (23.3.1).

In order to derive convenient expressions that allow the calculation of the mutual

and self impedances, we use the reciprocity result given in Eq. (22.5.6) for the short-

circuit current and open-circuit voltage induced on a receiving antenna in the presence

of an incident field.

If antenna-2 is open-circuited and the z-component of the electric field generated

by antenna-1 and incident on antenna-2 is E21(z), then according to Eq. (22.5.6), the

induced open-circuit voltage will be:

V21,oc = − 1

I2

∫ h2

−h2

E21(z)I2(z)dz (23.3.3)
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where h2 = l2/2, and I2(z), I2 = I2(0) are the current and input current on antenna-2

when it is transmitting. It follows from definition (23.3.1) that:

Z21 =
V21,oc

I1
= − 1

I1I2

∫ h2

−h2

E21(z)I2(z)dz (23.3.4)

Assuming that the currents are sinusoidal,

I1(z) = I1 sin
(

k(h1 − |z|)
)

sinkh1

= Im1 sin
(

k(h1 − |z|)
)

I2(z) = I2 sin
(

k(h2 − |z|)
)

sinkh2

= Im2 sin
(

k(h2 − |z|)
)

then, according to Eq. (23.1.9) the electric field E21(z) along antenna-2 will be:

Ez(z)= − jηIm1

4π

[

e−jkR1

R1

+ e
−jkR2

R2

− 2 coskh1
e−jkR0

R0

]

(23.3.5)

where −h2 ≤ z ≤ h2, and R1, R2, R0 are defined in Fig. 23.3.1:

R0 =
√

d2 + (z+ b)2

R1 =
√

d2 + (z+ b− h1)2

R2 =
√

d2 + (z+ b+ h1)2

(23.3.6)

Inserting Eq. (23.3.5) into (23.3.4) and rearranging some constants, we find the final

expression for the mutual impedance Z21:

Z21 = jη

4π sinkh1 sinkh2

∫ h2

−h2

F(z)dz (23.3.7)

F(z)=
[

e−jkR1

R1

+ e
−jkR2

R2

− 2 coskh1
e−jkR0

R0

]

sin
(

k(h2 − |z|)
)

(23.3.8)

This is the mutual impedance referred to the input terminals of the antennas. If

one or both of the antennas have lengths that are multiples of λ, then one or both of

the denominator factors sinkh1, sinkh2 will vanish resulting in an infinite value for the

mutual impedance.

This limitation is caused by the sinusoidal current assumption. We saw in Chap. 22

that the actual input currents are not zero in a real antenna. On the other hand, in most

applications of Eq. (23.3.7) the lengths differ slightly from half-wavelength for which the

sinusoidal approximation is good.

The definition (23.3.4) can also be referred to the maximum currents by normalizing

by the factor Im1Im2, instead of I1I2. In this case, the mutual impedance is Z21m =
Z21 sinkh1 sinkh2, that is,

Z21m = jη

4π

∫ h2

−h2

F(z)dz (23.3.9)
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The self-impedance of a single antenna can be calculated also by the same formula

(23.3.7). Evaluating the near-field on the surface of the single antenna, that is, at d = a,

where a is the antenna radius, and setting h2 = h1 and b = 0 in Eq. (23.3.6), we find:

Z11 = − 1

I2
1

∫ h1

−h1

E11(z)I1(z)dz = jη

4π sin2 kh1

∫ h1

−h1

F(z)dz (23.3.10)

F(z)=
[

e−jkR1

R1

+ e
−jkR2

R2

− 2 coskh1
e−jkR0

R0

]

sin
(

k(h1 − |z|)
)

(23.3.11)

R0 =
√

a2 + z2 , R1 =
√

a2 + (z− h1)2 , R2 =
√

a2 + (z+ h1)2 (23.3.12)

The MATLAB function imped implements Eq. (23.3.7), as well as (23.3.10). It returns

both Z21 and Z21m and has usage:

[Z21,Z21m] = imped(L2,L1,d,b) % mutual impedance of dipole 2 due to dipole 1

[Z21,Z21m] = imped(L2,L1,d) % b = 0, side-by-side arrangement

[Z,Zm] = imped(L,a) % self impedance

where all the lengths are in units of λ. The function uses 16-point Gauss-Legendre

integration, implemented with the help of the function quadr, to perform the integral

in Eq. (23.3.7).

In evaluating the self impedance of an antenna with a small radius, the integrand

F(z) varies rapidly around z = 0. To maintain accuracy in the integration, we split the

integration interval into three subintervals, as we mentioned in Sec. 22.10.

Example 23.3.1: Because the function imped uses an even length (that is, 16) for the Gauss-

Legendre integration, the integrand F(z) is never evaluated at z = 0, even if the antenna

radius is zero. This allows us to estimate the self-impedance of an infinitely thin half-

wavelength antenna by setting L = 0.5 and a = 0:

Z = imped(0.5,0)= 73.0790+ 42.5151j Ω

Similarly, for radii a = 0.001λ and 0.005λ, we find:

Z = imped(0.5,0.001)= 73.0784+ 42.2107j Ω

Z = imped(0.5,0.005)= 73.0642+ 40.6319j Ω

A resonant antenna is obtained by adjusting the length L such that the reactance part of Z

becomes zero. The resonant length depends on the antenna radius. For zero radius, this

length is L = 0.48574823 and the corresponding impedance, Z = 67.1843 Ω. ⊓⊔

Example 23.3.2: Consider two identical parallel half-wavelength dipoles in side-by-side arrange-

ment separated by distance d. The antenna radius is a = 0.001 and therefore, its self

impedance is as in the previous example. If antenna-1 is driven and antenna-2 is parasitic,

that is, short-circuited, then Eq. (23.3.2) gives:

V1 = Z11I1 + Z12I2
0 = Z21I1 + Z22I2
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Solving the second for the parasitic current I2 = −I1Z21/Z22 and substituting in the first,

we obtain driving-point impedance of the first antenna:

Zin = V1

I1
= Z11 − Z12Z21

Z22

= Z11

(

1− Z
2
21

Z2
11

)

where we used Z12 = Z21 and Z22 = Z11. The ratio Z2
21/Z

2
11 quantifies the effect of the

coupling and the deviation of Zin from Z11. For example, we find the values:

d 0.125λ 0.25λ 0.50λ 0.75λ 1.00λ

|Z21/Z11|2 0.58 0.35 0.15 0.08 0.05

Thus, the ratio decreases rapidly with increasing distance d. Fig. 23.3.2 shows a plot of

Z21 versus distance d. ⊓⊔

0 1 2 3 4
−40

0

40

80
Mutual Impedance,  Z21 = R21 + jX21

d/λ

 resistance R
21

 reactance X
21

 

 1/d envelope     

Fig. 23.3.2 Mutual impedance between identical half-wave dipoles vs. separation.

For separations d that are much larger than the antenna lengths, the impedance Z21

falls like 1/d. Indeed, it follows from Eq. (23.3.6) that for large d, all three distances

R0, R1, R2 become equal to d. Therefore, (23.3.8) tends to:

F(z)→ e−jkd

d

(

2− 2 coskh1

)

sin
(

k(h2 − |z|)
)

which, when inserted into (23.3.7), gives the asymptotic form:

Z21 → jη(1− coskh1)(1− coskh2)

π sinkh1 sinkh2

e−jkd

kd
, for large d (23.3.13)

The envelope of this asymptotic form was superimposed on the graph of Fig. 23.3.2.

The oscillatory behavior of Z21 with distance is essentially due to the factor e−jkd.

An alternative computation method of the mutual impedance is to reduce the inte-

grals (23.3.7) to the exponential integral E1(z) defined in Appendix F, taking advantage

of MATLAB’s built-in function expint.
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By folding the integration range [−h1, h1] in half and writing sin
(

k(h2 − |z|)
)

as a

sum of exponentials, Eq. (23.3.7) can be reduced to a sum of terms of the form:

G(z0, s)=
∫ h1

0

e−jkR

R
e−jksz dz , R =

√

d2 + (z− z0)2 , s = ±1 (23.3.14)

which can be evaluated in terms of E1(z) as:

G(z0, s)= se−jksz0
[

E1(ju0)−E1(ju1)
]

(23.3.15)

with

u0 = k
[√

d2 + z2
0 − sz0

]

u1 = k
[√

d2 + (h1 − z0)2 + s(h1 − z0)

]

Indeed, the integral in (23.3.7) can be written as a linear combination of 10 such terms:

∫ h1

−h1

F(z)dz =
10∑

i=1

ciG(zi, si) (23.3.16)

with the following values of zi, ci, and si, where c1 = ejkh2/(2j):

i zi si ci
1 h1 − b 1 c1

2 −h1 + b 1 c1

3 −h1 − b 1 c1

4 h1 + b 1 c1

5 b 1 −4c1 coskh1

i zi si ci
6 h1 − b −1 c∗1
7 −h1 + b −1 c∗1
8 −h1 − b −1 c∗1
9 h1 + b −1 c∗1
10 b −1 −4c∗1 coskh1

The MATLAB function Gi implements the “Green’s function integral” of (23.3.14).

The function imped2, which is an alternative to imped, uses (23.3.16) to calculate (23.3.7).

The input impedance (23.3.10) deserves a closer look. Replacing the exponential

integrals in (23.3.16) in terms of their real and imaginary parts,

E1(ju)= −γ− lnu+Cin(u)+j
(

Si(u)−π
2

)

as defined in Eq. (F.27), then (23.3.10) can be expressed in the following form, where we

set Z11 = Zin = Rin + jXin, h1 = h, and l = 2h:

Zin = Rin + jXin = η

2π

A+ jB
sin2 kh

(23.3.17)

With the definitions l± =
√

a2 + h2 ± h and L± =
√

a2 + 4h2 ± 2h, we obtain:

A =Cin(kl+)+Cin(kl−)−2Cin(ka)

+ 1

2
coskl

[

2Cin(kl+)−Cin(kL+)+2Cin(kl−)−Cin(kL−)−2Cin(ka)
]

+ 1

2
sinkl

[

2Si(kl−)−Si(kL−)+Si(kL+)−2Si(kl+)
]

(23.3.18)
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B =Si(kl+)+Si(kl−)−2Si(ka)

+ 1

2
coskl

[

2Si(kl+)−Si(kL+)+2Si(kl−)−Si(kL−)−2Si(ka)
]

+ 1

2
sinkl

[

2Cin(kl+)−Cin(kL+)+Cin(kL−)−2Cin(kl−)+2 ln

(

aL+
l2+

)]

(23.3.19)

These expressions simplify substantially if we assume that the radius a is small, as

is the case in practice. In particular, assuming that ka≪ 1 and a≪ h, the quantities

l± and L± can be approximated by:

l+ ≃ 2h = l , l− = a2

l+
≃ a2

l

L+ ≃ 4h = 2l , L− = a2

L+
≃ a2

2l

(23.3.20)

Noting that Si(x) and Cin(x) vanish at x = 0, we may neglect all the terms whose

arguments are kl−, kL−, or ka, and replace kl+ = kl and kL+ = 2kl, obtaining:

A = Cin(kl)+1

2
coskl

[

2Cin(kl)−Cin(2kl)
]+ 1

2
sinkl

[

Si(2kl)−2Si(kl)
]

(23.3.21)

B = Si(kl)+1

2
coskl

[

2Si(kl)−Si(2kl)]+1

2
sinkl

[

2Cin(kl)−Cin(2kl)+2 ln

(
2a

l

)]

(23.3.22)

We note that A is independent of the radius a and leads to the same expression for

the radiation resistance that we found in Sec. 17.3 using Poynting methods.

An additional approximation can be made for the case of a small dipole. Assuming

that kh≪ 1, in addition to ka≪ 1 and a≪ h, we may expand each of the above terms

into a Taylor series in the variable kh using the following Taylor series expansions of

the functions Si(x) and Cin(x):

Si(x)≃ x− 1

18
x3 + 1

600
x5 , Cin(x)≃ 1

4
x2 − 1

96
x4 + 1

4320
x6 (23.3.23)

Such expansions, lead to the following input impedance Z = R + jX to the lowest

non-trivial order in kl :

Zin = Rin + jXin = η

2π

[
1

12
(kl)2+j4(1+ L)

kl

]

(small dipole) (23.3.24)

where L = ln(2a/l). The resistance R is identical to that obtained using the Poynting

method and assuming a linear approximation to the sinusoidal antenna current, which

is justified when kh≪ 1:

I(z)= I0 sin
(

k(h− |z|))

sinkh
≃ I0 k(h− |z|)

kh
= I0

(

1− |z|
h

)

(23.3.25)
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23.4 Coupled Two-Element Arrays

Next, we consider a more precise justification of Eq. (23.3.2) and generalize it to the

case of an arbitrary array of parallel linear antennas. Fig. 23.4.1 shows two z-directed

parallel dipoles with centers at locations (x1, y1) and (x2, y2).

We assume that the dipoles are center-driven by the voltage generators V1, V2. Let

I1(z), I2(z) be the currents induced on the dipoles by the generators and by their mu-

tual interaction, and let h1, h2 be the half-lengths of the antennas, and a1, a2, their

radii. Then, assuming the thin-wire model, the total current density will have only a

z-component given by:

Jz(x
′, y′, z′)= I1(z′)δ(x′ − x1)δ(y

′ − y1)+I2(z′)δ(x′ − x2)δ(y
′ − y2) (23.4.1)

Fig. 23.4.1 Array of two linear antennas.

It follows that the magnetic vector potential will be:

Az(z,ρρρ)= μ

4π

∫
e−jkR

R
Jz(x

′, y′, z′)dx′dy′dz′ , R = |r− r′|

where ρρρ = x x̂ + y ŷ is the cylindrical radial vector. Inserting (23.4.1) and performing

the x′, y′ integrations, we obtain:

Az(z,ρρρ)= μ

4π

∫ h1

−h1

e−jkR1

R1

I1(z
′)dz′ + μ

4π

∫ h2

−h2

e−jkR2

R2

I2(z
′)dz′ (23.4.2)

where, as shown in Fig. 23.4.1,R1, R2 are the distances from the z′ point on each antenna

to the (x, y, z) observation point, that is,

R1 =
√

(z− z′)2+(x− x1)2+(y − y1)2 =
√

(z− z′)2+|ρρρ− d1|2

R2 =
√

(z− z′)2+(x− x2)2+(y − y2)2 =
√

(z− z′)2+|ρρρ− d2|2
(23.4.3)

where d1 = (x1, y1) and d2 = (x2, y2) are the xy-locations of the antenna centers. The

z-component of the electric field generated by the two antenna currents will be:

jωǫμEz(z,ρρρ)= (∂2
z + k2)Az(z,ρρρ)
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Working with the rescaled vector potential V(z,ρρρ)= 2jcAz(z,ρρρ), we rewrite:

V(z,ρρρ)= jη

2π

∫ h1

−h1

e−jkR1

R1

I1(z
′)dz′ + jη

2π

∫ h2

−h2

e−jkR2

R2

I2(z
′)dz′ (23.4.4)

(∂2
z + k2)V(z,ρρρ)= −2kEz(z,ρρρ) (23.4.5)

Denoting by V1(z) and V2(z) the values of V(x, y, z) on the surfaces of antenna-1

and antenna-2, we obtain from Eq. (23.4.4):

V1(z)= V11(z)+V12(z)

V2(z)= V21(z)+V22(z)
(23.4.6)

The z-components of the electric fields induced on the surfaces of antenna-1 and

antenna-2 are obtained by applying Eq. (23.4.5) to each term of (23.4.6):

E1(z)= E11(z)+E12(z)

E2(z)= E21(z)+E22(z)
(23.4.7)

where we defined, for p,q = 1,2:

Vpq(z)= jη

2π

∫ hq

−hq
Gpq(z− z′)Iq(z′)dz′

(∂2
z + k2)Vpq(z)= −2kEpq(z)

(23.4.8)

and the impedance kernels:

Gpq(z− z′)= e−jkRpq

Rpq
, Rpq =

√

(z− z′)2+d2
pq (23.4.9)

If p �= q, then dpq is the xy-distance between the antennas, and if p = q, it is the

radius of the corresponding antenna, that is,

d12 = d21 = |d1 − d2| =
√

(x1 − x2)2+(y1 − y2)2

d11 = a1, d22 = a2

(23.4.10)

Thus,Vpq(z) andEpq(z) are the vector potential and the z-component of the electric

field induced on antenna-p by the current Iq(z) on antenna-q.

To clarify these definitions, Fig. 23.4.2 shows a projected view of Fig. 23.4.1 on the

xy plane. The point P with radial vector ρρρ is the projection of the observation point

(z,ρρρ). When P coincides with a point, such as P2, on the surface of antenna-2 defined

by the radial vectorρρρ2, then the distance (P2O2)= |ρρρ2−d2| will be equal to the antenna

radius a2, regardless of the location of P2 around the periphery of the antenna.

On the other hand, the distance (P2O1)= |ρρρ2−d1| varies with P2. However, because

the separation d12 is typically d12 ≫ a2, such variation is minor and we may replace

|ρρρ2−d1| by |d2−d1|. Thus, in evaluatingV(z,ρρρ2) on antenna-2, we may use Eq. (23.4.4)

with R1, R2 defined by:
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R1 =
√

(z− z′)2+|d2 − d1|2 =
√

(z− z′)2+d2
12

R2 =
√

(z− z′)2+|ρρρ2 − d2|2 =
√

(z− z′)2+a2
2

(23.4.11)

Fig. 23.4.2 Array of two linear antennas.

Now, on the surface of the first antenna, the electric field Ez must cancel the field of

the delta-gap generator in order for the total tangential field to vanish, that is, E1(z)=
−E1,in(z)= −V1δ(z). Similarly, on the surface of the second antenna, we must have

E2(z)= −E2,in(z)= −V2δ(z). Then, Eq. (23.4.7) becomes:

E11(z)+E12(z)= E1(z)= −V1δ(z)

E21(z)+E22(z)= E2(z)= −V2δ(z)
(23.4.12)

Combining these with the Eq. (23.4.8), we obtain the coupled version of the Hallén-

Pocklington equations:

(∂2
z + k2)

[

V11(z)+V12(z)
] = 2kV1δ(z)

(∂2
z + k2)

[

V21(z)+V22(z)
] = 2kV2δ(z)

(23.4.13)

We will solve these numerically in Sec. 23.7. Next, we derive Eq. (23.3.2). Accord-

ing to definitions (23.3.4) and (23.3.10), the mutual impedance between antenna-p and

antenna-q can be restated as follows, for p,q = 1,2:

Zpq = − 1

IpIq

∫ hp

−hp
Epq(z)Ip(z)dz (23.4.14)

and, more explicitly:

Z11 = − 1

I1I1

∫ h1

−h1

E11(z)I1(z)dz , Z12 = − 1

I1I2

∫ h1

−h1

E12(z)I1(z)dz

Z21 = − 1

I2I1

∫ h2

−h2

E21(z)I2(z)dz , Z22 = − 1

I2I2

∫ h2

−h2

E22(z)I2(z)dz
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Using these definitions and Eq. (23.4.12), we find:

Z11I1 + Z12I2 = − 1

I1

∫ h1

−h1

[

E11(z)+E12(z)
]

I1(z)dz

= − 1

I1

∫ h1

−h1

[−V1δ(z)
]

I1(z)dz = 1

I1
V1I1(0)= V1

where, by definition, I1(0)= I1. Similarly, we can show the second of Eq. (23.3.2).

The mutual impedance defined in Eq. (23.4.14) actually satisfies the reciprocity sym-

metry condition, Zpq = Zqp. To write it in a form that shows this condition explicitly,

we replace Epq(z) by (23.4.8) and obtain the alternative symmetric form:

Zpq = jη

4πk

∫ hp

−hp

∫ hq

−hq

Ip(z)Iq(z
′)

IpIq
(∂2

z + k2)Gpq(z− z′)dzdz′ (23.4.15)

If we assume that the currents are sinusoidal, that is, for p = 1,2,

Ip(z)= Ip
sin

(

k(hp − |z|)
)

sinkhp
(23.4.16)

then, in Eq. (23.4.15) the ratios Ip(z)/Ip and henceZpq become independent of the input

currents at the antenna terminals and depend only on the geometry of the antennas.

23.5 Arrays of Parallel Dipoles

The above results on two antennas generalize in a straightforward fashion to several

antennas. Fig. 23.5.1 depicts the case of K parallel dipoles in side-by-side arrangement

with centers at positions (xp, yp), and driving voltages, lengths, half-lengths, and radii,

Vp, lp, hp, ap, where p = 1,2 . . . , K.

Fig. 23.5.1 Two-dimensional array of parallel dipoles.

Assuming sinusoidal currents as in Eq. (23.4.16), we define the mutual impedances

Zpq by Eq. (23.4.14) or (23.4.15), where p,q take on the values p,q = 1,2 . . . , K. The
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Hallén-Pocklington equations (23.4.13) generalize into:

(∂2
z + k2)

K∑

q=1

Vpq(z)= −2k
K∑

q=1

Epq(z)= 2kVpδ(z) , p = 1,2, . . . , K (23.5.1)

where Vpq(z) is defined by Eqs. (23.4.8) and (23.4.9). The mutual distances are:

dpq =
{ √

(xp − xq)2+(yp − yq)2 , if p �= q
ap, if p = q (23.5.2)

Multiplying Eq. (23.5.1) by Ip(z) and integrating along the length of the pth antenna,

and using the mutual impedance definitions (23.4.14), we obtain the generalization of

Eq. (23.3.2) to the case of K antennas:

Vp =
K∑

q=1

ZpqIq , p = 1,2, . . . , K (23.5.3)

where Iq is the input current at the center of the qth antenna. Eq. (23.5.3) may be written

in a compact matrix form:

V = ZI (23.5.4)

where Z is the impedance matrix. For example, in the case K = 4, we have:

V =

⎡

⎢
⎢
⎢
⎣

V1

V2

V3

V4

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

Z11 Z12 Z13 Z14

Z21 Z22 Z23 Z24

Z31 Z32 Z33 Z34

Z41 Z42 Z43 Z44

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

I1
I2
I3
I4

⎤

⎥
⎥
⎥
⎦
= ZI

We note that Z is a symmetric matrix, Z = ZT, as a consequence of the reciprocity

relations Zpq = Zqp.

Given the driving voltages Vp, Eq. (23.5.4) may be solved for the input currents Ip,

which completely define the assumed sinusoidal currents Ip(z) of Eq. (23.4.16). From

the knowledge of the currents Ip(z), one can obtain the radiation pattern of the array.

Indeed, the radiation fields are obtained from Eq. (17.1.6), that is,

E = θ̂θθEθ = θ̂θθ jkη e
−jkr

4πr
Fz(θ,φ)sinθ

H = φ̂φφHφ = φ̂φφjk e
−jkr

4πr
Fz(θ,φ)sinθ

(23.5.5)

where the radiation vector F = ẑFz has only a z-component given by:

Fz(θ,φ)=
∫

V′
Jz(r

′)ejk·r
′
dr′ (23.5.6)

But, in the thin-wire approximation, the total current density of the array is:

Jz(r
′)=

K∑

p=1

Ip(z
′)δ(x′ − xp)δ(y′ − yp)
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Inserting this into Eq. (23.5.6) and performing the x′, y′ integrations, we obtain:

Fz(θ,φ)=
K∑

p=1

ejkxxp+jkyyp
∫ hp

−hp
Ip(z

′)ejkzz
′
dz′ (23.5.7)

Using Eq. (23.4.16) for Ip(z) and replacing kz = k cosθ, we obtain:

Fz(θ,φ)=
K∑

p=1

ejkxxp+jkyyp
2Ip

k sinkhp

cos(khp cosθ))− coskhp

sin2 θ
(23.5.8)

The radiation intensity is given, in general, by Eq. (16.1.4):

U(θ,φ)= ηk2

32π2

∣
∣sinθFz(θ,φ)

∣
∣2

Replacing kx = k sinθ cosφ and ky = k sinθ sinφ, we obtain:

U(θ,φ)= η

8π2

∣
∣
∣
∣
∣
∣

K∑

p=1

Ip
cos(khp cosθ))− coskhp

sinkhp sinθ
ejk sinθ(xp cosφ+yp sinφ)

∣
∣
∣
∣
∣
∣

2

Thus, the normalized gain of the array will be, up to a proportionality constant:

g(θ,φ)=
∣
∣
∣
∣
∣
∣

K∑

p=1

Ip
cos(khp cosθ))− coskhp

sinkhp sinθ
ejk sinθ(xp cosφ+yp sinφ)

∣
∣
∣
∣
∣
∣

2

(23.5.9)

Equations (23.5.4) and (23.5.9) provide a complete solution to the problem of cou-

pled antenna arrays, based on the sinusoidal approximation for the currents. In the

special case of identical antennas, Eq. (23.5.9) factors as usual into an array factor and

an element factor:

g(θ,φ)=
∣
∣
∣
∣
∣
∣

K∑

p=1

Ipe
jk sinθ(xp cosφ+yp sinφ)

∣
∣
∣
∣
∣
∣

2 ∣
∣
∣
∣
∣

cos(kh cosθ))− coskh

sinkh sinθ

∣
∣
∣
∣
∣

2

The MATLAB function impedmat calculates the K×K mutual impedance matrix Z of

such an array, given the antenna lengths and radii, lp, ap, and the coordinates (xp, yp),

for p = 1,2, . . . , K. It has usage:

Z = impedmat(L,a,d); % mutual impedance matrix of array of parallel dipoles

where all the lengths must be given in units ofλ. It calls imped to calculate the individual

matrix elements Zpq.

The input parameters L, a, d are the vectors of antenna lengths, antenna radii, and

(xp, yp) pairs, or the xp positions, if the array is along the x-axis:

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

L1

L2

...

LK

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, a =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a1

a2

...

aK

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, d =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1, y1

x2, y2

...

xK, yK

⎤

⎥
⎥
⎥
⎥
⎥
⎦

or

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1

x2

...

xK

⎤

⎥
⎥
⎥
⎥
⎥
⎦
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The MATLAB function gain2s calculates the E-plane and H-plane array gains using

Eq. (23.5.9) and assumes that the input currents Ip have been obtained by solving

Eq. (23.5.4). It has usage:

[ge,gh,th] = gain2s(L,d,I,N,ph0); % gain of 2D array of dipoles with sinusoidal currents

[ge,gh,th] = gain2s(L,d,I,N); % equivalent to φ0 = 0

where the input parameters L, a have the same meaning as in impedmat, and I is the

vector of input currents I = [I1, I2, . . . , IK]. The output angle parameter th is either the

polar or the azimuthal angle and takes N equally-spaced values in the interval [0,2π].

The H-plane gain gH(φ) is defined to be the azimuthal gain on the xy-plane corre-

sponding to θ = π/2, and the E-plane gain gE(θ) is defined to be the polar gain on any

fixed azimuthal plane φ = φ0, that is,

gH(φ)= g(π/2,φ), 0 ≤ φ ≤ 2π

gE(θ)= g(θ,φ0), 0 ≤ θ ≤ 2π
(23.5.10)

Note that by allowing θ to vary over [0,2π], the E-plane gain can give both the

forward and backward gain. The polar angle range [0,π] covers the forward direction

φ = φ0, whereas, the range [π,2π] covers the backward direction φ = φ0 +π, that

is, we have the equivalence:

g(θ,φ0)= g(θ−π,φ0 +π), π ≤ θ ≤ 2π

This follows from the trigonometric identities:

sin(θ−π)cos(φ0 +π)= sinθ cosφ0

sin(θ−π)sin(φ0 +π)= sinθ sinφ0

Because both gains are defined over a 2π-angular range, they must be plotted with

the MATLAB functions abp2 and abz2, or in dB, with dbp2 and dbz2.

Example 23.5.1: Three-element parasitic array. Undriven parasitic antennas located near trans-

mitting ones can act as reflectors or directors, directing the radiation towards certain

preferred directions. Fig. 23.5.2 shows an array of three half-wavelength dipoles. The

geometry is the same as that of Example 20.3.3. The xy-coordinates of the elements are

d1 = (0,0), d2 = (0.5λ,0), and d3 = (0,0.5λ).
Let V = [V1, V2, V3]

T be the driving voltages of the three elements. If only element-1 is

driven and the others parasitic, we may take V = [1,0,0]T .

If the mutual couplings between the antennas are ignored, that is, the impedance matrix Z
of Eq. (23.5.4) is taken to be diagonal, then, the input currents, will be I = [I1,0,0] and the

parasitic elements will be completely passive as though they were absent. The radiation

pattern would be that of a single half-wave dipole. In particular, the azimuthal pattern

would be omnidirectional.

This is not the case if the mutual couplings are taken into account. The parasitic elements

act as reflectors, reflecting the radiation back towards the active element-1. By the sym-

metry of the arrangement, the maximum directivity will be in the direction with azimuthal

angle φ = −135o. Fig. 23.5.3 shows the resulting H-plane and E-plane radiation patterns
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Fig. 23.5.2 Three-element array.
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Fig. 23.5.3 H-plane and E-plane radiation patterns, V = [1,0,0]T .

demonstrating this behavior. The dashed gains were computed by solving the coupled sys-

tem of Hallén equations for the exact currents on each of the three antennas, as discussed

in Example 23.7.1.

Assuming equal radii, a = 0.001λ, the 3×3 impedance matrix Z is found to be:

Z =

⎡

⎢
⎣

73.08+ 42.21j −12.52− 29.91j −12.52− 29.91j

−12.52− 29.91j 73.08+ 42.21j −24.62+ 0.78j

−12.52− 29.91j −24.62+ 0.78j 73.08+ 42.21j

⎤

⎥
⎦

Then, the solution of Eq. (23.5.4) is:

I =

⎡

⎢
⎣

I1
I2
I3

⎤

⎥
⎦ = Z−1V = Z−1

⎡

⎢
⎣

1

0

0

⎤

⎥
⎦ =

⎡

⎢
⎣

0.0133∠−7.46o

0.0066∠18.23o

0.0066∠18.23o

⎤

⎥
⎦

The typical MATLAB code used to generate these graphs was as follows:

L = [0.5, 0.5, 0.5]; % lengths

a = [0.001, 0.001, 0.001]; % radii

d = [0,0; 0.5,0; 0,0.5]; % xy locations

1068 23. Coupled Antennas

Z = impedmat(L,a,d); % impedance matrix

V = [1; 0; 0]; % driving voltages

I = Z\V; % input currents

ph0 = 45; % 45o azimuthal plane for polar gain

[ge1,gh1,ph] = gain2s(L,d,I,360,ph0); % gain2s assumes sinusoidal currents

M = 40; % number of upper-half samples

[I,z] = hcoupled2(L,a,d,V,M); % solves for currents on all antennas

[ge2,gh2,ph] = gain2d(L,d,I,360,ph0); % gain2d uses Hallén currents

figure; dbz2(ph,gh1,30,12); dbadd2(2,’--’,ph,gh2,30,12);

figure; dbp2(ph,ge1,30,12); dbadd2(1,’--’,ph,ge2,30,12);

Anticipating the symmetry about the 45o azimuthal plane, the E-plane gain was computed

withφ0 = 45o. As expected, the polar plot shows that the maximum gain is in the backward

φ0 direction, that is, toward φ0 + 180o = 225o = −135o. ⊓⊔

Example 23.5.2: Next, consider the case when element-one is parasitic, but elements two and

three are driven by equal voltages, V = [0,1,1]T . If the mutual coupling is ignored, then

the two active elements act as an array which is broadside to the line joining them, that

is, maximum directivity is in the 45o azimuthal direction, but with both the forward and

the backward (i.e., −135o) directions being equal. This pattern is shown in the upper-right

graph of Fig. 20.3.4.

If the mutual couplings are taken into account, element-1 will act as a reflector, reflecting

towards the φ0 = 45o direction and reducing the gain in the opposite direction. This is

demonstrated in Fig. 23.5.4. As in the previous example, the dashed gains correspond to

the exact coupled Hallén solution.
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Fig. 23.5.4 H-plane and E-plane radiation patterns, V = [0,1,1]T .

Because of the identical geometry, the impedance matrix Z is the same as that of the

previous example. But, the input currents are different:
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I =

⎡

⎢
⎣

I1
I2
I3

⎤

⎥
⎦ = Z−1V = Z−1

⎡

⎢
⎣

0

1

1

⎤

⎥
⎦ =

⎡

⎢
⎣

0.0133∠18.23o

0.0173∠−19.04o

0.0173∠−19.04o

⎤

⎥
⎦

The only change in the previous MATLAB code was to use V = [0,1,1]T . ⊓⊔

Example 23.5.3: One of the earliest experimental studies of parasitic reflectors was by Nagy

[1462]. One of his arrangements is shown in Fig. 23.5.5 in which the driven element is at

the origin and the other three elements are parasitic. The antenna lengths were l = 1.19

m, and their radii a = 0.395 cm. The operating wavelength was λ = 2.5 meters, (i.e.,

frequency of 120 MHz.)

Fig. 23.5.5 Four-element parasitic array.

It follows that, l = 0.476λ and a = 0.00158λ. Elements two and four were placed symmet-

rically along the y-axis at distances ±0.535λ, and element three was on the negative side

of the x-axis at distance 0.248λ from the origin. Fig. 23.5.6 shows the calculated patterns.

We observe that the three parasitic antennas act as reflectors, enhancing the radiation in

the φ = 0 direction.
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Fig. 23.5.6 H-plane and E-plane radiation patterns, V = [1,0,0,0]T .
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This array was later studied theoretically by Brown [1463], using the same methods as

those presented here. Brown treated monopole antennas (i.e, half dipoles above a ground

plane,) and therefore, the values of his mutual impedances are half of ours. The inputs to

the design equations were the parameters:

L =

⎡

⎢
⎢
⎢
⎣

0.476

0.476

0.476

0.476

⎤

⎥
⎥
⎥
⎦
, a =

⎡

⎢
⎢
⎢
⎣

0.00158

0.00158

0.00158

0.00158

⎤

⎥
⎥
⎥
⎦
, d =

⎡

⎢
⎢
⎢
⎣

0.000, 0.000

0.000, 0.535

−0.248, 0.000

0.000, −0.535

⎤

⎥
⎥
⎥
⎦

The impedance matrix elements are:

Z11 = Z22 = Z33 = 63.42∠0.65o, Z12 = Z14 = 26.76∠−123.87o

Z13 = 43.56∠−34.69o, Z23 = Z34 = 24.78∠−141.96o

Z24 = 14.74∠53.15o

With V = [1,0,0,0]T , the solution of ZI = V is:

I =

⎡

⎢
⎢
⎢
⎣

I1
I2
I3
I4

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

0.0135∠−26.26o

0.0043∠74.61o

0.0126∠116.70o

0.0043∠4.61o

⎤

⎥
⎥
⎥
⎦

and we find for the ratios:

I2
I1
= I4
I1
= 0.3180∠100.87o ,

I3
I1
= 0.9343∠142.96o

These numerical results are in close agreement with Brown’s [1463]. The dashed Hallén

gains are not shown, as in the previous examples, because they are virtually indistinguish-

able from the sinusoidal ones (for M = 40.) ⊓⊔

Example 23.5.4: Coupled Dolph-Chebyshev array. In this example, we study the impact of

mutual coupling on the array design methods of Chap. 21. For a typical array spacing of

half-wavelength, the mutual impedance matrix is diagonally dominant and therefore, there

will be some but minor impact on the design.

Fig. 23.5.7 shows a 15-element array of z-directed half-wavelength dipoles with spacing

d = λ/2 arranged along the x-axis. The antenna radii are a = 0.001λ.

Fig. 23.5.7 Fifteen-element Dolph-Chebyshev array.
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We take the feed voltages V = [V1, V2, . . . , V15]
T to be Dolph-Chebyshev weights that

would steer the azimuthal array gain towards φ0 = 120o and would achieve a 20-dB side-

lobe level. These weights can be designed with the function dolph.

If the mutual coupling is ignored, the impedance matrix Z will be proportional to the

identity matrix because the antenna elements are identical. Then, the input currents I will

be essentially equal to the driving voltages V and the array will behave according to the

desired design.

If the mutual coupling is taken into account, the currents must be calculated from the

solution of ZI = V and some distortions on the desired angular pattern may occur because

Z is no longer diagonal.

Fig. 23.5.8 shows the azimuthal and polar gain patterns with and without mutual coupling.

The primary effect is to distort the sidelobe levels so that they are no longer equal. But

they are still acceptable as a close approximation to the desired Dolph-Chebyshev pattern.
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Fig. 23.5.8 H-plane and E-plane patterns with and without coupling.

The typical MATLAB code used in this example was as follows:

K = 15;

ph0 = 120; % steering angle
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L = 0.5 * ones(1,K); % vector of antenna lengths

a = 0.001 * ones(1,K); % antenna radii

d = (0:K-1)*0.5; % equally-spaced with λ/2 spacing

V = dolph(0.5, ph0, K, 20).’; % Dolph design with 20-dB sidelobes

Z = impedmat(L,a,d); % 15×15 impedance matrix

I = Z\V; % input currents

[ge,gh,ph] = gain2s(L,d,I,400,ph0); % gains with coupling

figure; dbz2(ph,gh); % azimuthal gain

figure; dbp2(ph,ge); % polar gain

[ge,gh,ph] = gain2s(L,d,V,400,ph0); % gains without coupling

figure; dbz2(ph,gh);

figure; dbp2(ph,ge);

The E-plane polar gains were computed on the plane of the desired steering angle, that is,

φ0 = 120o. The figures show that maximum gain is at θ = 90o in the φ0 direction. In the

case without coupling, we set I = V inside gain2s because any proportionality constant

gets canceled out. ⊓⊔

23.6 Yagi-Uda Antennas

A special type of parasitic array is the Yagi-Uda array shown in Fig. 23.6.1. The z-

directed dipoles are arranged along the x-axis. The second dipole is driven; all others

are parasitic.

Fig. 23.6.1 Five-element Yagi-Uda array.

The first dipole has length slightly longer than that of the driven dipole, and acts as a

“reflector”. The elements to the right of the driven dipole have lengths slightly shorter,

and act as “directors.” The reflector and directors direct the radiation preferentially

towards endfire, that is, along the x-axis.

The Yagi-Uda array is widely used as a TV reception antenna and achieves fairly good

directivity with such a simple structure. Good directivity characteristics are realized

with certain choices for the antenna lengths and separations.
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The analysis of the Yagi-Uda array follows the steps of the previous section. We

assume that there are K dipoles, with the last K − 2 being the directors, and that the

currents are sinusoidal as in Eq. (23.4.16) because the antenna lengths are of the order

of half-wavelength. Then, we compute the mutual impedance matrix Z and the input

currents I = Z−1V. Because only the second element is driven, the vector of voltages is:

V = [0,1,0,0, . . . ,0
︸ ︷︷ ︸

(K−2) zeros

]T (23.6.1)

Once we have the input currents I = [I1, I2, . . . , IK]T, the gain of the array is com-

puted by Eq. (23.5.9), which simplifies into the following form because the dipoles lie

along the x-axis:

g(θ,φ)=
∣
∣
∣
∣
∣
∣

K∑

p=1

Ip
cos(khp cosθ))− coskhp

sinkhp sinθ
ejkxp sinθ cosφ

∣
∣
∣
∣
∣
∣

2

(23.6.2)

We assume that the lengths and separations are such that the maximum gain is

towards endfire, that is, towards θ = 90o, φ = 0o. The forward and backward gains,

and the forward-backward or front-to-back ratio are defined as:

gf = gmax = g(90o,0o), gb = g(90o,180o), Rfb =
gf

gb
(23.6.3)

It follows that the normalized gain will be gn(θ,φ)= g(θ,φ)/gf . Integrating it

over all solid angles, we obtain the beam solid angle and hence the directivity of the

Yagi-Uda array:

ΔΩ =
∫ π

0

∫ 2π

0
gn(θ,φ)sinθdθdφ, D = 4π

ΔΩ
(23.6.4)

In dB, the directivity and forward-backward ratio are 10 log10D and 10 log10Rfb.

The MATLAB function yagi implements the above design steps. It computes the input

currents I as well as the directivity and forward-backward ratio. Its usage is:

[I,D,Rfb] = yagi(L,a,d); % Yagi-Uda array design

The function always assumes that the second element is the driven element and sets

the value of V according to Eq. (23.6.1). The double integral in Eq. (23.6.4) is done with a

16-point Gauss-Legendre quadrature integration formula for each integration variable.

Example 23.6.1: Reflectors and directors. The simplest possible Yagi-Uda array has one driven

element and either one reflector and no directors, or a single director and no reflector.

Fig. 23.6.2 depicts the two cases.

If the reflector is slightly longer than the driven element, and if the director is slightly

shorter, then in both cases the radiation will be directed to the right, along the x-axis.

Fig. 23.6.3 shows the resulting radiation patterns.

The length of the driven element was 0.50λ and that of the reflector and director, 0.54λ

and 0.46λ, respectively. The antenna radii were a = 0.003λ and their separation d = 0.1λ.

The mutual impedances were calculated with impedmat:
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Fig. 23.6.2 The simplest Yagi-Uda arrays.
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Fig. 23.6.3 H-plane and E-plane gains of simple Yagi-Uda arrays.

Z =
[

92.47+ 104.19j 75.68+ 11.63j

75.68+ 11.63j 73.07+ 41.37j

]

, Z =
[

73.07+ 41.37j 59.77+ 4.35j

59.77+ 4.35j 57.65− 17.01j

]

The typical MATLAB code that was used was:

L = [0.54,0.50] % reflector case
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a = 0.003*[1,1]; % radii

d = [0,0.1]; % x-coordinates of locations

Z = impedmat(L,a,d); % impedance matrix

I = Z\[0,1]’; % input currents

[ge,gh,th] = gain2s(L,d,I,400); % gain computation

figure; dbz2(th,gh,30,16); % azimuthal gain

figure; dbp2(th,ge,30,16); % polar gain

The driving voltages were in the two cases: V = [0,1]T and V = [1,0]T . ⊓⊔

Example 23.6.2: Three-element Yagi. Here, we consider a three-element Yagi-Uda array with

one reflector, one driven element, and one director. The corresponding antenna lengths,

radii, and locations along the x-axis (with the driven element at the origin) were in units of

λ:

L =

⎡

⎢
⎣

0.50

0.48

0.46

⎤

⎥
⎦ , a =

⎡

⎢
⎣

0.003

0.003

0.003

⎤

⎥
⎦ , d =

⎡

⎢
⎣

x1

x2

x3

⎤

⎥
⎦ =

⎡

⎢
⎣

−0.125

0

0.125

⎤

⎥
⎦

The azimuthal and polar gains are shown in Fig. 23.6.4. The dashed gains correspond to the

exact coupled Hallén equations, as discussed in Example 23.7.3. The computed directivity

and front/back ratio wereD = 8.18 dB and Rfb = 18.69 dB. Thus, the array achieves a gain

of D− 2.15 = 6.03 dB over a single half-wavelength dipole.
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Fig. 23.6.4 Azimuthal and polar gains of three-element Yagi-Uda array.

The impedance matrix was:

Z =

⎡

⎢
⎣

73.07+ 41.37j 60.47− 0.97j 36.25− 25.53j

60.47− 0.97j 64.93+ 11.75j 53.72− 2.71j

36.25− 25.53j 53.72− 2.71j 57.65− 17.01j

⎤

⎥
⎦

The input currents and input impedance of the driving element were:
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I =

⎡

⎢
⎣

I1
I2
I3

⎤

⎥
⎦ =

⎡

⎢
⎣

−0.0290+ 0.0176j

0.1062− 0.0182j

−0.0801− 0.0256j

⎤

⎥
⎦ , Z2 = V2

I2
= 1

I2
= 9.15+ 1.57j

The typical MATLAB code for this example was:

L = [0.50, 0.48, 0.46]; % antenna lengths

a = 0.003*[1,1,1]; % radii

d = [-0.125, 0, 0.125]; % x-locations

[I,D,Rfb] = yagi(L,a,d); % solve ZI = V

[ge,gh,th] = gain2s(L,d,I,360); % compute gains at 1o increments

M = 40; % number of upper-half samples

[I,z] = hcoupled(L,a,d,[0,1,0],M); % compute Hallén currents

[ge2,gh2,ph] = gain2d(L,d,I,360); % gain of Hallén currents

figure; dbz2(ph,gh); dbadd2(2,’--’,ph,gh2);

figure; dbp2(ph,ge); dbadd2(1,’--’,ph,ge2);

The driving voltages were defined within yagi to be V = [0,1,0]T . ⊓⊔

Example 23.6.3: Optimized six-element Yagi. Chen and Cheng [1477] applied King’s three-term

current approximation [4] and devised procedures for optimizing the choices of the an-

tenna lengths and separations of Yagi-Uda arrays. Fig. 23.6.5 shows the gains before and

after optimization of a six-element Yagi-Uda array calculated with the functions yagi and

gain2s. The antenna radii were a = 0.003369λ.

For the unoptimized case, the antenna lengths and x-locations were in units of λ:

L = [L1, L2, L3, L4, L5, L6]= [0.510,0.490,0.430,0.430,0.430,0.430]

d = [x1, x2, x3, x4, x5, x6]= [−0.25,0,0.310,0.620,0.930,1.240]

The directors were identical and equally spaced at spacing of 0.31λ. The computed direc-

tivity and front/back ratio were 11 dB and 9.84 dB, respectively. The optimized case has

slightly different lengths and x-locations:

L = [L1, L2, L3, L4, L5, L6]= [0.476,0.452,0.436,0.430,0.434,0.430]

d = [x1, x2, x3, x4, x5, x6]= [−0.25,0,0.289,0.695,1.018,1.440]

Typical MATLAB code was as follows:

L = [0.476, 0.452, 0.436, 0.430, 0.434, 0.430];

a = 0.003369 * [1,1,1,1,1,1];

d = [-0.25, 0, 0.289, 0.695, 1.018, 1.440];

[I,D,Rfb] = yagi(L,a,d);
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Fig. 23.6.5 Gains of six-element Yagi-Uda array.

[ge,gh,th] = gain2s(L,d,I,360);

figure; dbz2(th,gh,30,40);

figure; dbp2(th,ge,30,40);

The optimized directivity was 12.54 dB and the forward/backward ratio 17.6 dB. ⊓⊔

23.7 Hallén Equations for Coupled Antennas

In Sects. 23.4 and 23.5, we developed the Hallén-Pocklington equations for coupled an-

tennas, that is, Eqs. (23.4.8)–(23.4.9) and (23.5.1). Here, we discuss their numerical solu-

tion. On the pth antenna, we have:

(∂2
z + k2)Vp(z)= 2kVpδ(z), p = 1,2, . . . , K (23.7.1)
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where Vp is the driving delta-gap input and Vp(z) is the sum of the (scaled) vector

potentials due to the currents on all antennas:

Vp(z)=
K∑

q=0

Vpq(z)= jη

2π

K∑

q=0

∫ hq

−hq
Gpq(z− z′)Iq(z′)dz′ (23.7.2)

where we recall the definition of the impedance kernel:

Gpq(z− z′)= e−jkR

R
, R =

√

(z− z′)2+d2
pq (23.7.3)

and dpq are the mutual distances or radii, as defined in Eq. (23.5.2). The use of the ap-

proximate kernel in (23.7.3) is well-justified for the off-diagonal terms (p �= q) because

the distances dpq are typically much greater than the radii. However, for the diagonal

term (p = q), one could use the exact kernel given as in (22.7.10) by,

Gpp(z− z′)= 2

π

∫ π/2

0

e−jkR

R
dθ , R =

√

(z− z′)2+4a2
p − 4a2

p sin2 θ (23.7.4)

Following the discussion of Sec. 22.3, the solution of (23.7.1) is of the form:

Vp(z)= Cp coskz+Vp sink|z|, −hp ≤ z ≤ hp (23.7.5)

where we assumed that all the antennas are center-driven, and therefore, Vp(z) will

be even in z. Combining (23.7.5) with (23.7.2), we obtain the coupled system of Hallén

equations, for p = 1,2, . . . , K:

jη

2π

K∑

q=0

∫ hq

−hq
Gpq(z− z′)Iq(z′)dz′ = Cp coskz+Vp sink|z| (23.7.6)

The K constants C1, C2, . . . , CK are determined by imposing the end conditions on

the K currents: Ip(hp)= 0, for p = 1,2, . . . , K.

To solve this system, we use a basis-function expansion of the form of Eq. (22.8.3)

and apply point matching. For simplicity, we take the same number of sampling points

on each antenna,N = 2M+1. Because the antenna lengths may be different, the sample

spacings will also be different. On the qth antenna we have,

zm =mΔq , Δq =
2hq

2M + 1
= lq

N
, −M ≤m ≤M (23.7.7)

The basis-function expansion for the qth current is

Iq(z
′)=

M∑

m=−M
Iq(zm)Bq(z

′ − zm), q = 1,2, . . . , K (23.7.8)

We are going to use only the pulse and the triangular bases defined by Eqs. (22.8.4)

and (22.11.2), respectively, with sample spacing Δ = Δq. For the triangular basis, we

must set Δq = hq/M instead of Δq = 2hq/(2M + 1).
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Inserting (23.7.8) into (23.7.6) and sampling along the p-th antenna, that is, at the

points zn = nΔp, for −M ≤ n ≤M, we obtain the discretized system:

jη

2π

K∑

q=0

M∑

m=−M
Iq(zm)

∫ hq

−hq
Gpq(zn − z′)Bq(z′ − zm)dz′ = Cp coskzn +Vp sink|zn|

We define the N×N impedance matrix Zpq whose nmth matrix element is:

Zpq(n,m) = jη

2π

∫ hq

−hq
Gpq(zn − z′)Bq(z′ − zm)dz′

= jη

2π

∫ hq

−hq
Gpq(zn − zm − z)Bq(z)dz

(23.7.9)

with −M ≤ n,m ≤M. In particular, for the pulse basis, these take the form:

Zpq(n,m)= jη

2π

∫ Δq/2

−Δq/2
Gpq(zn − zm − z)dz (23.7.10)

and, for the triangular basis:

Zpq(n,m)= jη

2π

∫ Δq

−Δq

(

1− |z|
Δq

)

Gpq(zn − zm − z)dz (23.7.11)

Denoting Iq(m)= Iq(zm), the discretized Hallén system becomes:

K∑

q=0

M∑

m=−M
Zpq(n,m)Iq(m)= Cp coskzn +Vp sink|zn| (23.7.12)

where p = 1,2, . . . , K. And, written in a more compact form:

K∑

q=0

ZpqIq = Cpcp +Vpsp (23.7.13)

where we defined the N-dimensional vectors:

Iq =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Iq(M)
...

Iq(1)

Iq(0)

Iq(1)
...

Iq(M)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, cp =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

coskzM
...

coskz1

coskz0

coskz1

...

coskzM

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, sp =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sinkzM
...

sinkz1

sinkz0

sinkz1

...

sinkzM

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(23.7.14)

and used the even symmetry in z. The vectors cp and sp depend on p through the sample

spacing in zn = nΔp, −M ≤ n ≤M.
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The system (23.7.13) providesK coupled matrix equations by which to determine the

K sampled current vectors I1, I2, . . . , IK on each antenna. TheN×NmatricesZpq are not

Toeplitz, unless the antennas are identical, in which case Δp = Δq and the Zpq(n,m)
depends only on the difference n−m. Of course, for p = q, Zpp is both symmetric and

Toeplitz.

However, while not Toeplitz, the matrix Zpq is reversal-invariant because of the

property Zpq(n,m)= Zpq(−n,−m), which follows from Eq. (23.7.9). Therefore, the

matrix system (23.7.13) can be wrapped in half by the procedure discussed in Sec. 22.9,

which replaced the matrix equation (22.9.6) by (22.9.7).

Here, each N×N matrix Zpq is wrapped to size (M + 1)×(M + 1) by the same

process. The resulting system looks identical to (23.7.13), except the currents and right-

hand sides are essentially half those of (23.7.14):

Iq =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Iq(0)

Iq(1)
...

Iq(M)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, cp =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

coskz0

coskz1

...

coskzM

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, sp =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

sinkz0

sinkz1

...

sinkzM

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(23.7.15)

In particular, if all antennas are identical, then the wrapping process can be made

even more efficient using the Toeplitz-Hankel properties of the wrapped matrices, as

discussed in Example 22.9.1. In any case, we will assume in the sequel that the system

(23.7.13) has been wrapped in half.

If the constants Cp were known, the solution of the system (23.7.13) could be ob-

tained by writing it as a single block-matrix linear system of the form:

ZI = Cc+Vs (23.7.16)

where Z is the K×K block matrix whose pqth matrix element is the (M + 1)×(M + 1)

matrix Zpq, and C, V are appropriate block-diagonal matrices. The vectors I, c, s are the

concatenations of Ip, cp, sp. For example, in the case K = 3, the system (23.7.13) reads:

Z11I1 +Z12I2 +Z13I3 = C1c1 +V1s1

Z21I1 +Z22I2 +Z23I3 = C2c2 +V2s2

Z31I1 +Z32I2 +Z33I3 = C3c3 +V3s3

This can be written in the 3×3 block-matrix form:

⎡

⎢
⎣

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

⎤

⎥
⎦

⎡

⎢
⎣

I1

I2

I3

⎤

⎥
⎦ =

⎡

⎢
⎣

C1I 0 0

0 C2I

0 0 C3I

⎤

⎥
⎦

⎡

⎢
⎣

c1

c2

c3

⎤

⎥
⎦+

⎡

⎢
⎣

V1I 0 0

0 V2I 0

0 0 V3I

⎤

⎥
⎦

⎡

⎢
⎣

s1

s2

s3

⎤

⎥
⎦

where I is the (M + 1)×(M + 1) identity matrix.

Next, we discuss the determination of the constants Cp. The condition Ip(M)= 0

can be written vectorially in the form uTIp = 0, where u = [0, . . . ,0,1]T, as was done in

Sec. 22.9. Separating the pth term of the pth equation in (23.7.13), we have:

ZppIp +
∑

q �=p
ZpqIq = Cpcp +Vpsp (23.7.17)
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Solving for Ip and multiplying by uT, we obtain the condition:

uTIp = CpuTZ−1
ppcp +VpuTZ−1

ppsp −
∑

q �=p
uTZ−1

ppZpqIq = 0

Defining the quantity up = Z−1
ppu, we solve this condition for Cp:

Cp = 1

uTpcp

⎛

⎝
∑

q �=p
uTpZpqIq −VpuTpsp

⎞

⎠

Inserting Cp into Eq. (23.7.17) and rearranging terms, we obtain:

ZppIp +
∑

q �=p

(

I − cpuTp

cTpup

)

ZpqIq = Vp
(

I − cpuTp

cTpup

)

sp (23.7.18)

To simplify it, we define the (M + 1)×(M + 1) projection matrices:

Pp = I −
cpuTp

cTpup
, p = 1,2, . . . , K (23.7.19)

Then, Eq. (23.7.18) can be written in the form:

ZppIp +
∑

q �=p
PpZpqIq = VpPpsp (23.7.20)

Thus, eliminating the constants Cp by enforcing the end conditions, amounts to

replacing the impedance matrices Zpq by the projected ones:

Z̄pq =
{ Zpp, if q = p
PpZpq, if q �= p (23.7.21)

and the term sp by the projected one, s̄p = Ppsp. Then, Eq. (23.7.20) can be written in

the form:
K∑

q=0

Z̄pqIq = Vps̄p , p = 1,2, . . . , K (23.7.22)

or, compactly in the block-matrix form:

Z̄I = Vs̄ (23.7.23)

with solution:

I =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

I1

I2

...

IK

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= Z̄−1Vs̄ = Z̄−1

⎡

⎢
⎢
⎢
⎢
⎢
⎣

V1s̄1

V2s̄2

...

VKs̄K

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(23.7.24)

The MATLAB function hcoupled implements the above solution procedure. First, it

constructs the impedance matricesZpq by calculating the integrals in Eq. (23.7.9) using a

32-point Gauss-Legendre quadrature integration formula. Second, it wraps the matrices

Zpq in half and puts them together into the block-matrix Z. And third, it constructs the

projected matrix Z̄ and the solution (23.7.24). Its usage is:
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[I,z] = hcoupled(L,a,d,V,M,ker,basis); % solve Hallén equations for coupled dipoles

where L, a,d are the vectors of antenna lengths, radii, and xy-locations, and V is the

vector of the driving voltages V = [V1, V2, . . . , VK]. The parameters L, a,d have the

same usage as in the functions yagi and gain2s. The string input ker takes the val-

ues ’e’,’a’ for using the exact or the approximate kernel in the computation of the

diagonal elements of the impedance matrix. The basis parameter can take only the two

values ’p’,’t’ for pulse or triangular basis.

The output I is the (2M+1)×Kmatrix whose pth column is the double-sided vector

of current samples Ip(zm), zm = mΔp, −M ≤ m ≤ M. Thus, the matrix elements of

I are I(m,p)= Ip(zm). Similarly, the pth column of the output matrix z holds the

sampled z-locations on the pth antenna, that is, z(m,p)=mΔp.

The output matrix I is obtained by using the MATLAB function reshape to reshape

the
(

K(M+1)
)

-dimensional column vector solution (23.7.24) into a matrix of size (M+
1)×K, and then, symmetrizing it to size (2M + 1)×K.

A faster version of hcoupled is the function hcoupled2, which assumes that the

antennas are identical. It is faster because it makes use of the Toeplitz-Hankel structure

of the wrapped matrices Zpq to construct them more efficiently. Its usage is:

[I,z] = hcoupled2(L,a,d,V,M,ker,basis)); % Hallén equations for coupled identical dipoles

where I has the same meaning as in hcoupled, but z is now a single column vector, that

is, zm = mΔ, −M ≤ m ≤ M. In both hcoupled2 and hcoupled, the final solution is

obtained by solving the system (23.7.23), which is
(

K(M+1)
)×(K(M+1)

)

-dimensional.

In order to conveniently manipulate the block impedance matrices, we developed a

MATLAB function, blockmat, which is used extensively inside hcoupled2 and hcoupled.

It allows one to create block matrices and to extract or insert sub-blocks. Its usage is as

follows:

Z = blockmat(K,K,M+1,M+1); % create a
(

K(M + 1)
)×(K(M + 1)

)

matrix of zeros

Zpq = blockmat(K,K,p,q,Z); % extract pqth submatrix of Z

Z = blockmat(K,K,p,q,Z,Zpq); % insert Zpq into pqth submatrix of Z

s = blockmat(K,1,M+1,1); % create a
(

K(M + 1)
)

-dimensional column of zeros

sp = blockmat(K,1,p,1,s); % extract the pth subvector of s

s = blockmat(K,1,p,1,s,sp); % insert sp into pth subvector of s

Once the sampled currents Ip(m) are known, the gain of the array can be computed

by finding the total current density, J(r)= ẑJz(r) :

Jz(r)=
K∑

p=1

Ip(z)δ(x− xp)δ(y − yp)=
K∑

p=1

M∑

m=−M
Ip(m)Bp(z− zm)δ(x− xp)δ(y − yp)

where we used Eq. (23.7.8). The corresponding radiation vector is:

Fz(θ,φ) =
∫

Jz(r)e
jk·r d3r =

M∑

m=−M

K∑

p=1

Ip(m)e
jkxxp+jkyyp

∫ hp

−hp
Bp(z− zm)ejkzz dz

=
M∑

m=−M

K∑

p=1

Ip(m)e
jkxxp+jkyypejkzzm

∫ hp

−hp
Bp(z)e

jkzz dz
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Performing the z-integration, we finally get:

Fz(θ,φ)=
M∑

m=−M

K∑

p=1

Ip(m)e
jkzmΔpejkxxp+jkyyp Δp

[

sin(kzΔp/2)

kzΔp/2

]b

(23.7.25)

where kx = k sinθ cosφ, ky = k sinθ sinφ, and kz = k cosθ, and b = 1 for the pulse

basis and b = 2 for the triangular one. The corresponding normalized gain of the array

will be, up to a constant:

g(θ,φ)=
∣
∣sinθFz(θ,φ)

∣
∣2

(23.7.26)

The MATLAB function gain2d computes the E-plane polar gain and the H-plane

azimuthal gain from Eqs. (23.7.25) and (23.7.26). Its usage is:

[ge,gh,th] = gain2d(L,d,I,N,ph0,basis) % gain of 2D array of antennas with Hallén currents

[ge,gh,th] = gain2d(L,d,I,N,ph0) % equivalent to basis=’p’ (pulse basis)

[ge,gh,th] = gain2d(L,d,I,N,basis) % equivalent to ph0=0

[ge,gh,th] = gain2d(L,d,I,N) % equivalent to ph0=0, basis=’p’

where the current input I is exactly the same as the output matrix from hcoupled

or hcoupled2. The meaning of the outputs are exactly the same as in the function

gain2s discussed in Sec. 23.5. The string basis takes the values ’p’ or ’t’, for pulse

or triangular basis.

The difference between gain2s and gain2d is that the former assumes the currents

are sinusoidal and I represents only the input currents, I = [I1, I2, . . . , IK]. whereas in

the latter, the full (2M + 1)×K current matrix is needed, I = [I1, I2, . . . , IK].

Example 23.7.1: Hallén solution of parasitic array. Consider the three-element array of Example

23.5.1 and shown in Fig. 23.5.2. The Hallén currents on each antenna can be computed

by using hcoupled2 because the elements are identical. Fig. 23.7.1 shows the computed

sampled currents with N = 2M + 1 = 81 or M = 40.
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Fig. 23.7.1 Currents on driven and parasitic antennas.

Because of the symmetry, the currents on the two parasitic antennas are the same. For all

three antennas, the currents are essentially sinusoidal, justifying the use of this assump-

tion. The gains computed with gain2d, and under the sinusoidal assumption with gain2s,
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were shown in Fig. 23.5.3. The MATLAB code used to generate the currents and the gains

was given in Example 23.5.1. ⊓⊔

Example 23.7.2: Full-wavelength parasitic array. If one or more of the antennas has length

equal to a multiple of λ, the analysis methods based on the sinusoidal assumption break

down because the impedance matrix computed with Eq. (23.4.15) becomes infinite.

On the other hand, the numerical solution of the Hallén system can still be carried through

giving a finite answer. Fig. 23.7.2 shows the gains and currents of the parasitic array of

Example 23.5.1, but all the antennas being full-wavelength elements, l = λ. The distance of

the parasitic antennas to the driven element was also changed to d = 0.25λ from d = 0.5λ.
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Fig. 23.7.2 Gains and currents of full-wavelength parasitic array.

The sinusoidal assumption for the driven element is fairly accurate except near z = 0,

where the current has an non-zero value. But on the parasitic element, the sinusoidal

assumption is completely wrong. ⊓⊔

Example 23.7.3: Three-element Yagi-Uda array. Here, we compute the currents on the three

antennas of the Yagi-Uda array of Example 23.6.2. Because the antennas are not identical,

the function hcoupled must be used. The gains were computed with gain2s and gain2d

in Example 23.6.2. and shown in Fig. 23.6.4. The sampled currents on the three antennas

are shown in Fig. 23.7.3.
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We observe that the sinusoidal assumption is fairly accurate. The MATLAB code used to

generate the current graphs was as follows:

L = [0.50, 0.48, 0.46]; h = L/2;

a = 0.003 * [1, 1, 1];

d = [-0.125, 0, 0.125];

V = [0, 1, 0]; % can be defined as column or row

k = 2*pi;

M = 40;

[I,z] = hcoupled(L,a,d,V,M);

I1 = abs(I(M+1:end,1)); m1 = max(I1); z1 = z(M+1:end,1);

I2 = abs(I(M+1:end,2)); m2 = max(I2); z2 = z(M+1:end,2);

I3 = abs(I(M+1:end,3)); m3 = max(I3); z3 = z(M+1:end,3);

s1 = 0:h(1)/50:h(1); Is1 = m1*abs(sin(k*(h(1)-s1)));

s2 = 0:h(2)/50:h(2); Is2 = m2*abs(sin(k*(h(2)-s2)));

s3 = 0:h(3)/50:h(3); Is3 = m3*abs(sin(k*(h(3)-s3)));

figure; plot(z1, I1, ’.’, s1, Is1, ’:’);

figure; plot(z2, I2, ’.’, s2, Is2, ’:’);

figure; plot(z3, I3, ’.’, s3, Is3, ’:’);

Note that I1, I2, and I3 are obtained from the three columns of I, and z1, z2, and z3 from

the three columns of z. Only the currents on the upper-half of each antenna are plotted.

The sinusoidal currents are scaled to the maximum values of the corresponding Hallén

currents.
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Fig. 23.7.3 Currents on the Yagi antennas.

These examples demonstrate the remark made earlier that the sinusoidal assumption is

justified only for antennas with lengths near half a wavelength. ⊓⊔

23.8 Problems

23.1 Show that the asymptotic form of Eq. (23.3.7) for the mutual impedance between two parallel

dipoles separated by a distance d is given by

Z21 = jη

π
tan

(
kh1

2

)

tan

(
kh2

2

)
e−jkd

kd
, for large d
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23.2 Using the higher-order terms in the series (23.3.23), show that the input impedance Zin =
R+ jX of a small dipole is given as follows to order (kl)4, where L = ln(2a/l):

R = η

2π

[
1

12
(kl)2+ 1

360
(kl)4

]

, X = η

2π

[
4(1+ L)
kl

− 1

3

(

L+ 2

3

)

(kl)− 1

180

(

L− 11

30

)

(kh)3

]

23.3 Consider a small dipole with a linear current given by Eq. (23.3.25). Determine the radiation

vector, and the radiated electric and magnetic fields at a far distance r from the dipole. Cal-

culate the radiated power Prad by integrating the radial Poynting vector over a large sphere.

Then identify the radiation resistance R through the definition:

Prad = 1

2
R|I0|2

and show R is the same as that given by Eq. (23.3.24)
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Appendices

A. Physical Constants

We use SI units throughout this text. Simple ways to convert between SI and other

popular units, such as Gaussian, may be found in Refs. [123–126].

The Committee on Data for Science and Technology (CODATA) of NIST maintains

the values of many physical constants [112]. The most current values can be obtained

from the CODATA web site [1482]. Some commonly used constants are listed below:

quantity symbol value units

speed of light in vacuum c0, c 299 792 458 m s−1

permittivity of vacuum ǫ0 8.854 187 817× 10−12 F m−1

permeability of vacuum μ0 4π× 10−7 H m−1

characteristic impedance η0, Z0 376.730 313 461 Ω

electron charge e 1.602 176 462× 10−19 C

electron mass me 9.109 381 887× 10−31 kg

Boltzmann constant k 1.380 650 324× 10−23 J K−1

Avogadro constant NA, L 6.022 141 994× 1023 mol−1

Planck constant h 6.626 068 76× 10−34 J/Hz

Gravitational constant G 6.672 59× 10−11 m3 kg−1s−2

Earth mass M⊕ 5.972× 1024 kg

Earth equatorial radius ae 6378 km

In the table, the constants c, μ0 are taken to be exact, whereas ǫ0, η0 are derived

from the relationships:

ǫ0 =
1

μ0c2
, η0 =

√

μ0

ǫ0

= μ0c

The energy unit of electron volt (eV) is defined to be the work done by an electron

in moving across a voltage of one volt, that is, 1 eV = 1.602 176 462× 10−19 C · 1 V, or

1 eV = 1.602 176 462× 10−19 J
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In units of eV/Hz, Planck’s constant h is:

h = 4.135 667 27× 10−15 eV/Hz = 1 eV/241.8 THz

that is, 1 eV corresponds to a frequency of 241.8 THz, or a wavelength of 1.24 μm.

B. Electromagnetic Frequency Bands

The ITU† divides the radio frequency (RF) spectrum into the following frequency and

wavelength bands in the range from 30 Hz to 3000 GHz:

RF Spectrum

band designations frequency wavelength

ELF Extremely Low Frequency 30–300 Hz 1–10 Mm

VF Voice Frequency 300–3000 Hz 100–1000 km

VLF Very Low Frequency 3–30 kHz 10–100 km

LF Low Frequency 30–300 kHz 1–10 km

MF Medium Frequency 300–3000 kHz 100–1000 m

HF High Frequency 3–30 MHz 10–100 m

VHF Very High Frequency 30–300 MHz 1–10 m

UHF Ultra High Frequency 300–3000 MHz 10–100 cm

SHF Super High Frequency 3–30 GHz 1–10 cm

EHF Extremely High Frequency 30–300 GHz 1–10 mm

Submillimeter 300-3000 GHz 100–1000 μm

An alternative subdivision of the low-frequency

bands is to designate the bands 3–30 Hz, 30–300 Hz,

and 300–3000 Hz as extremely low frequency (ELF),

super low frequency (SLF), and ultra low frequency

(ULF), respectively.

Microwaves span the 300 MHz–300 GHz fre-

quency range. Typical microwave and satellite com-

munication systems and radar use the 1–30 GHz

band. The 30–300 GHz EHF band is also referred to

as the millimeter band.

The 1–100 GHz range is subdivided further into

the subbands shown on the right.

Microwave Bands

band frequency

L 1–2 GHz

S 2–4 GHz

C 4–8 GHz

X 8–12 GHz

Ku 12–18 GHz

K 18–27 GHz

Ka 27–40 GHz

V 40–75 GHz

W 80–100 GHz

Some typical RF applications are as follows. AM radio is broadcast at 535–1700

kHz falling within the MF band. The HF band is used in short-wave radio, navigation,

amateur, and CB bands. FM radio at 88–108 MHz, ordinary TV, police, walkie-talkies,

and remote control occupy the VHF band.

Cell phones, personal communication systems (PCS), pagers, cordless phones, global

positioning systems (GPS), RF identification systems (RFID), UHF-TV channels, microwave

ovens, and long-range surveillance radar fall within the UHF band.

†International Telecommunication Union.
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The SHF microwave band is used in radar (traffic control, surveillance, tracking, mis-

sile guidance, mapping, weather), satellite communications, direct-broadcast satellite

(DBS), and microwave relay systems. Multipoint multichannel (MMDS) and local multi-

point (LMDS) distribution services, fall within UHF and SHF at 2.5 GHz and 30 GHz.

Industrial, scientific, and medical (ISM) bands are within the UHF and low SHF, at 900

MHz, 2.4 GHz, and 5.8 GHz. Radio astronomy occupies several bands, from UHF to L–W

microwave bands.

Beyond RF, come the infrared (IR), visible, ultraviolet (UV), X-ray, and γ-ray bands.

The IR range extends over 3–300 THz, or 1–100 μm. Many IR applications fall in the

1–20 μm band. For example, optical fiber communications typically use laser light at

1.55 μm or 193 THz because of the low fiber losses at that frequency. The UV range lies

beyond the visible band, extending typically over 10–400 nm.

band wavelength frequency energy

infrared 100–1 μm 3–300 THz

ultraviolet 400–10 nm 750 THz–30 PHz

X-Ray 10 nm–100 pm 30 PHz–3 EHz 0.124–124 keV

γ-ray < 100 pm > 3 EHz > 124 keV

The CIE† defines the visible spectrum to be the wavelength range 380–780 nm, or

385–789 THz. Colors fall within the following typical wavelength/frequency ranges:

Visible Spectrum

color wavelength frequency

red 780–620 nm 385–484 THz

orange 620–600 nm 484–500 THz

yellow 600–580 nm 500–517 THz

green 580–490 nm 517–612 THz

blue 490–450 nm 612–667 THz

violet 450–380 nm 667–789 THz

X-ray frequencies fall in the PHz (petahertz) range and γ-ray frequencies in the EHz

(exahertz) range.‡ X-rays and γ-rays are best described in terms of their energy, which is

related to frequency through Planck’s relationship, E = hf . X-rays have typical energies

of the order of keV, andγ-rays, of the order of MeV and beyond. By comparison, photons

in the visible spectrum have energies of a couple of eV.

The earth’s atmosphere is mostly opaque to electromagnetic radiation, except for

three significant “windows”, the visible, the infrared, and the radio windows. These

three bands span the wavelength ranges of 380-780 nm, 1-12 μm, and 5 mm–20 m,

respectively.

Within the 1-10 μm infrared band there are some narrow transparent windows. For

the rest of the IR range (1–1000μm), water and carbon dioxide molecules absorb infrared

radiation—this is responsible for the Greenhouse effect. There are also some minor

transparent windows for 17–40 and 330–370 μm.

†Commission Internationale de l’Eclairage (International Commission on Illumination.)
‡1 THz = 1012 Hz, 1 PHz = 1015 Hz (petahertz), 1 EHz = 1018 Hz (exahertz).

1090 24. Appendices

Beyond the visible band, ultraviolet and X-ray radiation are absorbed by ozone and

molecular oxygen (except for the ozone holes.)

C. Vector Identities and Integral Theorems

Algebraic Identities

|A|2|B|2 = |A · B|2 + |A× B|2 (C.1)

(A× B)·C = (B× C)·A = (C× A)·B (C.2)

A× (B× C) = B (A · C)−C (A · B) (BAC-CAB rule) (C.3)

(A× B)·(C×D) = (A · C)(B ·D)−(A ·D)(B · C) (C.4)

(A× B)×(C×D) =
[

(A× B)·D
]

C−
[

(A× B)·C
]

D (C.5)

A = n̂× (A× n̂)+(n̂ · A)n̂ = A⊥ + A‖ (C.6)

where n̂ is any unit vector, and A⊥, A‖ are the components of A perpendicular and

parallel to n̂. Note also that n̂ × (A × n̂)= (n̂ × A)×n̂. A three-dimensional vector can

equally well be represented as a column vector:

a = axx̂+ ayŷ+ azẑ ⇔ a =

⎡

⎢

⎣

ax
ay
bz

⎤

⎥

⎦ (C.7)

Consequently, the dot and cross products may be represented in matrix form:

a · b ⇔ aTb = [ax, ay, az]

⎡

⎢

⎣

bx
by
bz

⎤

⎥

⎦ = axbx + ayby + azbz (C.8)

a× b ⇔ Ab =

⎡

⎢

⎣

0 −az ay
az 0 −ax

−ay ax 0

⎤

⎥

⎦

⎡

⎢

⎣

bx
by
bz

⎤

⎥

⎦ =

⎡

⎢

⎣

aybz − azby
azbx − axbz
axby − aybx

⎤

⎥

⎦ (C.9)

The cross-product matrix A satisfies the following identity:

A2 = aaT − (aTa)I (C.10)

where I is the 3×3 identity matrix. Applied to a unit vector n̂, this identity reads:

I = n̂n̂T − N̂2 , where n̂ =

⎡

⎢

⎣

n̂x
n̂y
n̂z

⎤

⎥

⎦ , N̂ =

⎡

⎢

⎣

0 −n̂z n̂y
n̂z 0 −n̂x

−n̂y n̂x 0

⎤

⎥

⎦ , n̂Tn̂ = 1 (C.11)

This corresponds to the matrix form of the parallel/transverse decomposition (C.6).

Indeed, we have a‖ = n̂(n̂Ta) and a⊥ = (n̂× a)×n̂ = −n̂× (n̂× a)= −N̂(N̂a)= −N̂2a .

Therefore, a = Ia = (n̂n̂T − N̂2)a = a‖ + a⊥ .
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Differential Identities

∇∇∇× (∇∇∇ψ) = 0 (C.12)

∇∇∇ · (∇∇∇× A) = 0 (C.13)

∇∇∇ · (ψA) = A ·∇∇∇ψ+ψ∇∇∇ · A (C.14)

∇∇∇× (ψA) = ψ∇∇∇× A+∇∇∇ψ× A (C.15)

∇∇∇(A · B) = (A ·∇∇∇)B+ (B ·∇∇∇)A+ A× (∇∇∇× B)+B× (∇∇∇× A) (C.16)

∇∇∇ · (A× B) = B · (∇∇∇× A)−A · (∇∇∇× B) (C.17)

∇∇∇× (A× B) = A(∇∇∇ · B)−B(∇∇∇ · A)+(B ·∇∇∇)A− (A ·∇∇∇)B (C.18)

∇∇∇× (∇∇∇× A) =∇∇∇(∇∇∇ · A)−∇2A (C.19)

Ax∇∇∇Bx +Ay∇∇∇By +Az∇∇∇Bz = (A ·∇∇∇)B+ A× (∇∇∇× B) (C.20)

Bx∇∇∇Ax + By∇∇∇Ay + Bz∇∇∇Az = (B ·∇∇∇)A+ B× (∇∇∇× A) (C.21)

(n̂×∇∇∇)×A = n̂× (∇∇∇× A)+(n̂ ·∇∇∇)A− n̂(∇∇∇ · A) (C.22)

ψ(n̂ ·∇∇∇)E− E (n̂ ·∇∇∇ψ)=
[

(n̂ ·∇∇∇)(ψE)+ n̂×
(

∇∇∇× (ψE)
)

− n̂∇∇∇ · (ψE)
]

+
[

n̂ψ∇∇∇ · E− (n̂× E)×∇∇∇ψ−ψ n̂× (∇∇∇× E)−(n̂ · E)∇∇∇ψ
]

(C.23)

With r = x x̂+ y ŷ+ z ẑ, r = |r| =
√

x2 + y2 + z2, and the unit vector r̂ = r/r, we have:

∇∇∇r = r̂ , ∇∇∇r2 = 2r , ∇∇∇1

r
= − r̂

r2
, ∇∇∇ · r = 3 , ∇∇∇× r = 0 , ∇∇∇ · r̂ = 2

r
(C.24)

Integral Theorems for Closed Surfaces

The theorems involve a volume V surrounded by a closed surface S. The divergence or

Gauss’ theorem is:

∫

V
∇∇∇ · AdV =

∮

S
A · n̂ dS (Gauss’ divergence theorem) (C.25)

where n̂ is the outward normal to the surface. Green’s first and second identities are:

∫

V

[

ϕ∇2ψ+∇∇∇ϕ ·∇∇∇ψ
]

dV =
∮

S
ϕ
∂ψ

∂n
dS (C.26)

∫

V

[

ϕ∇2ψ−ψ∇2ϕ
]

dV =
∮

S

(

ϕ
∂ψ

∂n
−ψ∂ϕ

∂n

)

dS (C.27)
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where
∂

∂n
= n̂ ·∇∇∇ is the directional derivative along n̂. Some related theorems are:

∫

V
∇2ψdV =

∮

S
n̂ ·∇∇∇ψdS =

∮

S

∂ψ

∂n
dS (C.28)

∫

V
∇∇∇ψdV =

∮

S
ψ n̂dS (C.29)

∫

V
∇2AdV =

∮

S
(n̂ ·∇∇∇)AdS =

∮

S

∂A

∂n
dS (C.30)

∮

S
(n̂×∇∇∇)×AdS =

∮

S

[

n̂× (∇∇∇× A)+(n̂ ·∇∇∇)A− n̂(∇∇∇ · A)
]

dS = 0 (C.31)

∫

V
∇∇∇× AdV =

∮

S
n̂× AdS (C.32)

Using Eqs. (C.23) and (C.31), we find:

∮

S

(

ψ
∂E

∂n
− E

∂ψ

∂n

)

dS =

=
∮

S

[

n̂ψ∇∇∇ · E− (n̂× E)×∇∇∇ψ−ψ n̂× (∇∇∇× E)−(n̂ · E)∇∇∇ψ
]

dS

(C.33)

The vectorial forms of Green’s identities are [1291,1288]:

∫

V
(∇∇∇× A ·∇∇∇× B− A ·∇∇∇×∇∇∇× B)dV =

∮

S
n̂ · (A×∇∇∇× B)dS (C.34)

∫

V
(B ·∇∇∇×∇∇∇× A− A ·∇∇∇×∇∇∇× B)dV =

∮

S
n̂ · (A×∇∇∇× B− B×∇∇∇× A)dS (C.35)

Integral Theorems for Open Surfaces

Stokes’ theorem involves an open surface S and its boundary contour C:

∫

S
n̂ ·∇∇∇× AdS =

∮

C
A · dl (Stokes’ theorem) (C.36)

where dl is the tangential path length around C. Some related theorems are:

∫

S

[

ψ n̂ ·∇∇∇× A− (n̂× A)·∇∇∇ψ
]

dS =
∮

C
ψA · dl (C.37)

∫

S

[

(∇∇∇ψ) n̂ ·∇∇∇× A−
(

(n̂× A)·∇∇∇
)

∇∇∇ψ
]

dS =
∮

C
(∇∇∇ψ)A · dl (C.38)

∫

S
n̂×∇∇∇ψdS =

∮

C
ψdl (C.39)
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∫

S
(n̂×∇∇∇)×AdS =

∫

S

[

n̂× (∇∇∇× A)+(n̂ ·∇∇∇)A− n̂(∇∇∇ · A)
]

dS =
∮

C
dl× A (C.40)

∫

S
n̂dS = 1

2

∮

C
r× dl (C.41)

Eq. (C.41) is a special case of (C.40). Using Eqs. (C.23) and (C.40) we find:

∫

S

(

ψ
∂E

∂n
− E

∂ψ

∂n

)

dS+
∮

C
ψE× dl =

=
∫

S

[

n̂ψ∇∇∇ · E− (n̂× E)×∇∇∇ψ−ψ n̂× (∇∇∇× E)−(n̂ · E)∇∇∇ψ
]

dS

(C.42)

D. Green’s Functions

The Green’s functions for the Laplace, Helmholtz, and one-dimensional Helmholtz equa-

tions are listed below:

∇∇∇2g(r)= −δ(3)(r) ⇒ g(r)= 1

4πr
(D.1)

(

∇∇∇2 + k2
)

G(r)= −δ(3)(r) ⇒ G(r)= e−jkr

4πr
(D.2)

(

∂2
z + β2

)

g(z)= −δ(z) ⇒ g(z)= e−jβ|z|

2jβ
(D.3)

where r = |r|. Eqs. (D.2) and (D.3) are appropriate for describing outgoing waves. We

considered other versions of (D.3) in Sec. 22.3. A more general identity satisfied by the

Green’s function g(r) of Eq. (D.1) is as follows (for a proof, see Refs. [143,144]):

∂i∂jg(r)= −
1

3
δij δ

(3)(r)+3xixj − r2δij

r4
g(r) i, j = 1,2,3 (D.4)

where ∂i = ∂/∂xi and xi stands for any of x, y, z. By summing the i, j indices, Eq. (D.4)

reduces to (D.1). Using this identity, we find for the Green’s function G(r)= e−jkr/4πr :

∂i∂jG(r)= −
1

3
δij δ

(3)(r)+
[

(

jk+ 1

r

)3xixj − r2δij

r3
− k2 xixj

r2

]

G(r) (D.5)

This reduces to Eq. (D.2) upon summing the indices. For any fixed vector p, Eq. (D.5)

is equivalent to the vectorial identity:

∇∇∇×∇∇∇×
[

pG(r)
]

= 2

3
pδ(3)(r)+

[

(

jk+ 1

r

)3r̂(r̂ · p)−p

r2
+ k2 r̂× (p× r̂)

]

G(r) (D.6)

The second term on the right is simply the left-hand side evaluated at points away

from the origin, thus, we may write:

∇∇∇×∇∇∇×
[

pG(r)
]

= 2

3
pδ(3)(r)+

[

∇∇∇×∇∇∇×
[

pG(r)
]

]

r�=0
(D.7)
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Then, Eq. (D.7) implies the following integrated identity, where∇∇∇ is with respect to r :

∇∇∇×∇∇∇×
∫

V
P(r′)G(r− r′)dV′ = 2

3
P(r)+

∫

V

[

∇∇∇×∇∇∇×
[

P(r′)G(r− r′)
]

]

r′ �=r
dV′ (D.8)

and r is assumed to lie within V. If r is outside V, then the term 2P(r)/3 is absent.

Technically, the integrals in (D.8) are principal-value integrals, that is, the limits as

δ→ 0 of the integrals over V−Vδ(r), whereVδ(r) is an excluded small sphere of radius

δ centered about r. The 2P(r)/3 term has a different form if the excluded volumeVδ(r)

has shape other than a sphere or a cube. See Refs. [1330,495,507,634] and [138–142]

for the definitions and properties of such principal value integrals.

Another useful result is the so-called Weyl representation or plane-wave-spectrum

representation [22,26,1330,27,551] of the outgoing Helmholtz Green’s function G(r):

G(r)= e−jkr

4πr
=

∫∞

−∞

∫∞

−∞

e−j(kxx+kyy)e−jkz|z|

2jkz

dkx dky

(2π)2
(D.9)

where k2
z = k2 − k2

⊥, with k⊥ =
√

k2
x + k2

y. In order to correspond to either outgoing

waves or decaying evanescent waves, kz must be defined more precisely as follows:

kz =
⎧

⎨

⎩

√

k2 − k2⊥ , if k⊥ ≤ k , (propagating modes)

−j
√

k2⊥ − k2 , if k⊥ > k , (evanescent modes)
(D.10)

The propagating modes are important in radiation problems and conventional imag-

ing systems, such as Fourier optics [1333]. The evanescent modes are important in the

new subject of near-field optics, in which objects can be probed and imaged at nanometer

scales improving the resolution of optical microscopy by factors of ten. Some near-field

optics references are [530–550].

To prove (D.9), we consider the two-dimensional spatial Fourier transform of G(r)

and its inverse. Indicating explicitly the dependence on the coordinates x, y, z, we have:

g(kx, ky, z) =
∫∞

−∞

∫∞

−∞
G(x, y, z)ej(kxx+kyy)dxdy = e−jkz|z|

2jkz

G(x, y, z) =
∫∞

−∞

∫∞

−∞
g(kx, ky, z)e

−j(kxx+kyy) dkx dky
(2π)2

(D.11)

Writing δ(3)(r)= δ(x)δ(y)δ(z) and using the inverse Fourier transform:

δ(x)δ(y)=
∫∞

−∞

∫∞

−∞
e−j(kxx+kyy)

dkx dky

(2π)2
,

we find from Eq. (D.2) that g(kx, ky, z) must satisfy the one-dimensional Helmholtz

Green’s function equation (D.3), with k2
z = k2 − k2

x − k2
y = k2 − k2

⊥, that is,

(

∂2
z + k2

z

)

g(kx, ky, z)= −δ(z) (D.12)

whose outgoing/evanescent solution is g(kx, ky, z)= e−jkz|z|/2jkz.
A more direct proof of (D.9) is to use cylindrical coordinates, kx = k⊥ cosψ, ky =

k⊥ sinψ, x = ρ cosφ, y = ρ sinφ, where k2
⊥ = k2

x + k2
y and ρ2 = x2 + y2. It follows that
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kxx+ kyy = k⊥ρ cos(φ−ψ). Setting dxdy = ρdρdφ = r dr dφ, the latter following

from r2 = ρ2 + z2, we obtain from Eq. (D.11) after replacing ρ =
√
r2 − z2:

g(kx, ky, z) =
∫ ∫

e−jkr

4πr
ej(kxx+kyy)dxdy =

∫ ∫

e−jkr

4πr
ejk⊥ρ cos(φ−ψ)r dr dφ

= 1

2

∫∞

|z|
dr e−jkr

∫ 2π

0

dφ

2π
ejk⊥ρ cos(φ−ψ) = 1

2

∫∞

|z|
dr e−jkr J0

(

k⊥
√

r2 − z2
)

where we used the integral representation (18.9.2) of the Bessel function J0(x). Looking

up the last integral in the table of integrals [1450], we find:

g(kx, ky, z)=
1

2

∫∞

|z|
dr e−jkr J0

(

k⊥
√

r2 − z2
)

= e−jkz|z|

2jkz
(D.13)

where kz must be defined exactly as in Eq. (D.10). A direct consequence of Eq. (D.11)

and the even-ness of G(r) in r and of g(kx, ky, z) in kx, ky, is the following result:

∫∞

−∞

∫∞

−∞
e−j(kxx

′+kyy′)G(r− r′)dx′dy′ = e−j(kxx+kyy) e
−jkz|z−z′|

2jkz
(D.14)

One can also show the integral:

∫∞

0
e−jk

′
zz
′ e−jkz|z−z

′|

2jkz
dz′ =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

e−jk
′
zz

k′2z − k2
z
− e−jkzz

2kz(k
′
z − kz)

, for z ≥ 0

− ejkzz

2kz(k
′
z + kz)

, for z < 0

(D.15)

The proof is obtained by splitting the integral over the sub-intervals [0, z] and

[z,∞). To handle the limits at infinity, k′z must be assumed to be slightly lossy, that is,

k′z = βz − jαz, with αz > 0. Eqs. (D.14) and (D.15) can be combined into:

∫

V+
e−j k′·r′G(r− r′)dV′ =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

e−j k′·r

k′2 − k2
− e−j k·r

2kz(k
′
z − kz)

, for z ≥ 0

− e−j k−·r

2kz(k
′
z + kz)

, for z < 0

(D.16)

where V+ is the half-space z ≥ 0, and k, k−, k′ are wave-vectors with the same kx, ky
components, but different kzs:

k = kx x̂+ ky ŷ+ kz ẑ

k− = kx x̂+ ky ŷ− kz ẑ

k′ = kx x̂+ ky ŷ+ k′z ẑ

(D.17)

where we note that k′2 − k2 = (k2
x + k2

y + k′2z )−(k2
x + k2

y + k2
z)= k′2z − k2

z.

The Green’s function results (D.8)–(D.17) are used in the discussion of the Ewald-

Oseen extinction theorem in Sec. 15.6.
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A related Weyl-type representation is obtained by differentiating Eq. (D.9) with re-

spect to z. Assuming that z ≥ 0 and interchanging differentiation and integration (and

multiplying by −2), we obtain the identity:

−2
∂

∂z

(

e−jkr

4πr

)

=
∫∞

−∞

∫∞

−∞
e−jkxx e−jkyye−jkzz

dkx dky

(2π)2
, z ≥ 0 (D.18)

This just means that the left-hand side is the two-dimensional inverse Fourier trans-

form of e−jkzz with kz given by Eq. (D.10). Replacing r by r − r′, and r by R = |r − r′|,
and noting that ∂z′ = −∂z, we also obtain:

2
∂

∂z′

(

e−jkR

4πR

)

=
∫∞

−∞

∫∞

−∞
e−jkx(x−x

′) e−jky(y−y
′)e−jkz(z−z

′) dkx dky

(2π)2
, z ≥ z′ (D.19)

This result establishes the equivalence between the Kirchhoff-Fresnel diffraction for-

mula and the plane-wave spectrum representation as discussed in Sec. 18.17. For the

vector diffraction case, we also need the derivatives of G with respect to the transverse

coordinates x, y. Differentiating (D.9) with respect to x (or with respect to y), we have:

−2
∂

∂x

(

e−jkr

4πr

)

=
∫∞

−∞

∫∞

−∞

kx

kz
e−jkxx e−jkyye−jkzz

dkx dky

(2π)2
, z ≥ 0 (D.20)

E. Coordinate Systems

The definitions of cylindrical and spherical coordinates were given in Sec. 15.8. The

expressions of the gradient, divergence, curl, Laplacian operators, and delta functions

are given below in cartesian, cylindrical, and spherical coordinates.

Cartesian Coordinates

∇∇∇ψ = x̂
∂ψ

∂x
+ ŷ

∂ψ

∂y
+ ẑ

∂ψ

∂z

∇2ψ = ∂2ψ

∂x2
+ ∂

2ψ

∂y2
+ ∂

2ψ

∂z2

∇∇∇ · A = ∂Ax

∂x
+ ∂Ay
∂y

+ ∂Az
∂z

∇∇∇× A = x̂

(

∂Az

∂y
− ∂Ay
∂z

)

+ ŷ

(

∂Ax

∂z
− ∂Az
∂x

)

+ ẑ

(

∂Ay

∂x
− ∂Ax
∂y

)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ

∂

∂x

∂

∂y

∂

∂z
Ax Ay Az

∣

∣

∣

∣

∣

∣

∣

∣

∣

δ(3)(r− r′)= δ(x− x′)δ(y − y′)δ(z− z′)

(E.1)
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Cylindrical Coordinates

∇∇∇ψ = ρ̂ρρ ∂ψ
∂ρ

+ φ̂φφ 1

ρ

∂ψ

∂φ
+ ẑ

∂ψ

∂z
(E.2a)

∇2ψ = 1

ρ

∂

∂ρ

(

ρ
∂ψ

∂ρ

)

+ 1

ρ2

∂2ψ

∂φ2
+ ∂

2ψ

∂z2
(E.2b)

∇∇∇ · A = 1

ρ

∂(ρAρ)

∂ρ
+ 1

ρ

∂Aφ

∂φ
+ ∂Az
∂z

(E.2c)

∇∇∇× A = ρ̂ρρ
(

1

ρ

∂Az

∂φ
− ∂Aφ

∂z

)

+ φ̂φφ
(

∂Aρ

∂z
− ∂Az
∂ρ

)

+ ẑ
1

ρ

(

∂(ρAφ)

∂ρ
− ∂Aρ
∂φ

)

(E.2d)

δ(3)(r− r′)= 1

ρ
δ(ρ− ρ′)δ(φ−φ′)δ(z− z′) (E.2e)

Spherical Coordinates

∇∇∇ψ = r̂
∂ψ

∂r
+ θ̂θθ 1

r

∂ψ

∂θ
+ φ̂φφ 1

r sinθ

∂ψ

∂φ
(E.3a)

∇2ψ = 1

r2

∂

∂r

(

r2 ∂ψ

∂r

)

+ 1

r2 sinθ

∂

∂θ

(

sinθ
∂ψ

∂θ

)

+ 1

r2 sin2 θ

∂2ψ

∂φ2
(E.3b)

∇∇∇ · A = 1

r2

∂(r2Ar)

∂r
+ 1

r sinθ

∂(sinθAθ)

∂θ
+ 1

r sinθ

∂Aφ

∂φ
(E.3c)

∇∇∇× A = r̂
1

r sinθ

(

∂(sinθAφ)

∂θ
− ∂Aθ
∂φ

)

+ θ̂θθ 1

r

(

1

sinθ

∂Ar

∂φ
− ∂(rAφ)

∂r

)

(E.3d)

+ φ̂φφ 1

r

(

∂(rAθ)

∂r
− ∂Ar
∂θ

)

δ(3)(r− r′)= 1

r2 sinθ
δ(r − r′)δ(θ− θ′)δ(φ−φ′) (E.3e)

Transformations Between Coordinate Systems

A vector A can be expressed component-wise in the three coordinate systems as:

A = x̂Ax + ŷAy + ẑAz

= ρ̂ρρAρ + φ̂φφAφ + ẑAz

= r̂Ar + θ̂θθAθ + φ̂φφAφ

(E.4)

The components in one coordinate system can be expressed in terms of the compo-

nents of another by using the following relationships between the unit vectors, which
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were also given in Eqs. (15.8.1)–(15.8.3):

x = ρ cosφ

y = ρ sinφ

ρ̂ρρ = x̂ cosφ+ ŷ sinφ

φ̂φφ = −x̂ sinφ+ ŷ cosφ

x̂ = ρ̂ρρ cosφ− φ̂φφ sinφ

ŷ = ρ̂ρρ sinφ+ φ̂φφ cosφ
(E.5)

ρ = r sinθ

z = r cosθ

r̂ = ẑ cosθ+ ρ̂ρρ sinθ

θ̂θθ = −ẑ sinθ+ ρ̂ρρ cosθ

ẑ = r̂ cosθ− θ̂θθ sinθ

ρ̂ρρ = r̂ sinθ+ θ̂θθ cosθ
(E.6)

x = r sinθ cosφ

y = r sinθ sinφ

z = r cosθ

r̂ = x̂ cosφ sinθ+ ŷ sinφ sinθ+ ẑ cosθ

θ̂θθ = x̂ cosφ cosθ+ ŷ sinφ cosθ− ẑ sinθ

φ̂φφ = −x̂ sinφ+ ŷ cosφ

(E.7)

x̂ = r̂ sinθ cosφ+ θ̂θθ cosθ cosφ− φ̂φφ sinφ

ŷ = r̂ sinθ sinφ+ θ̂θθ cosθ sinφ+ φ̂φφ cosφ

ẑ = r̂ cosθ− θ̂θθ sinθ

(E.8)

For example, to express the spherical components Aθ,Aφ in terms of the cartesian

components, we proceed as follows:

Aθ = θ̂θθ · A = θ̂θθ · (x̂Ax + ŷAy + ẑAz)= (θ̂θθ · x̂)Ax + (θ̂θθ · ŷ)Ay + (θ̂θθ · ẑ)Az

Aφ = φ̂φφ · A = φ̂φφ · (x̂Ax + ŷAy + ẑAz)= (φ̂φφ · x̂)Ax + (φ̂φφ · ŷ)Ay + (φ̂φφ · ẑ)Az

The dot products can be read off Eq. (E.7), resulting in:

Aθ = cosφ cosθAx + sinφ cosθAy − sinθAz

Aφ = − sinφAx + cosφAy
(E.9)

Similarly, using Eq. (E.6) the cylindrical componentsAρ,Az can be expressed in terms

of spherical components as:

Aρ = ρ̂ρρ · A = ρ̂ρρ · (r̂Ar + θ̂θθAθ + φ̂φφAφ)= sinθAr + cosθAθ

Az = ẑ · A = ẑ · (r̂Ar + θ̂θθAθ + φ̂φφAφ)= cosθAr − cosθAθ

(E.10)

F. Fresnel, Exponential, Sine, and Cosine Integrals

The Fresnel functions C(x) and S(x) are defined by [1449]:

C(x)=
∫ x

0
cos

(

π

2
t2
)

dt , S(x)=
∫ x

0
sin

(

π

2
t2
)

dt (F.1)

They may be combined into the complex function:

F(x)= C(x)−jS(x)=
∫ x

0
e−j(π/2)t

2

dt (F.2)

C(x), S(x), and F(x) are odd functions of x and have the asymptotic values:

C(∞)= S(∞)= 1

2
, F(∞)= 1− j

2
(F.3)
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At x = 0, we have F(0)= 0 and F′(0)= 1, so that the Taylor series approximation

is F(x)≃ x, for small x. The asymptotic expansions of C(x), S(x), and F(x) are for

large positive x:

F(x) = 1− j
2

+ j

πx
e−jπx

2/2

C(x) = 1

2
+ 1

πx
sin

(

π

2
x2

)

S(x) = 1

2
− 1

πx
cos

(

π

2
x2

)

(F.4)

Associated with C(x) and S(x) are the type-2 Fresnel integrals:

C2(x)=
∫ x

0

cos t√
2πt

dt , S2(x)=
∫ x

0

sin t√
2πt

dt (F.5)

They are combined into the complex function:

F2(x)= C2(x)−jS2(x)=
∫ x

0

e−jt√
2πt

dt (F.6)

The two types are related by, if x ≥ 0:

C(x)= C2

(

π

2
x2

)

, S(x)= S2

(

π

2
x2

)

, F(x)= F2

(

π

2
x2

)

(F.7)

and if x < 0, we set F(x)= −F(−x)= −F2(πx
2/2).

The Fresnel function F2(x) can be evaluated numerically using Boersma’s approx-

imation [1307], which achieves a maximum error of 10−9 over all x. The algorithm

approximates the function F2(x) as follows:

F2(x)=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

e−jx
√

x

4

11
∑

n=0

(an + jbn)
(

x

4

)n

, if 0 ≤ x ≤ 4

1− j
2

+ e−jx
√

4

x

11
∑

n=0

(cn + jdn)
(

4

x

)n

, if x > 4

(F.8)

where the coefficients an, bn, cn, dn are given in [1307]. Consistency with the small- and

large-x expansions of F(x) requires that a0 + jb0 =
√

8/π and c0 + jd0 = j/
√

8π. We

have implemented Eq. (F.8) with the MATLAB function fcs2:

F2 = fcs2(x); % Fresnel integrals F2(x) = C2(x)−jS2(x)

The ordinary Fresnel integral F(x) can be computed with the help of Eq. (F.7). The

MATLAB function fcs calculates F(x) for any vector of values x by calling fcs2:

F = fcs(x); % Fresnel integrals F(x) = C(x)−jS(x)

In calculating the radiation patterns of pyramidal horns, it is desired to calculate a

Fresnel diffraction integral of the type:

F0(v,σ)=
∫ 1

−1
ejπvξ e−j(π/2)σ

2 ξ2

dξ (F.9)
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Making the variable change t = σξ−v/σ, this integral can be computed in terms of

the Fresnel function F(x)= C(x)−jS(x) as follows:

F0(v,σ)=
1

σ
ej(π/2)(v

2/σ2)

[

F
(

v

σ
+σ

)

−F
(

v

σ
−σ

)]

(F.10)

where we also used the oddness of F(x). The value of Eq. (F.9) at v = 0 is:

F0(0, σ)=
1

σ

[

F(σ)−F(−σ)
]

= 2
F(σ)
σ

(F.11)

Eq. (F.10) assumes that σ �= 0. If σ = 0, the integral (F.9) reduces to the sinc function:

F0(v,0)= 2
sin(πv)

πv
(F.12)

From either (F.11) or (F.12), we find F0(0,0)= 2. A related integral that is also

required in the theory of horns is the following:

F1(v,σ)=
∫ 1

−1
cos

(

πξ

2

)

ejπvξ e−j(π/2)σ
2 ξ2

dξ (F.13)

Writing cos(πξ/2)= (ejπξ/2+ e−jπξ/2)/2, the integral F1(v, s) can be expressed in

terms of F0(v,σ) as follows:

F1(v,σ)=
1

2

[

F0(v+ 0.5, σ)+F0(v− 0.5, σ)
]

(F.14)

It can be verified easily thatF0(0.5, σ)= F0(−0.5, σ), therefore, the value ofF1(v,σ)

at v = 0 will be given by:

F1(0, σ)= F0(0.5, σ)=
1

σ
ejπ/(8σ

2)

[

F
(

1

2σ
+σ

)

−F
(

1

2σ
−σ

)]

(F.15)

Using the asymptotic expansion (F.4), we find the expansion valid for small σ:

F
(

1

2σ
±σ

)

= 1− j
2

∓ 2σ

π
e−jπ/(8σ

2) , for small σ (F.16)

For σ = 0, the integral F1(v,σ) reduces to the double-sinc function:

F1(v,0)=
∫ 1

−1
cos

(

πξ

2

)

ejπvξ dξ = 1

2

[

F0(v+ 0.5,0)+F0(v− 0.5,0)
]

= sin
(

π(v+ 0.5)
)

π(v+ 0.5)
+ sin

(

π(v− 0.5)
)

π(v− 0.5)
= 4

π

cos(πv)

1− 4v2

(F.17)

From either Eq. (F.16) or (F.17), we find F1(0,0)= 4/π.

The MATLAB function diffint can be used to evaluate both Eq. (F.9) and (F.13) for

any vector of values v and any vector of positive numbers σ, including σ = 0. It calls

fcs to evaluate the diffraction integral (F.9) according to Eq. (F.10). Its usage is:
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F0 = diffint(v,sigma,0); % diffraction integral F0(v,σ), Eq. (F.9)

F1 = diffint(v,sigma,1); % diffraction integral F1(v,σ), Eq. (F.13)

The vectors v,sigma can be entered either as rows or columns, but the result will

be a matrix of size length(v) x length(sigma). The integral F0(v,σ) can also be

calculated by the simplified call:

F0 = diffint(v,sigma); % diffraction integral F0(v,σ), Eq. (F.9)

Actually, the most general syntax of diffint is as follows:

F = diffint(v,sigma,a,c1,c2); % diffraction integral F(v,σ, a), Eq. (F.18)

It evaluates the more general integral:

F(v,σ, a)=
∫ c2

c1

cos

(

πξa

2

)

ejπvξ e−j(π/2)σ
2 ξ2

dξ (F.18)

For a = 0, we have:

F(v,σ,0)= 1

σ
ej(π/2)(v

2/σ2)

[

F
(

v

σ
−σc1

)

−F
(

v

σ
−σc2

)]

(F.19)

For a �= 0, we can express F(v,σ, a) in terms of F(v,σ,0):

F(v,σ, a)= 1

2

[

F(v+ 0.5a,σ,0)+F(v− 0.5a,σ,0)
]

(F.20)

For a = 0 and σ = 0, F(v,σ, a) reduces to the complex sinc function:

F(v,0,0)= ejπvc2 − ejπvc1

jπv
= (c2 − c1)

sin
(

π(c2 − c1)v/2
)

π(c2 − c1)v/2
ejπ(c2+c1)v/2 (F.21)

Stationary Phase Approximation

The Fresnel integrals find also application in the stationary-phase approximation for

evaluating integrals. The approximation can be stated as follows:

∫∞

−∞
f(x)ejφ(x)dx ≃

√

2πj

φ′′(x0)
f(x0)e

jφ(x0) (F.22)

where x0 is a stationary point of the phase φ(x), that is, the solution of φ′(x0)= 0,

where for simplicity we assume that there is only one such point (otherwise, one has a

sum of terms like (F.22), one for each solution of φ′(x)= 0). Eq. (F.22) is obtained by

expanding φ(x) in Taylor series about the stationary point x = x0 and keeping only up

to the quadratic term:

φ(x)≃ φ(x0)+φ′(x0)(x− x0)+
1

2
φ′′(x0)(x− x0)

2= φ(x0)+
1

2
φ′′(x0)(x− x0)

2
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Making this approximation in the integral and assuming that f(x) is slowly varying

in the neighborhood of x0, we may replace f(x) by its value at x0:

∫∞

−∞
f(x)ejφ(x)dx ≃

∫∞

−∞
f(x0)e

j
(

φ(x0)+φ′′(x0)(x−x0)
2/2

)

dx

= f(x0)e
jφ(x0)

∫∞

−∞
ejφ

′′(x0)(x−x0)
2/2dx

The last integral can be reduced to the complex Fresnel integral by the change of

variables (x− x0)=
√

π/φ′′(x0)u:

∫∞

−∞
ejφ

′′(x0)(x−x0)
2/2dx =

√

π

φ′′(x0)

∫∞

−∞
ejπu

2/2du =
√

π

φ′′(x0)

[

F(∞)−F(−∞)
]∗

Using
[

F(∞)−F(−∞)
]∗ = 2F∗(∞)= 1+ j = √

2j, we obtain

∫∞

−∞
ejφ

′′(x0)(x−x0)
2/2dx =

√

2πj

φ′′(x0)

Normally, the phase depends on a positive parameter λ in the form φ(x)= λθ(x),
and the stationary-phase approximation is justified in the limit λ→∞.

Exponential, Sine, and Cosine Integrals

Several antenna calculations, such as mutual impedances and directivities, can be re-

duced to the exponential integral, which is defined as follows [1449]:

E1(z)=
∫∞

z

e−u

u
du = e−z

∫∞

0

e−t

z+ t dt (exponential integral) (F.23)

where z is a complex number with phase restricted such that |argz| < π. This range

allows pure imaginary z’s. The built-in MATLAB function expint evaluates E1(z) at an

array of z’s. Related to E1(z) are the sine and cosine integrals:

Si(z)=
∫ z

0

sinu

u
du (sine integral)

Ci(z)= γ+ lnz+
∫ z

0

cosu− 1

u
du (cosine integral)

(F.24)

where γ is the Euler constant γ = 0.5772156649... . A related cosine integral is:

Cin(z)=
∫ z

0

1− cosu

u
du = γ+ lnz−Ci(z) (F.25)

For z ≥ 0, the sine and cosine integrals are related to E1(z) by [1449]:

Si(z)=
E1(jz)−E1(−jz)

2j
+ π

2
= Im

[

E1(jz)
]

+ π
2

Ci(z)= −
E1(jz)+E1(−jz)

2
= −Re

[

E1(jz)
]

(F.26)
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while for z ≤ 0, we have Si(z)= −Si(−z) andCi(z)= Ci(−z)+jπ. Conversely, we have

for z > 0:

E1(jz)= −Ci(z)+j
(

Si(z)−
π

2

)

= −γ− ln(z)+Cin(z)+j
(

Si(z)−
π

2

)

(F.27)

The MATLAB functions Si, Ci, Cin evaluate the sine and cosine integrals at any

vector of z’s by using the relations (F.26) and the built-in function expint:

y = Si(z); % sine integral, Eq. (F.24)

y = Ci(z); % sine integral, Eq. (F.24)

y = Cin(z); % sine integral, Eq. (F.25)

A related integral that appears in calculating mutual and self impedances is what

may be called a “Green’s function integral”:

Gi(d, z0, h, s)=
∫ h

0

e−jkR

R
e−jksz dz , R =

√

d2 + (z− z0)2 , s = ±1 (F.28)

This integral can be reduced to the exponential integral by the change of variables:

v = jk
(

R+ s(z− z0)
)

⇒ s
dv

v
= dz

R

which gives

∫ h

0

e−jkR

R
e−jksz dz = se−jksz0

∫ v1

v0

e−u

u
du , or,

Gi(d, z0, h, s)=
∫ h

0

e−jkR

R
e−jksz dz = se−jksz0

[

E1(ju0)−E1(ju1)
]

(F.29)

where

v0 = ju0 , u0 = k
[

√

d2 + z2
0 − sz0

]

v1 = ju1 , u1 = k
[

√

d2 + (h− z0)2 + s(h− z0)

]

The function Gi evaluates Eq. (F.29), where z0, s, and the resulting integral J, can be

vectors of the same dimension. Its usage is:

J = Gi(d,z0,h,s); % Green’s function integral, Eq. (F.29)

Another integral that appears commonly in antenna work is:
∫ π

0

cos(α cosθ)− cosα

sinθ
dθ = Si(2α)sinα−Cin(2α)cosα (F.30)

Its proof is straightforward by first changing variables to z = cosθ, then using

partial fraction expansion, and finally changing variables to u = α(1 + z), and using

the definitions (F.24) and (F.25):
∫ π

0

cos(α cosθ)− cosα

sinθ
dθ =

∫ 1

−1

cos(αz)− cosα

1− z2
dz

= 1

2

∫ 1

−1

cos(αz)− cosα

1+ z dz+ 1

2

∫ 1

−1

cos(αz)− cosα

1− z dz =
∫ 1

−1

cos(αz)− cosα

1+ z dz

=
∫ 2α

0

cos(u−α)− cosα

u
du = sinα

∫ 2α

0

sinu

u
du− cosα

∫ 2α

0

1− cosu

u
du
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G. Gauss-Legendre Quadrature

In many parts of this book it is necessary to perform numerical integration. Gauss-

Legendre quadrature is one of the best integration methods, and we have implemented

it with the MATLAB functions quadr and quadrs. Below, we give a brief description of

the method.† The integral over an interval [a, b] is approximated by a sum of the form:

∫ b

a
f(x)dx ≃

N
∑

i=1

wi f(xi) (G.1)

where wi, xi are appropriate weights and evaluation points (nodes). This can be written

in the vectorial form:

∫ b

a
f(x)dx ≃

N
∑

i=1

wi f(xi)= [w1,w2, . . . ,wN]

⎡

⎢

⎢

⎢

⎢

⎢

⎣

f(x1)

f(x2)
...

f(xN)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= wTf(x) (G.2)

The function quadr returns the column vectors of weights w and nodes x, with usage:

[w,x] = quadr(a,b,N); Gauss-Legendre quadrature

The function quadrs allows the splitting of the interval [a, b] into subintervals,

computes N weights and nodes in each subinterval, and concatenates them to form the

overall weight and node vectors w,x:

[w,x] = quadrs(ab,N); Gauss-Legendre quadrature over subintervals

where ab is an array of endpoints that define the subintervals, for example,

ab = [a, b] , single interval

ab = [a, c, b] , two subintervals, [a, c] and [c, b]

ab = [a, c, d, b] , three subintervals, [a, c], [c, d], and [d, b]

ab = a : c : b , subintervals, [a, a+c, a+2c, . . . , a+Mc], with a+Mc = b

As an example, consider the following function and its exact integral:

f(x)= ex + 1

x
, J =

∫ 2

1
f(x)dx = e2 − e1 + ln 2 = 5.36392145

This integral can be evaluated numerically by the MATLAB code:

N = 5; % number of weights and nodes

[w,x] = quadr(1,2,N); % calculate weights and nodes for the interval [1,2]

f = exp(x) + 1./x; % evaluate f(x) at the node vector

J = w’*f % approximate integral

This produces the exact value with a 4.23×10−7 percentage error. If the integration

interval is split in two, say, [1,1.5] and [1.5,2], then the second line above can be

replaced by

†J. Stoer and R. Burlisch, Introduction to Numerical Analysis, Springer, NY, (1980); and, G. H. Golub and

J. H. Welsch, “Calculation of Gauss Quadrature Rules,” Math. Comput., 23, 221 (1969).
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[w,x] = quadrs([1,1.5,2],N); % or by, [w,x] = quadrs(1:0.5:2, N);

which has a percentage error of 1.28×10−9. Next, we discuss the theoretical basis of

the method.

The interval [a, b] can be replaced by the standardized interval [−1,1] with the

transformation from a ≤ x ≤ b to −1 ≤ z ≤ 1:

x =
(

b− a
2

)

z+
(

b+ a
2

)

(G.3)

Ifwi and zi are the weights and nodes with respect to the interval [−1,1], then those

with respect to [a, b] can be constructed simply as follows, for i = 1,2, . . . ,N:

xi =
(

b− a
2

)

zi +
(

b+ a
2

)

wxi =
(

b− a
2

)

wi

(G.4)

where the scaling of the weights follows from the scaling of the differentials dx =
dz(b− a)/2, so the value of the integral (G.1) is preserved by the transformation.

Gauss-Legendre quadrature is nicely tied with the theory of orthogonal polynomials

over the interval [−1,1], which are the Legendre polynomials. For N-point quadrature,

the nodes zi, i = 1,2, . . . ,N are the N roots of the Legendre polynomial PN(z), which

all lie in the interval [−1,1]. The method is justified by the following theorem:

For any polynomial P(z) of degree at most 2N − 1, the quadrature formula (G.1) is

satisfied exactly, that is,
∫ 1

−1
P(z)dz =

N
∑

i=1

wiP(zi) (G.5)

provided that the zi are the N roots of the Legendre polynomial PN(z).

The Legendre polynomials Pn(z) are obtained via the process of Gram-Schmidt or-

thogonalization of the non-orthogonal monomial basis {1, z, z2, . . . , zn . . . }. Orthogo-

nality is defined with respect to the following inner product over the interval [−1,1]:

(f, g)=
∫ 1

−1
f(z)g(z)dz (G.6)

The standard definition of the Legendre polynomials is:

Pn(z)=
1

2nn!

dn

dzn

[

(z2 − 1)n
]

, n = 0,1,2, . . . (G.7)

The first few of them are listed below:

P0(z) = 1

P1(z) = z

P2(z) = (3/2)
[

z2 − (1/3)
]

P3(z) = (5/2)
[

z3 − (3/5)z
]

P4(z) = (35/8)
[

z4 − (6/7)z2 + (3/35)
]

(G.8)
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They are normalized such that Pn(1)= 1 and are mutually orthogonal with respect

to (G.6), but do not have unit norm:

(Pn, Pm)=
∫ 1

−1
Pn(z)Pm(z)dz =

2

2n+ 1
δnm (G.9)

Moreover, they satisfy the three-term recurrence relation:

zPn(z)=
(

n

2n+ 1

)

Pn−1(z)+
(

n+ 1

2n+ 1

)

Pn+1(z) (G.10)

The Gram-Schmidt orthogonalization process of the monomial basis fn(z)= zn is

the following order-recursive construction:

initialize P0(z)= f0(z)= 1

for n = 1,2,3, . . . , do

Pn(z)= fn(z)−
n−1
∑

k=0

(fn, Pk)

(Pk, Pk)
Pk(z)

A few steps of the construction will clarify it:

P1(z)= f1(z)−
(f1, P0)

(P0, P0)
P0(z)= z

where (f1, P0)= (z,1)=
∫ 1

−1
zdz = 0. Then, construct P2 by:

P2(z)= f2(z)−
(f2, P0)

(P0, P0)
P0(z)−

(f2, P1)

(P1, P1)
P1(z)

where now we have (f2, P1)= (z2, z)=
∫ 1

−1
z3dz = 0, and

(f2, P0)= (z2,1)=
∫ 1

−1
z2dz = 2

3
, (P0, P0)= (1,1)=

∫ 1

−1
dz = 2

Therefore,

P2(z)= z2 − 2/3

2
= z2 − 1

3

Then, normalize it such that P2(1)= 1, and so on. For our discussion, we are going

to renormalize the Legendre polynomials to unit norm. Because of (G.9), this amounts

to multiplying the standard Pn(z) by the factor
√

(2n+ 1)/2. Thus, we re-define:

Pn(z)=
√

2n+ 1

2

1

2nn!

dn

dzn

[

(z2 − 1)n
]

, n = 0,1,2, . . . (G.11)

Thus, (G.9) becomes (Pn, Pm)= δnm. In particular, we note that now

P0(z)=
1√
2

(G.12)
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By introducing the same scaling factors into each term of the recurrence (G.10), we

find that the renormalized Pn(z) satisfy:

zPn(z)= αnPn−1(z)+αn+1Pn+1(z) , αn =
n√

4n2 − 1
(G.13)

This relationship can be assumed to be valid also at n = 0, provided we define

P−1(z)= 0. For each order n, the Gram-Schmidt procedure replaces the non-orthogonal

monomial basis by the orthonormalized Legendre basis:

{

1, z, z2, . . . , zn
}

⇔
{

P0(z), P1(z), P2(z), . . . , Pn(z)
}

Thus, any polynomial Q(z) of degree n can be expanded uniquely in either basis:

Q(z)=
n
∑

k=0

qkz
k =

n
∑

k=0

ckPk(z)

with the expansion coefficients calculated from ck = (Q,Pk). This also implies that if

Q(z) has order n− 1 then, it will be orthogonal to Pn(z).

Next, we turn to the proof of the basic Gauss-Legendre result (G.5). Given a polyno-

mial P(z) of order 2N − 1, we can expand it uniquely in the form:

P(z)= PN(z)Q(z)+R(z) (G.14)

where Q(z) and R(z) are the quotient and remainder of the division by the Legendre

polynomial PN(z), and both will have order N − 1. Then, the integral of P(z) can be

written in inner-product notation as follows:

∫ 1

−1
P(z)dz = (P,1)= (PNQ +R,1)= (PNQ,1)+(R,1)= (Q,PN)+(R,1)

But (Q,PN)= 0 because Q(z) has order N − 1 and PN(z) is orthogonal to all such

polynomials. Thus, the integral of P(z) can be expressed only in terms of the integral

of the remainder polynomial R(z), which has order N − 1:

∫ 1

−1
P(z)dz = (P,1)= (R,1)=

∫ 1

−1
R(z)dz (G.15)

The right-hand side of the integration rule (G.5) can also be expressed in terms of R(z):

N
∑

i=1

wiP(zi)=
N
∑

i=1

wiPN(zi)Q(zi)+
N
∑

i=1

wiR(zi) (G.16)

and, because we assumed that PN(zi)= 0,

N
∑

i=1

wiP(zi)=
N
∑

i=1

wiR(zi) (G.17)

Thus, combining (G.15) and (G.17), we obtain the following condition, which is equiv-

alent to Eq. (G.5),
∫ 1

−1
R(z)dz =

N
∑

i=1

wiR(zi) (G.18)
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BecauseR(z) is an arbitrary polynomial of degreeN−1, and has onlyN coefficients,

this condition can be satisfied with a common set of N weights wi for all such R(z). If

we had not assumed initially that the zi were the zeros of PN(z), and took them to be

an arbitrary set of N distinct points in [−1,1], then (G.18) would read as

∫ 1

−1
R(z)dz =

N
∑

i=1

wiPN(zi)Q(zi)+
N
∑

i=1

wiR(zi)

In order for this to be satisfied for all R(z) and all Q(z), then (G.18) must still be

satisfied by setting Q(z)= 0, which fixes the weights wi. Therefore, the first term in

the right-hand side must be zero for all polynomials Q(z) of degreeN−1, and one can

show that this implies that PN(zi)= 0, that is, the zi must be the zeros of PN(z).

Condition (G.18) can be used to determine the weights by expandingR(z) into either

the monomial basis or the Legendre basis, that is, because R(z) has degree N − 1:

R(z)=
N−1
∑

k=0

rkz
k =

N−1
∑

k=0

ckPk(z) (G.19)

Inserting, for example, the monomial basis into (G.18) and matching the coefficients

of rk on either side, we obtain the system of N equations for the weights:

N
∑

i=1

zki wi =
∫ 1

−1
zkdz = 1+ (−1)k

k+ 1
, k = 0,1, . . . ,N − 1 (G.20)

Defining the matrix Fki = zki and the vector uk =
[

1+(−1)k
]

/(k+1), we may write

(G.20) in the compact matrix form:

Fw = u ⇒ w = F−1u (G.21)

Alternatively, we may use the Legendre basis, which is more elegant. The left hand

side of (G.18) will receive contribution only from the k = 0 term because P0 is orthogonal

to all the succeeding Pk. Indeed, using the definition (G.12), we have:

∫ 1

−1
R(z)dz = (R,1)=

√
2 (R,P0)=

√
2

N−1
∑

k=0

ck(PK, P0)=
√

2

N−1
∑

k=0

ckδk0 =
√

2 c0

The right-hand side of (G.18) may be written as follows. Defining the N×N ma-

trix Pki = Pk(zi), i = 1,2 . . . ,N, and k = 0,1, . . . ,N − 1, and the row vector cT =
[c0, c1, . . . , cN−1] of expansion coefficients, we have,

N
∑

i=1

wiR(zi)=
N−1
∑

k=0

N
∑

i=1

ckPk(zi)wi = cTPw

Thus, (G.18) now reads, where u0 = [1,0,0, . . . ,0]T:

cTPw =
√

2 c0 =
√

2 cTu0
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Because the vector c is arbitrary, we must have the condition:

Pw =
√

2 u0 ⇒ w =
√

2P−1u0 (G.22)

The matrixP has some rather interesting properties. First, it has mutually orthogonal

columns. Second, these columns are the eigenvectors of a Hermitian tridiagonal matrix

whose eigenvalues are the zeros zi. Thus, the problem of finding both zi and wi is

reduced to an eigenvalue problem.

These eigenvalue properties follow from the recursion (G.13) of the normalized Leg-

endre polynomials. For n = 0,1,2,3, the recursion reads explicitly:

zP0(z) = α1P1(z)

zP1(z) = α1P0(z)+α2P2(z)

zP2(z) = α2P1(z)+α3P3(z)

zP3(z) = α3P2(z)+α4P4(z)

which can be written in matrix form:

z

⎡

⎢

⎢

⎢

⎣

P0(z)

P1(z)

P2(z)

P3(z)

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

0 α1 0 0

α1 0 α2 0

0 α2 0 α3

0 0 α3 0

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

P0(z)

P1(z)

P2(z)

P3(z)

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

0

0

0

α4P4(z)

⎤

⎥

⎥

⎥

⎦

and more generally,

z

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

P0(z)

P1(z)

P2(z)
...

PN−2(z)

PN−1(z)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 α1 0 0 · · · 0

α1 0 α2 0 · · · 0

0 α2 0 α3 · · · 0

...
. . .

. . .
. . .

. . .
...

0 · · · 0 αN−2 0 αN−1

0 · · · 0 0 αN−1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

P0(z)

P1(z)

P2(z)
...

PN−2(z)

PN−1(z)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

0

0

...

0

αNPN(z)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Now, if z is replaced by the ith zero zi of PN(z), the last column will vanish and we

obtain the eigenvalue equation:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 α1 0 0 · · · 0

α1 0 α2 0 · · · 0

0 α2 0 α3 · · · 0

...
. . .

. . .
. . .

. . .
...

0 · · · 0 αN−2 0 αN−1

0 · · · 0 0 αN−1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

P0(zi)

P1(zi)

P2(zi)
...

PN−2(zi)

PN−1(zi)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= zi

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

P0(zi)

P1(zi)

P2(zi)
...

PN−2(zi)

PN−1(zi)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(G.23)

Denoting the above tridiagonal matrix by A and the column of Pk(zi)’s by pi, we

may write compactly:

Api = zipi , i = 1,2, . . . ,N (G.24)
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Thus, the eigenvalues of A are the zeros zi and the corresponding eigenvectors are

the columns pi of the matrix P that we introduced in (G.22). Because the zeros zi are

distinct and A is a Hermitian matrix, its eigenvectors will be mutually orthogonal:

pTi pj = d2
i δij (G.25)

where di = ‖pi‖ are the norms of the vectors pi. It follows that the orthonormalized

eigenvectors of A will be vi = pi/di, and the orthogonal matrix of eigenvectors having

the vi as columns will be V = [v1, v2, . . . , vN], or, expressed in terms of the matrix P

and the diagonal matrix D = diag{d1, d2, . . . , dN}:

V = PD−1 (G.26)

Replacing P in (G.22) by P = VD and using the orthogonality VTV = I of the eigen-

vector matrix, or V−1 = VT, we obtain the solution:

w =
√

2D−1VTu0 ⇒ wi =
√

2d−1
i (v

T
i u0) (G.27)

The matrix D can itself be expressed in terms of V by noting that the top entry of pi
is P0(zi)= 1/

√
2, and therefore, it follows from vi = pi/di that the top entry of vi will

be vTi u0 = 1/(
√

2di), or, d−1
i =

√
2(vTi u0). It finally follows from Eq. (G.27) that

wi = d−2
i = 2(vTi u0)

2 (G.28)

In MATLAB language, vTi u0 = V(1, i), that is, the first row of V. Because the eigen-

vectors of the Hermitian matrix A are real-valued and unique up to a sign, Eq. (G.28)

allows the unique determination of the weights from the eigenvector matrix V.

The above discussion leads to two possible implementations of the MATLAB function

quadr. In the first, we obtain the coefficients of the Legendre polynomial PN(z), find its

zeros using the built-in function root, and then solve the linear equation (G.21) for the

weights. The second approach, implemented by the function quadr2 and the related

function quadrs2, determines zi,wi from the eigenvalue problem of the matrix A.

H. Lorentz Transformations

According to Einstein’s special theory of relativity [470], Lorentz transformations de-

scribe the transformation between the space-time coordinates of two coordinate sys-

tems moving relative to each other at constant velocity. Maxwell’s equations remain

invariant under Lorentz transformations. This is demonstrated below.

Let the two coordinate frames be S and S′. By convention, we may think of S as

the “fixed” laboratory frame with respect to which the frame S′ is moving at a constant

velocity v. For example, if v is in the z-direction, the space-time coordinates {t, x, y, z}
of S are related to the coordinates {t′, x′, y′, z′} of S′ by the Lorentz transformation:

t′ = γ
(

t − v

c2
z
)

z′ = γ(z− vt)
x′ = x
y′ = y

, where γ = 1√
1− v2/c2
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where c is the speed of light in vacuum. Defining the scaled quantities τ = ct and

β = v/c, the above transformation and its inverse, obtained by replacing β by −β, may

be written as follows:

τ′ = γ(τ− βz)
z′ = γ(z− βτ)
x′ = x
y′ = y

⇔

τ = γ(τ′ + βz′)
z = γ(z′ + βτ′)
x = x′
y = y′

(H.1)

These transformations are also referred to as Lorentz boosts to indicate the fact that

one frame is boosted to move relative to the other. Interchanging the roles of z and x, or

z and y, one obtains the Lorentz transformations for motion along the x or y directions,

respectively. Eqs. (H.1) may be expressed more compactly in matrix form:

x
′ = Lx , where x =

⎡

⎢

⎢

⎢

⎣

τ

x

y

z

⎤

⎥

⎥

⎥

⎦

, x
′ =

⎡

⎢

⎢

⎢

⎣

τ′

x′

y′

z′

⎤

⎥

⎥

⎥

⎦

, L =

⎡

⎢

⎢

⎢

⎣

γ 0 0 −γβ
0 1 0 0

0 0 1 0

−γβ 0 0 γ

⎤

⎥

⎥

⎥

⎦

(H.2)

Such transformations leave the quadratic form (c2t2 − x2 − y2 − z2) invariant, that is,

c2t′2 − x′2 − y′2 − z′2 = c2t2 − x2 − y2 − z2 (H.3)

Introducing the diagonal metric matrix G = diag(1,−1,−1,−1), we may write the

quadratic form as follows, where x
T denotes the transposed vector, that is, the row

vector x
T = [τ, x, y, z]:

x
TGx = τ2 − x2 − y2 − z2 = c2t2 − x2 − y2 − z2 (H.4)

More generally, a Lorentz transformation is defined as any linear transformation x
′ =

Lx that leaves the quadratic form x
TGx invariant. The invariance condition requires

that: x
′TGx

′ = x
TLTGLx = x

TGx, or

LTGL = G (H.5)

In addition to the Lorentz boosts of Eq. (H.1), the more general transformations

satisfying (H.5) include rotations of the three spatial coordinates, as well as time or

space reflections. For example, a rotation has the form:

L =

⎡

⎢

⎢

⎢

⎣

1 0 0 0

0

0 R

0

⎤

⎥

⎥

⎥

⎦

where R is a 3×3 orthogonal rotation matrix, that is, RTR = I, where I is the 3×3

identity matrix. The most general Lorentz boost corresponding to arbitrary velocity

v = [vx, vy, vz]T is given by:

L =

⎡

⎢

⎢

⎣

γ −γβββT

−γβββ I + γ2

γ+ 1
ββββββT

⎤

⎥

⎥

⎦

, where βββ = v

c
, γ = 1

√

1−βββTβββ
(H.6)
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When v = [0,0, v]T, or βββ = [0,0, β]T, Eq. (H.6) reduces to (H.1). Defining β = |βββ| =
√

βββTβββ and the unit vector β̂ββ = βββ/β, and using the relationship γ2β2 = γ2 − 1, it can be

verified that the spatial part of the matrix L can be written in the form:

I + γ2

γ+ 1
ββββββT = I + (γ− 1)β̂βββ̂ββ

T
(H.7)

The set of matrices L satisfying Eq. (H.5) forms a group called the Lorentz group. In

particular, the z-directed boosts of Eq. (H.2) form a commutative subgroup. Denoting

these boosts by L(β), the application of two successive boosts by velocity factors β1 =
v1/c and β2 = v2/c leads to the combined boost L(β)= L(β1)L(β2), where:

β = β1 + β2

1+ β1β2

⇔ v = v1 + v2

1+ v1v2/c2
(H.8)

with β = v/c. Eq. (H.8) is Einstein’s relativistic velocity addition theorem. The same

group property implies also that L−1(β)= L(−β). The proof of Eq. (H.8) follows from

the following condition, where γ1 = 1/
√

1− β2
1 and γ2 = 1/

√

1− β2
2:

⎡

⎢

⎢

⎢

⎣

γ 0 0 −γβ
0 1 0 0

0 0 1 0

−γβ 0 0 γ

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

γ1 0 0 −γ1β1

0 1 0 0

0 0 1 0

−γ1β1 0 0 γ1

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

γ2 0 0 −γ2β2

0 1 0 0

0 0 1 0

−γ2β2 0 0 γ2

⎤

⎥

⎥

⎥

⎦

A four-vector is a four-dimensional vector that transforms like the vector x under

Lorentz transformations, that is, its components with respect to the two moving frames

S and S′ are related by:

a′ = La , where a =

⎡

⎢

⎢

⎢

⎣

a0

ax
ay
az

⎤

⎥

⎥

⎥

⎦

, a′ =

⎡

⎢

⎢

⎢

⎣

a′0
a′x
a′y
a′z

⎤

⎥

⎥

⎥

⎦

(H.9)

For example, under the z-directed boost of Eq. (H.1), the four-vector a will transform as:

a′0 = γ(a0 − βaz)
a′z = γ(az − βa0)

a′x = ax
a′y = ay

⇔

a0 = γ(a′0 + βa′z)
az = γ(a′z + βa′0)
ax = a′x
a′y = a′y

(H.10)

Four-vectors transforming according to Eq. (H.9) are referred to as contravariant.

Under the general Lorentz boost of Eq. (H.6), the spatial components of a that are trans-

verse to the direction of the velocity vector v remain unchanged, whereas the parallel

component transforms as in Eq. (H.10), that is, the most general Lorentz boost transfor-

mation for a four-vector takes the form:

a′0 = γ(a0 − βa‖)
a′‖ = γ(a‖ − βa0)

a′⊥ = a⊥

γ = 1
√

1− β2
, β = |βββ| , βββ = v

c
(H.11)
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where a‖ = β̂ββ
T
a and a = [ax, ay, az]T is the spatial part of a. Then,

a‖ = β̂ββa‖ = β̂ββ(β̂ββ
T
a) and a⊥ = a− a‖ = a− β̂ββa‖

Setting βββ = ββ̂ββ and using Eq. (H.7), the Lorentz transformation (H.6) gives:

[

a′0
a′

]

=
⎡

⎣

γ −γββ̂ββT

−γββ̂ββ I + (γ− 1)β̂βββ̂ββ
T

⎤

⎦

[

a0

a

]

=
[

γ(a0 − βa‖)
a− β̂ββa‖ + β̂ββγ(a‖ − βa0)

]

from which Eq. (H.11) follows.

For any two four-vectors a,b, the quadratic form aTGb remains invariant under

Lorentz transformations, that is, a′TGb′ = aTGb, or,

a′0b
′
0 − a′ · b′ = a0b0 − a · b , where a =

[

a0

a

]

, b =
[

b0

b

]

(H.12)

Some examples of four-vectors are given in the following table:

four-vector a0 ax ay az

time and space ct x y z

frequency and wavenumber ω/c kx ky kz

energy and momentum E/c px py pz

charge and current densities cρ Jx Jy Jz

scalar and vector potentials ϕ cAx cAy cAz

(H.13)

For example, under the z-directed boost of Eq. (H.1), the frequency-wavenumber

transformation will be as follows:

ω′ = γ(ω− βckz)

k′z = γ
(

kz −
β

c
ω
)

k′x = kx
k′y = ky

⇔

ω = γ(ω′ + βck′z)

kz = γ
(

k′z +
β

c
ω′)

kx = k′x
ky = k′y

, βc = v , β
c
= v

c2
(H.14)

where we rewrote the first equations in terms of ω instead of ω/c. The change in

frequency due to motion is the basis of the Doppler effect. The invariance property

(H.12) applied to the space-time and frequency-wavenumber four-vectors reads:

ω′t′ − k′ · r′ =ωt − k · r (H.15)

This implies that a uniform plane wave remains a uniform plane wave in all reference

frames moving at a constant velocity relative to each other. Similarly, the charge and

current densities transform as follows:

cρ′ = γ(cρ− βJz)
J′z = γ(Jz − βcρ)
J′x = Jx
J′y = Jy

⇔

cρ = γ(cρ′ + βJ′z)
Jz = γ(J′z + βcρ′)
Jx = J′x
Jy = J′y

(H.16)
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Because Eq. (H.5) implies that L−T = GLG, we are led to define four-vectors that

transform according to L−T. Such four-vectors are referred to as being covariant. Given

any contravariant 4-vector a, we define its covariant version by ā = Ga. This operation

simply reverses the sign of the spatial part of a:

ā = Ga =
[

1 0

0 −I

][

a0

a

]

=
[

a0

−a

]

(H.17)

The vector ā transforms as follows:

ā′ = Ga′ = GLa = (GLG)(Ga)= L−Tā (H.18)

where we used the property that G2 = I4, the 4×4 identity matrix. The most important

covariant vector is the four-dimensional gradient:

∂x =

⎡

⎢

⎢

⎢

⎣

∂τ
∂x
∂y
∂z

⎤

⎥

⎥

⎥

⎦

=
[

∂τ
∇∇∇

]

(H.19)

Because x
′ = Lx, it follows that ∂x

′ = L−T∂x. Indeed, we have component-wise:

∂

∂xi
=

∑

j

∂x
′
j

∂xi

∂

∂x
′
j

=
∑

j

Lji
∂

∂x
′
j

⇒ ∂x = LT∂x
′ ⇒ ∂x

′ = L−T∂x

For the z-directed boost of Eq. (H.1), we have L−T = L−1, which gives:

∂τ′ = γ(∂τ + β∂z)
∂z′ = γ(∂z + β∂τ)
∂x′ = ∂x
∂y′ = ∂y

⇔

∂τ = γ(∂τ′ − β∂z′)
∂z = γ(∂z′ − β∂τ′)
∂x = ∂x′
∂y = ∂y′

(H.20)

The four-dimensional divergence of a four-vector is a Lorentz scalar. For example,

denoting the current density four-vector by J = [cρ, Jx, Jy, Jz]T, the charge conserva-

tion law involves the four-dimensional divergence:

∂tρ+∇∇∇ · J = [∂τ, ∂x, ∂y, ∂z]

⎡

⎢

⎢

⎢

⎣

cρ

Jx
Jy
Jz

⎤

⎥

⎥

⎥

⎦

= ∂T
x
J (H.21)

Under a Lorentz transformation, this remains invariant, and therefore, if it is zero

in one frame it will remain zero in all frames. Using ∂T
x
= ∂T

x
′L, we have:

∂tρ+∇∇∇ · J = ∂T
x
J = ∂T

x
′LJ = ∂x

′J′ = ∂t′ρ′ +∇∇∇′ · J ′ (H.22)

Although many quantities in electromagnetism transform like four-vectors, such as

the space-time or the frequency-wavenumber vectors, the actual electromagnetic fields

do not. Rather, they transform like six-vectors or rank-2 antisymmetric tensors.
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A rank-2 tensor is represented by a 4×4 matrix, say F. Its Lorentz transformation

properties are the same as the transformation of the product of a column and a row

four-vector, that is, F transforms like the quantity abT, where a,b are column four-

vectors. This product transforms like a′b′T = L(abT)LT. Thus, a general second-rank

tensor transforms as follows:

F′ = LFLT (H.23)

An antisymmetric rank-2 tensor F defines, and is completely defined by, two three-

dimensional vectors, say a = [ax, ay, az]T and b = [bx, by, bz]T . Its matrix form is:

F =

⎡

⎢

⎢

⎢

⎣

0 −ax −ay −az
ax 0 −bz by
ay bz 0 −bx
az −by bx 0

⎤

⎥

⎥

⎥

⎦

(H.24)

Given the tensor F, one may define its covariant version through F̄ = GFG, and its

dual, denoted by F̃ and obtained by the replacements a → b and b → −a, that is,

F̄ =

⎡

⎢

⎢

⎢

⎣

0 ax ay az
−ax 0 −bz by
−ay bz 0 −bx
−az −by bx 0

⎤

⎥

⎥

⎥

⎦

, F̃ =

⎡

⎢

⎢

⎢

⎣

0 −bx −by −bz
bx 0 az −ay
by −az 0 ax
bz ay −ax 0

⎤

⎥

⎥

⎥

⎦

(H.25)

Thus, F̄ corresponds to the pair (−a,b), and F̃ to (b,−a). Their Lorentz transfor-

mation properties are:

F̄′ = L−TF̄L−1 , F̃′ = LF̃LT (H.26)

Thus, the dual F̃ transforms like F itself. For the z-directed boost of Eq. (H.1), it

follows from (H.23) that the two vectors a,b transform as follows:

a′x = γ(ax − βby)
a′y = γ(ay + βbx)
a′z = az

b′x = γ(bx + βay)
b′y = γ(by − βax)
b′z = bz

(H.27)

These are obtained by equating the expressions:

⎡

⎢

⎢

⎢

⎣

0 −a′x −a′y −a′z
a′x 0 −b′z b′y
a′y b′z 0 −b′x
a′z −b′y b′x 0

⎤

⎥

⎥

⎥

⎦

=

=

⎡

⎢

⎢

⎢

⎣

γ 0 0 −γβ
0 1 0 0

0 0 1 0

−γβ 0 0 γ

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

0 −ax −ay −az
ax 0 −bz by
ay bz 0 −bx
az −by bx 0

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

γ 0 0 −γβ
0 1 0 0

0 0 1 0

−γβ 0 0 γ

⎤

⎥

⎥

⎥

⎦
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More generally, under the boost transformation (H.6), it can be verified that the

components of a,b parallel and perpendicular to v transform as follows:

a ′⊥ = γ(a⊥ +βββ× b⊥)

b ′⊥ = γ(b⊥ −βββ× a⊥)

a ′‖ = a‖

b ′‖ = b‖

γ = 1
√

1− β2
, β = |βββ| , βββ = v

c
(H.28)

Thus, in contrast to Eq. (H.11) for a four-vector, the parallel components remain un-

changed while the transverse components change. A pair of three-dimensional vectors

(a,b) transforming like Eq. (H.28) is referred to as a six-vector.

It is evident also that Eqs. (H.28) remain invariant under the duality transformation

a → b and b → −a, which justifies Eq. (H.26). Some examples of (a,b) six-vector pairs

defining an antisymmetric rank-2 tensor are as follows:

a b

E cB

cD H

cP −M

(H.29)

where P,M are the polarization and magnetization densities defined through the rela-

tionships D = ǫ0E+ P and B = μ0(H+M). Thus, the (E,B) and (D,H) fields have the

following Lorentz transformation properties:

E ′⊥ = γ(E⊥ + cβββ× B⊥)

B ′⊥ = γ(B⊥ −
1

c
βββ× E⊥)

E ′‖ = E‖

B ′‖ = B‖

H ′
⊥ = γ(H⊥ − cβββ×D⊥)

D ′
⊥ = γ(D⊥ +

1

c
βββ×H⊥)

H ′
‖ = H‖

D ′
‖ = D‖

(H.30)

where we may replace cβββ = v and βββ/c = v/c2. Note that the two groups of equations

transform into each other under the usual duality transformations: E → H, H → −E,

D → B, B → −D. For the z-directed boost of Eq. (H.1), we have from Eq. (H.30):

E′x = γ(Ex − cβBy)

E′y = γ(Ey + cβBx)

B′x = γ(Bx +
1

c
βEy)

B′y = γ(By −
1

c
βEx)

E′z = Ez
B′z = Bz

H′x = γ(Hx + cβDy)

H′y = γ(Hy − cβDx)

D′x = γ(Dx −
1

c
βHy)

D′y = γ(Dy +
1

c
βHx)

H′z = Hz
D′z = Dz

(H.31)
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Associated with a six-vector (a,b), there are two scalar invariants: the quantities

(a · b) and (a · a − b · b). Their invariance follows from Eq. (H.28). Thus, the scalars

(E · B), (E · E − c2B · B), (D · H), (c2D · D − H · H) remain invariant under Lorentz

transformations. In addition, it follows from (H.30) that the quantity (E ·D− B ·H) is

invariant.

Given a six-vector (a,b) and its dual (b,−a), we may define the following four-

dimensional “current” vectors that are dual to each other:

J =
[

∇∇∇ · a

∇∇∇× b− ∂τa

]

, J̃ =
[

∇∇∇ · b

−∇∇∇× a− ∂τb

]

(H.32)

It can be shown that both J and J̃ transform as four-vectors under Lorentz trans-

formations, that is, J′ = LJ and J̃′ = LJ̃, where J′, J̃′ are defined with respect to the

coordinates of the S′ frame:

J′ =
[

∇∇∇′ · a ′

∇∇∇′ × b ′ − ∂τ′a ′
]

, J̃′ =
[

∇∇∇′ · b ′

−∇∇∇′ × a ′ − ∂τ′b ′
]

(H.33)

The calculation is straightforward but tedious. For example, for the z-directed boost

(H.1), we may use Eqs. (H.20) and (H.27) and the identity γ2(1− β2)= 1 to show:

J′x =
(

∇∇∇′ × b ′ − ∂τ′a ′
)

x = ∂y′b′z − ∂z′b′y − ∂τ′a′x
= ∂ybz − γ2(∂z + β∂τ)(by − βax)−γ2(∂τ + β∂z)(ax − βby)

= ∂ybz − ∂zby − ∂τax =
(

∇∇∇× b− ∂τa
)

x = Jx

Similarly, we have:

J′0 =∇∇∇′ · a ′ = ∂x′a′x + ∂y′a′y + ∂z′a′z
= γ∂x(ax − βby)+γ∂y(ay + βbx)+γ(∂z + β∂τ)az
= γ

[

(∂xax + ∂yay + ∂zaz)−β(∂xby − ∂ybx − ∂τaz)
]

= γ(J0 − βJz)

In this fashion, one can show that J and J̃ satisfy the Lorentz transformation equa-

tions (H.10) for a four-vector. To see the significance of this result, we rewrite Maxwell’s

equations, with magnetic charge and current densities ρm, Jm included, in the four-

dimensional forms:

[

∇∇∇ · cD
∇∇∇×H− ∂τcD

]

=
[

cρ

J

]

,

[

∇∇∇ · cB
−∇∇∇× E− ∂τcB

]

=
[

cρm
Jm

]

(H.34)

Thus, applying the above result to the six-vector (cD,H) and to the dual of (E, cB)

and assuming that the electric and magnetic current densities transform like four-

vectors, it follows that Maxwell’s equations remain invariant under Lorentz transfor-

mations, that is, they retain their form in the moving system:

[

∇∇∇′ · cD ′

∇∇∇′ ×H ′ − ∂τ′cD ′

]

=
[

cρ′

J ′

]

,

[

∇∇∇′ · cB ′
−∇∇∇′ × E ′ − ∂τ′cB ′

]

=
[

cρ′m
J ′m

]

(H.35)
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The Lorentz transformation properties of the electromagnetic fields allow one to

solve problems involving moving media, such as the Doppler effect, reflection and trans-

mission from moving boundaries, and so on. The main technique for solving such prob-

lems is to transform to the frame (here, S′) in which the boundary is at rest, solve the

reflection problem in that frame, and transform the results back to the laboratory frame

by using the inverse of Eq. (H.30).

This procedure was discussed by Einstein in his 1905 paper on special relativity in

connection to the Doppler effect from a moving mirror. To quote [470]: “All problems

in the optics of moving bodies can be solved by the method here employed. What is

essential is that the electric and magnetic force of the light which is influenced by a

moving body, be transformed into a system of co-ordinates at rest relatively to the

body. By this means all problems in the optics of moving bodies will be reduced to a

series of problems in the optics of stationary bodies.”

I. MATLAB Functions

The MATLAB functions are grouped by category. They are available from the web page:

www.ece.rutgers.edu/~orfanidi/ewa.

Multilayer Dielectric Structures

brewster - calculates Brewster and critical angles

fresnel - Fresnel reflection coefficients for isotropic or birefringent media

n2r - refractive indices to reflection coefficients of M-layer structure

r2n - reflection coefficients to refractive indices of M-layer structure

multidiel - reflection response of isotropic or birefringent multilayer structures

multidiel1 - simplified version of multidiel for isotropic layers

multidiel2 - reflection response of lossy isotropic multilayer dielectric structures

omniband - bandwidth of omnidirectional mirrors and Brewster polarizers

omniband2 - bandwidth of birefringent multilayer mirrors

snel - calculates refraction angles from Snel’s law for birefringent media

Quarter-Wavelength Transformers

bkwrec - order-decreasing backward layer recursion - from a,b to r

frwrec - order-increasing forward layer recursion - from r to A,B

chebtr - Chebyshev broadband reflectionless quarter-wave transformer

chebtr2 - Chebyshev broadband reflectionless quarter-wave transformer

chebtr3 - Chebyshev broadband reflectionless quarter-wave transformer

Dielectric Waveguides

dguide - TE modes in dielectric slab waveguide

dslab - solves for the TE-mode cutoff wavenumbers in a dielectric slab

dguide3 - TE and TM modes in asymmetric 3-slab dielectric waveguide
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Plasmonic Waveguides

drude - Drude-Lorentz model for Silver, Gold, Copper, Aluminum

dmda - asymmetric DMD plasmonic waveguide - iterative solution

dmds - symmetric DMD plasmonic waveguide - iterative solution

dmdcut - cutoff width for asymmetric DMD guides

pwg - plasmonic waveguide solution for symmetric guides

pwga - plasmonic waveguide solution for asymmetric guides

pwgpower - transmitted power in plasmonic waveguide

Sommerfeld and Goubau Wires

sommer - solve characteristic equation for Sommerfeld wire

goubau - solve characteristic equation of Goubau line

goubatt - Goubau line attenuation

gcut - cutoff function for Goubau line

attw - characteristic equation of Attwood surface waveguide

attwatt - attenuation of Attwood surface waveguide

J01 - J0(z)/J1(z) approximation for large imag(z)

Transmission Lines

g2z - reflection coefficient to impedance transformation

z2g - impedance to reflection coefficient transformation

lmin - find locations of voltage minima and maxima

mstripa - microstrip analysis (calculates Z,eff from w/h)

mstripr - microstrip synthesis with refinement (calculates w/h from Z)

mstrips - microstrip synthesis (calculates w/h from Z)

multiline - reflection response of multi-segment transmission line

swr - standing wave ratio

tsection - T-section equivalent of a length-l transmission line segment

gprop - reflection coefficient propagation

vprop - wave impedance propagation

zprop - wave impedance propagation

Impedance Matching

qwt1 - quarter wavelength transformer with series segment

qwt2 - quarter wavelength transformer with 1/8-wavelength shunt stub

qwt3 - quarter wavelength transformer with shunt stub of adjustable length

dualband - two-section dual-band Chebyshev impedance transformer

dualbw - two-section dual-band transformer bandwidths

stub1 - single-stub matching

stub2 - double-stub matching

stub3 - triple-stub matching

onesect - one-section impedance transformer

twosect - two-section impedance transformer

pi2t - Pi to T transformation

t2pi - Pi to T transformation
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lmatch - L-section reactive conjugate matching network

pmatch - Pi-section reactive conjugate matching network

S-Parameters

gin - input reflection coefficient in terms of S-parameters

gout - output reflection coefficient in terms of S-parameters

nfcirc - constant noise figure circle

nfig - noise figure of two-port

sgain - transducer, available, and operating power gains of two-port

sgcirc - stability and gain circles

smat - S-parameters to S-matrix

smatch - simultaneous conjugate match of a two-port

smith - draw basic Smith chart

smithcir - add stability and constant gain circles on Smith chart

sparam - stability parameters of two-port

circint - circle intersection on Gamma-plane

circtan - point of tangency between the two circles

Linear Antenna Functions

dipdir - dipole directivity

dmax - computes directivity and beam solid angle of g(th) gain

dipole - gain of center-fed linear dipole of length L

traveling - gain of traveling-wave antenna of length L

vee - gain of traveling-wave vee antenna

rhombic - gain of traveling-wave rhombic antenna

king - King’s 3-term sinusoidal approximation

kingeval - evaluate King’s 3-term sinusoidal current approximation

kingfit - fits a sampled current to King’s 2-term sinusoidal approximation

kingprime - converts King’s 3-term coefficients from unprimed to primed form

hbasis - basis functions for Hallen equation

hdelta - solve Hallen’s equation with delta-gap input

hfield - solve Hallen’s equation with arbitrary incident E-field

hmat - Hallen impedance matrix with method of moments and point-matching

hwrap - wraps a Toeplitz impedance matrix to half its size

kernel - thin-wire kernel computation for Hallen equation

pfield - solve Pocklington’s equation with arbitrary incident E-field

pmat - Pocklington impedance matrix with method of moments and point-matching

hcoupled - solve Hallen’s equation for 2D array of non-identical parallel dipoles

hcoupled2 - solve Hallen’s equation for 2D array of identical parallel dipoles

gain2d - normalized gain of 2D array of parallel dipoles with Hallen currents

gain2s - normalized gain of 2D array of parallel dipoles with sinusoidal currents

imped - mutual impedance between two parallel standing-wave dipoles

imped2 - mutual impedance between two parallel standing-wave dipoles

impedmat - mutual impedance matrix of array of parallel dipole antennas

resonant - calculates the length of a resonant dipole antenna

yagi - simplified Yagi-Uda array design

Aperture Antenna Functions

diffint - generalized Fresnel diffraction integral
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diffr - knife-edge diffraction coefficient

dsinc - the double-sinc function cos(pi*x)/(1-4*x^2)

fcs - Fresnel integrals C(x) and S(x)

fcs2 - type-2 Fresnel integrals C2(x) and S2(x)

hband - horn antenna 3-dB width

heff - aperture efficiency of horn antenna

hgain - horn antenna H-plane and E-plane gains

hopt - optimum horn antenna design

hsigma - optimum sigma parametes for horn antenna

Antenna Array Functions

gain1d - normalized gain computation for 1D equally-spaced isotropic array

bwidth - beamwidth mapping from psi-space to phi-space

binomial - binomial array weights

dolph - Dolph-Chebyshev array weights

dolph2 - Riblet-Pritchard version of Dolph-Chebyshev

dolph3 - DuHamel version of endfire Dolph-Chebyshev

multibeam - multibeam array design

prol - prolate array design

prolmat - prolate matrix

scan - scan array with given scanning phase

sector - sector beam array design

steer - steer array towards given angle

taylornb - Taylor n-bar line source array design

taylor1p - Taylor 1-parameter array design

taylorbw - Taylor B-parameter and beamwidth

uniform - uniform array weights

woodward - Woodward-Lawson-Butler beams

ville - Villeneuve array design

chebarray - Bresler’s Chebyshev array design method (written by P. Simon)

Gain Plotting Functions

abp - polar gain plot in absolute units

abz - azimuthal gain plot in absolute units

ab2p - polar gain plot in absolute units - 2*pi angle range

abz2 - azimuthal gain plot in absolute units - 2pi angle range

dbp - polar gain plot in dB

dbz - azimuthal gain plot in dB

dbp2 - polar gain plot in dB - 2*pi angle range

dbz2 - azimuthal gain plot in dB - 2pi angle range

abadd - add gain in absolute units

abadd2 - add gain in absolute units - 2pi angle range

dbadd - add gain in dB

dbadd2 - add gain in dB - 2pi angle range

addbwp - add 3-dB angle beamwidth in polar plots

addbwz - add 3-dB angle beamwidth in azimuthal plots

addcirc - add grid circle in polar or azimuthal plots

addline - add grid ray line in azimuthal or polar plots

addray - add ray in azimuthal or polar plots
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Miscellaneous Utility Functions

ab - dB to absolute power units

db - absolute power to dB units

c2p - complex number to phasor form

p2c - phasor form to complex number

d2r - degrees to radians

r2d - radians to degrees

dtft - DTFT of a signal x at a frequency vector w

I0 - modified Bessel function of 1st kind and 0th order

ellipse - polarization ellipse parameters

etac - eta and c

wavenum - calculate wavenumber and characteristic impedance

poly2 - specialized version of poly with increased accuracy

quadr - Gauss-Legendre quadrature weights and evaluation points

quadrs - quadrature weights and evaluation points on subintervals

quadr2 - Gauss-Legendre quadrature weights and evaluation points

quadrs2 - quadrature weights and evaluation points on subintervals

Ci - cosine integral Ci(z)

Cin - cosine integral Cin(z)

Si - sine integral Si(z)

Gi - Green’s function integral

sinhc - hyperbolic sinc function

asinhc - inverse hyperbolic sinc function

sqrte - evanescent SQRT for waves problems

flip - flip a column, a row, or both

blockmat - manipulate block matrices

upulse - generates trapezoidal, rectangular, triangular pulses, or a unit-step

ustep - unit-step or rising unit-step function

dnv - dn elliptic function at a vector of moduli

snv - sn elliptic function at a vector of moduli

ellipK - complete elliptic integral of first kind at a vector of moduli

ellipE - complete elliptic integral of second kind at a vector of moduli

landenv - Landen transformations of a vector of elliptic moduli

MATLAB Movies

grvmovie1 - pulse propagation with slow and negative group velocity (vg < 0)

grvmovie2 - pulse propagation with slow and fast group velocity (vg > c)

pulsemovie - step and pulse propagation on terminated transmission lines

pulse2movie - step propagation on two cascaded lines

RLCmovie - step getting reflected off a reactive termination

TDRmovie - fault location by time-domain reflectometry

xtalkmovie - crosstalk signals on coupled transmission lines

dipmovie - electric field pattern of radiating Hertzian dipole
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[494] C. W. Oseen, “Über die Wechselwirkung zwischen zwei elektrischen Dipolen and über die Drehung

der Polarisationsebene in Kristallen und Flüssigkeiten,” Ann. Physik, Ser. 4, 48, 1 (1915).

1140 REFERENCES

[495] L. Rosenfeld, Theory of Electrons, North Holland Publishing Comp., Amsterdam, 1951.

[496] A. S. Pine, “Self-Consistent Field Theory of Linear and Nonlinear Crystalline Dielectrics Including

Local-Field Effects,” Phys. Rev., 139, no. 3A, A901 (1965).

[497] P. P. Ewald, “Crystal Optics for Visible Light and X-Rays,” Reviews of Modern Physics, 37, 46 (1965).

[498] V. A. Kizel, “Modern Status of the Theory of Light Reflection,” Sov. Phys. Uspekhi, 10, 485 (1968).

[499] J. J. Sein, “A Note on the Ewald-Oseen Extinction Theorem,” Opt. Commun., 2, 170 (1970).

[500] R. K. Bullough, “Many-Body Optics III. The Optical Extinction Theorem,” J. Phys. A, 3, 708 (1970).

[501] J. J. Sein, “Boundary Conditions in the Exciton Absorption Region,” J. Opt. Soc. Am., 62, 1037 (1972).

[502] J. J. Sein, “Optics of Polaritons in Bounded Media,” Phys. Rev., B-6, 2482 (1972).

[503] E. Lalor and E. Wolf, “Exact Solution of the Equations of Molecular Optics for Refraction and Reflec-

tion of an Electromagnetic Wave on a Semi-Infinite Dielectric,” J. Opt. Soc. Am., 62, 1165 (1972).

[504] D. N. Pattanyak and E. Wolf, “General Form and a New Interpretation of the Ewald-Oseen Extinction

Theorem,” Opt. Commun., 6, 217 (1972).

[505] J. De Goede and P. Mazur, “On the Extinction Theorem in Electrodynamics,” Physica, 58, 568 (1972).

[506] J. J. Sein, “General Extinction Theorems,” Opt. Commun., 14, 157 (1975).

[507] J. Van Kranendonk and J. E. Sipe, “Foundations of the Macroscopic Electromagnetic Theory of Di-

electric Media,” in Progress in Optics, vol. XV, E. Wolf, ed., North-Holland Publishing Co., Amsterdam,

1977.

[508] D. Dialetis, “Equivalence of the Ewald-Oseen Extinction Theorem as a Nonlocal Boundary-Value

Problem with Maxwell’s Equations and Boundary Conditions,” J. Opt. Soc. Am., 68, 602 (1978).

[509] D. E. Aspnes, “Local-Field Effects and Effective-Medium Theory: A Microscopic Perspective,” Am. J.

Phys., 50, 704 (1982).

[510] A. T. Friberg and E. Wolf, “Angular Spectrum Representation of Scattered Electromagnetic Fields,”

J. Opt. Soc. Am., 73, 26 (1983).

[511] J. J. Sein, “Solutions to Time-Harmonic Maxwell Equations with a Hertz Vector,” Am. J. Phys., 57,

834 (1989).

[512] G. P. M. Poppe and C. M. J. Wijers, “Exact Solution of the Optical Response of Thick Slabs in the

Discrete Dipole Approach,” Physica B, 167, 221 (1990).

[513] R. K. Bullough and F. Hynne, “Ewald’s Optical Extinction Theorem,” in P. P. Ewald and his Dynamical

Theory of X-ray Diffraction, D. W. Cruickshank and H. J. Juretschke, eds., Oxford Univ. Press, New

York, 1992.

[514] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, vol.1, Addison-Wesley,

Reading, MA, 1963.

[515] F. L. Markley, “The Index of Refraction,” Am. J. Phys., 40, 1799 (1972).

[516] K. S. Kunz and E. Gemoets, “A Simple Model to Explain the Slowing Down of Light in a Crystalline

Medium,” Am. J. Phys., 44, 264 (1976).

[517] N. E. Hill, “Reflection and Transmission in Terms of Polarization,” Am. J. Phys., 48, 752 (1980).

[518] R. K. Wangsness, “Effect of Matter on the Phase Velocity of an Electromagnetic Wave,” Am. J. Phys.,

49, 950 (1981).

[519] G. C. Reali, “Exact Solution of the Equations of Molecular Optics for Refraction and Reflection of an

Electromagnetic Wave on a Semi-Infinite Dielectric,” J. Opt. Soc. Am., 72, 1421 (1982).

[520] G. C. Reali, “Reflection from Dielectric Materials,” Am. J. Phys., 50, 1133 (1982).

[521] M. Schwartz, Principles of Electrodynamics, Dover Publications, New York, 1987.

[522] G. C. Reali, “Reflection, Refraction, and Transmission of Plane Electromagnetic Waves from a Loss-

less Dielectric Slab,” Am. J. Phys., 60, 532 (1992).

[523] M. B. James and D. J. Griffiths, “Why the Speed of Light is Reduced in a Transparent Medium,” Am.

J. Phys., 60, 309 (1992). See also Comment by J. B. Diamond, ibid., 63, 179 (1995).

[524] B. G. de Grooth, “Why Is the Propagation Velocity of a Photon in a Transparent Medium Reduced?”

Am. J. Phys., 65, 1156 (1997).

[525] M. Mansuripur, “The Ewald-Oseen Extinction Theorem,” Optics & Photonics News, 9 (8), 50 (1998).

Reprinted in Ref. [1332].



REFERENCES 1141

[526] H. Fearn, D. F. V. James, and P. W. Milonni, “Microscopic Approach to Reflection, Transmission,

and the Ewald-Oseen Extinction Theorem,” Am. J. Phys., 64, 986 (1996). See also Comment by H. J.

Juretschke, ibid., 67, 929 (1999).

[527] V. C. Ballenegger and T. A. Weber, “The Ewald-Oseen Extinction Theorem and Extinction Lengths,”

Am. J. Phys., 67, 599 (1999).

[528] H. M. Lai, Y. P. Lau, and W. H. Wong, “Understanding Wave Characteristics via Linear Superposition

of Retarded Fields,” Am. J. Phys., 70, 173 (2002).

[529] G. C. Reali, “A Note on Feynman’s Calculation of Reflection Amplitudes for Radiation Striking a

Glass Surface,” . Eur. J. Phys., 35, 045022 (2014).

Near-Field Optics

[530] S. V. Sukhov and K. V. Krutitsky, “Discrete Structure of Ultrathin Dielectric Films and their Surface

Optical Properties,” Phys. Rev., B-65, 115407 (2002).

[531] H. F. Arnoldus and J. T. Foley, “Uniform Asymptotic Approximation of the Evanescent Part of the

Green’s Tensor,” Opt. Commun., 207, 7 (2002).
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[538] T. Setälä, M. Kaivola, and A. T. Friberg, “Decomposition of the Point-Dipole Field into Homogeneous

and Evanescent Parts,” Phys. Rev., E-59, 1200 (1999).

[539] E. Wolf and J. T. Foley, “Do Evanescent Waves Contribute to the Far Field?,” Opt. Lett., 23, 16 (1998).

[540] A. V. Ghiner and G. I. Surdutovich, “Discreteness and Local Fields in Weakly Rarefied Media,” Phys.

Rev., E-56, 6123 (1997).

[541] K. V. Krutitsky and S. V. Suhov, “Near-Field Effect in Classical Optics of Ultra-Thin Films,” J. Phys.,

B-30, 5341 (1997).

[542] J-J. Greffet and R. Carminati, “Image Formation in Near-Field Optics,” Progr. Surf. Sci., 56, 133 (1997).

[543] C. Girard and A. Dereux, “Near-Field Optics Theories,” Rep. Progr. Phys., 59, 657 (1996).

[544] D. Courjon and C. Bainier, “Near Field Microscopy and Near Field Optics,” Rep. Progr. Phys., 57, 989

(1994).

[545] A. V. Ghiner and G. I. Surdutovich, “Method of Integral Equations and an Extinction Theorem in Bulk

and Surface Phenomena in Nonlinear Optics,” Phys. Rev., A-49, 1313 (1993).

[546] E. Betzig and J. K. Trautman, “Near-Field Optics: Microscopy, Spectroscopy, and Surface Modification

Beyond the Diffraction Limit,” Science, 257, 189 (1992).

[547] L. E. C. van de Leemput and H. van Kempen, “Scanning Tunneling Microscopy,” Rep. Progr. Phys.,

55, 1165 (1992).

[548] E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction

Barrier: Optical Microscopy on a Nanometric Scale,” Science, 251, 1468 (1991).

[549] A. Johner and P. Schaaf, “Calculation of the Reflection Coefficients at Interfaces: A Scattering Ap-

proach,” Phys. Rev., B-42, 5516 (1990).

[550] U. Dürig, D. W. Pohl, and F. Rohner, “Near-Field Optical-Scanning Microscopy,” J. Appl. Phys., 59,

3318 (1986).

[551] H. Weyl, “Ausbreitung elektromagnetischer Wellen über einem ebenen Leiter,” Ann. Physik, Ser. 4,

60, 481 (1919).

1142 REFERENCES

Total Internal Reflection

[552] F. Goos and H. Hänchen, Ann. Physik, (Leipzig), 1, 333 (1947).

[553] K. Artmann, “Berechnung der Seitenversetzung des totalreflektierten Strahles,” Ann. Physik,

(Leipzig), 2, 87 (1948).

[554] J. Fahrenfort, “Attenuated Total Reflection. A New Principle for the Production of Useful Infra-Red

Reflection Spectra of Organic Compounds,” Spectrochimica Acta, 17, 698 (1961).

[555] R. H. Renard, “Total Reflection: A New Evaluation of the Goos-Hänchen Shift,” J. Opt. Soc. Am., 54,

1190 (1964).

[556] N. J. Harrick, Internal Reflection Spectroscopy, Wiley, New York, 1967.

[557] P. W. Baumeister, “Optical Tunneling and its Application to Optical Filters,” Appl. Opt., 6, 897 (1967).

[558] H. K. V. Lotsch, “Reflection and Refraction of a Beam of Light at a Plane Interface,” J. Opt. Soc. Am.,

58, 551 (1968).

[559] B. R, Horowitz and T. Tamir, “Lateral Displacement of a Light Beam at a Dielectric Interface,” J. Opt.

Soc. Am., 61, 586 (1971).

[560] C. Imbert, “Calculation and Experimental Proof of the Transverse Shift Induced by Total Internal

Reflection of a Circularly Polarized Light Beam,” Phys. Rev., D-5, 787 (1972).

[561] A. W. Snyder and J. D. Love, “Goos-Hänchen shift,” Appl. Opt., 15, 236 (1976).

[562] M. McGuirk and C. K. Carniglia, “An angular spectrum representation approach to the Goos-Hänchen

shift,” J. Opt. Soc. Am., 67, 103 (1977).

[563] J. J. Cowan and B. Anicin, “Longitudinal and transverse displacements of a bounded microwave

beam at total internal reflection,” J. Opt. Soc. Am., 67, 1307 (1977).

[564] S. Kozaki and H. Sakurai, “Characteristics of a Gaussian beam at a dielectric interface,” J. Opt. Soc.

Am., 68, 508 (1978).

[565] G. Müller, K. Abraham, and M. Schaldach, “Quantitative ATR spectroscopy: some basic considera-

tions,” Appl. Opt., 20, 1182 (1981).

[566] I. R. Chandler, V. P. Tomaselli, and K. D. Moller, “Attenuated total reflection method for obtaining

the optical constants of powders,” Appl. Opt., 22, 4099 (1983).

[567] S. Zhu, et al., “Frustrated Total Internal Reflection: A Demonstration and Review,” Am. J. Phys., 54,

601 (1986).

[568] H. M. Lai, F. C. Cheng, and W. K. Tang, “Goos-Hänchen effect around and off the critical angle,” J.

Opt. Soc. Am., A-3, 550 (1986).

[569] C. C. Chan and T. Tamir, “Beam phenomena at and near critical incidence upon a dielectric interface,”

JOSA, A-4, 655 (1987).

[570] D. Gingell, O. S. Heavens, and J. S. Mellor, “General electromagnetic theory of total internal reflection

fluorescence: the quantitative basis for mapping cell-substratum topography,” J. Cell Sci., 87, 677

(1987).

[571] O. S. Heavens, “Cell studies of total internal reflection fluorescence: effect of lipid membranes,” J.

Cell Sci., 95, 175 (1990).

[572] R. C. Reddick, R. J. Warmack, and T. L. Ferrell, “New Form of Scanning Optical Microscopy,” Phys.

Rev., B-39, 767 (1989).

[573] J. Navasquillo, V. Such, and F. Pomer, “A general method for treating the incidence of a plane

electromagnetic wave on a plane interface between dielectrics,” Am. J. Phys., 57, 1109 (1989).

[574] F. Pomer and J. Navasquillo, “The fields of a bounded electromagnetic beam propagating through

an air gap between two dielectrics for frustrated total reflection,” Am. J. Phys., 58, 763 (1990).

[575] R. C. Reddick, et al., “Photon Scanning Tunneling Microscopy,” Rev. Sci. Instrum., 61, 3669 (1990).

[576] F. Albiol, S. Navas, and M. V. Andres, “Microwave Experiments on Electromagnetic Evanescent Waves

and Tunneling Effect,” Am. J. Phys., 61, 165 (1993).

[577] S. Sainov, V. Sainov, and G. Stoilov, “Interferometer based on total internal reflection,” Appl. Opt.,

34, 2848 (1995).

[578] A. Salari and R. E. Young, “Application of attenuated total reflectance FTIR spectroscopy to the

analysis of mixtures of pharmaceutical polymorphs,” Int. J. Pharmaceutics, 163, 157 (1998).

[579] F. de Fornel, Evanescent Waves, Springer-Verlag, Berlin, 2000.



REFERENCES 1143

[580] A. Haibel, G. Nimtz, and A. A. Stahlhofen, “Frustrated Total Reflection: The Double-Prism Revisited,”

Phys. Rev., E-63, 047601 (2001).

[581] L. Li and J. A. Dobrowolski, “High-Performance Thin-Film Polarizing Beam Splitter Operating at

Angles Greater than the Critical Angle,” Appl. Opt., 39, 2754 (2000).

[582] L. Li, “The Design of Optical Thin Film Coatings with Total and Frustrated Total Internal Reflection,”

Opt. & Photon. News, p. 24, September 2003.

[583] F. P. Zanella, et al., “Frustrated Total Internal Reflection: A Simple Application and Demonstration,”

Am. J. Phys., 71, 494 (2003).

[584] D. A. Papathanassoglou and B. Vohnsen, “Direct Visualization of Evanescent Optical Waves,” Am. J.

Phys., 71, 670 (2003).

[585] E. R. Van Keuren, “Refractive index measurement using total internal reflection,” Am. J. Phys., 73,

611 (2005).

Edward Richard Van Keuren

[586] E. Marengo, “Monitoring of paintings under exposure to UV light by ATR-FT-IR spectroscopy and

multivariate control charts,” Vibr. Spectrosc., 40, 225 (2006).

[587] C-F. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev., A-76, 013811

(2007).

[588] C-W. Chen, et al., “Optical temperature sensing based on the Goos-Hänchen effect,” Appl. Opt., 46,

5347 (2007).

Surface Plasmons

[589] U. Fano, “The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic

Surfaces (Sommerfeld’s Waves),” J. Opt. Soc. Am., 31, 213 (1941).

[590] R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev., 106, 874 (1957).

[591] E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,”

Z. Naturforsch. A, 23, 2135 (1968).

[592] A. Otto, “Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated

Total Reflection,” Z. Physik, 216, 398 (1968).

[593] E. N. Economou, “Surface Plasmons in Thin Films,” Phys. Rev., 182, 539 (1969).

[594] E. Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von
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loop, 791

microstrip, 881

minimum-scattering, 751

monopole, 784

mutual impedance, 1054

noise temperature, 755

normalized gain, 742

open-ended waveguides, 864

parabolic reflectors, 887

polarization mismatch, 752

power density, 740

radar equation, 770

radiation efficiency factor, 741

radiation resistance, 780

radiation vector, 777

receiving, 739, 1000

reflector, 887

resonant, 781

rhombic, 788

satellite links, 767

secant antenna gain, 771

self impedance, 1054

small dipoles, 779

square loop, 795

standing-wave, 779

transmitting, 739

traveling wave, 786

vee, 788

Yagi-Uda, 1072

antireflection coatings, 170, 186, 188

at oblique incidence, 330

aperture antennas, 864

aperture-field method, 892

current-distribution method, 892

directivity of waveguide apertures, 867

dual-reflector, 904

horn design, 878

horn directivity, 875

horn radiation fields, 870

horn radiation patterns, 872

horns, 868

lens, 907

microstrip, 881

open-ended waveguides, 864

parabolic reflector beamwidth, 889

parabolic reflector gain, 889

parabolic reflectors, 887

reflector radiation patterns, 895

aperture efficiency, 747, 810

aperture-field method for reflector antennas, 892

apertures

3-dB angles, 813

aperture efficiency, 810
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circular, 813

diffraction theory, 816

directivity of, 809

effective area of, 809

extinction theorem, 820

field equivalence principle, 799

Fourier optics, 849

Franz diffraction formulas, 819

Fresnel diffraction, 823, 849

geometrical theory of diffraction, 835

Huygens source, 807

Huygens-Fresnel principle, 799

Kirchhoff diffraction formulas, 818

knife-edge diffraction, 827

Kottler’s formulas, 804, 819

lenses, 857

plane wave spectrum, 844

Poisson’s spot, 853

radiation fields from, 804

radiation from, 799

radiation vectors of, 805

Rayleigh-Sommerfeld theory, 841

rectangular, 811

Sommerfeld’s solution, 835

Stratton-Chu diffraction formulas, 818

uniform, 811

vector diffraction for, 822

apparent depth, 254

Appleton-Hartree equations, 151

array design methods, 940

and FIR filters, 945

binomial, 963

Blass matrix, 990

Butler beams, 989

continuous line sources, 955

continuous to discrete, 957

Dolph-Chebyshev, 964

DSP analogies, 945

endfire DuHamel, 975

Fourier series with windowing, 945

frequency-sampling, 952

multibeam, 988

narrow-beam, low-sidelobe, 959

prolate array, 981

Riblet method, 969

sampled current sources, 956

Schelkunoff’s zero-placement, 943

secant array, 954

sector beam, 946

spatial sampling theorem, 956

Taylor line source, 983

Taylor n-bar distribution, 983

Taylor’s one-parameter, 977

Villeneuve, 987

Woodward-Lawson, 950, 957

zero mapping, 957

array factor, 911

array pattern multiplication, 911

array processing, 923

array space factor, 911

arrays, 909

array factor, 911

array processing, 923

beamwidth, 935

beamwidth of uniform array, 929

coupled two-element, 1060

directivity, 931

discrete-space Fourier transform, 923

DSP analogies, 923

grating lobes, 925

ground effects, 917

interferometry, 925

one-dimensional, 921

optimum directivity, 932

parallel dipoles, 1063

parasitic, 1069

pattern multiplication, 911

prolate matrix, 932

rectangular window, 928

sidelobes of uniform array, 930

space factor, 911

spatial z-transform, 923

steering and scanning, 932

translational phase shift, 909

uniform, 927

very large array, 926

very long base line, 926

visible region, 923

Yagi-Uda, 1072

asymmetric dielectric waveguides, 397

atmospheric refraction, 289

attenuation constant, 56

attenuation in waveguides, 368, 381

attenuator noise temperature, 760

Attwood surface waveguide, 526

available gain circles, 695

available power gain, 679

Babinet principle, 853

BAC-CAB rule, 31

backward recursion, see layer recursions

backward waves, 39

balanced stubs, 643

bandwidth

in waveguides, 378

noise, 755

of dielectric mirrors, 197

beam efficiency, 758

beam solid angle, 743

beamwidth, 740

biaxial media, 133

Big Bang, 489

bilinear transformation, 217

binomial arrays, 963

birefingent plasmas, 35

birefringence
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circular, 132

linear, 132

birefringent media, 132

Brewster and critical angles, 350

Brewster angle in, 351

critical angle of incidence in, 350

giant birefringent optics, 355, 356, 361

maximum angle of refraction in, 350

multilayer structures, 355

reflection and refraction, 346

bite-error rate (BER), 765

Blass matrix, 990

Bloch wavenumber, 195

Boltzmann constant, 755

Bouguer’s law, 291

boundary conditions, 7

for transverse fields, 247

matching matrix, 247

BPSK modulation, 765

Brewster angle, 259

for birefringent media, 351

for lossy media, 261

in birefringent media, 350

in negative-index media, 297

broadband matching, 227

Butler beams, 989

cartesian coordinates, 367, 731

causality, 85

relativistic, 85

cavity resonators, 386

characteristic impedance, 4, 45

charge

conservation, 10

density, 1

relaxation time, 11

charge flux, 9

charge form factor, 731

charge relaxation, 23

Chebyshev transformer, 617

Chebyshev transformers, 227

chiral media, 132, 135

chiral media, dichroic, 140

chirp radar, 113

chirping, 103

circular apertures, 813

circular loop antennas, 793

coaxial cables, 546

collision time, 17

communicating antennas, 753

complementary error function, 765

complex modes in MDM waveguides, 442

complex refractive index, 55

complex waves, 65, 261

conductivity model, 20

conductors in magnetic fields, 33

conjugate matching, 614

constitutive relations, 3

in anisotropic dielectrics, 5

in chiral media, 135

in dispersive materials, 5

in gyroelectric media, 138

in gyromagnetic media, 138

in inhomogeneous dielectrics, 5

in linear isotropic dielectrics, 4

in nonlinear dielectrics, 5

in simple dielectrics, 4

in uniaxial and biaxial media, 133

in vacuum, 3

continuous line sources, 955

Taylor’s ideal line, 959

Taylor’s one-parameter, 959

coordinate systems, 1096

cartesian, 367, 731

cylindrical, 367, 731

spherical, 731

cosine integrals, 1098

cosmic microwave background, 489

coupled antennas, 1043

coupled mode theory, 605

fiber Bragg gratings, 607

coupled transmission lines, 594

coupled two-element arrays, 1060

critical angle of incidence, 251

for birefringent media, 350

crosstalk in transmission lines, 600

current-distribution method for reflectors, 892

currents on linear antennas, 993

cutoff wavenumber and frequency, 365

cylindrical coordinates, 367, 731

data rate limits, 765

delta-gap generator, 996

density

current, 1

electric flux, 1

Lorentz force, 3

magnetic flux, 1

momentum, 13, 33

polarization, 8

surface charge, 7

surface current, 7

volume charge, 1

dichroism, linear and circular, 139

dielectric constant, 4

dielectric mirrors, 193

bandwidth of, 197

Fabry-Perot resonators, 204

multiband, 202

narrow-band transmission filters, 204

omnidirectional, 199

shortpass/longpass filters, 203

dielectric model, 17

dielectric polarization, 4

dielectric slab, 163, 307

half-wave, 166
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quarter-wave, 166

reflectionless, 166

dielectric waveguides, 388

asymmetric, 397

diffraction integrals, 1098

diffraction theory, 816

diffuse reflection and transmission

Kubelka-Munk model of, 610

dipole moment density, 4

dipole radiation, 796

directive gain, 740

directivity, 740

directivity of apertures, 809

discretization of continuous line sources, 955

dish antennas, 747, 887

dispersion

anomalous, 19

intermodal, 6

material, 6

normal, 19

waveguide, 6

dispersion coefficient, 100

dispersion compensation, 105

dispersive materials, 5

displacement current, 1

Dolph-Chebyshev arrays, 964

Dolph-Chebyshev-Riblet arrays, 969

doppler ambiguity, 120

Doppler effect, 67

Doppler radar, 181

Doppler shift, 178, 181

double-stub tuner, 645

Drude model, 21

Drude-Lorentz model, 22

DSFT, discrete-space Fourier transform, 923

DTFT, discrete-time Fourier transform, 923

dual-reflector antennas, 904

duality transformation, 801

dynamic predictive deconvolution, 186

effective area of an antenna, 745

effective area of apertures, 809

effective length of an antenna, 751

effective noise temperature, 701, 759

efficiency factor, 741

EIRP, effective isotropic radiated power, 741

electric and magnetic dipoles, 718

electric field, 1

electric flux density, 1

electromagnetic frequency bands, 1088

elliptic functions, 1011

elliptic integrals, 1011

endfire DuHamel arrays, 975

energy conservation, 12

energy density, 12, 14, 26, 46

energy flux, 10, 12, 46, 739

energy velocity, 29, 41

equivalent noise temperature, 761

error function, 765

evanescent waves, 252

penetration depth for, 252

Ewald-Oseen extinction theorem, 723

exponential integrals, 1098

extinction theorem, 723, 820

Fabry-Perot interferometer, 204, 309

far-field approximation, 729

Faraday rotation, 132, 139

Faraday’s law of induction, 1

Fermat’s principle of least time, 282

fiber Bragg gratings, 186, 204, 607

quarter-wave phase-shifted gratings, 204

fiber, single mode, 101

fiber, standard, 101

field equivalence principle, 799

field intensities, 1

fields of dipoles, 718

fields of wire antennas, 716

fingerprint identification, 255

flux

charge, 9

definition of, 9

energy, 10, 12

momentum, 10

Poynting vector, 12

flux densities, 1

forward recursion, see layer recursions

forward waves, 39

Fourier optics, 849

Fourier series method with windowing, 945

Franz diffraction formulas, 819

Fraunhofer region, 730

free-space loss, 754

frequency bands, 1088

frequency-sampling array design, 952

Fresnel coefficients, 247, 248

Fresnel diffraction, 823, 849

Fresnel drag, 180

Fresnel integrals, 1098

Fresnel region, 730

Fresnel rhomb, 255

Fresnel zones, 830

Friis formula, 753

frill generator, 996

front delay, 85

front velocity, 85

frustrated total internal reflection, 309

gain, 740

gain-beamwidth relationship, 743, 749

Galerkin weighting, 1016

gamma-ray bands, 1089

Gap SPP, 448

gauge transformation, 710

Gauss’s laws, 1

geometrical optics, 279
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geometrical theory of diffraction, 835

geosynchronous satellite, 744

giant birefringent optics, 140, 355, 356, 361

mirrors, 356, 357

reflective polarizers, 359

glass prisms, 253

Goos-Hänchen shift, 256

Goubau line, 509

Goubau line cutoffs, 516

Goubau line, planar limit, 526

graded-index optical fibers, 294

grating lobes, 925

gratings, 607

Green’s function, 998

Green’s function for Helmholz equation, 714

Green’s functions, 1093

Green’s identities, 32

ground effects between antennas, 917

ground-penetrating radar, 81

group delay, 85

group index, 100

group refractive index, 30

group velocity, 29, 30, 83, 85, 95

in birefringent media, 143

in waveguides, 379

slow, fast, and negative, 106

superluminal, 86, 106

group velocity dispersion, 99

gyroelectric media, 132

gyromagnetic media, 132, 138, 149

gyrotropic media, 138

half-wave dipole antennas, 783

half-wave reflectionless slab, 166

Hall effect, 35, 149

Hallén equation with arbitrary field, 1032

Hallén equations for coupled antennas, 1077

Hallén integral equation, 995, 998

approximate kernel, 994

delta-gap input, 999

exact kernel, 994

plane-wave input, 999

harmonic time dependence, 13

Harms-Goubau line, 509

Helmholtz equations, 367

Hertzian dipole antenna, 777

high resolution microscopy, 255

horn antennas, 868

horn design, 878

horn directivity, 875

horn radiation fields, 870

horn radiation patterns, 872

Huygens source, 807

impedance

mutual, 1054

self, 1054

transverse, 65, 243, 245, 365

wave, 47

impedance matching, 157, 614

balanced stubs, 643

Chebyshev transformer, 617

Chebyshev transformers, 227

conjugate matching, 614

double- and triple-stub tuners, 645

dual-band Chebyshev transformer, 623

flat line, 615

L-section matching network, 647

matching networks, 615

microstrip matching circuits, 634

one-section transformer, 639

Pi-section matching network, 650

quarter-wavelength transformer, 186, 617

quarter-wavelength with series section, 629

quarter-wavelength with shunt stub, 632

reversed matching networks, 657

single-stub tuner, 639

two-section transformer, 634

impedance matrix, 663

impedance of round wire, 507

impedance transformers, 190

inductance of round wire, 508

infrared bands, 1089

inhomogeneous materials, 5

inhomogeneous waves, 65, 261

integral theorems, 1090

intermodal dispersion, 6

internal reflection spectroscopy, 255

inverse power iteration, 983

ionospheric refraction, 286

isotropic radiator, 740

Kaiser window, 948, 977

kernel

approximate, 994

elliptic function representation, 1011

exact, 994

numerical evaluation, 1010

reduced, 994

King’s four-term approximation, 1009, 1053

King’s three-term approximation, 1003, 1048

Kirchhoff diffraction formulas, 818

knife-edge diffraction, 827

Kottler’s formulas, 804

Kramers-Kronig dispersion relations, 6, 27, 35

Kubelka-Munk model, 610

L-section matching network, 647

layer recursions, 216, 304

backward, 217

forward, 213, 304

left-handed media, 7, 71, 295

lens antennas, 907

lenses, 857

Levinson recursion, see layer recursions

linear antennas, 775
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linear prediction, 186

link budget calculation, 769

loop antennas, 791

Lorentz dielectric, 18

Lorentz force, 2

Lorentz transformations, 178, 1110

Lorenz gauge condition, 710

loss tangent, 25, 59

lossless bounded real functions, 186

lossy media, 54

lossy media, weakly, 60

lossy multilayer structures, 305

low-noise, high-gain, amplifier, 763

lowest usable frequency (LUF), 287

Macneille polarizers, see reflective polarizers

magnetic currents, 799, 801

magnetic field, 1

magnetic flux density, 1

magnetic induction, 1

magnetic resonance, 139

magnetization, 4

magnetization current, 6

matched filter, 122

matching, see impedance matching

matching matrices, 157, 187

matching matrix, 247

matching networks, 615

material dispersion, 6

MATLAB functions:

Cin, cosine integral Cin, 1059, 1103

Ci, cosine integral Ci, 1059, 1103

Gi, Green’s function integral, 1058, 1103

J01, Bessel function ratio J0(u)/J1(u), 493

RLCmovie, reactive termination, 583

Si, sine integral, 1059, 1103

TDRmovie, time-domain reflectometry, 593

abp2, polar gain in absolute units, 1068

abp, polar gain in absolute units, 743

abz2, azimuthal gain in absolute units, 1068

abz, azimuthal gain in absolute units, 743

asinhc, inverse hyperbolic sinh, 979

attwatt, Goubau line attenuation, 529

attwood, Attwood surface wave, 528

binomial, binomial array, 964

bkwrec, backward layer recursion, 223

blockmat, manipulate block matrices, 1082

brewster, Brewster and critical angles, 351

bwidth, array beamwidth, 936

c2p, cartesian to phasor form, 703

chebarray, Dolph-Chebyshev array, 968

chebtr2, Chebyshev transformer, 231, 618

chebtr3, Chebyshev transformer, 231, 618

chebtr, Chebyshev transformer, 231, 618

dbp2, polar gain in dB, 1068

dbp, polar gain in dB, 743

dbz2, azimuthal gain in dB, 916

dbz, azimuthal gain in dB, 743

dguide3, asymmetric dielectric slab, 405

dguide, TE modes in dielectric slab, 395

diffint, diffraction integrals, 871, 1101

dipdir, dipole directivity, 782

dipmovie, radiating dipole movie, 723

dipole, dipole gain, 784

dmax, dipole directivity, 784

dmda, asymmetric DMD waveguide solver, 479

dmdcut, cutoff width for DMD guides, 477

dmds, symmetric DMD waveguide solver, 469

dnv, elliptic function dn, 1012

dolph2, Dolph-Chebyshev array, 972

dolph3, Dolph-Chebyshev array, 976

dolph, Dolph-Chebyshev array, 968

drude, Drude-Lorentz model for metals, 22

dsinc, double sinc function, 866

dslab, cutoff wavenumbers in slab, 395

dualband, dual-band transformer, 627

dualbw, dual-band bandwidth, 629

ellipE, elliptic integral of 2nd kind, 1012

ellipK, elliptic integral of 1st kind, 1012

ellipse, polarization ellipse, 53

fcs2, Fresnel integrals, 1099

fcs, Fresnel integrals, 1099

fresnel, Fresnel coefficients, 250, 350

frwrec, forward layer recursion, 223

gain1d, one-dimensional array gain, 912

gain2d, gain of 2D array of dipoles, 1083

gain2s, gain of sinusoidal dipole array, 1066

gcut, cutoffs of Goubau line, 516

gin, input reflection coefficients, 676

goubatt, Goubau line attenuation, 515

goubau, Goubau line, 513

gout, output reflection coefficients, 676

gprop, propagation of Γ, 557

grvmovie1, pulse propagation with vg<0, 113

grvmovie2, pulse propagation with vg>c, 113

hband, horn bandedges, 871

hbasis, Hallén basis functions, 1032

hcoupled2, coupled Hallén equations, 1082

hcoupled, coupled Hallén equations, 1082

hdelta, Hallén equation with delta-gap, 1021

heff, horn aperture efficiency, 871

hfield, Hallén with arbitrary field, 1034

hgain, horn gain patterns, 871

hmat, Hallén impedance matrix, 1021

hopt, optimum horn design, 871

hsigma, horn σ parameter, 871

hwrap, wrapped impedance matrix, 1021

impedmat, mutual impedance matrix, 1065

imped, dipole impedance, 780

k2k, converts to King’s primed form, 1004

kernel, exact and approximate kernel, 1012

kingeval, King’s three-term evaluation, 1008

kingfit, King’s three-term fit, 1008

king, Kings three-term approximation, 1006

landev, vectorial Landen transformation, 1012

lmatch, L-section transformer, 649
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lmin, location of voltage min/max, 571

mstripa, microstrip analysis, 545

mstripr, microstrip synthesis, 545

mstrips, microstrip synthesis, 545

multbeam, multibeam array, 989

multidiel1, multilayers, simplified, 305

multidiel2, lossy multilayers, 306

multidiel, multilayer structures, 305, 355

multiline, response of multisection line, 617

n2r, reflection coefficients, 223

nfcirc, noise figure circles, 676

nfig, calculate noise figure, 676

omniband2, birefringent bandwidth, 356

omniband, omnidirectional bandwidth, 336

onesect, one-section transformer, 639

p2c, phasor to cartesian form, 703

pfield, solves Pocklington equation, 1039

pi2t, Π to T transformation, 651

pmatch, Π matching network, 653

poly2, improved version of poly, 233, 968

prolmat, prolate matrix, 983

prol, prolate array, 983

pulse2movie, pulse on transmission line, 592

pulsemovie, pulse on transmission line, 582

pwga, plasmonic waveguide solver, 445

pwgpower, power in plasmonic waveguide, 418

pwg, plasmonic waveguide solver, 445

quadr2, Gauss-Legendre quadrature, 1110

quadrs2, Gauss-Legendre quadrature, 1110

quadrs, Gauss-Legendre quadrature, 898, 1104

quadr, Gauss-Legendre quadrature, 1104

qwt1, quarter-wavelength transformer, 632

qwt2, quarter-wavelength transformer, 633

qwt3, quarter-wavelength transformer, 633

r2n, refractive indices, 223

rhombic, rhombic antenna gain, 790

scan, array scanning, 934

sector, sector beam design, 950

sgain, calculate power gains, 676

sgcirc, stability and gain circles, 676

sinhc, hyperbolic sinc, 979

smatch, simultaneous conjugate match, 676

smithcir, draw stability or gain circles, 676

smith, draw a basic Smith chart, 676

snel, refraction angle, 349

snv, elliptic function sn, 1012

sommer, Sommerfeld wire, 494

sparam, calculate stability parameters, 676

sqrte, evanescent square root, 264

steer, array steering, 934

stub1, single-stub tuner, 642

stub2, double-stub tuner, 646

stub3, triple-stub tuner, 647

swr, standing wave ratio, 567

t2pi, T to Π transformation, 651

taylor1p, Taylor’s one-parameter, 979

taylorbw, Taylor’s B-parameter, 979

taylornb, Taylor’s n-bar method, 986

traveling, traveling-wave antenna, 787

tsection, T-section equivalent, 558

twosect, two-section transformer, 190, 637

upulse, pulse generation, 591

ustep, unit-step generation, 592

vee, vee antenna gain, 790

ville, Villeneuve method, 988

vprop, propagation V, I, 557

woodward, Woodward-Lawson method, 952

yagi, Yagi-Uda array, 1073

zprop, propagation of Z, 557

maximum angle of refraction, 251, 350

maximum available gain (MAG), 681

maximum stable gain (MSB), 681

maximum usable frequency (MUF), 287

Maxwell’s equations, 1

harmonic time dependence, 13

in terms of polarization, 6

source-free, 2

Maxwell’s stress tensor, 33

metamaterials, 7, 295

method of moments, 1015

delta-basis with Galerkin, 1023

delta-function basis, 1018

Galerkin method, 1016

NEC basis, 1029

point matching, 1016

pulse basis, 1016, 1022

triangular basis, 1027

weighting functions, 1016

microstrip antennas, 881

microstrip matching circuits, 634

microwave amplifier design, 682

microwave frequency bands, 1088

microwave oven, 59

mirages, 288

mobility, 22

momentum conservation, 33

momentum density, 13

momentum flux, 10

monopole antennas, 784

moving boundary

Fresnel drag, 180

oblique reflection from, 275

reflection and transmission from, 178

moving media, 178

moving mirror, 181

multibeam array design, 988

multilayer optical film, 360

multilayer structures, 186, 303

at oblique incidence, 303

birefringent, 355

dielectric mirrors, 193, 333

energy conservation in, 215

equal-travel time, 209

lossy, 305

reflection frequency response of, 214

scattering matrix of, 215
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multiple dielectric slabs, 176

multiple reflections, 174

multisection transmission lines, 616

mutual impedance, 1054

narrow-beam, low-sidelobe array design, 959

natural rotation, 137

near fields of linear antennas, 1043, 1046

negative index media, 7, 31, 71, 295

Brewster angle in, 297

equivalent conditions, 73

propagation in, 71

negative-index media

lossy, 73

perfect lens, 322

Snel’s law, 295

network analyzer, 664

noise bandwidth, 755

noise figure, 701, 760

noise figure circles, 701

noise model of a device, 759

noise power, 755

noise temperature, 701, 755

cellular base station, 756

of attenuator, 760

of cascaded devices, 761

sky, 756

system, 759

nonlinear materials, 5

normalized gain, 742

numerical aperture, 255

Nyquist frequency

in multilayer structures, 210

Ohm’s law, 6, 21

ohmic power losses, 3, 12, 14, 25

omnidirectional dielectric mirrors, 193, 333

one-dimensional arrays, 921

operating gain circles, 695

operating power gain, 679

optical fibers, 254, 388

graded index, 294

numerical aperture, 255

optical filters, 186

antireflection coatings, 188

dielectric mirrors, 193

narrow-band transmission, 204

shortpass and longpass, 203

optical manhole, 253

optical rotation, 135, 137

optically active media, 132

optimum array directivity, 932

p-polarization, see polarization

parabolic reflector antennas, 887

parasitic array, 1069

PBG, see periodic bandgap structures

penetration depth, 56

for evanescent waves, 252

perfect electric conductor, 800

perfect lens, 298, 322

perfect magnetic conductor, 800

periodic bandgap structures, 204

acoustic and vibration control, 204

Bloch wavenumber, 195

fiber Bragg gratings, 204

photonic crystals, 204

transmission lines and waveguides, 204

permeability, 3

permittivity, 3

phase delay, 85

phase thickness, 210, 304, 333

phase velocity, 85

photonic crystals, 204

physical constants, 1087

Pi-section matching network, 650

plane wave incident on linear antenna, 996

plane wave spectrum representation, 844

plasma frequency, 18

plasmas, 25

plasmonic waveguides, 411

anomalous complex modes, 442, 454

characteristic equations, 415

DMD, approximation, 469, 481

DMD, asymmetric, 476

DMD, cutoff width, 460, 464, 477

DMD, iteration, 469, 478

DMD, lossless, 457

DMD, lossy, 467

DMD, symmetric, 468

energy & group velocities, 421

field profiles, 414

Gap SPP, 448

MDM, lossless, 425

MDM, lossy, 443

MDM, oscillatory modes, 437

MDM, PEC limit, 452

oscillatory modes, 415

power transfer, 418

single interface, 419

surface plasmon resonance, 417

symmetric configuration, 417

plasmonics, 275

Pocklington equation solution, 1037

Pocklington integral equation, 995, 1046

Poisson spot, 853

Poisson’s spot, 853

polarization, 4, 47, 242

Brewster angle, 259

charge density, 8

linear, circular, 133

TE, perpendicular, s-polarization, 242

TM, parallel, p-polarization, 242

polarization current and density, 6

polarization ellipse, 49

polarizers, 134, 344
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beam splitters, 344

reflective, 344, 359

polarizers, dichroic, 139

polaroid materials, 140

positive real functions, 186

power density, 739

power gain circles, 692

power gains, 677

power losses, 3, 23

power losses in transmission lines, 539

power losses per unit volume, 3

power transfer in transmission lines, 538, 561

power transfer in waveguides, 368

power waves, 683

Poynting vector, 12, 14, 41

precursors, 92

principal-value integrals, 716

prisms, 253

prolate array design, 981

prolate matrix, 932, 981

propagation

and chirping, 103

in birefringent media, 132

in chiral media, 136

in dispersive media, 83

in good conductors, 61

in gyrotropic media, 139

in negative index media, 71

in oblique directions, 62

in uniaxial and biaxial media, 134

in waveguides, 384

in weakly lossy media, 60

matrices, 153

oblique, in birefringent media, 140

of reflection coefficient, 154, 247

of wave impedance, 155, 247

transient and steady-state, 91

propagation filter, 83

propagation impulse response examples, 88

propagation matrices, 187

propagator frequency response, 84

propagator impulse response, 84

pulse compression, 113

pulse compression filters, 116

pulse compression, and chirping, 104

pulse propagation, 83

pulse propagation, and group velocity, 95

pulse spreading, 6, 99

QPSK modulation, 765

quadruple radiation, 796

quarter-wave reflectionless slab, 166

quarter-wave retarder, 134

quarter-wavelength transformer, 186, 617, 629,

632

radar, 81

radar equation, 770

radar jamming, 774

radar, chirp, 113

radiated power, 740

radiation field approximation, 733

radiation fields, 709, 728, 735

radiation fields from apertures, 804

radiation fields of magnetic currents, 803

radiation from apertures, 799

radiation from dipoles, 718

radiation from waveguide apertures, 864

radiation intensity, 739

isotropic, 740

radiation patterns of reflector antennas, 895

radiation potentials, 731

radiation resistance, 779, 780

radiation vector, 731

magnetic, 803

radiation vector of linear antennas, 777

radiative transfer, 610

radio interferometry, 925

radomes, 172

ray tracing, 284

Rayleigh-Sommerfeld diffraction theory, 841

rectangular apertures, 811

recursions, see layer recursions

refelection coefficient, 154

reflectance, 166

reflectance spectroscopy, 610

reflected power, 160

reflection by moving boundary, 178

reflection coefficients, 158

for multilayer structures, 304

Fresnel, 247, 248

of multilayer structures, 186

transverse, 304

reflection response

forward recursion, 304

of multilayer structures, 187

reflectionless dielectric slab, 166

reflectionless matching, 614

reflective polarizers, 344

giant birefringent optics, 359

reflector antennas, 887

refraction

atmospheric, 289

ionospheric, 286

mirages, 288

refractive index, 4, 30, 245

in birefringent media, 142

transverse, 245, 304

refractive index model, 723

refractive index, complex, 55

relative permeability, 4

relative permittivity, 4

relativistic causality, 85

relaxation time, 11, 23

relaxation, charge, 23

resistance of round wire, 508
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resonant antennas, 781

resonant cavities, 386

retarded potentials, 711

retarders, 134

reversed matching networks, 657

RF spectrum, 1088

rhombic antennas, 788

S-parameters, 663

available gain, 679

available gain circles, 695

generalized, 683

input and output reflection coefficients, 669

maximum available gain, 681

maximum stable gain, 681

microwave amplifier design, 682

network analyzers, 664

noise figure circles, 701

operating gain, 679

operating gain circles, 695

power flow, 667

power gain circles, 692

power gains, 677

power waves, 683

scattering matrix, 668

simultaneous conjugate matching, 687

stability circles, 671

stability criterion, 674

transducer gain, 679

traveling waves, 664

unilateral gain circles, 693

s-polarization, see polarization

satellite links, 767

scattering matrix, 159, 215

unitarity, 216

scattering parameters, 663

Schelkunoff’s zero-placement, 943

Schur algorithm, 186

search radar, 771

sector beam array design, 946

self impedance, 1054

self-inductance of round wire, 508

Sellmeier equation, 20

sensors, chemical and biological, 255, 321

Shannon channel capacity, 765

SI units, 1, 1087

simultaneous conjugate matching, 687

sine integrals, 1098

single-stub tuner, 639

sinusoidal current approximation, 999

skin depth, 56, 507

skin effect, 506

small dipole antenna, 779

Smith chart, 572

Snel’s law, 243, 283

Bouguer’s law, 291

for lossy media, 249

in birefringent media, 354

in multilayer structures, 303

in negative-index media, 295

solid angle, 733

solitons, 6

Sommerfeld wire, 489

Sommerfeld’s conducting half-space solution, 835

spatial sampling theorem, 956

spherical coordinates, 731

square loop antennas, 795

stability circles, 671

standard atmosphere, 292, 293

standing wave ratio, 566

standing-wave antennas, 779

stationary phase approximation, 1101

Stratton-Chu diffraction formulas, 818

superluminal group velocity, 86, 106

surface current, 61

surface impedance, 61

surface plasmon resonance, 255, 313

surface plasmons, 272, 313

surface waveguides, 411

surface waves, 411

susceptibility, electric, magnetic, 4

system noise temperature, 759

system SNR, 760

Taylor line source array, 983

Taylor one-parameter array design, 977

Taylor’s ideal line source, 959

Taylor’s one-parameter line source, 959

Taylor-Kaiser arrays, 977

TE and TM impedance, 365

TE waves, 65

TE, TM, TEM modes, 364, 371

telegrapher’s equations, 576, 595

thick glasses, 171

thin films, 186, 192, 205

thin-wire kernel, 994

three-layer dielectric waveguides, 397

THz applications, 489

time average

energy density, 14

ohmic losses, 14

Poynting vector, 14

time-domain reflection response, 174

time-domain reflectometry, 592

time-domain response of transmission lines, 576

TM waves, 65

total internal reflection, 250, 264

critical angle of incidence, 251

for birefringent media, 350

frustrated, 309

maximum angle of refraction, 251

transducer power gain, 679

transfer matrix, 187, 195, 210, 213, 663

transformers, see impedance matching

transition matrix, see transfer matrix

translational phase shift, 909
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transmission coefficients, 158

transmission lines, 535

broadband terminations of, 186

cascaded lines, 592

coaxial lines, 546

coupled, 594

coupled telegrapher’s equations, 595

crosstalk, 600

determination of load impedance, 568

distributed circuit model of, 553

equivalent electrostatic problem, 535

higher modes in, 550

impedance, inductance, capacitance, 536

lattice timing diagrams, 579

microstrip lines, 542

multisection lines, 616

open and short circuited lines, 563

parallel plate lines, 541

power losses, 539

power transfer, 561

reactive terminations, 582

reflection response, 555

rise time effects, 591

Smith chart, 572

standing wave ratio, 566

telegrapher’s equations, 576

terminated lines, 558

Thévenin equivalent circuit, 564, 614

time-domain reflectometry, 592

time-domain response, 576

transient response, 577

transmitted power, 538

two-port equivalent circuit of, 557

two-wire lines, 551

wave impedance, 555

weakly coupled lines, 603

transmittance, 166

transmitted power, 160

transverse

fields, 243

Fresnel coefficients, 247, 248

impedance, 245

propagation matrices, 246

reflection coefficients, 246, 304

refractive index, 245, 304

wave impedance, 246

transverse impedance, 65, 243, 365

traveling wave antennas, 786

traveling waves, 664

triple-stub tuner, 645

two-port network, 663

two-section impedance transformer, 634

ultraviolet bands, 1089

uniaxial media, 133

uniform apertures, 811

uniform arrays, 927

uniform plane waves, 37

unilateral gain circles, 693

units, 1

vector diffraction for apertures, 822

vector diffraction theory, 816

vector identities, 1090

vector potential, 709

vee antennas, 788

velocity of light, 4

very large array (VLA), 926

very long base line array (VLBA), 926

Villeneuve arrays, 987

visible region, 923

visible spectrum, 1089

Voyager spacecraft, 766

wave equation, 38

wave equations, 711

wave impedance, 47, 154, 555

forward recursion, 305

of multilayer structures, 187

wavefront, 44, 64

surfaces and rays, 280

waveguide dispersion, 6

waveguides, 362

attenuation, 368, 381

cutoff wavenumber and frequency, 365

dielectric, 388

energy velocity, group velocity, 379

Goubau line, 509

Helmholtz equations, 367

operating bandwidth, 378

plasmonic, 411

power transfer, 368, 379

propagation model, 384

rectangular, 374

resonant cavities, 386

Sommerfeld wire, 489

TE, TM impedance, 365

TE, TM, TEM modes, 364, 371

wavelength division multiplexing, 5

wavelength-division multiplexing, 186, 205

waves

backward, 39

complex, 65, 261

evanescent, 252

forward, 39

in birefringent media, 141

in plasma, 151

inhomogeneous, 65, 261

monochromatic, 43

TE, TM, 65

uniform plane, 37, 54

Zenneck, 270

Weyl representation, 1094

Wien’s radiation law, 489

wire antennas, 775

WMD, see wavelength division multiplexing
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Woodward-Lawson array design, 950

Woodward-Lawson method, 957

X-ray bands, 1089

Yagi-Uda antennas, 1072

Zenneck surface wave, 270

zero dispersion wavelength, 101

zero-placement array design, 943
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